]> git.lizzy.rs Git - rust.git/blob - src/librustc/hir/lowering.rs
Rename `Stmt.node` to `Stmt.kind`
[rust.git] / src / librustc / hir / lowering.rs
1 // ignore-tidy-filelength
2
3 //! Lowers the AST to the HIR.
4 //!
5 //! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
6 //! much like a fold. Where lowering involves a bit more work things get more
7 //! interesting and there are some invariants you should know about. These mostly
8 //! concern spans and IDs.
9 //!
10 //! Spans are assigned to AST nodes during parsing and then are modified during
11 //! expansion to indicate the origin of a node and the process it went through
12 //! being expanded. IDs are assigned to AST nodes just before lowering.
13 //!
14 //! For the simpler lowering steps, IDs and spans should be preserved. Unlike
15 //! expansion we do not preserve the process of lowering in the spans, so spans
16 //! should not be modified here. When creating a new node (as opposed to
17 //! 'folding' an existing one), then you create a new ID using `next_id()`.
18 //!
19 //! You must ensure that IDs are unique. That means that you should only use the
20 //! ID from an AST node in a single HIR node (you can assume that AST node-IDs
21 //! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
22 //! If you do, you must then set the new node's ID to a fresh one.
23 //!
24 //! Spans are used for error messages and for tools to map semantics back to
25 //! source code. It is therefore not as important with spans as IDs to be strict
26 //! about use (you can't break the compiler by screwing up a span). Obviously, a
27 //! HIR node can only have a single span. But multiple nodes can have the same
28 //! span and spans don't need to be kept in order, etc. Where code is preserved
29 //! by lowering, it should have the same span as in the AST. Where HIR nodes are
30 //! new it is probably best to give a span for the whole AST node being lowered.
31 //! All nodes should have real spans, don't use dummy spans. Tools are likely to
32 //! get confused if the spans from leaf AST nodes occur in multiple places
33 //! in the HIR, especially for multiple identifiers.
34
35 mod expr;
36 mod item;
37
38 use crate::dep_graph::DepGraph;
39 use crate::hir::{self, ParamName};
40 use crate::hir::HirVec;
41 use crate::hir::map::{DefKey, DefPathData, Definitions};
42 use crate::hir::def_id::{DefId, DefIndex, CRATE_DEF_INDEX};
43 use crate::hir::def::{Namespace, Res, DefKind, PartialRes, PerNS};
44 use crate::hir::{GenericArg, ConstArg};
45 use crate::hir::ptr::P;
46 use crate::lint::builtin::{self, PARENTHESIZED_PARAMS_IN_TYPES_AND_MODULES,
47                     ELIDED_LIFETIMES_IN_PATHS};
48 use crate::middle::cstore::CrateStore;
49 use crate::session::Session;
50 use crate::session::config::nightly_options;
51 use crate::util::common::FN_OUTPUT_NAME;
52 use crate::util::nodemap::{DefIdMap, NodeMap};
53 use errors::Applicability;
54 use rustc_data_structures::fx::FxHashSet;
55 use rustc_data_structures::indexed_vec::IndexVec;
56 use rustc_data_structures::thin_vec::ThinVec;
57 use rustc_data_structures::sync::Lrc;
58
59 use std::collections::BTreeMap;
60 use std::mem;
61 use smallvec::SmallVec;
62 use syntax::attr;
63 use syntax::ast;
64 use syntax::ptr::P as AstP;
65 use syntax::ast::*;
66 use syntax::errors;
67 use syntax::ext::base::SpecialDerives;
68 use syntax::ext::hygiene::ExpnId;
69 use syntax::print::pprust;
70 use syntax::source_map::{respan, ExpnData, ExpnKind, DesugaringKind, Spanned};
71 use syntax::symbol::{kw, sym, Symbol};
72 use syntax::tokenstream::{TokenStream, TokenTree};
73 use syntax::parse::token::{self, Token};
74 use syntax::visit::{self, Visitor};
75 use syntax_pos::Span;
76
77 const HIR_ID_COUNTER_LOCKED: u32 = 0xFFFFFFFF;
78
79 pub struct LoweringContext<'a> {
80     crate_root: Option<Symbol>,
81
82     /// Used to assign IDs to HIR nodes that do not directly correspond to AST nodes.
83     sess: &'a Session,
84
85     cstore: &'a dyn CrateStore,
86
87     resolver: &'a mut dyn Resolver,
88
89     /// The items being lowered are collected here.
90     items: BTreeMap<hir::HirId, hir::Item>,
91
92     trait_items: BTreeMap<hir::TraitItemId, hir::TraitItem>,
93     impl_items: BTreeMap<hir::ImplItemId, hir::ImplItem>,
94     bodies: BTreeMap<hir::BodyId, hir::Body>,
95     exported_macros: Vec<hir::MacroDef>,
96     non_exported_macro_attrs: Vec<ast::Attribute>,
97
98     trait_impls: BTreeMap<DefId, Vec<hir::HirId>>,
99
100     modules: BTreeMap<hir::HirId, hir::ModuleItems>,
101
102     generator_kind: Option<hir::GeneratorKind>,
103
104     /// Used to get the current `fn`'s def span to point to when using `await`
105     /// outside of an `async fn`.
106     current_item: Option<Span>,
107
108     catch_scopes: Vec<NodeId>,
109     loop_scopes: Vec<NodeId>,
110     is_in_loop_condition: bool,
111     is_in_trait_impl: bool,
112     is_in_dyn_type: bool,
113
114     /// What to do when we encounter either an "anonymous lifetime
115     /// reference". The term "anonymous" is meant to encompass both
116     /// `'_` lifetimes as well as fully elided cases where nothing is
117     /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
118     anonymous_lifetime_mode: AnonymousLifetimeMode,
119
120     /// Used to create lifetime definitions from in-band lifetime usages.
121     /// e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
122     /// When a named lifetime is encountered in a function or impl header and
123     /// has not been defined
124     /// (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
125     /// to this list. The results of this list are then added to the list of
126     /// lifetime definitions in the corresponding impl or function generics.
127     lifetimes_to_define: Vec<(Span, ParamName)>,
128
129     /// `true` if in-band lifetimes are being collected. This is used to
130     /// indicate whether or not we're in a place where new lifetimes will result
131     /// in in-band lifetime definitions, such a function or an impl header,
132     /// including implicit lifetimes from `impl_header_lifetime_elision`.
133     is_collecting_in_band_lifetimes: bool,
134
135     /// Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
136     /// When `is_collectin_in_band_lifetimes` is true, each lifetime is checked
137     /// against this list to see if it is already in-scope, or if a definition
138     /// needs to be created for it.
139     ///
140     /// We always store a `modern()` version of the param-name in this
141     /// vector.
142     in_scope_lifetimes: Vec<ParamName>,
143
144     current_module: hir::HirId,
145
146     type_def_lifetime_params: DefIdMap<usize>,
147
148     current_hir_id_owner: Vec<(DefIndex, u32)>,
149     item_local_id_counters: NodeMap<u32>,
150     node_id_to_hir_id: IndexVec<NodeId, hir::HirId>,
151
152     allow_try_trait: Option<Lrc<[Symbol]>>,
153     allow_gen_future: Option<Lrc<[Symbol]>>,
154 }
155
156 pub trait Resolver {
157     /// Obtains resolution for a `NodeId` with a single resolution.
158     fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes>;
159
160     /// Obtains per-namespace resolutions for `use` statement with the given `NodeId`.
161     fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res<NodeId>>>;
162
163     /// Obtains resolution for a label with the given `NodeId`.
164     fn get_label_res(&mut self, id: NodeId) -> Option<NodeId>;
165
166     /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
167     /// This should only return `None` during testing.
168     fn definitions(&mut self) -> &mut Definitions;
169
170     /// Given suffix `["b", "c", "d"]`, creates an AST path for `[::crate_root]::b::c::d` and
171     /// resolves it based on `is_value`.
172     fn resolve_str_path(
173         &mut self,
174         span: Span,
175         crate_root: Option<Symbol>,
176         components: &[Symbol],
177         ns: Namespace,
178     ) -> (ast::Path, Res<NodeId>);
179
180     fn has_derives(&self, node_id: NodeId, derives: SpecialDerives) -> bool;
181 }
182
183 /// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
184 /// and if so, what meaning it has.
185 #[derive(Debug)]
186 enum ImplTraitContext<'a> {
187     /// Treat `impl Trait` as shorthand for a new universal generic parameter.
188     /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
189     /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
190     ///
191     /// Newly generated parameters should be inserted into the given `Vec`.
192     Universal(&'a mut Vec<hir::GenericParam>),
193
194     /// Treat `impl Trait` as shorthand for a new opaque type.
195     /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
196     /// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
197     ///
198     /// We optionally store a `DefId` for the parent item here so we can look up necessary
199     /// information later. It is `None` when no information about the context should be stored
200     /// (e.g., for consts and statics).
201     OpaqueTy(Option<DefId> /* fn def-ID */),
202
203     /// `impl Trait` is not accepted in this position.
204     Disallowed(ImplTraitPosition),
205 }
206
207 /// Position in which `impl Trait` is disallowed.
208 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
209 enum ImplTraitPosition {
210     /// Disallowed in `let` / `const` / `static` bindings.
211     Binding,
212
213     /// All other posiitons.
214     Other,
215 }
216
217 impl<'a> ImplTraitContext<'a> {
218     #[inline]
219     fn disallowed() -> Self {
220         ImplTraitContext::Disallowed(ImplTraitPosition::Other)
221     }
222
223     fn reborrow(&'b mut self) -> ImplTraitContext<'b> {
224         use self::ImplTraitContext::*;
225         match self {
226             Universal(params) => Universal(params),
227             OpaqueTy(fn_def_id) => OpaqueTy(*fn_def_id),
228             Disallowed(pos) => Disallowed(*pos),
229         }
230     }
231 }
232
233 pub fn lower_crate(
234     sess: &Session,
235     cstore: &dyn CrateStore,
236     dep_graph: &DepGraph,
237     krate: &Crate,
238     resolver: &mut dyn Resolver,
239 ) -> hir::Crate {
240     // We're constructing the HIR here; we don't care what we will
241     // read, since we haven't even constructed the *input* to
242     // incr. comp. yet.
243     dep_graph.assert_ignored();
244
245     LoweringContext {
246         crate_root: sess.parse_sess.injected_crate_name.try_get().copied(),
247         sess,
248         cstore,
249         resolver,
250         items: BTreeMap::new(),
251         trait_items: BTreeMap::new(),
252         impl_items: BTreeMap::new(),
253         bodies: BTreeMap::new(),
254         trait_impls: BTreeMap::new(),
255         modules: BTreeMap::new(),
256         exported_macros: Vec::new(),
257         non_exported_macro_attrs: Vec::new(),
258         catch_scopes: Vec::new(),
259         loop_scopes: Vec::new(),
260         is_in_loop_condition: false,
261         is_in_trait_impl: false,
262         is_in_dyn_type: false,
263         anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
264         type_def_lifetime_params: Default::default(),
265         current_module: hir::CRATE_HIR_ID,
266         current_hir_id_owner: vec![(CRATE_DEF_INDEX, 0)],
267         item_local_id_counters: Default::default(),
268         node_id_to_hir_id: IndexVec::new(),
269         generator_kind: None,
270         current_item: None,
271         lifetimes_to_define: Vec::new(),
272         is_collecting_in_band_lifetimes: false,
273         in_scope_lifetimes: Vec::new(),
274         allow_try_trait: Some([sym::try_trait][..].into()),
275         allow_gen_future: Some([sym::gen_future][..].into()),
276     }.lower_crate(krate)
277 }
278
279 #[derive(Copy, Clone, PartialEq)]
280 enum ParamMode {
281     /// Any path in a type context.
282     Explicit,
283     /// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
284     ExplicitNamed,
285     /// The `module::Type` in `module::Type::method` in an expression.
286     Optional,
287 }
288
289 enum ParenthesizedGenericArgs {
290     Ok,
291     Warn,
292     Err,
293 }
294
295 /// What to do when we encounter an **anonymous** lifetime
296 /// reference. Anonymous lifetime references come in two flavors. You
297 /// have implicit, or fully elided, references to lifetimes, like the
298 /// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
299 /// or `Ref<'_, T>`. These often behave the same, but not always:
300 ///
301 /// - certain usages of implicit references are deprecated, like
302 ///   `Ref<T>`, and we sometimes just give hard errors in those cases
303 ///   as well.
304 /// - for object bounds there is a difference: `Box<dyn Foo>` is not
305 ///   the same as `Box<dyn Foo + '_>`.
306 ///
307 /// We describe the effects of the various modes in terms of three cases:
308 ///
309 /// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
310 ///   of a `&` (e.g., the missing lifetime in something like `&T`)
311 /// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
312 ///   there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
313 ///   elided bounds follow special rules. Note that this only covers
314 ///   cases where *nothing* is written; the `'_` in `Box<dyn Foo +
315 ///   '_>` is a case of "modern" elision.
316 /// - **Deprecated** -- this coverse cases like `Ref<T>`, where the lifetime
317 ///   parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
318 ///   non-deprecated equivalent.
319 ///
320 /// Currently, the handling of lifetime elision is somewhat spread out
321 /// between HIR lowering and -- as described below -- the
322 /// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
323 /// an "elided" or "underscore" lifetime name. In the future, we probably want to move
324 /// everything into HIR lowering.
325 #[derive(Copy, Clone, Debug)]
326 enum AnonymousLifetimeMode {
327     /// For **Modern** cases, create a new anonymous region parameter
328     /// and reference that.
329     ///
330     /// For **Dyn Bound** cases, pass responsibility to
331     /// `resolve_lifetime` code.
332     ///
333     /// For **Deprecated** cases, report an error.
334     CreateParameter,
335
336     /// Give a hard error when either `&` or `'_` is written. Used to
337     /// rule out things like `where T: Foo<'_>`. Does not imply an
338     /// error on default object bounds (e.g., `Box<dyn Foo>`).
339     ReportError,
340
341     /// Pass responsibility to `resolve_lifetime` code for all cases.
342     PassThrough,
343 }
344
345 struct ImplTraitTypeIdVisitor<'a> { ids: &'a mut SmallVec<[NodeId; 1]> }
346
347 impl<'a, 'b> Visitor<'a> for ImplTraitTypeIdVisitor<'b> {
348     fn visit_ty(&mut self, ty: &'a Ty) {
349         match ty.kind {
350             | TyKind::Typeof(_)
351             | TyKind::BareFn(_)
352             => return,
353
354             TyKind::ImplTrait(id, _) => self.ids.push(id),
355             _ => {},
356         }
357         visit::walk_ty(self, ty);
358     }
359
360     fn visit_path_segment(
361         &mut self,
362         path_span: Span,
363         path_segment: &'v PathSegment,
364     ) {
365         if let Some(ref p) = path_segment.args {
366             if let GenericArgs::Parenthesized(_) = **p {
367                 return;
368             }
369         }
370         visit::walk_path_segment(self, path_span, path_segment)
371     }
372 }
373
374 impl<'a> LoweringContext<'a> {
375     fn lower_crate(mut self, c: &Crate) -> hir::Crate {
376         /// Full-crate AST visitor that inserts into a fresh
377         /// `LoweringContext` any information that may be
378         /// needed from arbitrary locations in the crate,
379         /// e.g., the number of lifetime generic parameters
380         /// declared for every type and trait definition.
