]> git.lizzy.rs Git - rust.git/blob - src/librustc/hir/lowering.rs
use `modern` everywhere
[rust.git] / src / librustc / hir / lowering.rs
1 // ignore-tidy-filelength
2
3 //! Lowers the AST to the HIR.
4 //!
5 //! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
6 //! much like a fold. Where lowering involves a bit more work things get more
7 //! interesting and there are some invariants you should know about. These mostly
8 //! concern spans and IDs.
9 //!
10 //! Spans are assigned to AST nodes during parsing and then are modified during
11 //! expansion to indicate the origin of a node and the process it went through
12 //! being expanded. IDs are assigned to AST nodes just before lowering.
13 //!
14 //! For the simpler lowering steps, IDs and spans should be preserved. Unlike
15 //! expansion we do not preserve the process of lowering in the spans, so spans
16 //! should not be modified here. When creating a new node (as opposed to
17 //! 'folding' an existing one), then you create a new ID using `next_id()`.
18 //!
19 //! You must ensure that IDs are unique. That means that you should only use the
20 //! ID from an AST node in a single HIR node (you can assume that AST node-IDs
21 //! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
22 //! If you do, you must then set the new node's ID to a fresh one.
23 //!
24 //! Spans are used for error messages and for tools to map semantics back to
25 //! source code. It is therefore not as important with spans as IDs to be strict
26 //! about use (you can't break the compiler by screwing up a span). Obviously, a
27 //! HIR node can only have a single span. But multiple nodes can have the same
28 //! span and spans don't need to be kept in order, etc. Where code is preserved
29 //! by lowering, it should have the same span as in the AST. Where HIR nodes are
30 //! new it is probably best to give a span for the whole AST node being lowered.
31 //! All nodes should have real spans, don't use dummy spans. Tools are likely to
32 //! get confused if the spans from leaf AST nodes occur in multiple places
33 //! in the HIR, especially for multiple identifiers.
34
35 mod expr;
36 mod item;
37
38 use crate::dep_graph::DepGraph;
39 use crate::hir::{self, ParamName};
40 use crate::hir::HirVec;
41 use crate::hir::map::{DefKey, DefPathData, Definitions};
42 use crate::hir::def_id::{DefId, DefIndex, CRATE_DEF_INDEX};
43 use crate::hir::def::{Namespace, Res, DefKind, PartialRes, PerNS};
44 use crate::hir::{GenericArg, ConstArg};
45 use crate::hir::ptr::P;
46 use crate::lint::builtin::{self, PARENTHESIZED_PARAMS_IN_TYPES_AND_MODULES,
47                     ELIDED_LIFETIMES_IN_PATHS};
48 use crate::middle::cstore::CrateStore;
49 use crate::session::Session;
50 use crate::session::config::nightly_options;
51 use crate::util::common::FN_OUTPUT_NAME;
52 use crate::util::nodemap::{DefIdMap, NodeMap};
53 use errors::Applicability;
54 use rustc_data_structures::fx::FxHashSet;
55 use rustc_data_structures::indexed_vec::IndexVec;
56 use rustc_data_structures::thin_vec::ThinVec;
57 use rustc_data_structures::sync::Lrc;
58
59 use std::collections::BTreeMap;
60 use std::mem;
61 use smallvec::SmallVec;
62 use syntax::attr;
63 use syntax::ast;
64 use syntax::ptr::P as AstP;
65 use syntax::ast::*;
66 use syntax::errors;
67 use syntax::ext::base::SpecialDerives;
68 use syntax::ext::hygiene::ExpnId;
69 use syntax::print::pprust;
70 use syntax::source_map::{respan, ExpnInfo, ExpnKind, DesugaringKind, Spanned};
71 use syntax::symbol::{kw, sym, Symbol};
72 use syntax::tokenstream::{TokenStream, TokenTree};
73 use syntax::parse::token::{self, Token};
74 use syntax::visit::{self, Visitor};
75 use syntax_pos::{DUMMY_SP, Span};
76
77 const HIR_ID_COUNTER_LOCKED: u32 = 0xFFFFFFFF;
78
79 pub struct LoweringContext<'a> {
80     crate_root: Option<Symbol>,
81
82     /// Used to assign ids to HIR nodes that do not directly correspond to an AST node.
83     sess: &'a Session,
84
85     cstore: &'a dyn CrateStore,
86
87     resolver: &'a mut dyn Resolver,
88
89     /// The items being lowered are collected here.
90     items: BTreeMap<hir::HirId, hir::Item>,
91
92     trait_items: BTreeMap<hir::TraitItemId, hir::TraitItem>,
93     impl_items: BTreeMap<hir::ImplItemId, hir::ImplItem>,
94     bodies: BTreeMap<hir::BodyId, hir::Body>,
95     exported_macros: Vec<hir::MacroDef>,
96     non_exported_macro_attrs: Vec<ast::Attribute>,
97
98     trait_impls: BTreeMap<DefId, Vec<hir::HirId>>,
99
100     modules: BTreeMap<NodeId, hir::ModuleItems>,
101
102     generator_kind: Option<hir::GeneratorKind>,
103
104     /// Used to get the current `fn`'s def span to point to when using `await`
105     /// outside of an `async fn`.
106     current_item: Option<Span>,
107
108     catch_scopes: Vec<NodeId>,
109     loop_scopes: Vec<NodeId>,
110     is_in_loop_condition: bool,
111     is_in_trait_impl: bool,
112     is_in_dyn_type: bool,
113
114     /// What to do when we encounter either an "anonymous lifetime
115     /// reference". The term "anonymous" is meant to encompass both
116     /// `'_` lifetimes as well as fully elided cases where nothing is
117     /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
118     anonymous_lifetime_mode: AnonymousLifetimeMode,
119
120     /// Used to create lifetime definitions from in-band lifetime usages.
121     /// e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
122     /// When a named lifetime is encountered in a function or impl header and
123     /// has not been defined
124     /// (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
125     /// to this list. The results of this list are then added to the list of
126     /// lifetime definitions in the corresponding impl or function generics.
127     lifetimes_to_define: Vec<(Span, ParamName)>,
128
129     /// Whether or not in-band lifetimes are being collected. This is used to
130     /// indicate whether or not we're in a place where new lifetimes will result
131     /// in in-band lifetime definitions, such a function or an impl header,
132     /// including implicit lifetimes from `impl_header_lifetime_elision`.
133     is_collecting_in_band_lifetimes: bool,
134
135     /// Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
136     /// When `is_collectin_in_band_lifetimes` is true, each lifetime is checked
137     /// against this list to see if it is already in-scope, or if a definition
138     /// needs to be created for it.
139     ///
140     /// We always store a `modern()` version of the param-name in this
141     /// vector.
142     in_scope_lifetimes: Vec<ParamName>,
143
144     current_module: NodeId,
145
146     type_def_lifetime_params: DefIdMap<usize>,
147
148     current_hir_id_owner: Vec<(DefIndex, u32)>,
149     item_local_id_counters: NodeMap<u32>,
150     node_id_to_hir_id: IndexVec<NodeId, hir::HirId>,
151
152     allow_try_trait: Option<Lrc<[Symbol]>>,
153     allow_gen_future: Option<Lrc<[Symbol]>>,
154 }
155
156 pub trait Resolver {
157     /// Obtain resolution for a `NodeId` with a single resolution.
158     fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes>;
159
160     /// Obtain per-namespace resolutions for `use` statement with the given `NoedId`.
161     fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res<NodeId>>>;
162
163     /// Obtain resolution for a label with the given `NodeId`.
164     fn get_label_res(&mut self, id: NodeId) -> Option<NodeId>;
165
166     /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
167     /// This should only return `None` during testing.
168     fn definitions(&mut self) -> &mut Definitions;
169
170     /// Given suffix `["b", "c", "d"]`, creates an AST path for `[::crate_root]::b::c::d` and
171     /// resolves it based on `is_value`.
172     fn resolve_str_path(
173         &mut self,
174         span: Span,
175         crate_root: Option<Symbol>,
176         components: &[Symbol],
177         ns: Namespace,
178     ) -> (ast::Path, Res<NodeId>);
179
180     fn has_derives(&self, node_id: NodeId, derives: SpecialDerives) -> bool;
181 }
182
183 /// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
184 /// and if so, what meaning it has.
185 #[derive(Debug)]
186 enum ImplTraitContext<'a> {
187     /// Treat `impl Trait` as shorthand for a new universal generic parameter.
188     /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
189     /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
190     ///
191     /// Newly generated parameters should be inserted into the given `Vec`.
192     Universal(&'a mut Vec<hir::GenericParam>),
193
194     /// Treat `impl Trait` as shorthand for a new opaque type.
195     /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
196     /// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
197     ///
198     /// We optionally store a `DefId` for the parent item here so we can look up necessary
199     /// information later. It is `None` when no information about the context should be stored
200     /// (e.g., for consts and statics).
201     OpaqueTy(Option<DefId> /* fn def-ID */),
202
203     /// `impl Trait` is not accepted in this position.
204     Disallowed(ImplTraitPosition),
205 }
206
207 /// Position in which `impl Trait` is disallowed.
208 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
209 enum ImplTraitPosition {
210     /// Disallowed in `let` / `const` / `static` bindings.
211     Binding,
212
213     /// All other posiitons.
214     Other,
215 }
216
217 impl<'a> ImplTraitContext<'a> {
218     #[inline]
219     fn disallowed() -> Self {
220         ImplTraitContext::Disallowed(ImplTraitPosition::Other)
221     }
222
223     fn reborrow(&'b mut self) -> ImplTraitContext<'b> {
224         use self::ImplTraitContext::*;
225         match self {
226             Universal(params) => Universal(params),
227             OpaqueTy(fn_def_id) => OpaqueTy(*fn_def_id),
228             Disallowed(pos) => Disallowed(*pos),
229         }
230     }
231 }
232
233 pub fn lower_crate(
234     sess: &Session,
235     cstore: &dyn CrateStore,
236     dep_graph: &DepGraph,
237     krate: &Crate,
238     resolver: &mut dyn Resolver,
239 ) -> hir::Crate {
240     // We're constructing the HIR here; we don't care what we will
241     // read, since we haven't even constructed the *input* to
242     // incr. comp. yet.
243     dep_graph.assert_ignored();
244
245     LoweringContext {
246         crate_root: sess.parse_sess.injected_crate_name.try_get().copied(),
247         sess,
248         cstore,
249         resolver,
250         items: BTreeMap::new(),
251         trait_items: BTreeMap::new(),
252         impl_items: BTreeMap::new(),
253         bodies: BTreeMap::new(),
254         trait_impls: BTreeMap::new(),
255         modules: BTreeMap::new(),
256         exported_macros: Vec::new(),
257         non_exported_macro_attrs: Vec::new(),
258         catch_scopes: Vec::new(),
259         loop_scopes: Vec::new(),
260         is_in_loop_condition: false,
261         is_in_trait_impl: false,
262         is_in_dyn_type: false,
263         anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
264         type_def_lifetime_params: Default::default(),
265         current_module: CRATE_NODE_ID,
266         current_hir_id_owner: vec![(CRATE_DEF_INDEX, 0)],
267         item_local_id_counters: Default::default(),
268         node_id_to_hir_id: IndexVec::new(),
269         generator_kind: None,
270         current_item: None,
271         lifetimes_to_define: Vec::new(),
272         is_collecting_in_band_lifetimes: false,
273         in_scope_lifetimes: Vec::new(),
274         allow_try_trait: Some([sym::try_trait][..].into()),
275         allow_gen_future: Some([sym::gen_future][..].into()),
276     }.lower_crate(krate)
277 }
278
279 #[derive(Copy, Clone, PartialEq)]
280 enum ParamMode {
281     /// Any path in a type context.
282     Explicit,
283     /// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
284     ExplicitNamed,
285     /// The `module::Type` in `module::Type::method` in an expression.
286     Optional,
287 }
288
289 enum ParenthesizedGenericArgs {
290     Ok,
291     Warn,
292     Err,
293 }
294
295 /// What to do when we encounter an **anonymous** lifetime
296 /// reference. Anonymous lifetime references come in two flavors. You
297 /// have implicit, or fully elided, references to lifetimes, like the
298 /// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
299 /// or `Ref<'_, T>`. These often behave the same, but not always:
300 ///
301 /// - certain usages of implicit references are deprecated, like
302 ///   `Ref<T>`, and we sometimes just give hard errors in those cases
303 ///   as well.
304 /// - for object bounds there is a difference: `Box<dyn Foo>` is not
305 ///   the same as `Box<dyn Foo + '_>`.
306 ///
307 /// We describe the effects of the various modes in terms of three cases:
308 ///
309 /// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
310 ///   of a `&` (e.g., the missing lifetime in something like `&T`)
311 /// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
312 ///   there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
313 ///   elided bounds follow special rules. Note that this only covers
314 ///   cases where *nothing* is written; the `'_` in `Box<dyn Foo +
315 ///   '_>` is a case of "modern" elision.
316 /// - **Deprecated** -- this coverse cases like `Ref<T>`, where the lifetime
317 ///   parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
318 ///   non-deprecated equivalent.
319 ///
320 /// Currently, the handling of lifetime elision is somewhat spread out
321 /// between HIR lowering and -- as described below -- the
322 /// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
323 /// an "elided" or "underscore" lifetime name. In the future, we probably want to move
324 /// everything into HIR lowering.