381         struct MiscCollector<'tcx, 'interner> {
382             lctx: &'tcx mut LoweringContext<'interner>,
383             hir_id_owner: Option<NodeId>,
384         }
385
386         impl MiscCollector<'_, '_> {
387             fn allocate_use_tree_hir_id_counters(
388                 &mut self,
389                 tree: &UseTree,
390                 owner: DefIndex,
391             ) {
392                 match tree.kind {
393                     UseTreeKind::Simple(_, id1, id2) => {
394                         for &id in &[id1, id2] {
395                             self.lctx.resolver.definitions().create_def_with_parent(
396                                 owner,
397                                 id,
398                                 DefPathData::Misc,
399                                 ExpnId::root(),
400                                 tree.prefix.span,
401                             );
402                             self.lctx.allocate_hir_id_counter(id);
403                         }
404                     }
405                     UseTreeKind::Glob => (),
406                     UseTreeKind::Nested(ref trees) => {
407                         for &(ref use_tree, id) in trees {
408                             let hir_id = self.lctx.allocate_hir_id_counter(id);
409                             self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
410                         }
411                     }
412                 }
413             }
414
415             fn with_hir_id_owner<F, T>(&mut self, owner: Option<NodeId>, f: F) -> T
416             where
417                 F: FnOnce(&mut Self) -> T,
418             {
419                 let old = mem::replace(&mut self.hir_id_owner, owner);
420                 let r = f(self);
421                 self.hir_id_owner = old;
422                 r
423             }
424         }
425
426         impl<'tcx, 'interner> Visitor<'tcx> for MiscCollector<'tcx, 'interner> {
427             fn visit_pat(&mut self, p: &'tcx Pat) {
428                 if let PatKind::Paren(..) | PatKind::Rest = p.kind {
429                     // Doesn't generate a HIR node
430                 } else if let Some(owner) = self.hir_id_owner {
431                     self.lctx.lower_node_id_with_owner(p.id, owner);
432                 }
433
434                 visit::walk_pat(self, p)
435             }
436
437             fn visit_item(&mut self, item: &'tcx Item) {
438                 let hir_id = self.lctx.allocate_hir_id_counter(item.id);
439
440                 match item.node {
441                     ItemKind::Struct(_, ref generics)
442                     | ItemKind::Union(_, ref generics)
443                     | ItemKind::Enum(_, ref generics)
444                     | ItemKind::TyAlias(_, ref generics)
445                     | ItemKind::OpaqueTy(_, ref generics)
446                     | ItemKind::Trait(_, _, ref generics, ..) => {
447                         let def_id = self.lctx.resolver.definitions().local_def_id(item.id);
448                         let count = generics
449                             .params
450                             .iter()
451                             .filter(|param| match param.kind {
452                                 ast::GenericParamKind::Lifetime { .. } => true,
453                                 _ => false,
454                             })
455                             .count();
456                         self.lctx.type_def_lifetime_params.insert(def_id, count);
457                     }
458                     ItemKind::Use(ref use_tree) => {
459                         self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
460                     }
461                     _ => {}
462                 }
463
464                 self.with_hir_id_owner(Some(item.id), |this| {
465                     visit::walk_item(this, item);
466                 });
467             }
468
469             fn visit_trait_item(&mut self, item: &'tcx TraitItem) {
470                 self.lctx.allocate_hir_id_counter(item.id);
471
472                 match item.kind {
473                     TraitItemKind::Method(_, None) => {
474                         // Ignore patterns in trait methods without bodies
475                         self.with_hir_id_owner(None, |this| {
476                             visit::walk_trait_item(this, item)
477                         });
478                     }
479                     _ => self.with_hir_id_owner(Some(item.id), |this| {
480                         visit::walk_trait_item(this, item);
481                     })
482                 }
483             }
484
485             fn visit_impl_item(&mut self, item: &'tcx ImplItem) {
486                 self.lctx.allocate_hir_id_counter(item.id);
487                 self.with_hir_id_owner(Some(item.id), |this| {
488                     visit::walk_impl_item(this, item);
489                 });
490             }
491
492             fn visit_foreign_item(&mut self, i: &'tcx ForeignItem) {
493                 // Ignore patterns in foreign items
494                 self.with_hir_id_owner(None, |this| {
495                     visit::walk_foreign_item(this, i)
496                 });
497             }
498
499             fn visit_ty(&mut self, t: &'tcx Ty) {
500                 match t.kind {
501                     // Mirrors the case in visit::walk_ty
502                     TyKind::BareFn(ref f) => {
503                         walk_list!(
504                             self,
505                             visit_generic_param,
506                             &f.generic_params
507                         );
508                         // Mirrors visit::walk_fn_decl
509                         for parameter in &f.decl.inputs {
510                             // We don't lower the ids of argument patterns
511                             self.with_hir_id_owner(None, |this| {
512                                 this.visit_pat(&parameter.pat);
513                             });
514                             self.visit_ty(&parameter.ty)
515                         }
516                         self.visit_fn_ret_ty(&f.decl.output)
517                     }
518                     _ => visit::walk_ty(self, t),
519                 }
520             }
521         }
522
523         self.lower_node_id(CRATE_NODE_ID);
524         debug_assert!(self.node_id_to_hir_id[CRATE_NODE_ID] == hir::CRATE_HIR_ID);
525
526         visit::walk_crate(&mut MiscCollector { lctx: &mut self, hir_id_owner: None }, c);
527         visit::walk_crate(&mut item::ItemLowerer { lctx: &mut self }, c);
528
529         let module = self.lower_mod(&c.module);
530         let attrs = self.lower_attrs(&c.attrs);
531         let body_ids = body_ids(&self.bodies);
532
533         self.resolver
534             .definitions()
535             .init_node_id_to_hir_id_mapping(self.node_id_to_hir_id);
536
537         hir::Crate {
538             module,
539             attrs,
540             span: c.span,
541             exported_macros: hir::HirVec::from(self.exported_macros),
542             non_exported_macro_attrs: hir::HirVec::from(self.non_exported_macro_attrs),
543             items: self.items,
544             trait_items: self.trait_items,
545             impl_items: self.impl_items,
546             bodies: self.bodies,
547             body_ids,
548             trait_impls: self.trait_impls,
549             modules: self.modules,
550         }
551     }
552
553     fn insert_item(&mut self, item: hir::Item) {
554         let id = item.hir_id;
555         // FIXME: Use `debug_asset-rt`.
556         assert_eq!(id.local_id, hir::ItemLocalId::from_u32(0));
557         self.items.insert(id, item);
558         self.modules.get_mut(&self.current_module).unwrap().items.insert(id);
559     }
560
561     fn allocate_hir_id_counter(&mut self, owner: NodeId) -> hir::HirId {
562         // Set up the counter if needed.
563         self.item_local_id_counters.entry(owner).or_insert(0);
564         // Always allocate the first `HirId` for the owner itself.
565         let lowered = self.lower_node_id_with_owner(owner, owner);
566         debug_assert_eq!(lowered.local_id.as_u32(), 0);
567         lowered
568     }
569
570     fn lower_node_id_generic<F>(&mut self, ast_node_id: NodeId, alloc_hir_id: F) -> hir::HirId
571     where
572         F: FnOnce(&mut Self) -> hir::HirId,
573     {
574         if ast_node_id == DUMMY_NODE_ID {
575             return hir::DUMMY_HIR_ID;
576         }
577
578         let min_size = ast_node_id.as_usize() + 1;
579
580         if min_size > self.node_id_to_hir_id.len() {
581             self.node_id_to_hir_id.resize(min_size, hir::DUMMY_HIR_ID);
582         }
583
584         let existing_hir_id = self.node_id_to_hir_id[ast_node_id];
585
586         if existing_hir_id == hir::DUMMY_HIR_ID {
587             // Generate a new `HirId`.
588             let hir_id = alloc_hir_id(self);
589             self.node_id_to_hir_id[ast_node_id] = hir_id;
590
591             hir_id
592         } else {
593             existing_hir_id
594         }
595     }
596
597     fn with_hir_id_owner<F, T>(&mut self, owner: NodeId, f: F) -> T
598     where
599         F: FnOnce(&mut Self) -> T,
600     {
601         let counter = self.item_local_id_counters
602             .insert(owner, HIR_ID_COUNTER_LOCKED)
603             .unwrap_or_else(|| panic!("no `item_local_id_counters` entry for {:?}", owner));
604         let def_index = self.resolver.definitions().opt_def_index(owner).unwrap();
605         self.current_hir_id_owner.push((def_index, counter));
606         let ret = f(self);
607         let (new_def_index, new_counter) = self.current_hir_id_owner.pop().unwrap();
608
609         debug_assert!(def_index == new_def_index);
610         debug_assert!(new_counter >= counter);
611
612         let prev = self.item_local_id_counters
613             .insert(owner, new_counter)
614             .unwrap();
615         debug_assert!(prev == HIR_ID_COUNTER_LOCKED);
616         ret
617     }
618
619     /// This method allocates a new `HirId` for the given `NodeId` and stores it in
620     /// the `LoweringContext`'s `NodeId => HirId` map.
621     /// Take care not to call this method if the resulting `HirId` is then not
622     /// actually used in the HIR, as that would trigger an assertion in the
623     /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
624     /// properly. Calling the method twice with the same `NodeId` is fine though.
625     fn lower_node_id(&mut self, ast_node_id: NodeId) -> hir::HirId {
626         self.lower_node_id_generic(ast_node_id, |this| {
627             let &mut (def_index, ref mut local_id_counter) =
628                 this.current_hir_id_owner.last_mut().unwrap();
629             let local_id = *local_id_counter;
630             *local_id_counter += 1;
631             hir::HirId {
632                 owner: def_index,
633                 local_id: hir::ItemLocalId::from_u32(local_id),
634             }
635         })
636     }
637
638     fn lower_node_id_with_owner(&mut self, ast_node_id: NodeId, owner: NodeId) -> hir::HirId {
639         self.lower_node_id_generic(ast_node_id, |this| {
640             let local_id_counter = this
641                 .item_local_id_counters
642                 .get_mut(&owner)
643                 .expect("called `lower_node_id_with_owner` before `allocate_hir_id_counter`");
644             let local_id = *local_id_counter;
645
646             // We want to be sure not to modify the counter in the map while it
647             // is also on the stack. Otherwise we'll get lost updates when writing
648             // back from the stack to the map.
649             debug_assert!(local_id != HIR_ID_COUNTER_LOCKED);
650
651             *local_id_counter += 1;
652             let def_index = this
653                 .resolver
654                 .definitions()
655                 .opt_def_index(owner)
656                 .expect("you forgot to call `create_def_with_parent` or are lowering node-IDs \
657                          that do not belong to the current owner");
658
659             hir::HirId {
660                 owner: def_index,
661                 local_id: hir::ItemLocalId::from_u32(local_id),
662             }
663         })
664     }
665
666     fn next_id(&mut self) -> hir::HirId {
667         self.lower_node_id(self.sess.next_node_id())
668     }
669
670     fn lower_res(&mut self, res: Res<NodeId>) -> Res {
671         res.map_id(|id| {
672             self.lower_node_id_generic(id, |_| {
673                 panic!("expected `NodeId` to be lowered already for res {:#?}", res);
674             })
675         })
676     }
677
678     fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
679         self.resolver.get_partial_res(id).map_or(Res::Err, |pr| {
680             if pr.unresolved_segments() != 0 {
681                 bug!("path not fully resolved: {:?}", pr);
682             }
683             pr.base_res()
684         })
685     }
686
687     fn expect_full_res_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Res<NodeId>> {
688         self.resolver.get_import_res(id).present_items()
689     }
690
691     fn diagnostic(&self) -> &errors::Handler {
692         self.sess.diagnostic()
693     }
694
695     /// Reuses the span but adds information like the kind of the desugaring and features that are
696     /// allowed inside this span.
697     fn mark_span_with_reason(
698         &self,
699         reason: DesugaringKind,
700         span: Span,
701         allow_internal_unstable: Option<Lrc<[Symbol]>>,
702     ) -> Span {
703         span.fresh_expansion(ExpnData {
704             allow_internal_unstable,
705             ..ExpnData::default(ExpnKind::Desugaring(reason), span, self.sess.edition())
706         })
707     }
708
709     fn with_anonymous_lifetime_mode<R>(
710         &mut self,
711         anonymous_lifetime_mode: AnonymousLifetimeMode,
712         op: impl FnOnce(&mut Self) -> R,
713     ) -> R {
714         debug!(
715             "with_anonymous_lifetime_mode(anonymous_lifetime_mode={:?})",
716             anonymous_lifetime_mode,
717         );
718         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
719         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
720         let result = op(self);
721         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
722         debug!("with_anonymous_lifetime_mode: restoring anonymous_lifetime_mode={:?}",
723                old_anonymous_lifetime_mode);
724         result
725     }
726
727     /// Creates a new `hir::GenericParam` for every new lifetime and
728     /// type parameter encountered while evaluating `f`. Definitions
729     /// are created with the parent provided. If no `parent_id` is
730     /// provided, no definitions will be returned.
731     ///
732     /// Presuming that in-band lifetimes are enabled, then
733     /// `self.anonymous_lifetime_mode` will be updated to match the
734     /// parameter while `f` is running (and restored afterwards).
735     fn collect_in_band_defs<T, F>(
736         &mut self,
737         parent_id: DefId,
738         anonymous_lifetime_mode: AnonymousLifetimeMode,
739         f: F,
740     ) -> (Vec<hir::GenericParam>, T)
741     where
742         F: FnOnce(&mut LoweringContext<'_>) -> (Vec<hir::GenericParam>, T),
743     {
744         assert!(!self.is_collecting_in_band_lifetimes);
745         assert!(self.lifetimes_to_define.is_empty());
746         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
747
748         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
749         self.is_collecting_in_band_lifetimes = true;
750
751         let (in_band_ty_params, res) = f(self);
752
753         self.is_collecting_in_band_lifetimes = false;
754         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
755
756         let lifetimes_to_define = self.lifetimes_to_define.split_off(0);
757
758         let params = lifetimes_to_define
759             .into_iter()
760             .map(|(span, hir_name)| self.lifetime_to_generic_param(
761                 span, hir_name, parent_id.index,
762             ))
763             .chain(in_band_ty_params.into_iter())
764             .collect();
765
766         (params, res)
767     }
768
769     /// Converts a lifetime into a new generic parameter.
770     fn lifetime_to_generic_param(
771         &mut self,
772         span: Span,
773         hir_name: ParamName,
774         parent_index: DefIndex,
775     ) -> hir::GenericParam {
776         let node_id = self.sess.next_node_id();
777
778         // Get the name we'll use to make the def-path. Note
779         // that collisions are ok here and this shouldn't
780         // really show up for end-user.
781         let (str_name, kind) = match hir_name {
782             ParamName::Plain(ident) => (
783                 ident.as_interned_str(),
784                 hir::LifetimeParamKind::InBand,
785             ),
786             ParamName::Fresh(_) => (
787                 kw::UnderscoreLifetime.as_interned_str(),
788                 hir::LifetimeParamKind::Elided,
789             ),
790             ParamName::Error => (
791                 kw::UnderscoreLifetime.as_interned_str(),
792                 hir::LifetimeParamKind::Error,
793             ),
794         };
795
796         // Add a definition for the in-band lifetime def.
797         self.resolver.definitions().create_def_with_parent(
798             parent_index,
799             node_id,
800             DefPathData::LifetimeNs(str_name),
801             ExpnId::root(),
802             span,
803         );
804
805         hir::GenericParam {
806             hir_id: self.lower_node_id(node_id),
807             name: hir_name,
808             attrs: hir_vec![],
809             bounds: hir_vec![],
810             span,
811             pure_wrt_drop: false,
812             kind: hir::GenericParamKind::Lifetime { kind }
813         }
814     }
815
816     /// When there is a reference to some lifetime `'a`, and in-band
817     /// lifetimes are enabled, then we want to push that lifetime into
818     /// the vector of names to define later. In that case, it will get
819     /// added to the appropriate generics.
820     fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
821         if !self.is_collecting_in_band_lifetimes {
822             return;
823         }
824
825         if !self.sess.features_untracked().in_band_lifetimes {
826             return;
827         }
828
829         if self.in_scope_lifetimes.contains(&ParamName::Plain(ident.modern())) {
830             return;
831         }
832
833         let hir_name = ParamName::Plain(ident);
834
835         if self.lifetimes_to_define.iter()
836                                    .any(|(_, lt_name)| lt_name.modern() == hir_name.modern()) {
837             return;
838         }
839
840         self.lifetimes_to_define.push((ident.span, hir_name));
841     }
842
843     /// When we have either an elided or `'_` lifetime in an impl
844     /// header, we convert it to an in-band lifetime.
845     fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
846         assert!(self.is_collecting_in_band_lifetimes);
847         let index = self.lifetimes_to_define.len();
848         let hir_name = ParamName::Fresh(index);
849         self.lifetimes_to_define.push((span, hir_name));
850         hir_name
851     }
852
853     // Evaluates `f` with the lifetimes in `params` in-scope.
854     // This is used to track which lifetimes have already been defined, and
855     // which are new in-band lifetimes that need to have a definition created
856     // for them.