325 #[derive(Copy, Clone)]
326 enum AnonymousLifetimeMode {
327     /// For **Modern** cases, create a new anonymous region parameter
328     /// and reference that.
329     ///
330     /// For **Dyn Bound** cases, pass responsibility to
331     /// `resolve_lifetime` code.
332     ///
333     /// For **Deprecated** cases, report an error.
334     CreateParameter,
335
336     /// Give a hard error when either `&` or `'_` is written. Used to
337     /// rule out things like `where T: Foo<'_>`. Does not imply an
338     /// error on default object bounds (e.g., `Box<dyn Foo>`).
339     ReportError,
340
341     /// Pass responsibility to `resolve_lifetime` code for all cases.
342     PassThrough,
343
344     /// Used in the return types of `async fn` where there exists
345     /// exactly one argument-position elided lifetime.
346     ///
347     /// In `async fn`, we lower the arguments types using the `CreateParameter`
348     /// mode, meaning that non-`dyn` elided lifetimes are assigned a fresh name.
349     /// If any corresponding elided lifetimes appear in the output, we need to
350     /// replace them with references to the fresh name assigned to the corresponding
351     /// elided lifetime in the arguments.
352     ///
353     /// For **Modern cases**, replace the anonymous parameter with a
354     /// reference to a specific freshly-named lifetime that was
355     /// introduced in argument
356     ///
357     /// For **Dyn Bound** cases, pass responsibility to
358     /// `resole_lifetime` code.
359     Replace(LtReplacement),
360 }
361
362 /// The type of elided lifetime replacement to perform on `async fn` return types.
363 #[derive(Copy, Clone)]
364 enum LtReplacement {
365     /// Fresh name introduced by the single non-dyn elided lifetime
366     /// in the arguments of the async fn.
367     Some(ParamName),
368
369     /// There is no single non-dyn elided lifetime because no lifetimes
370     /// appeared in the arguments.
371     NoLifetimes,
372
373     /// There is no single non-dyn elided lifetime because multiple
374     /// lifetimes appeared in the arguments.
375     MultipleLifetimes,
376 }
377
378 /// Calculates the `LtReplacement` to use for elided lifetimes in the return
379 /// type based on the fresh elided lifetimes introduced in argument position.
380 fn get_elided_lt_replacement(arg_position_lifetimes: &[(Span, ParamName)]) -> LtReplacement {
381     match arg_position_lifetimes {
382         [] => LtReplacement::NoLifetimes,
383         [(_span, param)] => LtReplacement::Some(*param),
384         _ => LtReplacement::MultipleLifetimes,
385     }
386 }
387
388 struct ImplTraitTypeIdVisitor<'a> { ids: &'a mut SmallVec<[NodeId; 1]> }
389
390 impl<'a, 'b> Visitor<'a> for ImplTraitTypeIdVisitor<'b> {
391     fn visit_ty(&mut self, ty: &'a Ty) {
392         match ty.node {
393             | TyKind::Typeof(_)
394             | TyKind::BareFn(_)
395             => return,
396
397             TyKind::ImplTrait(id, _) => self.ids.push(id),
398             _ => {},
399         }
400         visit::walk_ty(self, ty);
401     }
402
403     fn visit_path_segment(
404         &mut self,
405         path_span: Span,
406         path_segment: &'v PathSegment,
407     ) {
408         if let Some(ref p) = path_segment.args {
409             if let GenericArgs::Parenthesized(_) = **p {
410                 return;
411             }
412         }
413         visit::walk_path_segment(self, path_span, path_segment)
414     }
415 }
416
417 impl<'a> LoweringContext<'a> {
418     fn lower_crate(mut self, c: &Crate) -> hir::Crate {
419         /// Full-crate AST visitor that inserts into a fresh
420         /// `LoweringContext` any information that may be
421         /// needed from arbitrary locations in the crate,
422         /// e.g., the number of lifetime generic parameters
423         /// declared for every type and trait definition.
424         struct MiscCollector<'tcx, 'interner> {
425             lctx: &'tcx mut LoweringContext<'interner>,
426             hir_id_owner: Option<NodeId>,
427         }
428
429         impl MiscCollector<'_, '_> {
430             fn allocate_use_tree_hir_id_counters(
431                 &mut self,
432                 tree: &UseTree,
433                 owner: DefIndex,
434             ) {
435                 match tree.kind {
436                     UseTreeKind::Simple(_, id1, id2) => {
437                         for &id in &[id1, id2] {
438                             self.lctx.resolver.definitions().create_def_with_parent(
439                                 owner,
440                                 id,
441                                 DefPathData::Misc,
442                                 ExpnId::root(),
443                                 tree.prefix.span,
444                             );
445                             self.lctx.allocate_hir_id_counter(id);
446                         }
447                     }
448                     UseTreeKind::Glob => (),
449                     UseTreeKind::Nested(ref trees) => {
450                         for &(ref use_tree, id) in trees {
451                             let hir_id = self.lctx.allocate_hir_id_counter(id);
452                             self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
453                         }
454                     }
455                 }
456             }
457
458             fn with_hir_id_owner<F, T>(&mut self, owner: Option<NodeId>, f: F) -> T
459             where
460                 F: FnOnce(&mut Self) -> T,
461             {
462                 let old = mem::replace(&mut self.hir_id_owner, owner);
463                 let r = f(self);
464                 self.hir_id_owner = old;
465                 r
466             }
467         }
468
469         impl<'tcx, 'interner> Visitor<'tcx> for MiscCollector<'tcx, 'interner> {
470             fn visit_pat(&mut self, p: &'tcx Pat) {
471                 match p.node {
472                     // Doesn't generate a HIR node
473                     PatKind::Paren(..) | PatKind::Rest => {},
474                     _ => {
475                         if let Some(owner) = self.hir_id_owner {
476                             self.lctx.lower_node_id_with_owner(p.id, owner);
477                         }
478                     }
479                 };
480
481                 visit::walk_pat(self, p)
482             }
483
484             fn visit_item(&mut self, item: &'tcx Item) {
485                 let hir_id = self.lctx.allocate_hir_id_counter(item.id);
486
487                 match item.node {
488                     ItemKind::Struct(_, ref generics)
489                     | ItemKind::Union(_, ref generics)
490                     | ItemKind::Enum(_, ref generics)
491                     | ItemKind::TyAlias(_, ref generics)
492                     | ItemKind::OpaqueTy(_, ref generics)
493                     | ItemKind::Trait(_, _, ref generics, ..) => {
494                         let def_id = self.lctx.resolver.definitions().local_def_id(item.id);
495                         let count = generics
496                             .params
497                             .iter()
498                             .filter(|param| match param.kind {
499                                 ast::GenericParamKind::Lifetime { .. } => true,
500                                 _ => false,
501                             })
502                             .count();
503                         self.lctx.type_def_lifetime_params.insert(def_id, count);
504                     }
505                     ItemKind::Use(ref use_tree) => {
506                         self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
507                     }
508                     _ => {}
509                 }
510
511                 self.with_hir_id_owner(Some(item.id), |this| {
512                     visit::walk_item(this, item);
513                 });
514             }
515
516             fn visit_trait_item(&mut self, item: &'tcx TraitItem) {
517                 self.lctx.allocate_hir_id_counter(item.id);
518
519                 match item.node {
520                     TraitItemKind::Method(_, None) => {
521                         // Ignore patterns in trait methods without bodies
522                         self.with_hir_id_owner(None, |this| {
523                             visit::walk_trait_item(this, item)
524                         });
525                     }
526                     _ => self.with_hir_id_owner(Some(item.id), |this| {
527                         visit::walk_trait_item(this, item);
528                     })
529                 }
530             }
531
532             fn visit_impl_item(&mut self, item: &'tcx ImplItem) {
533                 self.lctx.allocate_hir_id_counter(item.id);
534                 self.with_hir_id_owner(Some(item.id), |this| {
535                     visit::walk_impl_item(this, item);
536                 });
537             }
538
539             fn visit_foreign_item(&mut self, i: &'tcx ForeignItem) {
540                 // Ignore patterns in foreign items
541                 self.with_hir_id_owner(None, |this| {
542                     visit::walk_foreign_item(this, i)
543                 });
544             }
545
546             fn visit_ty(&mut self, t: &'tcx Ty) {
547                 match t.node {
548                     // Mirrors the case in visit::walk_ty
549                     TyKind::BareFn(ref f) => {
550                         walk_list!(
551                             self,
552                             visit_generic_param,
553                             &f.generic_params
554                         );
555                         // Mirrors visit::walk_fn_decl
556                         for argument in &f.decl.inputs {
557                             // We don't lower the ids of argument patterns
558                             self.with_hir_id_owner(None, |this| {
559                                 this.visit_pat(&argument.pat);
560                             });
561                             self.visit_ty(&argument.ty)
562                         }
563                         self.visit_fn_ret_ty(&f.decl.output)
564                     }
565                     _ => visit::walk_ty(self, t),
566                 }
567             }
568         }
569
570         self.lower_node_id(CRATE_NODE_ID);
571         debug_assert!(self.node_id_to_hir_id[CRATE_NODE_ID] == hir::CRATE_HIR_ID);
572
573         visit::walk_crate(&mut MiscCollector { lctx: &mut self, hir_id_owner: None }, c);
574         visit::walk_crate(&mut item::ItemLowerer { lctx: &mut self }, c);
575
576         let module = self.lower_mod(&c.module);
577         let attrs = self.lower_attrs(&c.attrs);
578         let body_ids = body_ids(&self.bodies);
579
580         self.resolver
581             .definitions()
582             .init_node_id_to_hir_id_mapping(self.node_id_to_hir_id);
583
584         hir::Crate {
585             module,
586             attrs,
587             span: c.span,
588             exported_macros: hir::HirVec::from(self.exported_macros),
589             non_exported_macro_attrs: hir::HirVec::from(self.non_exported_macro_attrs),
590             items: self.items,
591             trait_items: self.trait_items,
592             impl_items: self.impl_items,
593             bodies: self.bodies,
594             body_ids,
595             trait_impls: self.trait_impls,
596             modules: self.modules,
597         }
598     }
599
600     fn insert_item(&mut self, item: hir::Item) {
601         let id = item.hir_id;
602         // FIXME: Use `debug_asset-rt`.
603         assert_eq!(id.local_id, hir::ItemLocalId::from_u32(0));
604         self.items.insert(id, item);
605         self.modules.get_mut(&self.current_module).unwrap().items.insert(id);
606     }
607
608     fn allocate_hir_id_counter(&mut self, owner: NodeId) -> hir::HirId {
609         // Set up the counter if needed.
610         self.item_local_id_counters.entry(owner).or_insert(0);
611         // Always allocate the first `HirId` for the owner itself.
612         let lowered = self.lower_node_id_with_owner(owner, owner);
613         debug_assert_eq!(lowered.local_id.as_u32(), 0);
614         lowered
615     }
616
617     fn lower_node_id_generic<F>(&mut self, ast_node_id: NodeId, alloc_hir_id: F) -> hir::HirId
618     where
619         F: FnOnce(&mut Self) -> hir::HirId,
620     {
621         if ast_node_id == DUMMY_NODE_ID {
622             return hir::DUMMY_HIR_ID;
623         }
624
625         let min_size = ast_node_id.as_usize() + 1;
626
627         if min_size > self.node_id_to_hir_id.len() {
628             self.node_id_to_hir_id.resize(min_size, hir::DUMMY_HIR_ID);
629         }
630
631         let existing_hir_id = self.node_id_to_hir_id[ast_node_id];
632
633         if existing_hir_id == hir::DUMMY_HIR_ID {
634             // Generate a new `HirId`.
635             let hir_id = alloc_hir_id(self);
636             self.node_id_to_hir_id[ast_node_id] = hir_id;
637
638             hir_id
639         } else {
640             existing_hir_id
641         }
642     }
643
644     fn with_hir_id_owner<F, T>(&mut self, owner: NodeId, f: F) -> T
645     where
646         F: FnOnce(&mut Self) -> T,
647     {
648         let counter = self.item_local_id_counters
649             .insert(owner, HIR_ID_COUNTER_LOCKED)
650             .unwrap_or_else(|| panic!("no `item_local_id_counters` entry for {:?}", owner));
651         let def_index = self.resolver.definitions().opt_def_index(owner).unwrap();
652         self.current_hir_id_owner.push((def_index, counter));
653         let ret = f(self);
654         let (new_def_index, new_counter) = self.current_hir_id_owner.pop().unwrap();
655
656         debug_assert!(def_index == new_def_index);
657         debug_assert!(new_counter >= counter);
658
659         let prev = self.item_local_id_counters
660             .insert(owner, new_counter)
661             .unwrap();
662         debug_assert!(prev == HIR_ID_COUNTER_LOCKED);
663         ret
664     }
665
666     /// This method allocates a new `HirId` for the given `NodeId` and stores it in
667     /// the `LoweringContext`'s `NodeId => HirId` map.
668     /// Take care not to call this method if the resulting `HirId` is then not
669     /// actually used in the HIR, as that would trigger an assertion in the
670     /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
671     /// properly. Calling the method twice with the same `NodeId` is fine though.
672     fn lower_node_id(&mut self, ast_node_id: NodeId) -> hir::HirId {
673         self.lower_node_id_generic(ast_node_id, |this| {
674             let &mut (def_index, ref mut local_id_counter) =
675                 this.current_hir_id_owner.last_mut().unwrap();
676             let local_id = *local_id_counter;
677             *local_id_counter += 1;
678             hir::HirId {
679                 owner: def_index,
680                 local_id: hir::ItemLocalId::from_u32(local_id),
681             }
682         })
683     }
684
685     fn lower_node_id_with_owner(&mut self, ast_node_id: NodeId, owner: NodeId) -> hir::HirId {
686         self.lower_node_id_generic(ast_node_id, |this| {
687             let local_id_counter = this
688                 .item_local_id_counters
689                 .get_mut(&owner)
690                 .expect("called `lower_node_id_with_owner` before `allocate_hir_id_counter`");
691             let local_id = *local_id_counter;
692
693             // We want to be sure not to modify the counter in the map while it
694             // is also on the stack. Otherwise we'll get lost updates when writing
695             // back from the stack to the map.
696             debug_assert!(local_id != HIR_ID_COUNTER_LOCKED);
697
698             *local_id_counter += 1;
699             let def_index = this
700                 .resolver
701                 .definitions()
702                 .opt_def_index(owner)
703                 .expect("you forgot to call `create_def_with_parent` or are lowering node-IDs \
704                          that do not belong to the current owner");
705
706             hir::HirId {
707                 owner: def_index,
708                 local_id: hir::ItemLocalId::from_u32(local_id),
709             }
710         })
711     }
712
713     fn next_id(&mut self) -> hir::HirId {
714         self.lower_node_id(self.sess.next_node_id())
715     }
716
717     fn lower_res(&mut self, res: Res<NodeId>) -> Res {
718         res.map_id(|id| {
719             self.lower_node_id_generic(id, |_| {
720                 panic!("expected node_id to be lowered already for res {:#?}", res)
721             })
722         })
723     }
724
725     fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
726         self.resolver.get_partial_res(id).map_or(Res::Err, |pr| {
727             if pr.unresolved_segments() != 0 {
728                 bug!("path not fully resolved: {:?}", pr);
729             }
730             pr.base_res()
731         })
732     }
733
734     fn expect_full_res_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Res<NodeId>> {
735         self.resolver.get_import_res(id).present_items()
736     }
737
738     fn diagnostic(&self) -> &errors::Handler {
739         self.sess.diagnostic()
740     }
741
742     /// Reuses the span but adds information like the kind of the desugaring and features that are
743     /// allowed inside this span.
744     fn mark_span_with_reason(
745         &self,
746         reason: DesugaringKind,
747         span: Span,
748         allow_internal_unstable: Option<Lrc<[Symbol]>>,
749     ) -> Span {
750         span.fresh_expansion(ExpnId::root(), ExpnInfo {
751             def_site: span,
752             allow_internal_unstable,
753             ..ExpnInfo::default(ExpnKind::Desugaring(reason), span, self.sess.edition())
754         })
755     }
756
757     fn with_anonymous_lifetime_mode<R>(
758         &mut self,
759         anonymous_lifetime_mode: AnonymousLifetimeMode,
760         op: impl FnOnce(&mut Self) -> R,
761     ) -> R {
762         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
763         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
764         let result = op(self);
765         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
766         result
767     }
768
769     /// Creates a new `hir::GenericParam` for every new lifetime and
770     /// type parameter encountered while evaluating `f`. Definitions
771     /// are created with the parent provided. If no `parent_id` is
772     /// provided, no definitions will be returned.
773     ///
774     /// Presuming that in-band lifetimes are enabled, then
775     /// `self.anonymous_lifetime_mode` will be updated to match the
776     /// argument while `f` is running (and restored afterwards).
777     fn collect_in_band_defs<T, F>(
778         &mut self,
779         parent_id: DefId,
780         anonymous_lifetime_mode: AnonymousLifetimeMode,
781         f: F,
782     ) -> (Vec<hir::GenericParam>, T)
783     where
784         F: FnOnce(&mut LoweringContext<'_>) -> (Vec<hir::GenericParam>, T),
785     {
786         assert!(!self.is_collecting_in_band_lifetimes);
787         assert!(self.lifetimes_to_define.is_empty());
788         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
789
790         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
791         self.is_collecting_in_band_lifetimes = true;
792
793         let (in_band_ty_params, res) = f(self);
794
795         self.is_collecting_in_band_lifetimes = false;
796         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
797
798         let lifetimes_to_define = self.lifetimes_to_define.split_off(0);
799
800         let params = lifetimes_to_define
801             .into_iter()
802             .map(|(span, hir_name)| self.lifetime_to_generic_param(
803                 span, hir_name, parent_id.index,
804             ))
805             .chain(in_band_ty_params.into_iter())
806             .collect();
807
808         (params, res)
809     }
810
811     /// Converts a lifetime into a new generic parameter.
812     fn lifetime_to_generic_param(
813         &mut self,
814         span: Span,
815         hir_name: ParamName,
816         parent_index: DefIndex,
817     ) -> hir::GenericParam {
818         let node_id = self.sess.next_node_id();
819
820         // Get the name we'll use to make the def-path. Note
821         // that collisions are ok here and this shouldn't
822         // really show up for end-user.
823         let (str_name, kind) = match hir_name {
824             ParamName::Plain(ident) => (
825                 ident.as_interned_str(),
826                 hir::LifetimeParamKind::InBand,
827             ),
828             ParamName::Fresh(_) => (
829                 kw::UnderscoreLifetime.as_interned_str(),
830                 hir::LifetimeParamKind::Elided,
831             ),
832             ParamName::Error => (
833                 kw::UnderscoreLifetime.as_interned_str(),
834                 hir::LifetimeParamKind::Error,
835             ),
836         };
837
838         // Add a definition for the in-band lifetime def.
839         self.resolver.definitions().create_def_with_parent(
840             parent_index,
841             node_id,
842             DefPathData::LifetimeNs(str_name),
843             ExpnId::root(),
844             span,
845         );
846
847         hir::GenericParam {
848             hir_id: self.lower_node_id(node_id),
849             name: hir_name,
850             attrs: hir_vec![],
851             bounds: hir_vec![],
852             span,
853             pure_wrt_drop: false,
854             kind: hir::GenericParamKind::Lifetime { kind }
855         }
856     }
857
858     /// When there is a reference to some lifetime `'a`, and in-band
859     /// lifetimes are enabled, then we want to push that lifetime into
860     /// the vector of names to define later. In that case, it will get
861     /// added to the appropriate generics.
862     fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
863         if !self.is_collecting_in_band_lifetimes {
864             return;
865         }
866
867         if !self.sess.features_untracked().in_band_lifetimes {
868             return;
869         }
870
871         if self.in_scope_lifetimes.contains(&ParamName::Plain(ident.modern())) {
872             return;
873         }
874
875         let hir_name = ParamName::Plain(ident);
876
877         if self.lifetimes_to_define.iter()
878                                    .any(|(_, lt_name)| lt_name.modern() == hir_name.modern()) {
879             return;
880         }
881
882         self.lifetimes_to_define.push((ident.span, hir_name));
883     }
884
885     /// When we have either an elided or `'_` lifetime in an impl
886     /// header, we convert it to an in-band lifetime.
887     fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
888         assert!(self.is_collecting_in_band_lifetimes);
889         let index = self.lifetimes_to_define.len();
890         let hir_name = ParamName::Fresh(index);
891         self.lifetimes_to_define.push((span, hir_name));
892         hir_name
893     }
894
895     // Evaluates `f` with the lifetimes in `params` in-scope.
896     // This is used to track which lifetimes have already been defined, and
897     // which are new in-band lifetimes that need to have a definition created
898     // for them.
899     fn with_in_scope_lifetime_defs<T, F>(&mut self, params: &[GenericParam], f: F) -> T
900     where
901         F: FnOnce(&mut LoweringContext<'_>) -> T,
902     {
903         let old_len = self.in_scope_lifetimes.len();
904         let lt_def_names = params.iter().filter_map(|param| match param.kind {
905             GenericParamKind::Lifetime { .. } => Some(ParamName::Plain(param.ident.modern())),
906             _ => None,
907         });
908         self.in_scope_lifetimes.extend(lt_def_names);
909
910         let res = f(self);
911
912         self.in_scope_lifetimes.truncate(old_len);
913         res
914     }
915
916     /// Appends in-band lifetime defs and argument-position `impl
917     /// Trait` defs to the existing set of generics.
918     ///
919     /// Presuming that in-band lifetimes are enabled, then
920     /// `self.anonymous_lifetime_mode` will be updated to match the
921     /// argument while `f` is running (and restored afterwards).
922     fn add_in_band_defs<F, T>(
923         &mut self,
924         generics: &Generics,
925         parent_id: DefId,
926         anonymous_lifetime_mode: AnonymousLifetimeMode,
927         f: F,
928     ) -> (hir::Generics, T)
929     where
930         F: FnOnce(&mut LoweringContext<'_>, &mut Vec<hir::GenericParam>) -> T,
931     {
932         let (in_band_defs, (mut lowered_generics, res)) = self.with_in_scope_lifetime_defs(
933             &generics.params,
934             |this| {
935                 this.collect_in_band_defs(parent_id, anonymous_lifetime_mode, |this| {
936                     let mut params = Vec::new();
937                     // Note: it is necessary to lower generics *before* calling `f`.
938                     // When lowering `async fn`, there's a final step when lowering
939                     // the return type that assumes that all in-scope lifetimes have
940                     // already been added to either `in_scope_lifetimes` or
941                     // `lifetimes_to_define`. If we swapped the order of these two,
942                     // in-band-lifetimes introduced by generics or where-clauses
943                     // wouldn't have been added yet.
944                     let generics = this.lower_generics(
945                         generics,
946                         ImplTraitContext::Universal(&mut params),
947                     );
948                     let res = f(this, &mut params);
949                     (params, (generics, res))
950                 })
951             },
952         );
953
954         let mut lowered_params: Vec<_> = lowered_generics
955             .params
956             .into_iter()
957             .chain(in_band_defs)
958             .collect();
959
960         // FIXME(const_generics): the compiler doesn't always cope with
961         // unsorted generic parameters at the moment, so we make sure
962         // that they're ordered correctly here for now. (When we chain
963         // the `in_band_defs`, we might make the order unsorted.)
964         lowered_params.sort_by_key(|param| {
965             match param.kind {
966                 hir::GenericParamKind::Lifetime { .. } => ParamKindOrd::Lifetime,
967                 hir::GenericParamKind::Type { .. } => ParamKindOrd::Type,
968                 hir::GenericParamKind::Const { .. } => ParamKindOrd::Const,
969             }
970         });
971
972         lowered_generics.params = lowered_params.into();
973
974         (lowered_generics, res)
975     }
976
977     fn with_dyn_type_scope<T, F>(&mut self, in_scope: bool, f: F) -> T
978     where
979         F: FnOnce(&mut LoweringContext<'_>) -> T,
980     {
981         let was_in_dyn_type = self.is_in_dyn_type;
982         self.is_in_dyn_type = in_scope;
983
984         let result = f(self);
985
986         self.is_in_dyn_type = was_in_dyn_type;
987
988         result
989     }
990
991     fn with_new_scopes<T, F>(&mut self, f: F) -> T
992     where
993         F: FnOnce(&mut LoweringContext<'_>) -> T,
994     {
995         let was_in_loop_condition = self.is_in_loop_condition;
996         self.is_in_loop_condition = false;
997
998         let catch_scopes = mem::take(&mut self.catch_scopes);
999         let loop_scopes = mem::take(&mut self.loop_scopes);
1000         let ret = f(self);
1001         self.catch_scopes = catch_scopes;
1002         self.loop_scopes = loop_scopes;
1003
1004         self.is_in_loop_condition = was_in_loop_condition;
1005
1006         ret
1007     }
1008
1009     fn def_key(&mut self, id: DefId) -> DefKey {
1010         if id.is_local() {
1011             self.resolver.definitions().def_key(id.index)
1012         } else {
1013             self.cstore.def_key(id)
1014         }
1015     }
1016
1017     fn lower_attrs_extendable(&mut self, attrs: &[Attribute]) -> Vec<Attribute> {
1018         attrs
1019             .iter()
1020             .map(|a| self.lower_attr(a))
1021             .collect()
1022     }
1023
1024     fn lower_attrs(&mut self, attrs: &[Attribute]) -> hir::HirVec<Attribute> {
1025         self.lower_attrs_extendable(attrs).into()
1026     }
1027
1028     fn lower_attr(&mut self, attr: &Attribute) -> Attribute {
1029         // Note that we explicitly do not walk the path. Since we don't really
1030         // lower attributes (we use the AST version) there is nowhere to keep
1031         // the `HirId`s. We don't actually need HIR version of attributes anyway.