857     fn with_in_scope_lifetime_defs<T, F>(&mut self, params: &[GenericParam], f: F) -> T
858     where
859         F: FnOnce(&mut LoweringContext<'_>) -> T,
860     {
861         let old_len = self.in_scope_lifetimes.len();
862         let lt_def_names = params.iter().filter_map(|param| match param.kind {
863             GenericParamKind::Lifetime { .. } => Some(ParamName::Plain(param.ident.modern())),
864             _ => None,
865         });
866         self.in_scope_lifetimes.extend(lt_def_names);
867
868         let res = f(self);
869
870         self.in_scope_lifetimes.truncate(old_len);
871         res
872     }
873
874     /// Appends in-band lifetime defs and argument-position `impl
875     /// Trait` defs to the existing set of generics.
876     ///
877     /// Presuming that in-band lifetimes are enabled, then
878     /// `self.anonymous_lifetime_mode` will be updated to match the
879     /// parameter while `f` is running (and restored afterwards).
880     fn add_in_band_defs<F, T>(
881         &mut self,
882         generics: &Generics,
883         parent_id: DefId,
884         anonymous_lifetime_mode: AnonymousLifetimeMode,
885         f: F,
886     ) -> (hir::Generics, T)
887     where
888         F: FnOnce(&mut LoweringContext<'_>, &mut Vec<hir::GenericParam>) -> T,
889     {
890         let (in_band_defs, (mut lowered_generics, res)) = self.with_in_scope_lifetime_defs(
891             &generics.params,
892             |this| {
893                 this.collect_in_band_defs(parent_id, anonymous_lifetime_mode, |this| {
894                     let mut params = Vec::new();
895                     // Note: it is necessary to lower generics *before* calling `f`.
896                     // When lowering `async fn`, there's a final step when lowering
897                     // the return type that assumes that all in-scope lifetimes have
898                     // already been added to either `in_scope_lifetimes` or
899                     // `lifetimes_to_define`. If we swapped the order of these two,
900                     // in-band-lifetimes introduced by generics or where-clauses
901                     // wouldn't have been added yet.
902                     let generics = this.lower_generics(
903                         generics,
904                         ImplTraitContext::Universal(&mut params),
905                     );
906                     let res = f(this, &mut params);
907                     (params, (generics, res))
908                 })
909             },
910         );
911
912         let mut lowered_params: Vec<_> = lowered_generics
913             .params
914             .into_iter()
915             .chain(in_band_defs)
916             .collect();
917
918         // FIXME(const_generics): the compiler doesn't always cope with
919         // unsorted generic parameters at the moment, so we make sure
920         // that they're ordered correctly here for now. (When we chain
921         // the `in_band_defs`, we might make the order unsorted.)
922         lowered_params.sort_by_key(|param| {
923             match param.kind {
924                 hir::GenericParamKind::Lifetime { .. } => ParamKindOrd::Lifetime,
925                 hir::GenericParamKind::Type { .. } => ParamKindOrd::Type,
926                 hir::GenericParamKind::Const { .. } => ParamKindOrd::Const,
927             }
928         });
929
930         lowered_generics.params = lowered_params.into();
931
932         (lowered_generics, res)
933     }
934
935     fn with_dyn_type_scope<T, F>(&mut self, in_scope: bool, f: F) -> T
936     where
937         F: FnOnce(&mut LoweringContext<'_>) -> T,
938     {
939         let was_in_dyn_type = self.is_in_dyn_type;
940         self.is_in_dyn_type = in_scope;
941
942         let result = f(self);
943
944         self.is_in_dyn_type = was_in_dyn_type;
945
946         result
947     }
948
949     fn with_new_scopes<T, F>(&mut self, f: F) -> T
950     where
951         F: FnOnce(&mut LoweringContext<'_>) -> T,
952     {
953         let was_in_loop_condition = self.is_in_loop_condition;
954         self.is_in_loop_condition = false;
955
956         let catch_scopes = mem::take(&mut self.catch_scopes);
957         let loop_scopes = mem::take(&mut self.loop_scopes);
958         let ret = f(self);
959         self.catch_scopes = catch_scopes;
960         self.loop_scopes = loop_scopes;
961
962         self.is_in_loop_condition = was_in_loop_condition;
963
964         ret
965     }
966
967     fn def_key(&mut self, id: DefId) -> DefKey {
968         if id.is_local() {
969             self.resolver.definitions().def_key(id.index)
970         } else {
971             self.cstore.def_key(id)
972         }
973     }
974
975     fn lower_attrs_extendable(&mut self, attrs: &[Attribute]) -> Vec<Attribute> {
976         attrs
977             .iter()
978             .map(|a| self.lower_attr(a))
979             .collect()
980     }
981
982     fn lower_attrs(&mut self, attrs: &[Attribute]) -> hir::HirVec<Attribute> {
983         self.lower_attrs_extendable(attrs).into()
984     }
985
986     fn lower_attr(&mut self, attr: &Attribute) -> Attribute {
987         // Note that we explicitly do not walk the path. Since we don't really
988         // lower attributes (we use the AST version) there is nowhere to keep
989         // the `HirId`s. We don't actually need HIR version of attributes anyway.
990         Attribute {
991             id: attr.id,
992             style: attr.style,
993             path: attr.path.clone(),
994             tokens: self.lower_token_stream(attr.tokens.clone()),
995             is_sugared_doc: attr.is_sugared_doc,
996             span: attr.span,
997         }
998     }
999
1000     fn lower_token_stream(&mut self, tokens: TokenStream) -> TokenStream {
1001         tokens
1002             .into_trees()
1003             .flat_map(|tree| self.lower_token_tree(tree).into_trees())
1004             .collect()
1005     }
1006
1007     fn lower_token_tree(&mut self, tree: TokenTree) -> TokenStream {
1008         match tree {
1009             TokenTree::Token(token) => self.lower_token(token),
1010             TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
1011                 span,
1012                 delim,
1013                 self.lower_token_stream(tts),
1014             ).into(),
1015         }
1016     }
1017
1018     fn lower_token(&mut self, token: Token) -> TokenStream {
1019         match token.kind {
1020             token::Interpolated(nt) => {
1021                 let tts = nt.to_tokenstream(&self.sess.parse_sess, token.span);
1022                 self.lower_token_stream(tts)
1023             }
1024             _ => TokenTree::Token(token).into(),
1025         }
1026     }
1027
1028     /// Given an associated type constraint like one of these:
1029     ///
1030     /// ```
1031     /// T: Iterator<Item: Debug>
1032     ///             ^^^^^^^^^^^
1033     /// T: Iterator<Item = Debug>
1034     ///             ^^^^^^^^^^^^
1035     /// ```
1036     ///
1037     /// returns a `hir::TypeBinding` representing `Item`.
1038     fn lower_assoc_ty_constraint(
1039         &mut self,
1040         constraint: &AssocTyConstraint,
1041         itctx: ImplTraitContext<'_>,
1042     ) -> hir::TypeBinding {
1043         debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", constraint, itctx);
1044
1045         let kind = match constraint.kind {
1046             AssocTyConstraintKind::Equality { ref ty } => hir::TypeBindingKind::Equality {
1047                 ty: self.lower_ty(ty, itctx)
1048             },
1049             AssocTyConstraintKind::Bound { ref bounds } => {
1050                 // Piggy-back on the `impl Trait` context to figure out the correct behavior.
1051                 let (desugar_to_impl_trait, itctx) = match itctx {
1052                     // We are in the return position:
1053                     //
1054                     //     fn foo() -> impl Iterator<Item: Debug>
1055                     //
1056                     // so desugar to
1057                     //
1058                     //     fn foo() -> impl Iterator<Item = impl Debug>
1059                     ImplTraitContext::OpaqueTy(_) => (true, itctx),
1060
1061                     // We are in the argument position, but within a dyn type:
1062                     //
1063                     //     fn foo(x: dyn Iterator<Item: Debug>)
1064                     //
1065                     // so desugar to
1066                     //
1067                     //     fn foo(x: dyn Iterator<Item = impl Debug>)
1068                     ImplTraitContext::Universal(_) if self.is_in_dyn_type => (true, itctx),
1069
1070                     // In `type Foo = dyn Iterator<Item: Debug>` we desugar to
1071                     // `type Foo = dyn Iterator<Item = impl Debug>` but we have to override the
1072                     // "impl trait context" to permit `impl Debug` in this position (it desugars
1073                     // then to an opaque type).
1074                     //
1075                     // FIXME: this is only needed until `impl Trait` is allowed in type aliases.
1076                     ImplTraitContext::Disallowed(_) if self.is_in_dyn_type =>
1077                         (true, ImplTraitContext::OpaqueTy(None)),
1078
1079                     // We are in the parameter position, but not within a dyn type:
1080                     //
1081                     //     fn foo(x: impl Iterator<Item: Debug>)
1082                     //
1083                     // so we leave it as is and this gets expanded in astconv to a bound like
1084                     // `<T as Iterator>::Item: Debug` where `T` is the type parameter for the
1085                     // `impl Iterator`.
1086                     _ => (false, itctx),
1087                 };
1088
1089                 if desugar_to_impl_trait {
1090                     // Desugar `AssocTy: Bounds` into `AssocTy = impl Bounds`. We do this by
1091                     // constructing the HIR for `impl bounds...` and then lowering that.
1092
1093                     let impl_trait_node_id = self.sess.next_node_id();
1094                     let parent_def_index = self.current_hir_id_owner.last().unwrap().0;
1095                     self.resolver.definitions().create_def_with_parent(
1096                         parent_def_index,
1097                         impl_trait_node_id,
1098                         DefPathData::ImplTrait,
1099                         ExpnId::root(),
1100                         constraint.span,
1101                     );
1102
1103                     self.with_dyn_type_scope(false, |this| {
1104                         let ty = this.lower_ty(
1105                             &Ty {
1106                                 id: this.sess.next_node_id(),
1107                                 kind: TyKind::ImplTrait(impl_trait_node_id, bounds.clone()),
1108                                 span: constraint.span,
1109                             },
1110                             itctx,
1111                         );
1112
1113                         hir::TypeBindingKind::Equality {
1114                             ty
1115                         }
1116                     })
1117                 } else {
1118                     // Desugar `AssocTy: Bounds` into a type binding where the
1119                     // later desugars into a trait predicate.
1120                     let bounds = self.lower_param_bounds(bounds, itctx);
1121
1122                     hir::TypeBindingKind::Constraint {
1123                         bounds
1124                     }
1125                 }
1126             }
1127         };
1128
1129         hir::TypeBinding {
1130             hir_id: self.lower_node_id(constraint.id),
1131             ident: constraint.ident,
1132             kind,
1133             span: constraint.span,
1134         }
1135     }
1136
1137     fn lower_generic_arg(&mut self,
1138                          arg: &ast::GenericArg,
1139                          itctx: ImplTraitContext<'_>)
1140                          -> hir::GenericArg {
1141         match arg {
1142             ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
1143             ast::GenericArg::Type(ty) => GenericArg::Type(self.lower_ty_direct(&ty, itctx)),
1144             ast::GenericArg::Const(ct) => {
1145                 GenericArg::Const(ConstArg {
1146                     value: self.lower_anon_const(&ct),
1147                     span: ct.value.span,
1148                 })
1149             }
1150         }
1151     }
1152
1153     fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_>) -> P<hir::Ty> {
1154         P(self.lower_ty_direct(t, itctx))
1155     }
1156
1157     fn lower_path_ty(
1158         &mut self,
1159         t: &Ty,
1160         qself: &Option<QSelf>,
1161         path: &Path,
1162         param_mode: ParamMode,
1163         itctx: ImplTraitContext<'_>
1164     ) -> hir::Ty {
1165         let id = self.lower_node_id(t.id);
1166         let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx);
1167         let ty = self.ty_path(id, t.span, qpath);
1168         if let hir::TyKind::TraitObject(..) = ty.kind {
1169             self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
1170         }
1171         ty
1172     }
1173
1174     fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_>) -> hir::Ty {
1175         let kind = match t.kind {
1176             TyKind::Infer => hir::TyKind::Infer,
1177             TyKind::Err => hir::TyKind::Err,
1178             TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
1179             TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
1180             TyKind::Rptr(ref region, ref mt) => {
1181                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1182                 let lifetime = match *region {
1183                     Some(ref lt) => self.lower_lifetime(lt),
1184                     None => self.elided_ref_lifetime(span),
1185                 };
1186                 hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
1187             }
1188             TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(
1189                 &f.generic_params,
1190                 |this| {
1191                     this.with_anonymous_lifetime_mode(
1192                         AnonymousLifetimeMode::PassThrough,
1193                         |this| {
1194                             hir::TyKind::BareFn(P(hir::BareFnTy {
1195                                 generic_params: this.lower_generic_params(
1196                                     &f.generic_params,
1197                                     &NodeMap::default(),
1198                                     ImplTraitContext::disallowed(),
1199                                 ),
1200                                 unsafety: this.lower_unsafety(f.unsafety),
1201                                 abi: f.abi,
1202                                 decl: this.lower_fn_decl(&f.decl, None, false, None),
1203                                 param_names: this.lower_fn_params_to_names(&f.decl),
1204                             }))
1205                         },
1206                     )
1207                 },
1208             ),
1209             TyKind::Never => hir::TyKind::Never,
1210             TyKind::Tup(ref tys) => {
1211                 hir::TyKind::Tup(tys.iter().map(|ty| {
1212                     self.lower_ty_direct(ty, itctx.reborrow())
1213                 }).collect())
1214             }
1215             TyKind::Paren(ref ty) => {
1216                 return self.lower_ty_direct(ty, itctx);
1217             }
1218             TyKind::Path(ref qself, ref path) => {
1219                 return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
1220             }
1221             TyKind::ImplicitSelf => {
1222                 let res = self.expect_full_res(t.id);
1223                 let res = self.lower_res(res);
1224                 hir::TyKind::Path(hir::QPath::Resolved(
1225                     None,
1226                     P(hir::Path {
1227                         res,
1228                         segments: hir_vec![hir::PathSegment::from_ident(
1229                             Ident::with_dummy_span(kw::SelfUpper)
1230                         )],
1231                         span: t.span,
1232                     }),
1233                 ))
1234             },
1235             TyKind::Array(ref ty, ref length) => {
1236                 hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
1237             }
1238             TyKind::Typeof(ref expr) => {
1239                 hir::TyKind::Typeof(self.lower_anon_const(expr))
1240             }
1241             TyKind::TraitObject(ref bounds, kind) => {
1242                 let mut lifetime_bound = None;
1243                 let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
1244                     let bounds = bounds
1245                         .iter()
1246                         .filter_map(|bound| match *bound {
1247                             GenericBound::Trait(ref ty, TraitBoundModifier::None) => {
1248                                 Some(this.lower_poly_trait_ref(ty, itctx.reborrow()))
1249                             }
1250                             GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
1251                             GenericBound::Outlives(ref lifetime) => {
1252                                 if lifetime_bound.is_none() {
1253                                     lifetime_bound = Some(this.lower_lifetime(lifetime));
1254                                 }
1255                                 None
1256                             }
1257                         })
1258                         .collect();
1259                     let lifetime_bound =
1260                         lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
1261                     (bounds, lifetime_bound)
1262                 });
1263                 if kind != TraitObjectSyntax::Dyn {
1264                     self.maybe_lint_bare_trait(t.span, t.id, false);
1265                 }
1266                 hir::TyKind::TraitObject(bounds, lifetime_bound)
1267             }
1268             TyKind::ImplTrait(def_node_id, ref bounds) => {
1269                 let span = t.span;
1270                 match itctx {
1271                     ImplTraitContext::OpaqueTy(fn_def_id) => {
1272                         self.lower_opaque_impl_trait(
1273                             span, fn_def_id, def_node_id,
1274                             |this| this.lower_param_bounds(bounds, itctx),
1275                         )
1276                     }
1277                     ImplTraitContext::Universal(in_band_ty_params) => {
1278                         // Add a definition for the in-band `Param`.
1279                         let def_index = self
1280                             .resolver
1281                             .definitions()
1282                             .opt_def_index(def_node_id)
1283                             .unwrap();
1284
1285                         let hir_bounds = self.lower_param_bounds(
1286                             bounds,
1287                             ImplTraitContext::Universal(in_band_ty_params),
1288                         );
1289                         // Set the name to `impl Bound1 + Bound2`.