1032         Attribute {
1033             id: attr.id,
1034             style: attr.style,
1035             path: attr.path.clone(),
1036             tokens: self.lower_token_stream(attr.tokens.clone()),
1037             is_sugared_doc: attr.is_sugared_doc,
1038             span: attr.span,
1039         }
1040     }
1041
1042     fn lower_token_stream(&mut self, tokens: TokenStream) -> TokenStream {
1043         tokens
1044             .into_trees()
1045             .flat_map(|tree| self.lower_token_tree(tree).into_trees())
1046             .collect()
1047     }
1048
1049     fn lower_token_tree(&mut self, tree: TokenTree) -> TokenStream {
1050         match tree {
1051             TokenTree::Token(token) => self.lower_token(token),
1052             TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
1053                 span,
1054                 delim,
1055                 self.lower_token_stream(tts),
1056             ).into(),
1057         }
1058     }
1059
1060     fn lower_token(&mut self, token: Token) -> TokenStream {
1061         match token.kind {
1062             token::Interpolated(nt) => {
1063                 let tts = nt.to_tokenstream(&self.sess.parse_sess, token.span);
1064                 self.lower_token_stream(tts)
1065             }
1066             _ => TokenTree::Token(token).into(),
1067         }
1068     }
1069
1070     /// Given an associated type constraint like one of these:
1071     ///
1072     /// ```
1073     /// T: Iterator<Item: Debug>
1074     ///             ^^^^^^^^^^^
1075     /// T: Iterator<Item = Debug>
1076     ///             ^^^^^^^^^^^^
1077     /// ```
1078     ///
1079     /// returns a `hir::TypeBinding` representing `Item`.
1080     fn lower_assoc_ty_constraint(&mut self,
1081                                  c: &AssocTyConstraint,
1082                                  itctx: ImplTraitContext<'_>)
1083                                  -> hir::TypeBinding {
1084         debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", c, itctx);
1085
1086         let kind = match c.kind {
1087             AssocTyConstraintKind::Equality { ref ty } => hir::TypeBindingKind::Equality {
1088                 ty: self.lower_ty(ty, itctx)
1089             },
1090             AssocTyConstraintKind::Bound { ref bounds } => {
1091                 // Piggy-back on the `impl Trait` context to figure out the correct behavior.
1092                 let (desugar_to_impl_trait, itctx) = match itctx {
1093                     // We are in the return position:
1094                     //
1095                     //     fn foo() -> impl Iterator<Item: Debug>
1096                     //
1097                     // so desugar to
1098                     //
1099                     //     fn foo() -> impl Iterator<Item = impl Debug>
1100                     ImplTraitContext::OpaqueTy(_) => (true, itctx),
1101
1102                     // We are in the argument position, but within a dyn type:
1103                     //
1104                     //     fn foo(x: dyn Iterator<Item: Debug>)
1105                     //
1106                     // so desugar to
1107                     //
1108                     //     fn foo(x: dyn Iterator<Item = impl Debug>)
1109                     ImplTraitContext::Universal(_) if self.is_in_dyn_type => (true, itctx),
1110
1111                     // In `type Foo = dyn Iterator<Item: Debug>` we desugar to
1112                     // `type Foo = dyn Iterator<Item = impl Debug>` but we have to override the
1113                     // "impl trait context" to permit `impl Debug` in this position (it desugars
1114                     // then to an opaque type).
1115                     //
1116                     // FIXME: this is only needed until `impl Trait` is allowed in type aliases.
1117                     ImplTraitContext::Disallowed(_) if self.is_in_dyn_type =>
1118                         (true, ImplTraitContext::OpaqueTy(None)),
1119
1120                     // We are in the argument position, but not within a dyn type:
1121                     //
1122                     //     fn foo(x: impl Iterator<Item: Debug>)
1123                     //
1124                     // so we leave it as is and this gets expanded in astconv to a bound like
1125                     // `<T as Iterator>::Item: Debug` where `T` is the type parameter for the
1126                     // `impl Iterator`.
1127                     _ => (false, itctx),
1128                 };
1129
1130                 if desugar_to_impl_trait {
1131                     // Desugar `AssocTy: Bounds` into `AssocTy = impl Bounds`. We do this by
1132                     // constructing the HIR for `impl bounds...` and then lowering that.
1133
1134                     let impl_trait_node_id = self.sess.next_node_id();
1135                     let parent_def_index = self.current_hir_id_owner.last().unwrap().0;
1136                     self.resolver.definitions().create_def_with_parent(
1137                         parent_def_index,
1138                         impl_trait_node_id,
1139                         DefPathData::ImplTrait,
1140                         ExpnId::root(),
1141                         DUMMY_SP
1142                     );
1143
1144                     self.with_dyn_type_scope(false, |this| {
1145                         let ty = this.lower_ty(
1146                             &Ty {
1147                                 id: this.sess.next_node_id(),
1148                                 node: TyKind::ImplTrait(impl_trait_node_id, bounds.clone()),
1149                                 span: DUMMY_SP,
1150                             },
1151                             itctx,
1152                         );
1153
1154                         hir::TypeBindingKind::Equality {
1155                             ty
1156                         }
1157                     })
1158                 } else {
1159                     // Desugar `AssocTy: Bounds` into a type binding where the
1160                     // later desugars into a trait predicate.
1161                     let bounds = self.lower_param_bounds(bounds, itctx);
1162
1163                     hir::TypeBindingKind::Constraint {
1164                         bounds
1165                     }
1166                 }
1167             }
1168         };
1169
1170         hir::TypeBinding {
1171             hir_id: self.lower_node_id(c.id),
1172             ident: c.ident,
1173             kind,
1174             span: c.span,
1175         }
1176     }
1177
1178     fn lower_generic_arg(&mut self,
1179                          arg: &ast::GenericArg,
1180                          itctx: ImplTraitContext<'_>)
1181                          -> hir::GenericArg {
1182         match arg {
1183             ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
1184             ast::GenericArg::Type(ty) => GenericArg::Type(self.lower_ty_direct(&ty, itctx)),
1185             ast::GenericArg::Const(ct) => {
1186                 GenericArg::Const(ConstArg {
1187                     value: self.lower_anon_const(&ct),
1188                     span: ct.value.span,
1189                 })
1190             }
1191         }
1192     }
1193
1194     fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_>) -> P<hir::Ty> {
1195         P(self.lower_ty_direct(t, itctx))
1196     }
1197
1198     fn lower_path_ty(
1199         &mut self,
1200         t: &Ty,
1201         qself: &Option<QSelf>,
1202         path: &Path,
1203         param_mode: ParamMode,
1204         itctx: ImplTraitContext<'_>
1205     ) -> hir::Ty {
1206         let id = self.lower_node_id(t.id);
1207         let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx);
1208         let ty = self.ty_path(id, t.span, qpath);
1209         if let hir::TyKind::TraitObject(..) = ty.node {
1210             self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
1211         }
1212         ty
1213     }
1214
1215     fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_>) -> hir::Ty {
1216         let kind = match t.node {
1217             TyKind::Infer => hir::TyKind::Infer,
1218             TyKind::Err => hir::TyKind::Err,
1219             TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
1220             TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
1221             TyKind::Rptr(ref region, ref mt) => {
1222                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1223                 let lifetime = match *region {
1224                     Some(ref lt) => self.lower_lifetime(lt),
1225                     None => self.elided_ref_lifetime(span),
1226                 };
1227                 hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
1228             }
1229             TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(
1230                 &f.generic_params,
1231                 |this| {
1232                     this.with_anonymous_lifetime_mode(
1233                         AnonymousLifetimeMode::PassThrough,
1234                         |this| {
1235                             hir::TyKind::BareFn(P(hir::BareFnTy {
1236                                 generic_params: this.lower_generic_params(
1237                                     &f.generic_params,
1238                                     &NodeMap::default(),
1239                                     ImplTraitContext::disallowed(),
1240                                 ),
1241                                 unsafety: this.lower_unsafety(f.unsafety),
1242                                 abi: f.abi,
1243                                 decl: this.lower_fn_decl(&f.decl, None, false, None),
1244                                 arg_names: this.lower_fn_args_to_names(&f.decl),
1245                             }))
1246                         },
1247                     )
1248                 },
1249             ),
1250             TyKind::Never => hir::TyKind::Never,
1251             TyKind::Tup(ref tys) => {
1252                 hir::TyKind::Tup(tys.iter().map(|ty| {
1253                     self.lower_ty_direct(ty, itctx.reborrow())
1254                 }).collect())
1255             }
1256             TyKind::Paren(ref ty) => {
1257                 return self.lower_ty_direct(ty, itctx);
1258             }
1259             TyKind::Path(ref qself, ref path) => {
1260                 return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
1261             }
1262             TyKind::ImplicitSelf => {
1263                 let res = self.expect_full_res(t.id);
1264                 let res = self.lower_res(res);
1265                 hir::TyKind::Path(hir::QPath::Resolved(
1266                     None,
1267                     P(hir::Path {
1268                         res,
1269                         segments: hir_vec![hir::PathSegment::from_ident(
1270                             Ident::with_empty_ctxt(kw::SelfUpper)
1271                         )],
1272                         span: t.span,
1273                     }),
1274                 ))
1275             },
1276             TyKind::Array(ref ty, ref length) => {
1277                 hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
1278             }
1279             TyKind::Typeof(ref expr) => {
1280                 hir::TyKind::Typeof(self.lower_anon_const(expr))
1281             }
1282             TyKind::TraitObject(ref bounds, kind) => {
1283                 let mut lifetime_bound = None;
1284                 let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
1285                     let bounds = bounds
1286                         .iter()
1287                         .filter_map(|bound| match *bound {
1288                             GenericBound::Trait(ref ty, TraitBoundModifier::None) => {
1289                                 Some(this.lower_poly_trait_ref(ty, itctx.reborrow()))
1290                             }
1291                             GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
1292                             GenericBound::Outlives(ref lifetime) => {
1293                                 if lifetime_bound.is_none() {
1294                                     lifetime_bound = Some(this.lower_lifetime(lifetime));
1295                                 }
1296                                 None
1297                             }
1298                         })
1299                         .collect();
1300                     let lifetime_bound =
1301                         lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
1302                     (bounds, lifetime_bound)
1303                 });
1304                 if kind != TraitObjectSyntax::Dyn {
1305                     self.maybe_lint_bare_trait(t.span, t.id, false);
1306                 }
1307                 hir::TyKind::TraitObject(bounds, lifetime_bound)
1308             }
1309             TyKind::ImplTrait(def_node_id, ref bounds) => {
1310                 let span = t.span;
1311                 match itctx {
1312                     ImplTraitContext::OpaqueTy(fn_def_id) => {
1313                         self.lower_opaque_impl_trait(
1314                             span, fn_def_id, def_node_id,
1315                             |this| this.lower_param_bounds(bounds, itctx),
1316                         )
1317                     }
1318                     ImplTraitContext::Universal(in_band_ty_params) => {
1319                         // Add a definition for the in-band `Param`.
1320                         let def_index = self
1321                             .resolver
1322                             .definitions()
1323                             .opt_def_index(def_node_id)
1324                             .unwrap();
1325
1326                         let hir_bounds = self.lower_param_bounds(
1327                             bounds,
1328                             ImplTraitContext::Universal(in_band_ty_params),
1329                         );
1330                         // Set the name to `impl Bound1 + Bound2`.
1331                         let ident = Ident::from_str(&pprust::ty_to_string(t)).with_span_pos(span);
1332                         in_band_ty_params.push(hir::GenericParam {
1333                             hir_id: self.lower_node_id(def_node_id),
1334                             name: ParamName::Plain(ident),
1335                             pure_wrt_drop: false,
1336                             attrs: hir_vec![],
1337                             bounds: hir_bounds,
1338                             span,
1339                             kind: hir::GenericParamKind::Type {
1340                                 default: None,
1341                                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
1342                             }
1343                         });
1344
1345                         hir::TyKind::Path(hir::QPath::Resolved(
1346                             None,
1347                             P(hir::Path {
1348                                 span,
1349                                 res: Res::Def(DefKind::TyParam, DefId::local(def_index)),
1350                                 segments: hir_vec![hir::PathSegment::from_ident(ident)],
1351                             }),
1352                         ))
1353                     }
1354                     ImplTraitContext::Disallowed(pos) => {
1355                         let allowed_in = if self.sess.features_untracked()
1356                                                 .impl_trait_in_bindings {
1357                             "bindings or function and inherent method return types"
1358                         } else {
1359                             "function and inherent method return types"
1360                         };
1361                         let mut err = struct_span_err!(
1362                             self.sess,
1363                             t.span,
1364                             E0562,
1365                             "`impl Trait` not allowed outside of {}",
1366                             allowed_in,
1367                         );
1368                         if pos == ImplTraitPosition::Binding &&
1369                             nightly_options::is_nightly_build() {
1370                             help!(err,
1371                                   "add `#![feature(impl_trait_in_bindings)]` to the crate \
1372                                    attributes to enable");
1373                         }
1374                         err.emit();
1375                         hir::TyKind::Err
1376                     }
1377                 }
1378             }
1379             TyKind::Mac(_) => bug!("`TyMac` should have been expanded by now."),
1380             TyKind::CVarArgs => {
1381                 // Create the implicit lifetime of the "spoofed" `VaListImpl`.
1382                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1383                 let lt = self.new_implicit_lifetime(span);
1384                 hir::TyKind::CVarArgs(lt)
1385             },
1386         };
1387
1388         hir::Ty {
1389             node: kind,
1390             span: t.span,
1391             hir_id: self.lower_node_id(t.id),
1392         }
1393     }
1394
1395     fn lower_opaque_impl_trait(
1396         &mut self,
1397         span: Span,
1398         fn_def_id: Option<DefId>,
1399         opaque_ty_node_id: NodeId,
1400         lower_bounds: impl FnOnce(&mut LoweringContext<'_>) -> hir::GenericBounds,
1401     ) -> hir::TyKind {
1402         // Make sure we know that some funky desugaring has been going on here.