1290                         let ident = Ident::from_str_and_span(&pprust::ty_to_string(t), span);
1291                         in_band_ty_params.push(hir::GenericParam {
1292                             hir_id: self.lower_node_id(def_node_id),
1293                             name: ParamName::Plain(ident),
1294                             pure_wrt_drop: false,
1295                             attrs: hir_vec![],
1296                             bounds: hir_bounds,
1297                             span,
1298                             kind: hir::GenericParamKind::Type {
1299                                 default: None,
1300                                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
1301                             }
1302                         });
1303
1304                         hir::TyKind::Path(hir::QPath::Resolved(
1305                             None,
1306                             P(hir::Path {
1307                                 span,
1308                                 res: Res::Def(DefKind::TyParam, DefId::local(def_index)),
1309                                 segments: hir_vec![hir::PathSegment::from_ident(ident)],
1310                             }),
1311                         ))
1312                     }
1313                     ImplTraitContext::Disallowed(pos) => {
1314                         let allowed_in = if self.sess.features_untracked()
1315                                                 .impl_trait_in_bindings {
1316                             "bindings or function and inherent method return types"
1317                         } else {
1318                             "function and inherent method return types"
1319                         };
1320                         let mut err = struct_span_err!(
1321                             self.sess,
1322                             t.span,
1323                             E0562,
1324                             "`impl Trait` not allowed outside of {}",
1325                             allowed_in,
1326                         );
1327                         if pos == ImplTraitPosition::Binding &&
1328                             nightly_options::is_nightly_build() {
1329                             help!(err,
1330                                   "add `#![feature(impl_trait_in_bindings)]` to the crate \
1331                                    attributes to enable");
1332                         }
1333                         err.emit();
1334                         hir::TyKind::Err
1335                     }
1336                 }
1337             }
1338             TyKind::Mac(_) => bug!("`TyMac` should have been expanded by now"),
1339             TyKind::CVarArgs => {
1340                 // Create the implicit lifetime of the "spoofed" `VaListImpl`.
1341                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1342                 let lt = self.new_implicit_lifetime(span);
1343                 hir::TyKind::CVarArgs(lt)
1344             },
1345         };
1346
1347         hir::Ty {
1348             kind,
1349             span: t.span,
1350             hir_id: self.lower_node_id(t.id),
1351         }
1352     }
1353
1354     fn lower_opaque_impl_trait(
1355         &mut self,
1356         span: Span,
1357         fn_def_id: Option<DefId>,
1358         opaque_ty_node_id: NodeId,
1359         lower_bounds: impl FnOnce(&mut LoweringContext<'_>) -> hir::GenericBounds,
1360     ) -> hir::TyKind {
1361         debug!(
1362             "lower_opaque_impl_trait(fn_def_id={:?}, opaque_ty_node_id={:?}, span={:?})",
1363             fn_def_id,
1364             opaque_ty_node_id,
1365             span,
1366         );
1367
1368         // Make sure we know that some funky desugaring has been going on here.
1369         // This is a first: there is code in other places like for loop
1370         // desugaring that explicitly states that we don't want to track that.
1371         // Not tracking it makes lints in rustc and clippy very fragile, as
1372         // frequently opened issues show.
1373         let opaque_ty_span = self.mark_span_with_reason(
1374             DesugaringKind::OpaqueTy,
1375             span,
1376             None,
1377         );
1378
1379         let opaque_ty_def_index = self
1380             .resolver
1381             .definitions()
1382             .opt_def_index(opaque_ty_node_id)
1383             .unwrap();
1384
1385         self.allocate_hir_id_counter(opaque_ty_node_id);
1386
1387         let hir_bounds = self.with_hir_id_owner(opaque_ty_node_id, lower_bounds);
1388
1389         let (lifetimes, lifetime_defs) = self.lifetimes_from_impl_trait_bounds(
1390             opaque_ty_node_id,
1391             opaque_ty_def_index,
1392             &hir_bounds,
1393         );
1394
1395         debug!(
1396             "lower_opaque_impl_trait: lifetimes={:#?}", lifetimes,
1397         );
1398
1399         debug!(
1400             "lower_opaque_impl_trait: lifetime_defs={:#?}", lifetime_defs,
1401         );
1402
1403         self.with_hir_id_owner(opaque_ty_node_id, |lctx| {
1404             let opaque_ty_item = hir::OpaqueTy {
1405                 generics: hir::Generics {
1406                     params: lifetime_defs,
1407                     where_clause: hir::WhereClause {
1408                         predicates: hir_vec![],
1409                         span,
1410                     },
1411                     span,
1412                 },
1413                 bounds: hir_bounds,
1414                 impl_trait_fn: fn_def_id,
1415                 origin: hir::OpaqueTyOrigin::FnReturn,
1416             };
1417
1418             trace!("lower_opaque_impl_trait: {:#?}", opaque_ty_def_index);
1419             let opaque_ty_id = lctx.generate_opaque_type(
1420                 opaque_ty_node_id,
1421                 opaque_ty_item,
1422                 span,
1423                 opaque_ty_span,
1424             );
1425
1426             // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
1427             hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, lifetimes)
1428         })
1429     }
1430
1431     /// Registers a new opaque type with the proper `NodeId`s and
1432     /// returns the lowered node-ID for the opaque type.
1433     fn generate_opaque_type(
1434         &mut self,
1435         opaque_ty_node_id: NodeId,
1436         opaque_ty_item: hir::OpaqueTy,
1437         span: Span,
1438         opaque_ty_span: Span,
1439     ) -> hir::HirId {
1440         let opaque_ty_item_kind = hir::ItemKind::OpaqueTy(opaque_ty_item);
1441         let opaque_ty_id = self.lower_node_id(opaque_ty_node_id);
1442         // Generate an `type Foo = impl Trait;` declaration.
1443         trace!("registering opaque type with id {:#?}", opaque_ty_id);
1444         let opaque_ty_item = hir::Item {
1445             hir_id: opaque_ty_id,
1446             ident: Ident::invalid(),
1447             attrs: Default::default(),
1448             node: opaque_ty_item_kind,
1449             vis: respan(span.shrink_to_lo(), hir::VisibilityKind::Inherited),
1450             span: opaque_ty_span,
1451         };
1452
1453         // Insert the item into the global item list. This usually happens
1454         // automatically for all AST items. But this opaque type item
1455         // does not actually exist in the AST.
1456         self.insert_item(opaque_ty_item);
1457         opaque_ty_id
1458     }
1459
1460     fn lifetimes_from_impl_trait_bounds(
1461         &mut self,
1462         opaque_ty_id: NodeId,
1463         parent_index: DefIndex,
1464         bounds: &hir::GenericBounds,
1465     ) -> (HirVec<hir::GenericArg>, HirVec<hir::GenericParam>) {
1466         debug!(
1467             "lifetimes_from_impl_trait_bounds(opaque_ty_id={:?}, \
1468              parent_index={:?}, \
1469              bounds={:#?})",
1470             opaque_ty_id, parent_index, bounds,
1471         );
1472
1473         // This visitor walks over `impl Trait` bounds and creates defs for all lifetimes that
1474         // appear in the bounds, excluding lifetimes that are created within the bounds.
1475         // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
1476         struct ImplTraitLifetimeCollector<'r, 'a> {
1477             context: &'r mut LoweringContext<'a>,
1478             parent: DefIndex,
1479             opaque_ty_id: NodeId,
1480             collect_elided_lifetimes: bool,
1481             currently_bound_lifetimes: Vec<hir::LifetimeName>,
1482             already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
1483             output_lifetimes: Vec<hir::GenericArg>,
1484             output_lifetime_params: Vec<hir::GenericParam>,
1485         }
1486
1487         impl<'r, 'a, 'v> hir::intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r, 'a> {
1488             fn nested_visit_map<'this>(
1489                 &'this mut self,
1490             ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
1491                 hir::intravisit::NestedVisitorMap::None
1492             }
1493
1494             fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
1495                 // Don't collect elided lifetimes used inside of `Fn()` syntax.
1496                 if parameters.parenthesized {
1497                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1498                     self.collect_elided_lifetimes = false;
1499                     hir::intravisit::walk_generic_args(self, span, parameters);
1500                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1501                 } else {
1502                     hir::intravisit::walk_generic_args(self, span, parameters);
1503                 }
1504             }
1505
1506             fn visit_ty(&mut self, t: &'v hir::Ty) {
1507                 // Don't collect elided lifetimes used inside of `fn()` syntax.
1508                 if let hir::TyKind::BareFn(_) = t.kind {
1509                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1510                     self.collect_elided_lifetimes = false;
1511
1512                     // Record the "stack height" of `for<'a>` lifetime bindings
1513                     // to be able to later fully undo their introduction.
1514                     let old_len = self.currently_bound_lifetimes.len();
1515                     hir::intravisit::walk_ty(self, t);
1516                     self.currently_bound_lifetimes.truncate(old_len);
1517
1518                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1519                 } else {
1520                     hir::intravisit::walk_ty(self, t)
1521                 }
1522             }
1523
1524             fn visit_poly_trait_ref(
1525                 &mut self,
1526                 trait_ref: &'v hir::PolyTraitRef,
1527                 modifier: hir::TraitBoundModifier,
1528             ) {
1529                 // Record the "stack height" of `for<'a>` lifetime bindings
1530                 // to be able to later fully undo their introduction.
1531                 let old_len = self.currently_bound_lifetimes.len();
1532                 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
1533                 self.currently_bound_lifetimes.truncate(old_len);
1534             }
1535
1536             fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
1537                 // Record the introduction of 'a in `for<'a> ...`.
1538                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
1539                     // Introduce lifetimes one at a time so that we can handle
1540                     // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
1541                     let lt_name = hir::LifetimeName::Param(param.name);
1542                     self.currently_bound_lifetimes.push(lt_name);
1543                 }
1544
1545                 hir::intravisit::walk_generic_param(self, param);
1546             }
1547
1548             fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
1549                 let name = match lifetime.name {
1550                     hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
1551                         if self.collect_elided_lifetimes {
1552                             // Use `'_` for both implicit and underscore lifetimes in
1553                             // `type Foo<'_> = impl SomeTrait<'_>;`.
1554                             hir::LifetimeName::Underscore
1555                         } else {
1556                             return;
1557                         }
1558                     }
1559                     hir::LifetimeName::Param(_) => lifetime.name,
1560
1561                     // Refers to some other lifetime that is "in
1562                     // scope" within the type.
1563                     hir::LifetimeName::ImplicitObjectLifetimeDefault => return,
1564
1565                     hir::LifetimeName::Error | hir::LifetimeName::Static => return,
1566                 };
1567
1568                 if !self.currently_bound_lifetimes.contains(&name)
1569                     && !self.already_defined_lifetimes.contains(&name) {
1570                     self.already_defined_lifetimes.insert(name);
1571
1572                     self.output_lifetimes.push(hir::GenericArg::Lifetime(hir::Lifetime {
1573                         hir_id: self.context.next_id(),
1574                         span: lifetime.span,
1575                         name,
1576                     }));
1577
1578                     let def_node_id = self.context.sess.next_node_id();
1579                     let hir_id =
1580                         self.context.lower_node_id_with_owner(def_node_id, self.opaque_ty_id);
1581                     self.context.resolver.definitions().create_def_with_parent(
1582                         self.parent,
1583                         def_node_id,
1584                         DefPathData::LifetimeNs(name.ident().as_interned_str()),
1585                         ExpnId::root(),
1586                         lifetime.span);
1587
1588                     let (name, kind) = match name {
1589                         hir::LifetimeName::Underscore => (
1590                             hir::ParamName::Plain(Ident::with_dummy_span(kw::UnderscoreLifetime)),
1591                             hir::LifetimeParamKind::Elided,
1592                         ),
1593                         hir::LifetimeName::Param(param_name) => (
1594                             param_name,
1595                             hir::LifetimeParamKind::Explicit,
1596                         ),
1597                         _ => bug!("expected `LifetimeName::Param` or `ParamName::Plain`"),
1598                     };
1599
1600                     self.output_lifetime_params.push(hir::GenericParam {
1601                         hir_id,
1602                         name,
1603                         span: lifetime.span,
1604                         pure_wrt_drop: false,
1605                         attrs: hir_vec![],
1606                         bounds: hir_vec![],
1607                         kind: hir::GenericParamKind::Lifetime { kind }
1608                     });
1609                 }
1610             }
1611         }
1612
1613         let mut lifetime_collector = ImplTraitLifetimeCollector {
1614             context: self,
1615             parent: parent_index,
1616             opaque_ty_id,
1617             collect_elided_lifetimes: true,
1618             currently_bound_lifetimes: Vec::new(),
1619             already_defined_lifetimes: FxHashSet::default(),
1620             output_lifetimes: Vec::new(),
1621             output_lifetime_params: Vec::new(),
1622         };
1623
1624         for bound in bounds {
1625             hir::intravisit::walk_param_bound(&mut lifetime_collector, &bound);
1626         }
1627
1628         (
1629             lifetime_collector.output_lifetimes.into(),
1630             lifetime_collector.output_lifetime_params.into(),
1631         )
1632     }
1633
1634     fn lower_qpath(
1635         &mut self,
1636         id: NodeId,
1637         qself: &Option<QSelf>,
1638         p: &Path,
1639         param_mode: ParamMode,
1640         mut itctx: ImplTraitContext<'_>,
1641     ) -> hir::QPath {
1642         let qself_position = qself.as_ref().map(|q| q.position);
1643         let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow()));
1644
1645         let partial_res = self.resolver
1646             .get_partial_res(id)
1647             .unwrap_or_else(|| PartialRes::new(Res::Err));
1648
1649         let proj_start = p.segments.len() - partial_res.unresolved_segments();
1650         let path = P(hir::Path {
1651             res: self.lower_res(partial_res.base_res()),
1652             segments: p.segments[..proj_start]
1653                 .iter()
1654                 .enumerate()
1655                 .map(|(i, segment)| {
1656                     let param_mode = match (qself_position, param_mode) {
1657                         (Some(j), ParamMode::Optional) if i < j => {
1658                             // This segment is part of the trait path in a
1659                             // qualified path - one of `a`, `b` or `Trait`
1660                             // in `<X as a::b::Trait>::T::U::method`.
1661                             ParamMode::Explicit
1662                         }
1663                         _ => param_mode,
1664                     };
1665
1666                     // Figure out if this is a type/trait segment,
1667                     // which may need lifetime elision performed.
1668                     let parent_def_id = |this: &mut Self, def_id: DefId| DefId {
1669                         krate: def_id.krate,
1670                         index: this.def_key(def_id).parent.expect("missing parent"),
1671                     };
1672                     let type_def_id = match partial_res.base_res() {
1673                         Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
1674                             Some(parent_def_id(self, def_id))
1675                         }
1676                         Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
1677                             Some(parent_def_id(self, def_id))
1678                         }
1679                         Res::Def(DefKind::Struct, def_id)
1680                         | Res::Def(DefKind::Union, def_id)
1681                         | Res::Def(DefKind::Enum, def_id)
1682                         | Res::Def(DefKind::TyAlias, def_id)
1683                         | Res::Def(DefKind::Trait, def_id) if i + 1 == proj_start =>
1684                         {
1685                             Some(def_id)
1686                         }
1687                         _ => None,
1688                     };
1689                     let parenthesized_generic_args = match partial_res.base_res() {
1690                         // `a::b::Trait(Args)`
1691                         Res::Def(DefKind::Trait, _)
1692                             if i + 1 == proj_start => ParenthesizedGenericArgs::Ok,
1693                         // `a::b::Trait(Args)::TraitItem`
1694                         Res::Def(DefKind::Method, _)
1695                         | Res::Def(DefKind::AssocConst, _)
1696                         | Res::Def(DefKind::AssocTy, _)
1697                             if i + 2 == proj_start =>
1698                         {
1699                             ParenthesizedGenericArgs::Ok
1700                         }
1701                         // Avoid duplicated errors.
1702                         Res::Err => ParenthesizedGenericArgs::Ok,
1703                         // An error
1704                         Res::Def(DefKind::Struct, _)
1705                         | Res::Def(DefKind::Enum, _)
1706                         | Res::Def(DefKind::Union, _)
1707                         | Res::Def(DefKind::TyAlias, _)
1708                         | Res::Def(DefKind::Variant, _) if i + 1 == proj_start =>
1709                         {
1710                             ParenthesizedGenericArgs::Err
1711                         }
1712                         // A warning for now, for compatibility reasons.
1713                         _ => ParenthesizedGenericArgs::Warn,
1714                     };
1715
1716                     let num_lifetimes = type_def_id.map_or(0, |def_id| {
1717                         if let Some(&n) = self.type_def_lifetime_params.get(&def_id) {
1718                             return n;
1719                         }
1720                         assert!(!def_id.is_local());
1721                         let item_generics =
1722                             self.cstore.item_generics_cloned_untracked(def_id, self.sess);
1723                         let n = item_generics.own_counts().lifetimes;
1724                         self.type_def_lifetime_params.insert(def_id, n);
1725                         n
1726                     });
1727                     self.lower_path_segment(
1728                         p.span,
1729                         segment,
1730                         param_mode,
1731                         num_lifetimes,
1732                         parenthesized_generic_args,
1733                         itctx.reborrow(),
1734                         None,
1735                     )
1736                 })
1737                 .collect(),
1738             span: p.span,
1739         });
1740
1741         // Simple case, either no projections, or only fully-qualified.
1742         // E.g., `std::mem::size_of` or `<I as Iterator>::Item`.
1743         if partial_res.unresolved_segments() == 0 {
1744             return hir::QPath::Resolved(qself, path);
1745         }
1746
1747         // Create the innermost type that we're projecting from.
1748         let mut ty = if path.segments.is_empty() {
1749             // If the base path is empty that means there exists a
1750             // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`.
1751             qself.expect("missing QSelf for <T>::...")
1752         } else {
1753             // Otherwise, the base path is an implicit `Self` type path,
1754             // e.g., `Vec` in `Vec::new` or `<I as Iterator>::Item` in
1755             // `<I as Iterator>::Item::default`.
1756             let new_id = self.next_id();
1757             P(self.ty_path(new_id, p.span, hir::QPath::Resolved(qself, path)))
1758         };
1759
1760         // Anything after the base path are associated "extensions",
1761         // out of which all but the last one are associated types,
1762         // e.g., for `std::vec::Vec::<T>::IntoIter::Item::clone`:
1763         // * base path is `std::vec::Vec<T>`
1764         // * "extensions" are `IntoIter`, `Item` and `clone`
1765         // * type nodes are:
1766         //   1. `std::vec::Vec<T>` (created above)
1767         //   2. `<std::vec::Vec<T>>::IntoIter`
1768         //   3. `<<std::vec::Vec<T>>::IntoIter>::Item`
1769         // * final path is `<<<std::vec::Vec<T>>::IntoIter>::Item>::clone`
1770         for (i, segment) in p.segments.iter().enumerate().skip(proj_start) {
1771             let segment = P(self.lower_path_segment(
1772                 p.span,
1773                 segment,
1774                 param_mode,
1775                 0,
1776                 ParenthesizedGenericArgs::Warn,
1777                 itctx.reborrow(),
1778                 None,
1779             ));
1780             let qpath = hir::QPath::TypeRelative(ty, segment);
1781
1782             // It's finished, return the extension of the right node type.
1783             if i == p.segments.len() - 1 {
1784                 return qpath;
1785             }
1786
1787             // Wrap the associated extension in another type node.
1788             let new_id = self.next_id();
1789             ty = P(self.ty_path(new_id, p.span, qpath));
1790         }
1791
1792         // We should've returned in the for loop above.
1793         span_bug!(
1794             p.span,
1795             "lower_qpath: no final extension segment in {}..{}",
1796             proj_start,
1797             p.segments.len()
1798         )
1799     }
1800
1801     fn lower_path_extra(
1802         &mut self,
1803         res: Res,
1804         p: &Path,
1805         param_mode: ParamMode,
1806         explicit_owner: Option<NodeId>,
1807     ) -> hir::Path {
1808         hir::Path {
1809             res,
1810             segments: p.segments
1811                 .iter()
1812                 .map(|segment| {
1813                     self.lower_path_segment(
1814                         p.span,
1815                         segment,
1816                         param_mode,
1817                         0,
1818                         ParenthesizedGenericArgs::Err,
1819                         ImplTraitContext::disallowed(),
1820                         explicit_owner,
1821                     )
1822                 })
1823                 .collect(),
1824             span: p.span,
1825         }
1826     }
1827
1828     fn lower_path(&mut self, id: NodeId, p: &Path, param_mode: ParamMode) -> hir::Path {
1829         let res = self.expect_full_res(id);
1830         let res = self.lower_res(res);
1831         self.lower_path_extra(res, p, param_mode, None)
1832     }
1833
1834     fn lower_path_segment(
1835         &mut self,
1836         path_span: Span,
1837         segment: &PathSegment,
1838         param_mode: ParamMode,
1839         expected_lifetimes: usize,
1840         parenthesized_generic_args: ParenthesizedGenericArgs,
1841         itctx: ImplTraitContext<'_>,
1842         explicit_owner: Option<NodeId>,
1843     ) -> hir::PathSegment {
1844         let (mut generic_args, infer_args) = if let Some(ref generic_args) = segment.args {
1845             let msg = "parenthesized type parameters may only be used with a `Fn` trait";
1846             match **generic_args {
1847                 GenericArgs::AngleBracketed(ref data) => {
1848                     self.lower_angle_bracketed_parameter_data(data, param_mode, itctx)
1849                 }
1850                 GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args {
1851                     ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data),
1852                     ParenthesizedGenericArgs::Warn => {
1853                         self.sess.buffer_lint(
1854                             PARENTHESIZED_PARAMS_IN_TYPES_AND_MODULES,
1855                             CRATE_NODE_ID,
1856                             data.span,
1857                             msg.into(),
1858                         );
1859                         (hir::GenericArgs::none(), true)
1860                     }
1861                     ParenthesizedGenericArgs::Err => {
1862                         let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg);
1863                         err.span_label(data.span, "only `Fn` traits may use parentheses");
1864                         if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) {
1865                             // Do not suggest going from `Trait()` to `Trait<>`
1866                             if data.inputs.len() > 0 {
1867                                 let split = snippet.find('(').unwrap();
1868                                 let trait_name = &snippet[0..split];
1869                                 let args = &snippet[split + 1 .. snippet.len() - 1];
1870                                 err.span_suggestion(
1871                                     data.span,
1872                                     "use angle brackets instead",
1873                                     format!("{}<{}>", trait_name, args),
1874                                     Applicability::MaybeIncorrect,
1875                                 );
1876                             }
1877                         };
1878                         err.emit();
1879                         (
1880                             self.lower_angle_bracketed_parameter_data(
1881                                 &data.as_angle_bracketed_args(),
1882                                 param_mode,
1883                                 itctx
1884                             ).0,
1885                             false,
1886                         )
1887                     }
1888                 },
1889             }
1890         } else {
1891             self.lower_angle_bracketed_parameter_data(&Default::default(), param_mode, itctx)
1892         };
1893
1894         let has_lifetimes = generic_args.args.iter().any(|arg| match arg {
1895             GenericArg::Lifetime(_) => true,
1896             _ => false,
1897         });
1898         let first_generic_span = generic_args.args.iter().map(|a| a.span())
1899             .chain(generic_args.bindings.iter().map(|b| b.span)).next();
1900         if !generic_args.parenthesized && !has_lifetimes {
1901             generic_args.args =
1902                 self.elided_path_lifetimes(path_span, expected_lifetimes)
1903                     .into_iter()
1904                     .map(|lt| GenericArg::Lifetime(lt))
1905                     .chain(generic_args.args.into_iter())
1906                 .collect();
1907             if expected_lifetimes > 0 && param_mode == ParamMode::Explicit {
1908                 let anon_lt_suggestion = vec!["'_"; expected_lifetimes].join(", ");
1909                 let no_non_lt_args = generic_args.args.len() == expected_lifetimes;
1910                 let no_bindings = generic_args.bindings.is_empty();
1911                 let (incl_angl_brckt, insertion_sp, suggestion) = if no_non_lt_args && no_bindings {
1912                     // If there are no (non-implicit) generic args or associated type
1913                     // bindings, our suggestion includes the angle brackets.
1914                     (true, path_span.shrink_to_hi(), format!("<{}>", anon_lt_suggestion))
1915                 } else {
1916                     // Otherwise (sorry, this is kind of gross) we need to infer the
1917                     // place to splice in the `'_, ` from the generics that do exist.
1918                     let first_generic_span = first_generic_span
1919                         .expect("already checked that non-lifetime args or bindings exist");
1920                     (false, first_generic_span.shrink_to_lo(), format!("{}, ", anon_lt_suggestion))
1921                 };
1922                 match self.anonymous_lifetime_mode {
1923                     // In create-parameter mode we error here because we don't want to support
1924                     // deprecated impl elision in new features like impl elision and `async fn`,
1925                     // both of which work using the `CreateParameter` mode:
1926                     //
1927                     //     impl Foo for std::cell::Ref<u32> // note lack of '_
1928                     //     async fn foo(_: std::cell::Ref<u32>) { ... }
1929                     AnonymousLifetimeMode::CreateParameter => {
1930                         let mut err = struct_span_err!(
1931                             self.sess,
1932                             path_span,
1933                             E0726,
1934                             "implicit elided lifetime not allowed here"
1935                         );
1936                         crate::lint::builtin::add_elided_lifetime_in_path_suggestion(
1937                             &self.sess,
1938                             &mut err,
1939                             expected_lifetimes,
1940                             path_span,
1941                             incl_angl_brckt,
1942                             insertion_sp,
1943                             suggestion,
1944                         );
1945                         err.emit();
1946                     }
1947                     AnonymousLifetimeMode::PassThrough |
1948                     AnonymousLifetimeMode::ReportError => {
1949                         self.sess.buffer_lint_with_diagnostic(
1950                             ELIDED_LIFETIMES_IN_PATHS,
1951                             CRATE_NODE_ID,
1952                             path_span,
1953                             "hidden lifetime parameters in types are deprecated",
1954                             builtin::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
1955                                 expected_lifetimes,
1956                                 path_span,
1957                                 incl_angl_brckt,
1958                                 insertion_sp,
1959                                 suggestion,
1960                             )
1961                         );
1962                     }
1963                 }
1964             }
1965         }
1966
1967         let res = self.expect_full_res(segment.id);
1968         let id = if let Some(owner) = explicit_owner {
1969             self.lower_node_id_with_owner(segment.id, owner)
1970         } else {
1971             self.lower_node_id(segment.id)
1972         };
1973         debug!(
1974             "lower_path_segment: ident={:?} original-id={:?} new-id={:?}",
1975             segment.ident, segment.id, id,
1976         );
1977
1978         hir::PathSegment::new(
1979             segment.ident,
1980             Some(id),
1981             Some(self.lower_res(res)),
1982             generic_args,
1983             infer_args,
1984         )
1985     }
1986
1987     fn lower_angle_bracketed_parameter_data(
1988         &mut self,
1989         data: &AngleBracketedArgs,
1990         param_mode: ParamMode,
1991         mut itctx: ImplTraitContext<'_>,
1992     ) -> (hir::GenericArgs, bool) {
1993         let &AngleBracketedArgs { ref args, ref constraints, .. } = data;
1994         let has_non_lt_args = args.iter().any(|arg| match arg {
1995             ast::GenericArg::Lifetime(_) => false,
1996             ast::GenericArg::Type(_) => true,
1997             ast::GenericArg::Const(_) => true,
1998         });
1999         (
2000             hir::GenericArgs {
2001                 args: args.iter().map(|a| self.lower_generic_arg(a, itctx.reborrow())).collect(),
2002                 bindings: constraints.iter()
2003                     .map(|b| self.lower_assoc_ty_constraint(b, itctx.reborrow()))
2004                     .collect(),
2005                 parenthesized: false,
2006             },
2007             !has_non_lt_args && param_mode == ParamMode::Optional
2008         )
2009     }
2010
2011     fn lower_parenthesized_parameter_data(
2012         &mut self,
2013         data: &ParenthesizedArgs,
2014     ) -> (hir::GenericArgs, bool) {
2015         // Switch to `PassThrough` mode for anonymous lifetimes; this
2016         // means that we permit things like `&Ref<T>`, where `Ref` has
2017         // a hidden lifetime parameter. This is needed for backwards
2018         // compatibility, even in contexts like an impl header where
2019         // we generally don't permit such things (see #51008).
2020         self.with_anonymous_lifetime_mode(
2021             AnonymousLifetimeMode::PassThrough,
2022             |this| {
2023                 let &ParenthesizedArgs { ref inputs, ref output, span } = data;
2024                 let inputs = inputs
2025                     .iter()
2026                     .map(|ty| this.lower_ty_direct(ty, ImplTraitContext::disallowed()))
2027                     .collect();
2028                 let mk_tup = |this: &mut Self, tys, span| {
2029                     hir::Ty { kind: hir::TyKind::Tup(tys), hir_id: this.next_id(), span }
2030                 };
2031                 (
2032                     hir::GenericArgs {
2033                         args: hir_vec![GenericArg::Type(mk_tup(this, inputs, span))],
2034                         bindings: hir_vec![
2035                             hir::TypeBinding {
2036                                 hir_id: this.next_id(),
2037                                 ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2038                                 kind: hir::TypeBindingKind::Equality {
2039                                     ty: output
2040                                         .as_ref()
2041                                         .map(|ty| this.lower_ty(
2042                                             &ty,
2043                                             ImplTraitContext::disallowed()
2044                                         ))
2045                                         .unwrap_or_else(||
2046                                             P(mk_tup(this, hir::HirVec::new(), span))
2047                                         ),
2048                                 },
2049                                 span: output.as_ref().map_or(span, |ty| ty.span),
2050                             }
2051                         ],
2052                         parenthesized: true,
2053                     },
2054                     false,
2055                 )
2056             }
2057         )
2058     }
2059
2060     fn lower_local(&mut self, l: &Local) -> (hir::Local, SmallVec<[NodeId; 1]>) {
2061         let mut ids = SmallVec::<[NodeId; 1]>::new();
2062         if self.sess.features_untracked().impl_trait_in_bindings {
2063             if let Some(ref ty) = l.ty {
2064                 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
2065                 visitor.visit_ty(ty);
2066             }
2067         }
2068         let parent_def_id = DefId::local(self.current_hir_id_owner.last().unwrap().0);
2069         (hir::Local {
2070             hir_id: self.lower_node_id(l.id),
2071             ty: l.ty
2072                 .as_ref()
2073                 .map(|t| self.lower_ty(t,
2074                     if self.sess.features_untracked().impl_trait_in_bindings {
2075                         ImplTraitContext::OpaqueTy(Some(parent_def_id))
2076                     } else {
2077                         ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2078                     }
2079                 )),
2080             pat: self.lower_pat(&l.pat),
2081             init: l.init.as_ref().map(|e| P(self.lower_expr(e))),
2082             span: l.span,
2083             attrs: l.attrs.clone(),
2084             source: hir::LocalSource::Normal,
2085         }, ids)
2086     }
2087
2088     fn lower_mutability(&mut self, m: Mutability) -> hir::Mutability {
2089         match m {
2090             Mutability::Mutable => hir::MutMutable,
2091             Mutability::Immutable => hir::MutImmutable,
2092         }
2093     }
2094
2095     fn lower_fn_params_to_names(&mut self, decl: &FnDecl) -> hir::HirVec<Ident> {
2096         decl.inputs
2097             .iter()
2098             .map(|param| match param.pat.kind {
2099                 PatKind::Ident(_, ident, _) => ident,
2100                 _ => Ident::new(kw::Invalid, param.pat.span),
2101             })
2102             .collect()
2103     }
2104
2105     // Lowers a function declaration.
2106     //
2107     // `decl`: the unlowered (AST) function declaration.
2108     // `fn_def_id`: if `Some`, impl Trait arguments are lowered into generic parameters on the
2109     //      given DefId, otherwise impl Trait is disallowed. Must be `Some` if
2110     //      `make_ret_async` is also `Some`.
2111     // `impl_trait_return_allow`: determines whether `impl Trait` can be used in return position.
2112     //      This guards against trait declarations and implementations where `impl Trait` is
2113     //      disallowed.
2114     // `make_ret_async`: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
2115     //      return type. This is used for `async fn` declarations. The `NodeId` is the ID of the
2116     //      return type `impl Trait` item.
2117     fn lower_fn_decl(
2118         &mut self,
2119         decl: &FnDecl,
2120         mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam>)>,
2121         impl_trait_return_allow: bool,
2122         make_ret_async: Option<NodeId>,
2123     ) -> P<hir::FnDecl> {
2124         let lt_mode = if make_ret_async.is_some() {
2125             // In `async fn`, argument-position elided lifetimes
2126             // must be transformed into fresh generic parameters so that
2127             // they can be applied to the opaque `impl Trait` return type.