1403         // This is a first: there is code in other places like for loop
1404         // desugaring that explicitly states that we don't want to track that.
1405         // Not tracking it makes lints in rustc and clippy very fragile, as
1406         // frequently opened issues show.
1407         let opaque_ty_span = self.mark_span_with_reason(
1408             DesugaringKind::OpaqueTy,
1409             span,
1410             None,
1411         );
1412
1413         let opaque_ty_def_index = self
1414             .resolver
1415             .definitions()
1416             .opt_def_index(opaque_ty_node_id)
1417             .unwrap();
1418
1419         self.allocate_hir_id_counter(opaque_ty_node_id);
1420
1421         let hir_bounds = self.with_hir_id_owner(opaque_ty_node_id, lower_bounds);
1422
1423         let (lifetimes, lifetime_defs) = self.lifetimes_from_impl_trait_bounds(
1424             opaque_ty_node_id,
1425             opaque_ty_def_index,
1426             &hir_bounds,
1427         );
1428
1429         self.with_hir_id_owner(opaque_ty_node_id, |lctx| {
1430             let opaque_ty_item = hir::OpaqueTy {
1431                 generics: hir::Generics {
1432                     params: lifetime_defs,
1433                     where_clause: hir::WhereClause {
1434                         predicates: hir_vec![],
1435                         span,
1436                     },
1437                     span,
1438                 },
1439                 bounds: hir_bounds,
1440                 impl_trait_fn: fn_def_id,
1441                 origin: hir::OpaqueTyOrigin::FnReturn,
1442             };
1443
1444             trace!("exist ty from impl trait def-index: {:#?}", opaque_ty_def_index);
1445             let opaque_ty_id = lctx.generate_opaque_type(
1446                 opaque_ty_node_id,
1447                 opaque_ty_item,
1448                 span,
1449                 opaque_ty_span,
1450             );
1451
1452             // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
1453             hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, lifetimes)
1454         })
1455     }
1456
1457     /// Registers a new opaque type with the proper `NodeId`s and
1458     /// returns the lowered node-ID for the opaque type.
1459     fn generate_opaque_type(
1460         &mut self,
1461         opaque_ty_node_id: NodeId,
1462         opaque_ty_item: hir::OpaqueTy,
1463         span: Span,
1464         opaque_ty_span: Span,
1465     ) -> hir::HirId {
1466         let opaque_ty_item_kind = hir::ItemKind::OpaqueTy(opaque_ty_item);
1467         let opaque_ty_id = self.lower_node_id(opaque_ty_node_id);
1468         // Generate an `type Foo = impl Trait;` declaration.
1469         trace!("registering opaque type with id {:#?}", opaque_ty_id);
1470         let opaque_ty_item = hir::Item {
1471             hir_id: opaque_ty_id,
1472             ident: Ident::invalid(),
1473             attrs: Default::default(),
1474             node: opaque_ty_item_kind,
1475             vis: respan(span.shrink_to_lo(), hir::VisibilityKind::Inherited),
1476             span: opaque_ty_span,
1477         };
1478
1479         // Insert the item into the global item list. This usually happens
1480         // automatically for all AST items. But this opaque type item
1481         // does not actually exist in the AST.
1482         self.insert_item(opaque_ty_item);
1483         opaque_ty_id
1484     }
1485
1486     fn lifetimes_from_impl_trait_bounds(
1487         &mut self,
1488         opaque_ty_id: NodeId,
1489         parent_index: DefIndex,
1490         bounds: &hir::GenericBounds,
1491     ) -> (HirVec<hir::GenericArg>, HirVec<hir::GenericParam>) {
1492         // This visitor walks over `impl Trait` bounds and creates defs for all lifetimes that
1493         // appear in the bounds, excluding lifetimes that are created within the bounds.
1494         // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
1495         struct ImplTraitLifetimeCollector<'r, 'a> {
1496             context: &'r mut LoweringContext<'a>,
1497             parent: DefIndex,
1498             opaque_ty_id: NodeId,
1499             collect_elided_lifetimes: bool,
1500             currently_bound_lifetimes: Vec<hir::LifetimeName>,
1501             already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
1502             output_lifetimes: Vec<hir::GenericArg>,
1503             output_lifetime_params: Vec<hir::GenericParam>,
1504         }
1505
1506         impl<'r, 'a, 'v> hir::intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r, 'a> {
1507             fn nested_visit_map<'this>(
1508                 &'this mut self,
1509             ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
1510                 hir::intravisit::NestedVisitorMap::None
1511             }
1512
1513             fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
1514                 // Don't collect elided lifetimes used inside of `Fn()` syntax.
1515                 if parameters.parenthesized {
1516                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1517                     self.collect_elided_lifetimes = false;
1518                     hir::intravisit::walk_generic_args(self, span, parameters);
1519                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1520                 } else {
1521                     hir::intravisit::walk_generic_args(self, span, parameters);
1522                 }
1523             }
1524
1525             fn visit_ty(&mut self, t: &'v hir::Ty) {
1526                 // Don't collect elided lifetimes used inside of `fn()` syntax.
1527                 if let hir::TyKind::BareFn(_) = t.node {
1528                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1529                     self.collect_elided_lifetimes = false;
1530
1531                     // Record the "stack height" of `for<'a>` lifetime bindings
1532                     // to be able to later fully undo their introduction.
1533                     let old_len = self.currently_bound_lifetimes.len();
1534                     hir::intravisit::walk_ty(self, t);
1535                     self.currently_bound_lifetimes.truncate(old_len);
1536
1537                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1538                 } else {
1539                     hir::intravisit::walk_ty(self, t)
1540                 }
1541             }
1542
1543             fn visit_poly_trait_ref(
1544                 &mut self,
1545                 trait_ref: &'v hir::PolyTraitRef,
1546                 modifier: hir::TraitBoundModifier,
1547             ) {
1548                 // Record the "stack height" of `for<'a>` lifetime bindings
1549                 // to be able to later fully undo their introduction.
1550                 let old_len = self.currently_bound_lifetimes.len();
1551                 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
1552                 self.currently_bound_lifetimes.truncate(old_len);
1553             }
1554
1555             fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
1556                 // Record the introduction of 'a in `for<'a> ...`.
1557                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
1558                     // Introduce lifetimes one at a time so that we can handle
1559                     // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
1560                     let lt_name = hir::LifetimeName::Param(param.name);
1561                     self.currently_bound_lifetimes.push(lt_name);
1562                 }
1563
1564                 hir::intravisit::walk_generic_param(self, param);
1565             }
1566
1567             fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
1568                 let name = match lifetime.name {
1569                     hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
1570                         if self.collect_elided_lifetimes {
1571                             // Use `'_` for both implicit and underscore lifetimes in
1572                             // `type Foo<'_> = impl SomeTrait<'_>;`.
1573                             hir::LifetimeName::Underscore
1574                         } else {
1575                             return;
1576                         }
1577                     }
1578                     hir::LifetimeName::Param(_) => lifetime.name,
1579                     hir::LifetimeName::Error | hir::LifetimeName::Static => return,
1580                 };
1581
1582                 if !self.currently_bound_lifetimes.contains(&name)
1583                     && !self.already_defined_lifetimes.contains(&name) {
1584                     self.already_defined_lifetimes.insert(name);
1585
1586                     self.output_lifetimes.push(hir::GenericArg::Lifetime(hir::Lifetime {
1587                         hir_id: self.context.next_id(),
1588                         span: lifetime.span,
1589                         name,
1590                     }));
1591
1592                     let def_node_id = self.context.sess.next_node_id();
1593                     let hir_id =
1594                         self.context.lower_node_id_with_owner(def_node_id, self.opaque_ty_id);
1595                     self.context.resolver.definitions().create_def_with_parent(
1596                         self.parent,
1597                         def_node_id,
1598                         DefPathData::LifetimeNs(name.ident().as_interned_str()),
1599                         ExpnId::root(),
1600                         lifetime.span);
1601
1602                     let (name, kind) = match name {
1603                         hir::LifetimeName::Underscore => (
1604                             hir::ParamName::Plain(Ident::with_empty_ctxt(kw::UnderscoreLifetime)),
1605                             hir::LifetimeParamKind::Elided,
1606                         ),
1607                         hir::LifetimeName::Param(param_name) => (
1608                             param_name,
1609                             hir::LifetimeParamKind::Explicit,
1610                         ),
1611                         _ => bug!("expected `LifetimeName::Param` or `ParamName::Plain`"),
1612                     };
1613
1614                     self.output_lifetime_params.push(hir::GenericParam {
1615                         hir_id,
1616                         name,
1617                         span: lifetime.span,
1618                         pure_wrt_drop: false,
1619                         attrs: hir_vec![],
1620                         bounds: hir_vec![],
1621                         kind: hir::GenericParamKind::Lifetime { kind }
1622                     });
1623                 }
1624             }
1625         }
1626
1627         let mut lifetime_collector = ImplTraitLifetimeCollector {
1628             context: self,
1629             parent: parent_index,
1630             opaque_ty_id,
1631             collect_elided_lifetimes: true,
1632             currently_bound_lifetimes: Vec::new(),
1633             already_defined_lifetimes: FxHashSet::default(),
1634             output_lifetimes: Vec::new(),
1635             output_lifetime_params: Vec::new(),
1636         };
1637
1638         for bound in bounds {
1639             hir::intravisit::walk_param_bound(&mut lifetime_collector, &bound);
1640         }
1641
1642         (
1643             lifetime_collector.output_lifetimes.into(),
1644             lifetime_collector.output_lifetime_params.into(),
1645         )
1646     }
1647
1648     fn lower_qpath(
1649         &mut self,
1650         id: NodeId,
1651         qself: &Option<QSelf>,
1652         p: &Path,
1653         param_mode: ParamMode,
1654         mut itctx: ImplTraitContext<'_>,
1655     ) -> hir::QPath {
1656         let qself_position = qself.as_ref().map(|q| q.position);
1657         let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow()));
1658
1659         let partial_res = self.resolver
1660             .get_partial_res(id)
1661             .unwrap_or_else(|| PartialRes::new(Res::Err));
1662
1663         let proj_start = p.segments.len() - partial_res.unresolved_segments();
1664         let path = P(hir::Path {
1665             res: self.lower_res(partial_res.base_res()),
1666             segments: p.segments[..proj_start]
1667                 .iter()
1668                 .enumerate()
1669                 .map(|(i, segment)| {
1670                     let param_mode = match (qself_position, param_mode) {
1671                         (Some(j), ParamMode::Optional) if i < j => {
1672                             // This segment is part of the trait path in a
1673                             // qualified path - one of `a`, `b` or `Trait`
1674                             // in `<X as a::b::Trait>::T::U::method`.
1675                             ParamMode::Explicit
1676                         }
1677                         _ => param_mode,
1678                     };
1679
1680                     // Figure out if this is a type/trait segment,
1681                     // which may need lifetime elision performed.
1682                     let parent_def_id = |this: &mut Self, def_id: DefId| DefId {
1683                         krate: def_id.krate,
1684                         index: this.def_key(def_id).parent.expect("missing parent"),
1685                     };
1686                     let type_def_id = match partial_res.base_res() {
1687                         Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
1688                             Some(parent_def_id(self, def_id))
1689                         }
1690                         Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
1691                             Some(parent_def_id(self, def_id))
1692                         }
1693                         Res::Def(DefKind::Struct, def_id)
1694                         | Res::Def(DefKind::Union, def_id)
1695                         | Res::Def(DefKind::Enum, def_id)
1696                         | Res::Def(DefKind::TyAlias, def_id)
1697                         | Res::Def(DefKind::Trait, def_id) if i + 1 == proj_start =>
1698                         {
1699                             Some(def_id)
1700                         }
1701                         _ => None,
1702                     };
1703                     let parenthesized_generic_args = match partial_res.base_res() {
1704                         // `a::b::Trait(Args)`
1705                         Res::Def(DefKind::Trait, _)
1706                             if i + 1 == proj_start => ParenthesizedGenericArgs::Ok,
1707                         // `a::b::Trait(Args)::TraitItem`
1708                         Res::Def(DefKind::Method, _)
1709                         | Res::Def(DefKind::AssocConst, _)
1710                         | Res::Def(DefKind::AssocTy, _)
1711                             if i + 2 == proj_start =>
1712                         {
1713                             ParenthesizedGenericArgs::Ok
1714                         }
1715                         // Avoid duplicated errors.
1716                         Res::Err => ParenthesizedGenericArgs::Ok,
1717                         // An error
1718                         Res::Def(DefKind::Struct, _)
1719                         | Res::Def(DefKind::Enum, _)
1720                         | Res::Def(DefKind::Union, _)
1721                         | Res::Def(DefKind::TyAlias, _)
1722                         | Res::Def(DefKind::Variant, _) if i + 1 == proj_start =>
1723                         {
1724                             ParenthesizedGenericArgs::Err
1725                         }
1726                         // A warning for now, for compatibility reasons.
1727                         _ => ParenthesizedGenericArgs::Warn,
1728                     };
1729
1730                     let num_lifetimes = type_def_id.map_or(0, |def_id| {
1731                         if let Some(&n) = self.type_def_lifetime_params.get(&def_id) {
1732                             return n;
1733                         }
1734                         assert!(!def_id.is_local());
1735                         let item_generics =
1736                             self.cstore.item_generics_cloned_untracked(def_id, self.sess);
1737                         let n = item_generics.own_counts().lifetimes;
1738                         self.type_def_lifetime_params.insert(def_id, n);
1739                         n
1740                     });
1741                     self.lower_path_segment(
1742                         p.span,
1743                         segment,
1744                         param_mode,
1745                         num_lifetimes,
1746                         parenthesized_generic_args,
1747                         itctx.reborrow(),
1748                         None,
1749                     )
1750                 })
1751                 .collect(),
1752             span: p.span,
1753         });
1754
1755         // Simple case, either no projections, or only fully-qualified.
1756         // E.g., `std::mem::size_of` or `<I as Iterator>::Item`.
1757         if partial_res.unresolved_segments() == 0 {
1758             return hir::QPath::Resolved(qself, path);
1759         }
1760
1761         // Create the innermost type that we're projecting from.
1762         let mut ty = if path.segments.is_empty() {
1763             // If the base path is empty that means there exists a
1764             // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`.
1765             qself.expect("missing QSelf for <T>::...")
1766         } else {
1767             // Otherwise, the base path is an implicit `Self` type path,
1768             // e.g., `Vec` in `Vec::new` or `<I as Iterator>::Item` in
1769             // `<I as Iterator>::Item::default`.
1770             let new_id = self.next_id();
1771             P(self.ty_path(new_id, p.span, hir::QPath::Resolved(qself, path)))
1772         };
1773
1774         // Anything after the base path are associated "extensions",
1775         // out of which all but the last one are associated types,
1776         // e.g., for `std::vec::Vec::<T>::IntoIter::Item::clone`:
1777         // * base path is `std::vec::Vec<T>`
1778         // * "extensions" are `IntoIter`, `Item` and `clone`
1779         // * type nodes are:
1780         //   1. `std::vec::Vec<T>` (created above)
1781         //   2. `<std::vec::Vec<T>>::IntoIter`
1782         //   3. `<<std::vec::Vec<T>>::IntoIter>::Item`
1783         // * final path is `<<<std::vec::Vec<T>>::IntoIter>::Item>::clone`
1784         for (i, segment) in p.segments.iter().enumerate().skip(proj_start) {
1785             let segment = P(self.lower_path_segment(
1786                 p.span,
1787                 segment,
1788                 param_mode,
1789                 0,
1790                 ParenthesizedGenericArgs::Warn,
1791                 itctx.reborrow(),
1792                 None,
1793             ));
1794             let qpath = hir::QPath::TypeRelative(ty, segment);
1795
1796             // It's finished, return the extension of the right node type.
1797             if i == p.segments.len() - 1 {
1798                 return qpath;
1799             }
1800
1801             // Wrap the associated extension in another type node.
1802             let new_id = self.next_id();
1803             ty = P(self.ty_path(new_id, p.span, qpath));
1804         }
1805
1806         // We should've returned in the for loop above.
1807         span_bug!(
1808             p.span,
1809             "lower_qpath: no final extension segment in {}..{}",
1810             proj_start,
1811             p.segments.len()
1812         )
1813     }
1814
1815     fn lower_path_extra(
1816         &mut self,
1817         res: Res,
1818         p: &Path,
1819         param_mode: ParamMode,
1820         explicit_owner: Option<NodeId>,
1821     ) -> hir::Path {
1822         hir::Path {
1823             res,
1824             segments: p.segments
1825                 .iter()
1826                 .map(|segment| {
1827                     self.lower_path_segment(
1828                         p.span,
1829                         segment,
1830                         param_mode,
1831                         0,
1832                         ParenthesizedGenericArgs::Err,
1833                         ImplTraitContext::disallowed(),
1834                         explicit_owner,
1835                     )
1836                 })
1837                 .collect(),
1838             span: p.span,
1839         }
1840     }
1841
1842     fn lower_path(&mut self, id: NodeId, p: &Path, param_mode: ParamMode) -> hir::Path {
1843         let res = self.expect_full_res(id);
1844         let res = self.lower_res(res);
1845         self.lower_path_extra(res, p, param_mode, None)
1846     }
1847
1848     fn lower_path_segment(
1849         &mut self,
1850         path_span: Span,
1851         segment: &PathSegment,
1852         param_mode: ParamMode,
1853         expected_lifetimes: usize,
1854         parenthesized_generic_args: ParenthesizedGenericArgs,
1855         itctx: ImplTraitContext<'_>,
1856         explicit_owner: Option<NodeId>,
1857     ) -> hir::PathSegment {
1858         let (mut generic_args, infer_args) = if let Some(ref generic_args) = segment.args {
1859             let msg = "parenthesized type parameters may only be used with a `Fn` trait";
1860             match **generic_args {
1861                 GenericArgs::AngleBracketed(ref data) => {
1862                     self.lower_angle_bracketed_parameter_data(data, param_mode, itctx)
1863                 }
1864                 GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args {
1865                     ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data),
1866                     ParenthesizedGenericArgs::Warn => {
1867                         self.sess.buffer_lint(
1868                             PARENTHESIZED_PARAMS_IN_TYPES_AND_MODULES,
1869                             CRATE_NODE_ID,
1870                             data.span,
1871                             msg.into(),
1872                         );
1873                         (hir::GenericArgs::none(), true)
1874                     }
1875                     ParenthesizedGenericArgs::Err => {
1876                         let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg);
1877                         err.span_label(data.span, "only `Fn` traits may use parentheses");
1878                         if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) {
1879                             // Do not suggest going from `Trait()` to `Trait<>`
1880                             if data.inputs.len() > 0 {
1881                                 err.span_suggestion(
1882                                     data.span,
1883                                     "use angle brackets instead",
1884                                     format!("<{}>", &snippet[1..snippet.len() - 1]),
1885                                     Applicability::MaybeIncorrect,
1886                                 );
1887                             }
1888                         };
1889                         err.emit();
1890                         (
1891                             self.lower_angle_bracketed_parameter_data(
1892                                 &data.as_angle_bracketed_args(),
1893                                 param_mode,
1894                                 itctx
1895                             ).0,
1896                             false,
1897                         )
1898                     }
1899                 },
1900             }
1901         } else {
1902             self.lower_angle_bracketed_parameter_data(&Default::default(), param_mode, itctx)
1903         };
1904
1905         let has_lifetimes = generic_args.args.iter().any(|arg| match arg {
1906             GenericArg::Lifetime(_) => true,
1907             _ => false,
1908         });
1909         let first_generic_span = generic_args.args.iter().map(|a| a.span())
1910             .chain(generic_args.bindings.iter().map(|b| b.span)).next();
1911         if !generic_args.parenthesized && !has_lifetimes {
1912             generic_args.args =
1913                 self.elided_path_lifetimes(path_span, expected_lifetimes)
1914                     .into_iter()
1915                     .map(|lt| GenericArg::Lifetime(lt))
1916                     .chain(generic_args.args.into_iter())
1917                 .collect();
1918             if expected_lifetimes > 0 && param_mode == ParamMode::Explicit {
1919                 let anon_lt_suggestion = vec!["'_"; expected_lifetimes].join(", ");
1920                 let no_non_lt_args = generic_args.args.len() == expected_lifetimes;
1921                 let no_bindings = generic_args.bindings.is_empty();
1922                 let (incl_angl_brckt, insertion_sp, suggestion) = if no_non_lt_args && no_bindings {
1923                     // If there are no (non-implicit) generic args or associated type
1924                     // bindings, our suggestion includes the angle brackets.
1925                     (true, path_span.shrink_to_hi(), format!("<{}>", anon_lt_suggestion))
1926                 } else {
1927                     // Otherwise (sorry, this is kind of gross) we need to infer the
1928                     // place to splice in the `'_, ` from the generics that do exist.
1929                     let first_generic_span = first_generic_span
1930                         .expect("already checked that non-lifetime args or bindings exist");
1931                     (false, first_generic_span.shrink_to_lo(), format!("{}, ", anon_lt_suggestion))
1932                 };
1933                 match self.anonymous_lifetime_mode {
1934                     // In create-parameter mode we error here because we don't want to support
1935                     // deprecated impl elision in new features like impl elision and `async fn`,
1936                     // both of which work using the `CreateParameter` mode:
1937                     //
1938                     //     impl Foo for std::cell::Ref<u32> // note lack of '_
1939                     //     async fn foo(_: std::cell::Ref<u32>) { ... }
1940                     AnonymousLifetimeMode::CreateParameter => {
1941                         let mut err = struct_span_err!(
1942                             self.sess,
1943                             path_span,
1944                             E0726,
1945                             "implicit elided lifetime not allowed here"
1946                         );
1947                         crate::lint::builtin::add_elided_lifetime_in_path_suggestion(
1948                             &self.sess,
1949                             &mut err,
1950                             expected_lifetimes,
1951                             path_span,
1952                             incl_angl_brckt,
1953                             insertion_sp,
1954                             suggestion,
1955                         );
1956                         err.emit();
1957                     }
1958                     AnonymousLifetimeMode::PassThrough |
1959                     AnonymousLifetimeMode::ReportError |
1960                     AnonymousLifetimeMode::Replace(_) => {
1961                         self.sess.buffer_lint_with_diagnostic(
1962                             ELIDED_LIFETIMES_IN_PATHS,
1963                             CRATE_NODE_ID,
1964                             path_span,
1965                             "hidden lifetime parameters in types are deprecated",
1966                             builtin::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
1967                                 expected_lifetimes,
1968                                 path_span,
1969                                 incl_angl_brckt,
1970                                 insertion_sp,
1971                                 suggestion,
1972                             )
1973                         );
1974                     }
1975                 }
1976             }
1977         }
1978
1979         let res = self.expect_full_res(segment.id);
1980         let id = if let Some(owner) = explicit_owner {
1981             self.lower_node_id_with_owner(segment.id, owner)
1982         } else {
1983             self.lower_node_id(segment.id)
1984         };
1985         debug!(
1986             "lower_path_segment: ident={:?} original-id={:?} new-id={:?}",
1987             segment.ident, segment.id, id,
1988         );
1989
1990         hir::PathSegment::new(
1991             segment.ident,
1992             Some(id),
1993             Some(self.lower_res(res)),
1994             generic_args,
1995             infer_args,
1996         )
1997     }
1998
1999     fn lower_angle_bracketed_parameter_data(
2000         &mut self,
2001         data: &AngleBracketedArgs,
2002         param_mode: ParamMode,
2003         mut itctx: ImplTraitContext<'_>,
2004     ) -> (hir::GenericArgs, bool) {
2005         let &AngleBracketedArgs { ref args, ref constraints, .. } = data;
2006         let has_non_lt_args = args.iter().any(|arg| match arg {
2007             ast::GenericArg::Lifetime(_) => false,
2008             ast::GenericArg::Type(_) => true,
2009             ast::GenericArg::Const(_) => true,
2010         });
2011         (
2012             hir::GenericArgs {
2013                 args: args.iter().map(|a| self.lower_generic_arg(a, itctx.reborrow())).collect(),
2014                 bindings: constraints.iter()
2015                     .map(|b| self.lower_assoc_ty_constraint(b, itctx.reborrow()))
2016                     .collect(),
2017                 parenthesized: false,
2018             },
2019             !has_non_lt_args && param_mode == ParamMode::Optional
2020         )
2021     }
2022
2023     fn lower_parenthesized_parameter_data(
2024         &mut self,
2025         data: &ParenthesizedArgs,
2026     ) -> (hir::GenericArgs, bool) {
2027         // Switch to `PassThrough` mode for anonymous lifetimes; this
2028         // means that we permit things like `&Ref<T>`, where `Ref` has
2029         // a hidden lifetime parameter. This is needed for backwards
2030         // compatibility, even in contexts like an impl header where
2031         // we generally don't permit such things (see #51008).