2128             AnonymousLifetimeMode::CreateParameter
2129         } else {
2130             self.anonymous_lifetime_mode
2131         };
2132
2133         // Remember how many lifetimes were already around so that we can
2134         // only look at the lifetime parameters introduced by the arguments.
2135         let inputs = self.with_anonymous_lifetime_mode(lt_mode, |this| {
2136             decl.inputs
2137                 .iter()
2138                 .map(|param| {
2139                     if let Some((_, ibty)) = &mut in_band_ty_params {
2140                         this.lower_ty_direct(&param.ty, ImplTraitContext::Universal(ibty))
2141                     } else {
2142                         this.lower_ty_direct(&param.ty, ImplTraitContext::disallowed())
2143                     }
2144                 })
2145                 .collect::<HirVec<_>>()
2146         });
2147
2148         let output = if let Some(ret_id) = make_ret_async {
2149             self.lower_async_fn_ret_ty(
2150                 &decl.output,
2151                 in_band_ty_params.expect("`make_ret_async` but no `fn_def_id`").0,
2152                 ret_id,
2153             )
2154         } else {
2155             match decl.output {
2156                 FunctionRetTy::Ty(ref ty) => match in_band_ty_params {
2157                     Some((def_id, _)) if impl_trait_return_allow => {
2158                         hir::Return(self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(def_id))))
2159                     }
2160                     _ => {
2161                         hir::Return(self.lower_ty(ty, ImplTraitContext::disallowed()))
2162                     }
2163                 },
2164                 FunctionRetTy::Default(span) => hir::DefaultReturn(span),
2165             }
2166         };
2167
2168         P(hir::FnDecl {
2169             inputs,
2170             output,
2171             c_variadic: decl.c_variadic,
2172             implicit_self: decl.inputs.get(0).map_or(
2173                 hir::ImplicitSelfKind::None,
2174                 |arg| {
2175                     let is_mutable_pat = match arg.pat.kind {
2176                         PatKind::Ident(BindingMode::ByValue(mt), _, _) |
2177                         PatKind::Ident(BindingMode::ByRef(mt), _, _) =>
2178                             mt == Mutability::Mutable,
2179                         _ => false,
2180                     };
2181
2182                     match arg.ty.kind {
2183                         TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
2184                         TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
2185                         // Given we are only considering `ImplicitSelf` types, we needn't consider
2186                         // the case where we have a mutable pattern to a reference as that would
2187                         // no longer be an `ImplicitSelf`.
2188                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() &&
2189                             mt.mutbl == ast::Mutability::Mutable =>
2190                                 hir::ImplicitSelfKind::MutRef,
2191                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() =>
2192                             hir::ImplicitSelfKind::ImmRef,
2193                         _ => hir::ImplicitSelfKind::None,
2194                     }
2195                 },
2196             ),
2197         })
2198     }
2199
2200     // Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
2201     // combined with the following definition of `OpaqueTy`:
2202     //
2203     //     type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
2204     //
2205     // `inputs`: lowered types of parameters to the function (used to collect lifetimes)
2206     // `output`: unlowered output type (`T` in `-> T`)
2207     // `fn_def_id`: `DefId` of the parent function (used to create child impl trait definition)
2208     // `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
2209     // `elided_lt_replacement`: replacement for elided lifetimes in the return type
2210     fn lower_async_fn_ret_ty(
2211         &mut self,
2212         output: &FunctionRetTy,
2213         fn_def_id: DefId,
2214         opaque_ty_node_id: NodeId,
2215     ) -> hir::FunctionRetTy {
2216         debug!(
2217             "lower_async_fn_ret_ty(\
2218              output={:?}, \
2219              fn_def_id={:?}, \
2220              opaque_ty_node_id={:?})",
2221             output, fn_def_id, opaque_ty_node_id,
2222         );
2223
2224         let span = output.span();
2225
2226         let opaque_ty_span = self.mark_span_with_reason(
2227             DesugaringKind::Async,
2228             span,
2229             None,
2230         );
2231
2232         let opaque_ty_def_index = self
2233             .resolver
2234             .definitions()
2235             .opt_def_index(opaque_ty_node_id)
2236             .unwrap();
2237
2238         self.allocate_hir_id_counter(opaque_ty_node_id);
2239
2240         // When we create the opaque type for this async fn, it is going to have
2241         // to capture all the lifetimes involved in the signature (including in the
2242         // return type). This is done by introducing lifetime parameters for:
2243         //
2244         // - all the explicitly declared lifetimes from the impl and function itself;
2245         // - all the elided lifetimes in the fn arguments;
2246         // - all the elided lifetimes in the return type.
2247         //
2248         // So for example in this snippet:
2249         //
2250         // ```rust
2251         // impl<'a> Foo<'a> {
2252         //   async fn bar<'b>(&self, x: &'b Vec<f64>, y: &str) -> &u32 {
2253         //   //               ^ '0                       ^ '1     ^ '2
2254         //   // elided lifetimes used below
2255         //   }
2256         // }
2257         // ```
2258         //
2259         // we would create an opaque type like:
2260         //
2261         // ```
2262         // type Bar<'a, 'b, '0, '1, '2> = impl Future<Output = &'2 u32>;
2263         // ```
2264         //
2265         // and we would then desugar `bar` to the equivalent of:
2266         //
2267         // ```rust
2268         // impl<'a> Foo<'a> {
2269         //   fn bar<'b, '0, '1>(&'0 self, x: &'b Vec<f64>, y: &'1 str) -> Bar<'a, 'b, '0, '1, '_>
2270         // }
2271         // ```
2272         //
2273         // Note that the final parameter to `Bar` is `'_`, not `'2` --
2274         // this is because the elided lifetimes from the return type
2275         // should be figured out using the ordinary elision rules, and
2276         // this desugaring achieves that.
2277         //
2278         // The variable `input_lifetimes_count` tracks the number of
2279         // lifetime parameters to the opaque type *not counting* those
2280         // lifetimes elided in the return type. This includes those
2281         // that are explicitly declared (`in_scope_lifetimes`) and
2282         // those elided lifetimes we found in the arguments (current
2283         // content of `lifetimes_to_define`). Next, we will process
2284         // the return type, which will cause `lifetimes_to_define` to
2285         // grow.
2286         let input_lifetimes_count = self.in_scope_lifetimes.len() + self.lifetimes_to_define.len();
2287
2288         let (opaque_ty_id, lifetime_params) = self.with_hir_id_owner(opaque_ty_node_id, |this| {
2289             // We have to be careful to get elision right here. The
2290             // idea is that we create a lifetime parameter for each
2291             // lifetime in the return type.  So, given a return type
2292             // like `async fn foo(..) -> &[&u32]`, we lower to `impl
2293             // Future<Output = &'1 [ &'2 u32 ]>`.
2294             //
2295             // Then, we will create `fn foo(..) -> Foo<'_, '_>`, and
2296             // hence the elision takes place at the fn site.
2297             let future_bound = this.with_anonymous_lifetime_mode(
2298                 AnonymousLifetimeMode::CreateParameter,
2299                 |this| this.lower_async_fn_output_type_to_future_bound(
2300                     output,
2301                     fn_def_id,
2302                     span,
2303                 ),
2304             );
2305
2306             debug!("lower_async_fn_ret_ty: future_bound={:#?}", future_bound);
2307
2308             // Calculate all the lifetimes that should be captured
2309             // by the opaque type. This should include all in-scope
2310             // lifetime parameters, including those defined in-band.
2311             //
2312             // Note: this must be done after lowering the output type,
2313             // as the output type may introduce new in-band lifetimes.
2314             let lifetime_params: Vec<(Span, ParamName)> =
2315                 this.in_scope_lifetimes
2316                     .iter().cloned()
2317                     .map(|name| (name.ident().span, name))
2318                     .chain(this.lifetimes_to_define.iter().cloned())
2319                     .collect();
2320
2321             debug!("lower_async_fn_ret_ty: in_scope_lifetimes={:#?}", this.in_scope_lifetimes);
2322             debug!("lower_async_fn_ret_ty: lifetimes_to_define={:#?}", this.lifetimes_to_define);
2323             debug!("lower_async_fn_ret_ty: lifetime_params={:#?}", lifetime_params);
2324
2325             let generic_params =
2326                 lifetime_params
2327                     .iter().cloned()
2328                     .map(|(span, hir_name)| {
2329                         this.lifetime_to_generic_param(span, hir_name, opaque_ty_def_index)
2330                     })
2331                     .collect();
2332
2333             let opaque_ty_item = hir::OpaqueTy {
2334                 generics: hir::Generics {
2335                     params: generic_params,
2336                     where_clause: hir::WhereClause {
2337                         predicates: hir_vec![],
2338                         span,
2339                     },
2340                     span,
2341                 },
2342                 bounds: hir_vec![future_bound],
2343                 impl_trait_fn: Some(fn_def_id),
2344                 origin: hir::OpaqueTyOrigin::AsyncFn,
2345             };
2346
2347             trace!("exist ty from async fn def index: {:#?}", opaque_ty_def_index);
2348             let opaque_ty_id = this.generate_opaque_type(
2349                 opaque_ty_node_id,
2350                 opaque_ty_item,
2351                 span,
2352                 opaque_ty_span,
2353             );
2354
2355             (opaque_ty_id, lifetime_params)
2356         });
2357
2358         // As documented above on the variable
2359         // `input_lifetimes_count`, we need to create the lifetime
2360         // arguments to our opaque type. Continuing with our example,
2361         // we're creating the type arguments for the return type:
2362         //
2363         // ```
2364         // Bar<'a, 'b, '0, '1, '_>
2365         // ```
2366         //
2367         // For the "input" lifetime parameters, we wish to create
2368         // references to the parameters themselves, including the
2369         // "implicit" ones created from parameter types (`'a`, `'b`,
2370         // '`0`, `'1`).
2371         //
2372         // For the "output" lifetime parameters, we just want to
2373         // generate `'_`.
2374         let mut generic_args: Vec<_> =
2375             lifetime_params[..input_lifetimes_count]
2376             .iter()
2377             .map(|&(span, hir_name)| {
2378                 // Input lifetime like `'a` or `'1`:
2379                 GenericArg::Lifetime(hir::Lifetime {
2380                     hir_id: self.next_id(),
2381                     span,
2382                     name: hir::LifetimeName::Param(hir_name),
2383                 })
2384             })
2385             .collect();
2386         generic_args.extend(
2387             lifetime_params[input_lifetimes_count..]
2388             .iter()
2389             .map(|&(span, _)| {
2390                 // Output lifetime like `'_`.
2391                 GenericArg::Lifetime(hir::Lifetime {
2392                     hir_id: self.next_id(),
2393                     span,
2394                     name: hir::LifetimeName::Implicit,
2395                 })
2396             })
2397         );
2398
2399         // Create the `Foo<...>` refernece itself. Note that the `type
2400         // Foo = impl Trait` is, internally, created as a child of the
2401         // async fn, so the *type parameters* are inherited.  It's
2402         // only the lifetime parameters that we must supply.
2403         let opaque_ty_ref = hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, generic_args.into());
2404
2405         hir::FunctionRetTy::Return(P(hir::Ty {
2406             kind: opaque_ty_ref,
2407             span,
2408             hir_id: self.next_id(),
2409         }))
2410     }
2411
2412     /// Transforms `-> T` into `Future<Output = T>`
2413     fn lower_async_fn_output_type_to_future_bound(
2414         &mut self,
2415         output: &FunctionRetTy,
2416         fn_def_id: DefId,
2417         span: Span,
2418     ) -> hir::GenericBound {
2419         // Compute the `T` in `Future<Output = T>` from the return type.