2032         self.with_anonymous_lifetime_mode(
2033             AnonymousLifetimeMode::PassThrough,
2034             |this| {
2035                 let &ParenthesizedArgs { ref inputs, ref output, span } = data;
2036                 let inputs = inputs
2037                     .iter()
2038                     .map(|ty| this.lower_ty_direct(ty, ImplTraitContext::disallowed()))
2039                     .collect();
2040                 let mk_tup = |this: &mut Self, tys, span| {
2041                     hir::Ty { node: hir::TyKind::Tup(tys), hir_id: this.next_id(), span }
2042                 };
2043                 (
2044                     hir::GenericArgs {
2045                         args: hir_vec![GenericArg::Type(mk_tup(this, inputs, span))],
2046                         bindings: hir_vec![
2047                             hir::TypeBinding {
2048                                 hir_id: this.next_id(),
2049                                 ident: Ident::with_empty_ctxt(FN_OUTPUT_NAME),
2050                                 kind: hir::TypeBindingKind::Equality {
2051                                     ty: output
2052                                         .as_ref()
2053                                         .map(|ty| this.lower_ty(
2054                                             &ty,
2055                                             ImplTraitContext::disallowed()
2056                                         ))
2057                                         .unwrap_or_else(||
2058                                             P(mk_tup(this, hir::HirVec::new(), span))
2059                                         ),
2060                                 },
2061                                 span: output.as_ref().map_or(span, |ty| ty.span),
2062                             }
2063                         ],
2064                         parenthesized: true,
2065                     },
2066                     false,
2067                 )
2068             }
2069         )
2070     }
2071
2072     fn lower_local(&mut self, l: &Local) -> (hir::Local, SmallVec<[NodeId; 1]>) {
2073         let mut ids = SmallVec::<[NodeId; 1]>::new();
2074         if self.sess.features_untracked().impl_trait_in_bindings {
2075             if let Some(ref ty) = l.ty {
2076                 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
2077                 visitor.visit_ty(ty);
2078             }
2079         }
2080         let parent_def_id = DefId::local(self.current_hir_id_owner.last().unwrap().0);
2081         (hir::Local {
2082             hir_id: self.lower_node_id(l.id),
2083             ty: l.ty
2084                 .as_ref()
2085                 .map(|t| self.lower_ty(t,
2086                     if self.sess.features_untracked().impl_trait_in_bindings {
2087                         ImplTraitContext::OpaqueTy(Some(parent_def_id))
2088                     } else {
2089                         ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2090                     }
2091                 )),
2092             pat: self.lower_pat(&l.pat),
2093             init: l.init.as_ref().map(|e| P(self.lower_expr(e))),
2094             span: l.span,
2095             attrs: l.attrs.clone(),
2096             source: hir::LocalSource::Normal,
2097         }, ids)
2098     }
2099
2100     fn lower_mutability(&mut self, m: Mutability) -> hir::Mutability {
2101         match m {
2102             Mutability::Mutable => hir::MutMutable,
2103             Mutability::Immutable => hir::MutImmutable,
2104         }
2105     }
2106
2107     fn lower_fn_args_to_names(&mut self, decl: &FnDecl) -> hir::HirVec<Ident> {
2108         decl.inputs
2109             .iter()
2110             .map(|arg| match arg.pat.node {
2111                 PatKind::Ident(_, ident, _) => ident,
2112                 _ => Ident::new(kw::Invalid, arg.pat.span),
2113             })
2114             .collect()
2115     }
2116
2117     // Lowers a function declaration.
2118     //
2119     // `decl`: the unlowered (AST) function declaration.
2120     // `fn_def_id`: if `Some`, impl Trait arguments are lowered into generic parameters on the
2121     //      given DefId, otherwise impl Trait is disallowed. Must be `Some` if
2122     //      `make_ret_async` is also `Some`.
2123     // `impl_trait_return_allow`: determines whether `impl Trait` can be used in return position.
2124     //      This guards against trait declarations and implementations where `impl Trait` is
2125     //      disallowed.
2126     // `make_ret_async`: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
2127     //      return type. This is used for `async fn` declarations. The `NodeId` is the ID of the
2128     //      return type `impl Trait` item.
2129     fn lower_fn_decl(
2130         &mut self,
2131         decl: &FnDecl,
2132         mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam>)>,
2133         impl_trait_return_allow: bool,
2134         make_ret_async: Option<NodeId>,
2135     ) -> P<hir::FnDecl> {
2136         let lt_mode = if make_ret_async.is_some() {
2137             // In `async fn`, argument-position elided lifetimes
2138             // must be transformed into fresh generic parameters so that
2139             // they can be applied to the opaque `impl Trait` return type.
2140             AnonymousLifetimeMode::CreateParameter
2141         } else {
2142             self.anonymous_lifetime_mode
2143         };
2144
2145         // Remember how many lifetimes were already around so that we can
2146         // only look at the lifetime parameters introduced by the arguments.
2147         let lifetime_count_before_args = self.lifetimes_to_define.len();
2148         let inputs = self.with_anonymous_lifetime_mode(lt_mode, |this| {
2149             decl.inputs
2150                 .iter()
2151                 .map(|arg| {
2152                     if let Some((_, ibty)) = &mut in_band_ty_params {
2153                         this.lower_ty_direct(&arg.ty, ImplTraitContext::Universal(ibty))
2154                     } else {
2155                         this.lower_ty_direct(&arg.ty, ImplTraitContext::disallowed())
2156                     }
2157                 })
2158                 .collect::<HirVec<_>>()
2159         });
2160
2161         let output = if let Some(ret_id) = make_ret_async {
2162             // Calculate the `LtReplacement` to use for any return-position elided
2163             // lifetimes based on the elided lifetime parameters introduced in the args.
2164             let lt_replacement = get_elided_lt_replacement(
2165                 &self.lifetimes_to_define[lifetime_count_before_args..]
2166             );
2167             self.lower_async_fn_ret_ty(
2168                 &decl.output,
2169                 in_band_ty_params.expect("`make_ret_async` but no `fn_def_id`").0,
2170                 ret_id,
2171                 lt_replacement,
2172             )
2173         } else {
2174             match decl.output {
2175                 FunctionRetTy::Ty(ref ty) => match in_band_ty_params {
2176                     Some((def_id, _)) if impl_trait_return_allow => {
2177                         hir::Return(self.lower_ty(ty,
2178                             ImplTraitContext::OpaqueTy(Some(def_id))
2179                         ))
2180                     }
2181                     _ => {
2182                         hir::Return(self.lower_ty(ty, ImplTraitContext::disallowed()))
2183                     }
2184                 },
2185                 FunctionRetTy::Default(span) => hir::DefaultReturn(span),
2186             }
2187         };
2188
2189         P(hir::FnDecl {
2190             inputs,
2191             output,
2192             c_variadic: decl.c_variadic,
2193             implicit_self: decl.inputs.get(0).map_or(
2194                 hir::ImplicitSelfKind::None,
2195                 |arg| {
2196                     let is_mutable_pat = match arg.pat.node {
2197                         PatKind::Ident(BindingMode::ByValue(mt), _, _) |
2198                         PatKind::Ident(BindingMode::ByRef(mt), _, _) =>
2199                             mt == Mutability::Mutable,
2200                         _ => false,
2201                     };
2202
2203                     match arg.ty.node {
2204                         TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
2205                         TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
2206                         // Given we are only considering `ImplicitSelf` types, we needn't consider
2207                         // the case where we have a mutable pattern to a reference as that would
2208                         // no longer be an `ImplicitSelf`.
2209                         TyKind::Rptr(_, ref mt) if mt.ty.node.is_implicit_self() &&
2210                             mt.mutbl == ast::Mutability::Mutable =>
2211                                 hir::ImplicitSelfKind::MutRef,
2212                         TyKind::Rptr(_, ref mt) if mt.ty.node.is_implicit_self() =>
2213                             hir::ImplicitSelfKind::ImmRef,
2214                         _ => hir::ImplicitSelfKind::None,
2215                     }
2216                 },
2217             ),
2218         })
2219     }
2220
2221     // Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
2222     // combined with the following definition of `OpaqueTy`:
2223     //
2224     //     type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
2225     //
2226     // `inputs`: lowered types of arguments to the function (used to collect lifetimes)
2227     // `output`: unlowered output type (`T` in `-> T`)
2228     // `fn_def_id`: `DefId` of the parent function (used to create child impl trait definition)
2229     // `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
2230     // `elided_lt_replacement`: replacement for elided lifetimes in the return type
2231     fn lower_async_fn_ret_ty(
2232         &mut self,
2233         output: &FunctionRetTy,
2234         fn_def_id: DefId,
2235         opaque_ty_node_id: NodeId,
2236         elided_lt_replacement: LtReplacement,
2237     ) -> hir::FunctionRetTy {
2238         let span = output.span();
2239
2240         let opaque_ty_span = self.mark_span_with_reason(
2241             DesugaringKind::Async,
2242             span,
2243             None,
2244         );
2245
2246         let opaque_ty_def_index = self
2247             .resolver
2248             .definitions()
2249             .opt_def_index(opaque_ty_node_id)
2250             .unwrap();
2251
2252         self.allocate_hir_id_counter(opaque_ty_node_id);
2253
2254         let (opaque_ty_id, lifetime_params) = self.with_hir_id_owner(opaque_ty_node_id, |this| {
2255             let future_bound = this.with_anonymous_lifetime_mode(
2256                 AnonymousLifetimeMode::Replace(elided_lt_replacement),
2257                 |this| this.lower_async_fn_output_type_to_future_bound(
2258                     output,
2259                     fn_def_id,
2260                     span,
2261                 ),
2262             );
2263
2264             // Calculate all the lifetimes that should be captured
2265             // by the opaque type. This should include all in-scope
2266             // lifetime parameters, including those defined in-band.
2267             //
2268             // Note: this must be done after lowering the output type,
2269             // as the output type may introduce new in-band lifetimes.
2270             let lifetime_params: Vec<(Span, ParamName)> =
2271                 this.in_scope_lifetimes
2272                     .iter().cloned()
2273                     .map(|name| (name.ident().span, name))
2274                     .chain(this.lifetimes_to_define.iter().cloned())
2275                     .collect();
2276
2277             debug!("lower_async_fn_ret_ty: in_scope_lifetimes={:#?}", this.in_scope_lifetimes);
2278             debug!("lower_async_fn_ret_ty: lifetimes_to_define={:#?}", this.lifetimes_to_define);
2279             debug!("lower_async_fn_ret_ty: lifetime_params={:#?}", lifetime_params);
2280
2281             let generic_params =
2282                 lifetime_params
2283                     .iter().cloned()
2284                     .map(|(span, hir_name)| {
2285                         this.lifetime_to_generic_param(span, hir_name, opaque_ty_def_index)
2286                     })
2287                     .collect();
2288
2289             let opaque_ty_item = hir::OpaqueTy {
2290                 generics: hir::Generics {
2291                     params: generic_params,
2292                     where_clause: hir::WhereClause {
2293                         predicates: hir_vec![],
2294                         span,
2295                     },
2296                     span,
2297                 },
2298                 bounds: hir_vec![future_bound],
2299                 impl_trait_fn: Some(fn_def_id),
2300                 origin: hir::OpaqueTyOrigin::AsyncFn,
2301             };
2302
2303             trace!("exist ty from async fn def index: {:#?}", opaque_ty_def_index);
2304             let opaque_ty_id = this.generate_opaque_type(
2305                 opaque_ty_node_id,
2306                 opaque_ty_item,
2307                 span,
2308                 opaque_ty_span,
2309             );
2310
2311             (opaque_ty_id, lifetime_params)
2312         });
2313
2314         let generic_args =
2315             lifetime_params
2316                 .iter().cloned()
2317                 .map(|(span, hir_name)| {
2318                     GenericArg::Lifetime(hir::Lifetime {
2319                         hir_id: self.next_id(),
2320                         span,
2321                         name: hir::LifetimeName::Param(hir_name),
2322                     })
2323                 })
2324                 .collect();
2325
2326         let opaque_ty_ref = hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, generic_args);
2327
2328         hir::FunctionRetTy::Return(P(hir::Ty {
2329             node: opaque_ty_ref,
2330             span,
2331             hir_id: self.next_id(),
2332         }))
2333     }
2334
2335     /// Transforms `-> T` into `Future<Output = T>`
2336     fn lower_async_fn_output_type_to_future_bound(
2337         &mut self,
2338         output: &FunctionRetTy,
2339         fn_def_id: DefId,
2340         span: Span,
2341     ) -> hir::GenericBound {
2342         // Compute the `T` in `Future<Output = T>` from the return type.
2343         let output_ty = match output {
2344             FunctionRetTy::Ty(ty) => {
2345                 self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(fn_def_id)))
2346             }
2347             FunctionRetTy::Default(ret_ty_span) => {
2348                 P(hir::Ty {
2349                     hir_id: self.next_id(),
2350                     node: hir::TyKind::Tup(hir_vec![]),
2351                     span: *ret_ty_span,
2352                 })
2353             }
2354         };
2355
2356         // "<Output = T>"
2357         let future_params = P(hir::GenericArgs {
2358             args: hir_vec![],
2359             bindings: hir_vec![hir::TypeBinding {
2360                 ident: Ident::with_empty_ctxt(FN_OUTPUT_NAME),
2361                 kind: hir::TypeBindingKind::Equality {
2362                     ty: output_ty,
2363                 },
2364                 hir_id: self.next_id(),
2365                 span,
2366             }],
2367             parenthesized: false,
2368         });
2369
2370         // ::std::future::Future<future_params>
2371         let future_path =
2372             P(self.std_path(span, &[sym::future, sym::Future], Some(future_params), false));
2373
2374         hir::GenericBound::Trait(
2375             hir::PolyTraitRef {
2376                 trait_ref: hir::TraitRef {
2377                     path: future_path,
2378                     hir_ref_id: self.next_id(),
2379                 },
2380                 bound_generic_params: hir_vec![],
2381                 span,
2382             },
2383             hir::TraitBoundModifier::None,
2384         )
2385     }
2386
2387     fn lower_param_bound(
2388         &mut self,
2389         tpb: &GenericBound,
2390         itctx: ImplTraitContext<'_>,
2391     ) -> hir::GenericBound {
2392         match *tpb {
2393             GenericBound::Trait(ref ty, modifier) => {
2394                 hir::GenericBound::Trait(
2395                     self.lower_poly_trait_ref(ty, itctx),
2396                     self.lower_trait_bound_modifier(modifier),
2397                 )
2398             }
2399             GenericBound::Outlives(ref lifetime) => {
2400                 hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
2401             }
2402         }
2403     }
2404
2405     fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
2406         let span = l.ident.span;
2407         match l.ident {
2408             ident if ident.name == kw::StaticLifetime =>
2409                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Static),
2410             ident if ident.name == kw::UnderscoreLifetime =>
2411                 match self.anonymous_lifetime_mode {
2412                     AnonymousLifetimeMode::CreateParameter => {
2413                         let fresh_name = self.collect_fresh_in_band_lifetime(span);
2414                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
2415                     }
2416
2417                     AnonymousLifetimeMode::PassThrough => {
2418                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
2419                     }
2420
2421                     AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
2422
2423                     AnonymousLifetimeMode::Replace(replacement) => {
2424                         let hir_id = self.lower_node_id(l.id);
2425                         self.replace_elided_lifetime(hir_id, span, replacement)
2426                     }
2427                 },
2428             ident => {
2429                 self.maybe_collect_in_band_lifetime(ident);
2430                 let param_name = ParamName::Plain(ident);
2431                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
2432             }
2433         }
2434     }
2435
2436     fn new_named_lifetime(
2437         &mut self,
2438         id: NodeId,
2439         span: Span,
2440         name: hir::LifetimeName,
2441     ) -> hir::Lifetime {
2442         hir::Lifetime {
2443             hir_id: self.lower_node_id(id),
2444             span,
2445             name: name,
2446         }
2447     }
2448
2449     /// Replace a return-position elided lifetime with the elided lifetime
2450     /// from the arguments.