2420         let output_ty = match output {
2421             FunctionRetTy::Ty(ty) => {
2422                 self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(fn_def_id)))
2423             }
2424             FunctionRetTy::Default(ret_ty_span) => {
2425                 P(hir::Ty {
2426                     hir_id: self.next_id(),
2427                     kind: hir::TyKind::Tup(hir_vec![]),
2428                     span: *ret_ty_span,
2429                 })
2430             }
2431         };
2432
2433         // "<Output = T>"
2434         let future_params = P(hir::GenericArgs {
2435             args: hir_vec![],
2436             bindings: hir_vec![hir::TypeBinding {
2437                 ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2438                 kind: hir::TypeBindingKind::Equality {
2439                     ty: output_ty,
2440                 },
2441                 hir_id: self.next_id(),
2442                 span,
2443             }],
2444             parenthesized: false,
2445         });
2446
2447         // ::std::future::Future<future_params>
2448         let future_path =
2449             P(self.std_path(span, &[sym::future, sym::Future], Some(future_params), false));
2450
2451         hir::GenericBound::Trait(
2452             hir::PolyTraitRef {
2453                 trait_ref: hir::TraitRef {
2454                     path: future_path,
2455                     hir_ref_id: self.next_id(),
2456                 },
2457                 bound_generic_params: hir_vec![],
2458                 span,
2459             },
2460             hir::TraitBoundModifier::None,
2461         )
2462     }
2463
2464     fn lower_param_bound(
2465         &mut self,
2466         tpb: &GenericBound,
2467         itctx: ImplTraitContext<'_>,
2468     ) -> hir::GenericBound {
2469         match *tpb {
2470             GenericBound::Trait(ref ty, modifier) => {
2471                 hir::GenericBound::Trait(
2472                     self.lower_poly_trait_ref(ty, itctx),
2473                     self.lower_trait_bound_modifier(modifier),
2474                 )
2475             }
2476             GenericBound::Outlives(ref lifetime) => {
2477                 hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
2478             }
2479         }
2480     }
2481
2482     fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
2483         let span = l.ident.span;
2484         match l.ident {
2485             ident if ident.name == kw::StaticLifetime =>
2486                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Static),
2487             ident if ident.name == kw::UnderscoreLifetime =>
2488                 match self.anonymous_lifetime_mode {
2489                     AnonymousLifetimeMode::CreateParameter => {
2490                         let fresh_name = self.collect_fresh_in_band_lifetime(span);
2491                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
2492                     }
2493
2494                     AnonymousLifetimeMode::PassThrough => {
2495                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
2496                     }
2497
2498                     AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
2499                 },
2500             ident => {
2501                 self.maybe_collect_in_band_lifetime(ident);
2502                 let param_name = ParamName::Plain(ident);
2503                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
2504             }
2505         }
2506     }
2507
2508     fn new_named_lifetime(
2509         &mut self,
2510         id: NodeId,
2511         span: Span,
2512         name: hir::LifetimeName,
2513     ) -> hir::Lifetime {
2514         hir::Lifetime {
2515             hir_id: self.lower_node_id(id),
2516             span,
2517             name: name,
2518         }
2519     }
2520
2521     fn lower_generic_params(
2522         &mut self,
2523         params: &[GenericParam],
2524         add_bounds: &NodeMap<Vec<GenericBound>>,
2525         mut itctx: ImplTraitContext<'_>,
2526     ) -> hir::HirVec<hir::GenericParam> {
2527         params.iter().map(|param| {
2528             self.lower_generic_param(param, add_bounds, itctx.reborrow())
2529         }).collect()
2530     }
2531
2532     fn lower_generic_param(&mut self,
2533                            param: &GenericParam,
2534                            add_bounds: &NodeMap<Vec<GenericBound>>,
2535                            mut itctx: ImplTraitContext<'_>)
2536                            -> hir::GenericParam {
2537         let mut bounds = self.with_anonymous_lifetime_mode(
2538             AnonymousLifetimeMode::ReportError,
2539             |this| this.lower_param_bounds(&param.bounds, itctx.reborrow()),
2540         );
2541
2542         let (name, kind) = match param.kind {
2543             GenericParamKind::Lifetime => {
2544                 let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
2545                 self.is_collecting_in_band_lifetimes = false;
2546
2547                 let lt = self.with_anonymous_lifetime_mode(
2548                     AnonymousLifetimeMode::ReportError,
2549                     |this| this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident }),
2550                 );
2551                 let param_name = match lt.name {
2552                     hir::LifetimeName::Param(param_name) => param_name,
2553                     hir::LifetimeName::Implicit
2554                         | hir::LifetimeName::Underscore
2555                         | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
2556                     hir::LifetimeName::ImplicitObjectLifetimeDefault => {
2557                         span_bug!(
2558                             param.ident.span,
2559                             "object-lifetime-default should not occur here",
2560                         );
2561                     }
2562                     hir::LifetimeName::Error => ParamName::Error,
2563                 };
2564
2565                 let kind = hir::GenericParamKind::Lifetime {
2566                     kind: hir::LifetimeParamKind::Explicit
2567                 };
2568
2569                 self.is_collecting_in_band_lifetimes = was_collecting_in_band;
2570
2571                 (param_name, kind)
2572             }
2573             GenericParamKind::Type { ref default, .. } => {
2574                 let add_bounds = add_bounds.get(&param.id).map_or(&[][..], |x| &x);
2575                 if !add_bounds.is_empty() {
2576                     let params = self.lower_param_bounds(add_bounds, itctx.reborrow()).into_iter();
2577                     bounds = bounds.into_iter()
2578                                    .chain(params)
2579                                    .collect();
2580                 }
2581
2582                 let kind = hir::GenericParamKind::Type {
2583                     default: default.as_ref().map(|x| {
2584                         self.lower_ty(x, ImplTraitContext::OpaqueTy(None))
2585                     }),
2586                     synthetic: param.attrs.iter()
2587                                           .filter(|attr| attr.check_name(sym::rustc_synthetic))
2588                                           .map(|_| hir::SyntheticTyParamKind::ImplTrait)
2589                                           .next(),
2590                 };
2591
2592                 (hir::ParamName::Plain(param.ident), kind)
2593             }
2594             GenericParamKind::Const { ref ty } => {
2595                 (hir::ParamName::Plain(param.ident), hir::GenericParamKind::Const {
2596                     ty: self.lower_ty(&ty, ImplTraitContext::disallowed()),
2597                 })
2598             }
2599         };
2600
2601         hir::GenericParam {
2602             hir_id: self.lower_node_id(param.id),
2603             name,
2604             span: param.ident.span,
2605             pure_wrt_drop: attr::contains_name(&param.attrs, sym::may_dangle),
2606             attrs: self.lower_attrs(&param.attrs),
2607             bounds,
2608             kind,
2609         }
2610     }
2611
2612     fn lower_trait_ref(&mut self, p: &TraitRef, itctx: ImplTraitContext<'_>) -> hir::TraitRef {
2613         let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
2614             hir::QPath::Resolved(None, path) => path,
2615             qpath => bug!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
2616         };
2617         hir::TraitRef {
2618             path,
2619             hir_ref_id: self.lower_node_id(p.ref_id),
2620         }
2621     }
2622
2623     fn lower_poly_trait_ref(
2624         &mut self,
2625         p: &PolyTraitRef,
2626         mut itctx: ImplTraitContext<'_>,
2627     ) -> hir::PolyTraitRef {
2628         let bound_generic_params = self.lower_generic_params(
2629             &p.bound_generic_params,
2630             &NodeMap::default(),
2631             itctx.reborrow(),
2632         );
2633         let trait_ref = self.with_in_scope_lifetime_defs(
2634             &p.bound_generic_params,
2635             |this| this.lower_trait_ref(&p.trait_ref, itctx),
2636         );
2637
2638         hir::PolyTraitRef {
2639             bound_generic_params,
2640             trait_ref,
2641             span: p.span,
2642         }
2643     }
2644
2645     fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_>) -> hir::MutTy {
2646         hir::MutTy {
2647             ty: self.lower_ty(&mt.ty, itctx),
2648             mutbl: self.lower_mutability(mt.mutbl),
2649         }
2650     }
2651
2652     fn lower_param_bounds(&mut self, bounds: &[GenericBound], mut itctx: ImplTraitContext<'_>)
2653                           -> hir::GenericBounds {
2654         bounds.iter().map(|bound| self.lower_param_bound(bound, itctx.reborrow())).collect()
2655     }
2656
2657     fn lower_block(&mut self, b: &Block, targeted_by_break: bool) -> P<hir::Block> {
2658         let mut stmts = vec![];
2659         let mut expr = None;
2660
2661         for (index, stmt) in b.stmts.iter().enumerate() {
2662             if index == b.stmts.len() - 1 {
2663                 if let StmtKind::Expr(ref e) = stmt.kind {
2664                     expr = Some(P(self.lower_expr(e)));
2665                 } else {
2666                     stmts.extend(self.lower_stmt(stmt));
2667                 }
2668             } else {
2669                 stmts.extend(self.lower_stmt(stmt));
2670             }
2671         }
2672
2673         P(hir::Block {
2674             hir_id: self.lower_node_id(b.id),
2675             stmts: stmts.into(),
2676             expr,
2677             rules: self.lower_block_check_mode(&b.rules),
2678             span: b.span,
2679             targeted_by_break,
2680         })
2681     }
2682
2683     /// Lowers a block directly to an expression, presuming that it
2684     /// has no attributes and is not targeted by a `break`.
2685     fn lower_block_expr(&mut self, b: &Block) -> hir::Expr {
2686         let block = self.lower_block(b, false);
2687         self.expr_block(block, ThinVec::new())
2688     }
2689
2690     fn lower_pat(&mut self, p: &Pat) -> P<hir::Pat> {
2691         let node = match p.kind {
2692             PatKind::Wild => hir::PatKind::Wild,
2693             PatKind::Ident(ref binding_mode, ident, ref sub) => {
2694                 let lower_sub = |this: &mut Self| sub.as_ref().map(|x| this.lower_pat(x));
2695                 self.lower_pat_ident(p, binding_mode, ident, lower_sub)
2696             }
2697             PatKind::Lit(ref e) => hir::PatKind::Lit(P(self.lower_expr(e))),
2698             PatKind::TupleStruct(ref path, ref pats) => {
2699                 let qpath = self.lower_qpath(
2700                     p.id,
2701                     &None,
2702                     path,
2703                     ParamMode::Optional,
2704                     ImplTraitContext::disallowed(),
2705                 );
2706                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple struct");
2707                 hir::PatKind::TupleStruct(qpath, pats, ddpos)
2708             }
2709             PatKind::Or(ref pats) => {
2710                 hir::PatKind::Or(pats.iter().map(|x| self.lower_pat(x)).collect())
2711             }
2712             PatKind::Path(ref qself, ref path) => {
2713                 let qpath = self.lower_qpath(
2714                     p.id,
2715                     qself,
2716                     path,
2717                     ParamMode::Optional,
2718                     ImplTraitContext::disallowed(),
2719                 );
2720                 hir::PatKind::Path(qpath)
2721             }
2722             PatKind::Struct(ref path, ref fields, etc) => {
2723                 let qpath = self.lower_qpath(
2724                     p.id,
2725                     &None,
2726                     path,
2727                     ParamMode::Optional,
2728                     ImplTraitContext::disallowed(),
2729                 );
2730
2731                 let fs = fields
2732                     .iter()
2733                     .map(|f| hir::FieldPat {
2734                         hir_id: self.next_id(),
2735                         ident: f.ident,
2736                         pat: self.lower_pat(&f.pat),
2737                         is_shorthand: f.is_shorthand,
2738                         span: f.span,
2739                     })
2740                     .collect();
2741                 hir::PatKind::Struct(qpath, fs, etc)
2742             }
2743             PatKind::Tuple(ref pats) => {
2744                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple");
2745                 hir::PatKind::Tuple(pats, ddpos)
2746             }
2747             PatKind::Box(ref inner) => hir::PatKind::Box(self.lower_pat(inner)),
2748             PatKind::Ref(ref inner, mutbl) => {
2749                 hir::PatKind::Ref(self.lower_pat(inner), self.lower_mutability(mutbl))
2750             }
2751             PatKind::Range(ref e1, ref e2, Spanned { node: ref end, .. }) => hir::PatKind::Range(
2752                 P(self.lower_expr(e1)),
2753                 P(self.lower_expr(e2)),
2754                 self.lower_range_end(end),
2755             ),
2756             PatKind::Slice(ref pats) => self.lower_pat_slice(pats),
2757             PatKind::Rest => {
2758                 // If we reach here the `..` pattern is not semantically allowed.
2759                 self.ban_illegal_rest_pat(p.span)
2760             }
2761             PatKind::Paren(ref inner) => return self.lower_pat(inner),
2762             PatKind::Mac(_) => panic!("Shouldn't exist here"),
2763         };
2764
2765         self.pat_with_node_id_of(p, node)
2766     }
2767
2768     fn lower_pat_tuple(
2769         &mut self,
2770         pats: &[AstP<Pat>],
2771         ctx: &str,
2772     ) -> (HirVec<P<hir::Pat>>, Option<usize>) {
2773         let mut elems = Vec::with_capacity(pats.len());
2774         let mut rest = None;
2775
2776         let mut iter = pats.iter().enumerate();
2777         while let Some((idx, pat)) = iter.next() {
2778             // Interpret the first `..` pattern as a subtuple pattern.
2779             if pat.is_rest() {
2780                 rest = Some((idx, pat.span));
2781                 break;
2782             }
2783             // It was not a subslice pattern so lower it normally.
2784             elems.push(self.lower_pat(pat));
2785         }
2786
2787         while let Some((_, pat)) = iter.next() {
2788             // There was a previous subtuple pattern; make sure we don't allow more.
2789             if pat.is_rest() {
2790                 self.ban_extra_rest_pat(pat.span, rest.unwrap().1, ctx);
2791             } else {
2792                 elems.push(self.lower_pat(pat));
2793             }
2794         }
2795
2796         (elems.into(), rest.map(|(ddpos, _)| ddpos))
2797     }
2798
2799     fn lower_pat_slice(&mut self, pats: &[AstP<Pat>]) -> hir::PatKind {
2800         let mut before = Vec::new();
2801         let mut after = Vec::new();
2802         let mut slice = None;
2803         let mut prev_rest_span = None;
2804
2805         let mut iter = pats.iter();
2806         while let Some(pat) = iter.next() {
2807             // Interpret the first `((ref mut?)? x @)? ..` pattern as a subslice pattern.
2808             match pat.kind {
2809                 PatKind::Rest => {
2810                     prev_rest_span = Some(pat.span);
2811                     slice = Some(self.pat_wild_with_node_id_of(pat));
2812                     break;
2813                 },
2814                 PatKind::Ident(ref bm, ident, Some(ref sub)) if sub.is_rest() => {
2815                     prev_rest_span = Some(sub.span);
2816                     let lower_sub = |this: &mut Self| Some(this.pat_wild_with_node_id_of(sub));
2817                     let node = self.lower_pat_ident(pat, bm, ident, lower_sub);
2818                     slice = Some(self.pat_with_node_id_of(pat, node));
2819                     break;
2820                 },
2821                 _ => {}
2822             }
2823
2824             // It was not a subslice pattern so lower it normally.
2825             before.push(self.lower_pat(pat));
2826         }
2827
2828         while let Some(pat) = iter.next() {
2829             // There was a previous subslice pattern; make sure we don't allow more.
2830             let rest_span = match pat.kind {
2831                 PatKind::Rest => Some(pat.span),
2832                 PatKind::Ident(.., Some(ref sub)) if sub.is_rest() => {
2833                     // The `HirValidator` is merciless; add a `_` pattern to avoid ICEs.
2834                     after.push(self.pat_wild_with_node_id_of(pat));
2835                     Some(sub.span)
2836                 },
2837                 _ => None,
2838             };
2839             if let Some(rest_span) = rest_span {
2840                 self.ban_extra_rest_pat(rest_span, prev_rest_span.unwrap(), "slice");
2841             } else {
2842                 after.push(self.lower_pat(pat));
2843             }
2844         }
2845
2846         hir::PatKind::Slice(before.into(), slice, after.into())
2847     }
2848
2849     fn lower_pat_ident(
2850         &mut self,
2851         p: &Pat,
2852         binding_mode: &BindingMode,
2853         ident: Ident,
2854         lower_sub: impl FnOnce(&mut Self) -> Option<P<hir::Pat>>,
2855     ) -> hir::PatKind {
2856         match self.resolver.get_partial_res(p.id).map(|d| d.base_res()) {
2857             // `None` can occur in body-less function signatures
2858             res @ None | res @ Some(Res::Local(_)) => {
2859                 let canonical_id = match res {
2860                     Some(Res::Local(id)) => id,
2861                     _ => p.id,
2862                 };
2863
2864                 hir::PatKind::Binding(
2865                     self.lower_binding_mode(binding_mode),
2866                     self.lower_node_id(canonical_id),
2867                     ident,
2868                     lower_sub(self),
2869                 )
2870             }
2871             Some(res) => hir::PatKind::Path(hir::QPath::Resolved(
2872                 None,
2873                 P(hir::Path {
2874                     span: ident.span,
2875                     res: self.lower_res(res),
2876                     segments: hir_vec![hir::PathSegment::from_ident(ident)],
2877                 }),
2878             )),
2879         }
2880     }
2881
2882     fn pat_wild_with_node_id_of(&mut self, p: &Pat) -> P<hir::Pat> {
2883         self.pat_with_node_id_of(p, hir::PatKind::Wild)
2884     }
2885
2886     /// Construct a `Pat` with the `HirId` of `p.id` lowered.
2887     fn pat_with_node_id_of(&mut self, p: &Pat, kind: hir::PatKind) -> P<hir::Pat> {
2888         P(hir::Pat {
2889             hir_id: self.lower_node_id(p.id),
2890             kind,
2891             span: p.span,
2892         })
2893     }
2894
2895     /// Emit a friendly error for extra `..` patterns in a tuple/tuple struct/slice pattern.
2896     fn ban_extra_rest_pat(&self, sp: Span, prev_sp: Span, ctx: &str) {
2897         self.diagnostic()
2898             .struct_span_err(sp, &format!("`..` can only be used once per {} pattern", ctx))
2899             .span_label(sp, &format!("can only be used once per {} pattern", ctx))
2900             .span_label(prev_sp, "previously used here")
2901             .emit();
2902     }
2903
2904     /// Used to ban the `..` pattern in places it shouldn't be semantically.
2905     fn ban_illegal_rest_pat(&self, sp: Span) -> hir::PatKind {
2906         self.diagnostic()
2907             .struct_span_err(sp, "`..` patterns are not allowed here")
2908             .note("only allowed in tuple, tuple struct, and slice patterns")
2909             .emit();
2910
2911         // We're not in a list context so `..` can be reasonably treated
2912         // as `_` because it should always be valid and roughly matches the
2913         // intent of `..` (notice that the rest of a single slot is that slot).
2914         hir::PatKind::Wild
2915     }
2916
2917     fn lower_range_end(&mut self, e: &RangeEnd) -> hir::RangeEnd {
2918         match *e {
2919             RangeEnd::Included(_) => hir::RangeEnd::Included,
2920             RangeEnd::Excluded => hir::RangeEnd::Excluded,
2921         }
2922     }
2923
2924     fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
2925         self.with_new_scopes(|this| {
2926             hir::AnonConst {
2927                 hir_id: this.lower_node_id(c.id),
2928                 body: this.lower_const_body(&c.value),
2929             }
2930         })
2931     }
2932
2933     fn lower_stmt(&mut self, s: &Stmt) -> SmallVec<[hir::Stmt; 1]> {
2934         let kind = match s.kind {
2935             StmtKind::Local(ref l) => {
2936                 let (l, item_ids) = self.lower_local(l);
2937                 let mut ids: SmallVec<[hir::Stmt; 1]> = item_ids
2938                     .into_iter()
2939                     .map(|item_id| {
2940                         let item_id = hir::ItemId { id: self.lower_node_id(item_id) };
2941                         self.stmt(s.span, hir::StmtKind::Item(item_id))
2942                     })
2943                     .collect();
2944                 ids.push({
2945                     hir::Stmt {
2946                         hir_id: self.lower_node_id(s.id),
2947                         kind: hir::StmtKind::Local(P(l)),
2948                         span: s.span,
2949                     }
2950                 });
2951                 return ids;
2952             },
2953             StmtKind::Item(ref it) => {
2954                 // Can only use the ID once.
2955                 let mut id = Some(s.id);
2956                 return self.lower_item_id(it)
2957                     .into_iter()
2958                     .map(|item_id| {
2959                         let hir_id = id.take()
2960                           .map(|id| self.lower_node_id(id))
2961                           .unwrap_or_else(|| self.next_id());
2962
2963                         hir::Stmt {
2964                             hir_id,
2965                             kind: hir::StmtKind::Item(item_id),
2966                             span: s.span,
2967                         }
2968                     })
2969                     .collect();
2970             }
2971             StmtKind::Expr(ref e) => hir::StmtKind::Expr(P(self.lower_expr(e))),
2972             StmtKind::Semi(ref e) => hir::StmtKind::Semi(P(self.lower_expr(e))),
2973             StmtKind::Mac(..) => panic!("shouldn't exist here"),
2974         };
2975         smallvec![hir::Stmt {
2976             hir_id: self.lower_node_id(s.id),
2977             kind,
2978             span: s.span,
2979         }]
2980     }
2981
2982     fn lower_block_check_mode(&mut self, b: &BlockCheckMode) -> hir::BlockCheckMode {
2983         match *b {
2984             BlockCheckMode::Default => hir::DefaultBlock,
2985             BlockCheckMode::Unsafe(u) => hir::UnsafeBlock(self.lower_unsafe_source(u)),
2986         }
2987     }
2988
2989     fn lower_binding_mode(&mut self, b: &BindingMode) -> hir::BindingAnnotation {
2990         match *b {
2991             BindingMode::ByValue(Mutability::Immutable) => hir::BindingAnnotation::Unannotated,
2992             BindingMode::ByRef(Mutability::Immutable) => hir::BindingAnnotation::Ref,
2993             BindingMode::ByValue(Mutability::Mutable) => hir::BindingAnnotation::Mutable,
2994             BindingMode::ByRef(Mutability::Mutable) => hir::BindingAnnotation::RefMut,
2995         }
2996     }
2997
2998     fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
2999         match u {
3000             CompilerGenerated => hir::CompilerGenerated,
3001             UserProvided => hir::UserProvided,
3002         }
3003     }
3004
3005     fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
3006         match f {
3007             TraitBoundModifier::None => hir::TraitBoundModifier::None,
3008             TraitBoundModifier::Maybe => hir::TraitBoundModifier::Maybe,
3009         }
3010     }
3011
3012     // Helper methods for building HIR.
3013
3014     fn stmt(&mut self, span: Span, kind: hir::StmtKind) -> hir::Stmt {
3015         hir::Stmt { span, kind, hir_id: self.next_id() }
3016     }
3017
3018     fn stmt_expr(&mut self, span: Span, expr: hir::Expr) -> hir::Stmt {
3019         self.stmt(span, hir::StmtKind::Expr(P(expr)))
3020     }
3021
3022     fn stmt_let_pat(
3023         &mut self,
3024         attrs: ThinVec<Attribute>,
3025         span: Span,
3026         init: Option<P<hir::Expr>>,
3027         pat: P<hir::Pat>,
3028         source: hir::LocalSource,
3029     ) -> hir::Stmt {
3030         let local = hir::Local {
3031             attrs,
3032             hir_id: self.next_id(),
3033             init,
3034             pat,
3035             source,
3036             span,
3037             ty: None,
3038         };
3039         self.stmt(span, hir::StmtKind::Local(P(local)))
3040     }
3041
3042     fn block_expr(&mut self, expr: P<hir::Expr>) -> hir::Block {
3043         self.block_all(expr.span, hir::HirVec::new(), Some(expr))
3044     }
3045
3046     fn block_all(
3047         &mut self,
3048         span: Span,
3049         stmts: hir::HirVec<hir::Stmt>,
3050         expr: Option<P<hir::Expr>>,
3051     ) -> hir::Block {
3052         hir::Block {
3053             stmts,
3054             expr,
3055             hir_id: self.next_id(),
3056             rules: hir::DefaultBlock,
3057             span,
3058             targeted_by_break: false,
3059         }
3060     }
3061
3062     /// Constructs a `true` or `false` literal pattern.
3063     fn pat_bool(&mut self, span: Span, val: bool) -> P<hir::Pat> {
3064         let expr = self.expr_bool(span, val);
3065         self.pat(span, hir::PatKind::Lit(P(expr)))
3066     }
3067
3068     fn pat_ok(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3069         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Ok], hir_vec![pat])
3070     }
3071
3072     fn pat_err(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3073         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Err], hir_vec![pat])
3074     }
3075
3076     fn pat_some(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3077         self.pat_std_enum(span, &[sym::option, sym::Option, sym::Some], hir_vec![pat])
3078     }
3079
3080     fn pat_none(&mut self, span: Span) -> P<hir::Pat> {
3081         self.pat_std_enum(span, &[sym::option, sym::Option, sym::None], hir_vec![])
3082     }
3083
3084     fn pat_std_enum(
3085         &mut self,
3086         span: Span,
3087         components: &[Symbol],
3088         subpats: hir::HirVec<P<hir::Pat>>,
3089     ) -> P<hir::Pat> {
3090         let path = self.std_path(span, components, None, true);
3091         let qpath = hir::QPath::Resolved(None, P(path));
3092         let pt = if subpats.is_empty() {
3093             hir::PatKind::Path(qpath)
3094         } else {
3095             hir::PatKind::TupleStruct(qpath, subpats, None)
3096         };
3097         self.pat(span, pt)
3098     }
3099
3100     fn pat_ident(&mut self, span: Span, ident: Ident) -> (P<hir::Pat>, hir::HirId) {
3101         self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
3102     }
3103
3104     fn pat_ident_binding_mode(
3105         &mut self,
3106         span: Span,
3107         ident: Ident,
3108         bm: hir::BindingAnnotation,
3109     ) -> (P<hir::Pat>, hir::HirId) {
3110         let hir_id = self.next_id();
3111
3112         (
3113             P(hir::Pat {
3114                 hir_id,
3115                 kind: hir::PatKind::Binding(bm, hir_id, ident.with_span_pos(span), None),
3116                 span,
3117             }),
3118             hir_id
3119         )
3120     }
3121
3122     fn pat_wild(&mut self, span: Span) -> P<hir::Pat> {
3123         self.pat(span, hir::PatKind::Wild)
3124     }
3125
3126     fn pat(&mut self, span: Span, kind: hir::PatKind) -> P<hir::Pat> {
3127         P(hir::Pat {
3128             hir_id: self.next_id(),
3129             kind,
3130             span,
3131         })
3132     }
3133
3134     /// Given a suffix `["b", "c", "d"]`, returns path `::std::b::c::d` when
3135     /// `fld.cx.use_std`, and `::core::b::c::d` otherwise.
3136     /// The path is also resolved according to `is_value`.
3137     fn std_path(
3138         &mut self,
3139         span: Span,
3140         components: &[Symbol],
3141         params: Option<P<hir::GenericArgs>>,
3142         is_value: bool,
3143     ) -> hir::Path {
3144         let ns = if is_value { Namespace::ValueNS } else { Namespace::TypeNS };
3145         let (path, res) = self.resolver.resolve_str_path(span, self.crate_root, components, ns);
3146
3147         let mut segments: Vec<_> = path.segments.iter().map(|segment| {
3148             let res = self.expect_full_res(segment.id);
3149             hir::PathSegment {
3150                 ident: segment.ident,
3151                 hir_id: Some(self.lower_node_id(segment.id)),
3152                 res: Some(self.lower_res(res)),
3153                 infer_args: true,
3154                 args: None,
3155             }
3156         }).collect();
3157         segments.last_mut().unwrap().args = params;
3158
3159         hir::Path {
3160             span,
3161             res: res.map_id(|_| panic!("unexpected `NodeId`")),
3162             segments: segments.into(),
3163         }
3164     }
3165
3166     fn ty_path(&mut self, mut hir_id: hir::HirId, span: Span, qpath: hir::QPath) -> hir::Ty {
3167         let kind = match qpath {
3168             hir::QPath::Resolved(None, path) => {
3169                 // Turn trait object paths into `TyKind::TraitObject` instead.
3170                 match path.res {
3171                     Res::Def(DefKind::Trait, _) | Res::Def(DefKind::TraitAlias, _) => {
3172                         let principal = hir::PolyTraitRef {
3173                             bound_generic_params: hir::HirVec::new(),
3174                             trait_ref: hir::TraitRef {
3175                                 path,
3176                                 hir_ref_id: hir_id,
3177                             },
3178                             span,
3179                         };
3180
3181                         // The original ID is taken by the `PolyTraitRef`,
3182                         // so the `Ty` itself needs a different one.
3183                         hir_id = self.next_id();
3184                         hir::TyKind::TraitObject(hir_vec![principal], self.elided_dyn_bound(span))
3185                     }
3186                     _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
3187                 }
3188             }
3189             _ => hir::TyKind::Path(qpath),
3190         };
3191
3192         hir::Ty {
3193             hir_id,
3194             kind,
3195             span,
3196         }
3197     }
3198
3199     /// Invoked to create the lifetime argument for a type `&T`
3200     /// with no explicit lifetime.
3201     fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
3202         match self.anonymous_lifetime_mode {
3203             // Intercept when we are in an impl header or async fn and introduce an in-band
3204             // lifetime.
3205             // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
3206             // `'f`.
3207             AnonymousLifetimeMode::CreateParameter => {
3208                 let fresh_name = self.collect_fresh_in_band_lifetime(span);
3209                 hir::Lifetime {
3210                     hir_id: self.next_id(),
3211                     span,
3212                     name: hir::LifetimeName::Param(fresh_name),
3213                 }
3214             }
3215
3216             AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
3217
3218             AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
3219         }
3220     }
3221
3222     /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
3223     /// return a "error lifetime".
3224     fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
3225         let (id, msg, label) = match id {
3226             Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),
3227
3228             None => (
3229                 self.sess.next_node_id(),
3230                 "`&` without an explicit lifetime name cannot be used here",
3231                 "explicit lifetime name needed here",
3232             ),
3233         };
3234
3235         let mut err = struct_span_err!(
3236             self.sess,
3237             span,
3238             E0637,
3239             "{}",
3240             msg,
3241         );
3242         err.span_label(span, label);
3243         err.emit();
3244
3245         self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3246     }
3247
3248     /// Invoked to create the lifetime argument(s) for a path like
3249     /// `std::cell::Ref<T>`; note that implicit lifetimes in these
3250     /// sorts of cases are deprecated. This may therefore report a warning or an
3251     /// error, depending on the mode.
3252     fn elided_path_lifetimes(&mut self, span: Span, count: usize) -> P<[hir::Lifetime]> {
3253         (0..count)
3254             .map(|_| self.elided_path_lifetime(span))
3255             .collect()
3256     }
3257
3258     fn elided_path_lifetime(&mut self, span: Span) -> hir::Lifetime {
3259         match self.anonymous_lifetime_mode {
3260             AnonymousLifetimeMode::CreateParameter => {
3261                 // We should have emitted E0726 when processing this path above
3262                 self.sess.delay_span_bug(
3263                     span,
3264                     "expected 'implicit elided lifetime not allowed' error",
3265                 );
3266                 let id = self.sess.next_node_id();
3267                 self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3268             }
3269             // This is the normal case.
3270             AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
3271
3272             AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
3273         }
3274     }
3275
3276     /// Invoked to create the lifetime argument(s) for an elided trait object
3277     /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
3278     /// when the bound is written, even if it is written with `'_` like in
3279     /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
3280     fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
3281         match self.anonymous_lifetime_mode {
3282             // NB. We intentionally ignore the create-parameter mode here.
3283             // and instead "pass through" to resolve-lifetimes, which will apply
3284             // the object-lifetime-defaulting rules. Elided object lifetime defaults
3285             // do not act like other elided lifetimes. In other words, given this:
3286             //
3287             //     impl Foo for Box<dyn Debug>
3288             //
3289             // we do not introduce a fresh `'_` to serve as the bound, but instead
3290             // ultimately translate to the equivalent of:
3291             //
3292             //     impl Foo for Box<dyn Debug + 'static>
3293             //
3294             // `resolve_lifetime` has the code to make that happen.
3295             AnonymousLifetimeMode::CreateParameter => {}
3296
3297             AnonymousLifetimeMode::ReportError => {
3298                 // ReportError applies to explicit use of `'_`.
3299             }
3300
3301             // This is the normal case.
3302             AnonymousLifetimeMode::PassThrough => {}
3303         }
3304
3305         let r = hir::Lifetime {
3306             hir_id: self.next_id(),
3307             span,
3308             name: hir::LifetimeName::ImplicitObjectLifetimeDefault,
3309         };
3310         debug!("elided_dyn_bound: r={:?}", r);
3311         r
3312     }
3313
3314     fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
3315         hir::Lifetime {
3316             hir_id: self.next_id(),
3317             span,
3318             name: hir::LifetimeName::Implicit,
3319         }
3320     }
3321
3322     fn maybe_lint_bare_trait(&self, span: Span, id: NodeId, is_global: bool) {
3323         // FIXME(davidtwco): This is a hack to detect macros which produce spans of the
3324         // call site which do not have a macro backtrace. See #61963.
3325         let is_macro_callsite = self.sess.source_map()
3326             .span_to_snippet(span)
3327             .map(|snippet| snippet.starts_with("#["))
3328             .unwrap_or(true);
3329         if !is_macro_callsite {
3330             self.sess.buffer_lint_with_diagnostic(
3331                 builtin::BARE_TRAIT_OBJECTS,
3332                 id,
3333                 span,
3334                 "trait objects without an explicit `dyn` are deprecated",
3335                 builtin::BuiltinLintDiagnostics::BareTraitObject(span, is_global),
3336             )
3337         }
3338     }
3339 }
3340
3341 fn body_ids(bodies: &BTreeMap<hir::BodyId, hir::Body>) -> Vec<hir::BodyId> {
3342     // Sorting by span ensures that we get things in order within a
3343     // file, and also puts the files in a sensible order.
3344     let mut body_ids: Vec<_> = bodies.keys().cloned().collect();
3345     body_ids.sort_by_key(|b| bodies[b].value.span);
3346     body_ids
3347 }
3348
3349 /// Checks if the specified expression is a built-in range literal.
3350 /// (See: `LoweringContext::lower_expr()`).
3351 pub fn is_range_literal(sess: &Session, expr: &hir::Expr) -> bool {
3352     use hir::{Path, QPath, ExprKind, TyKind};
3353
3354     // Returns whether the given path represents a (desugared) range,
3355     // either in std or core, i.e. has either a `::std::ops::Range` or
3356     // `::core::ops::Range` prefix.
3357     fn is_range_path(path: &Path) -> bool {
3358         let segs: Vec<_> = path.segments.iter().map(|seg| seg.ident.as_str().to_string()).collect();
3359         let segs: Vec<_> = segs.iter().map(|seg| &**seg).collect();
3360
3361         // "{{root}}" is the equivalent of `::` prefix in `Path`.
3362         if let ["{{root}}", std_core, "ops", range] = segs.as_slice() {
3363             (*std_core == "std" || *std_core == "core") && range.starts_with("Range")
3364         } else {
3365             false
3366         }
3367     };
3368
3369     // Check whether a span corresponding to a range expression is a
3370     // range literal, rather than an explicit struct or `new()` call.
3371     fn is_lit(sess: &Session, span: &Span) -> bool {
3372         let source_map = sess.source_map();
3373         let end_point = source_map.end_point(*span);
3374
3375         if let Ok(end_string) = source_map.span_to_snippet(end_point) {
3376             !(end_string.ends_with("}") || end_string.ends_with(")"))
3377         } else {
3378             false
3379         }
3380     };
3381
3382     match expr.kind {
3383         // All built-in range literals but `..=` and `..` desugar to `Struct`s.
3384         ExprKind::Struct(ref qpath, _, _) => {
3385             if let QPath::Resolved(None, ref path) = **qpath {
3386                 return is_range_path(&path) && is_lit(sess, &expr.span);
3387             }
3388         }
3389
3390         // `..` desugars to its struct path.
3391         ExprKind::Path(QPath::Resolved(None, ref path)) => {
3392             return is_range_path(&path) && is_lit(sess, &expr.span);
3393         }
3394
3395         // `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
3396         ExprKind::Call(ref func, _) => {
3397             if let ExprKind::Path(QPath::TypeRelative(ref ty, ref segment)) = func.kind {
3398                 if let TyKind::Path(QPath::Resolved(None, ref path)) = ty.kind {
3399                     let new_call = segment.ident.as_str() == "new";
3400                     return is_range_path(&path) && is_lit(sess, &expr.span) && new_call;
3401                 }
3402             }
3403         }
3404
3405         _ => {}
3406     }
3407
3408     false
3409 }