2451     fn replace_elided_lifetime(
2452         &mut self,
2453         hir_id: hir::HirId,
2454         span: Span,
2455         replacement: LtReplacement,
2456     ) -> hir::Lifetime {
2457         let multiple_or_none = match replacement {
2458             LtReplacement::Some(name) => {
2459                 return hir::Lifetime {
2460                     hir_id,
2461                     span,
2462                     name: hir::LifetimeName::Param(name),
2463                 };
2464             }
2465             LtReplacement::MultipleLifetimes => "multiple",
2466             LtReplacement::NoLifetimes => "none",
2467         };
2468
2469         let mut err = crate::middle::resolve_lifetime::report_missing_lifetime_specifiers(
2470             self.sess,
2471             span,
2472             1,
2473         );
2474         err.note(&format!(
2475             "return-position elided lifetimes require exactly one \
2476              input-position elided lifetime, found {}.", multiple_or_none));
2477         err.emit();
2478
2479         hir::Lifetime { hir_id, span, name: hir::LifetimeName::Error }
2480     }
2481
2482     fn lower_generic_params(
2483         &mut self,
2484         params: &[GenericParam],
2485         add_bounds: &NodeMap<Vec<GenericBound>>,
2486         mut itctx: ImplTraitContext<'_>,
2487     ) -> hir::HirVec<hir::GenericParam> {
2488         params.iter().map(|param| {
2489             self.lower_generic_param(param, add_bounds, itctx.reborrow())
2490         }).collect()
2491     }
2492
2493     fn lower_generic_param(&mut self,
2494                            param: &GenericParam,
2495                            add_bounds: &NodeMap<Vec<GenericBound>>,
2496                            mut itctx: ImplTraitContext<'_>)
2497                            -> hir::GenericParam {
2498         let mut bounds = self.with_anonymous_lifetime_mode(
2499             AnonymousLifetimeMode::ReportError,
2500             |this| this.lower_param_bounds(&param.bounds, itctx.reborrow()),
2501         );
2502
2503         let (name, kind) = match param.kind {
2504             GenericParamKind::Lifetime => {
2505                 let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
2506                 self.is_collecting_in_band_lifetimes = false;
2507
2508                 let lt = self.with_anonymous_lifetime_mode(
2509                     AnonymousLifetimeMode::ReportError,
2510                     |this| this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident }),
2511                 );
2512                 let param_name = match lt.name {
2513                     hir::LifetimeName::Param(param_name) => param_name,
2514                     hir::LifetimeName::Implicit
2515                         | hir::LifetimeName::Underscore
2516                         | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
2517                     hir::LifetimeName::Error => ParamName::Error,
2518                 };
2519
2520                 let kind = hir::GenericParamKind::Lifetime {
2521                     kind: hir::LifetimeParamKind::Explicit
2522                 };
2523
2524                 self.is_collecting_in_band_lifetimes = was_collecting_in_band;
2525
2526                 (param_name, kind)
2527             }
2528             GenericParamKind::Type { ref default, .. } => {
2529                 // Don't expose `Self` (recovered "keyword used as ident" parse error).
2530                 // `rustc::ty` expects `Self` to be only used for a trait's `Self`.
2531                 // Instead, use `gensym("Self")` to create a distinct name that looks the same.
2532                 let ident = if param.ident.name == kw::SelfUpper {
2533                     param.ident.gensym()
2534                 } else {
2535                     param.ident
2536                 };
2537
2538                 let add_bounds = add_bounds.get(&param.id).map_or(&[][..], |x| &x);
2539                 if !add_bounds.is_empty() {
2540                     let params = self.lower_param_bounds(add_bounds, itctx.reborrow()).into_iter();
2541                     bounds = bounds.into_iter()
2542                                    .chain(params)
2543                                    .collect();
2544                 }
2545
2546                 let kind = hir::GenericParamKind::Type {
2547                     default: default.as_ref().map(|x| {
2548                         self.lower_ty(x, ImplTraitContext::OpaqueTy(None))
2549                     }),
2550                     synthetic: param.attrs.iter()
2551                                           .filter(|attr| attr.check_name(sym::rustc_synthetic))
2552                                           .map(|_| hir::SyntheticTyParamKind::ImplTrait)
2553                                           .next(),
2554                 };
2555
2556                 (hir::ParamName::Plain(ident), kind)
2557             }
2558             GenericParamKind::Const { ref ty } => {
2559                 (hir::ParamName::Plain(param.ident), hir::GenericParamKind::Const {
2560                     ty: self.lower_ty(&ty, ImplTraitContext::disallowed()),
2561                 })
2562             }
2563         };
2564
2565         hir::GenericParam {
2566             hir_id: self.lower_node_id(param.id),
2567             name,
2568             span: param.ident.span,
2569             pure_wrt_drop: attr::contains_name(&param.attrs, sym::may_dangle),
2570             attrs: self.lower_attrs(&param.attrs),
2571             bounds,
2572             kind,
2573         }
2574     }
2575
2576     fn lower_trait_ref(&mut self, p: &TraitRef, itctx: ImplTraitContext<'_>) -> hir::TraitRef {
2577         let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
2578             hir::QPath::Resolved(None, path) => path,
2579             qpath => bug!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
2580         };
2581         hir::TraitRef {
2582             path,
2583             hir_ref_id: self.lower_node_id(p.ref_id),
2584         }
2585     }
2586
2587     fn lower_poly_trait_ref(
2588         &mut self,
2589         p: &PolyTraitRef,
2590         mut itctx: ImplTraitContext<'_>,
2591     ) -> hir::PolyTraitRef {
2592         let bound_generic_params = self.lower_generic_params(
2593             &p.bound_generic_params,
2594             &NodeMap::default(),
2595             itctx.reborrow(),
2596         );
2597         let trait_ref = self.with_in_scope_lifetime_defs(
2598             &p.bound_generic_params,
2599             |this| this.lower_trait_ref(&p.trait_ref, itctx),
2600         );
2601
2602         hir::PolyTraitRef {
2603             bound_generic_params,
2604             trait_ref,
2605             span: p.span,
2606         }
2607     }
2608
2609     fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_>) -> hir::MutTy {
2610         hir::MutTy {
2611             ty: self.lower_ty(&mt.ty, itctx),
2612             mutbl: self.lower_mutability(mt.mutbl),
2613         }
2614     }
2615
2616     fn lower_param_bounds(&mut self, bounds: &[GenericBound], mut itctx: ImplTraitContext<'_>)
2617                           -> hir::GenericBounds {
2618         bounds.iter().map(|bound| self.lower_param_bound(bound, itctx.reborrow())).collect()
2619     }
2620
2621     fn lower_block_with_stmts(
2622         &mut self,
2623         b: &Block,
2624         targeted_by_break: bool,
2625         mut stmts: Vec<hir::Stmt>,
2626     ) -> P<hir::Block> {
2627         let mut expr = None;
2628
2629         for (index, stmt) in b.stmts.iter().enumerate() {
2630             if index == b.stmts.len() - 1 {
2631                 if let StmtKind::Expr(ref e) = stmt.node {
2632                     expr = Some(P(self.lower_expr(e)));
2633                 } else {
2634                     stmts.extend(self.lower_stmt(stmt));
2635                 }
2636             } else {
2637                 stmts.extend(self.lower_stmt(stmt));
2638             }
2639         }
2640
2641         P(hir::Block {
2642             hir_id: self.lower_node_id(b.id),
2643             stmts: stmts.into(),
2644             expr,
2645             rules: self.lower_block_check_mode(&b.rules),
2646             span: b.span,
2647             targeted_by_break,
2648         })
2649     }
2650
2651     fn lower_block(&mut self, b: &Block, targeted_by_break: bool) -> P<hir::Block> {
2652         self.lower_block_with_stmts(b, targeted_by_break, vec![])
2653     }
2654
2655     fn lower_pat(&mut self, p: &Pat) -> P<hir::Pat> {
2656         let node = match p.node {
2657             PatKind::Wild => hir::PatKind::Wild,
2658             PatKind::Ident(ref binding_mode, ident, ref sub) => {
2659                 let lower_sub = |this: &mut Self| sub.as_ref().map(|x| this.lower_pat(x));
2660                 self.lower_pat_ident(p, binding_mode, ident, lower_sub)
2661             }
2662             PatKind::Lit(ref e) => hir::PatKind::Lit(P(self.lower_expr(e))),
2663             PatKind::TupleStruct(ref path, ref pats) => {
2664                 let qpath = self.lower_qpath(
2665                     p.id,
2666                     &None,
2667                     path,
2668                     ParamMode::Optional,
2669                     ImplTraitContext::disallowed(),
2670                 );
2671                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple struct");
2672                 hir::PatKind::TupleStruct(qpath, pats, ddpos)
2673             }
2674             PatKind::Path(ref qself, ref path) => {
2675                 let qpath = self.lower_qpath(
2676                     p.id,
2677                     qself,
2678                     path,
2679                     ParamMode::Optional,
2680                     ImplTraitContext::disallowed(),
2681                 );
2682                 hir::PatKind::Path(qpath)
2683             }
2684             PatKind::Struct(ref path, ref fields, etc) => {
2685                 let qpath = self.lower_qpath(
2686                     p.id,
2687                     &None,
2688                     path,
2689                     ParamMode::Optional,
2690                     ImplTraitContext::disallowed(),
2691                 );
2692
2693                 let fs = fields
2694                     .iter()
2695                     .map(|f| {
2696                         Spanned {
2697                             span: f.span,
2698                             node: hir::FieldPat {
2699                                 hir_id: self.next_id(),
2700                                 ident: f.node.ident,
2701                                 pat: self.lower_pat(&f.node.pat),
2702                                 is_shorthand: f.node.is_shorthand,
2703                             },
2704                         }
2705                     })
2706                     .collect();
2707                 hir::PatKind::Struct(qpath, fs, etc)
2708             }
2709             PatKind::Tuple(ref pats) => {
2710                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple");
2711                 hir::PatKind::Tuple(pats, ddpos)
2712             }
2713             PatKind::Box(ref inner) => hir::PatKind::Box(self.lower_pat(inner)),
2714             PatKind::Ref(ref inner, mutbl) => {
2715                 hir::PatKind::Ref(self.lower_pat(inner), self.lower_mutability(mutbl))
2716             }
2717             PatKind::Range(ref e1, ref e2, Spanned { node: ref end, .. }) => hir::PatKind::Range(
2718                 P(self.lower_expr(e1)),
2719                 P(self.lower_expr(e2)),
2720                 self.lower_range_end(end),
2721             ),
2722             PatKind::Slice(ref pats) => self.lower_pat_slice(pats),
2723             PatKind::Rest => {
2724                 // If we reach here the `..` pattern is not semantically allowed.
2725                 self.ban_illegal_rest_pat(p.span)
2726             }
2727             PatKind::Paren(ref inner) => return self.lower_pat(inner),
2728             PatKind::Mac(_) => panic!("Shouldn't exist here"),
2729         };
2730
2731         self.pat_with_node_id_of(p, node)
2732     }
2733
2734     fn lower_pat_tuple(
2735         &mut self,
2736         pats: &[AstP<Pat>],
2737         ctx: &str,
2738     ) -> (HirVec<P<hir::Pat>>, Option<usize>) {
2739         let mut elems = Vec::with_capacity(pats.len());
2740         let mut rest = None;
2741
2742         let mut iter = pats.iter().enumerate();
2743         while let Some((idx, pat)) = iter.next() {
2744             // Interpret the first `..` pattern as a subtuple pattern.
2745             if pat.is_rest() {
2746                 rest = Some((idx, pat.span));
2747                 break;
2748             }
2749             // It was not a subslice pattern so lower it normally.
2750             elems.push(self.lower_pat(pat));
2751         }
2752
2753         while let Some((_, pat)) = iter.next() {
2754             // There was a previous subtuple pattern; make sure we don't allow more.
2755             if pat.is_rest() {
2756                 self.ban_extra_rest_pat(pat.span, rest.unwrap().1, ctx);
2757             } else {
2758                 elems.push(self.lower_pat(pat));
2759             }
2760         }
2761
2762         (elems.into(), rest.map(|(ddpos, _)| ddpos))
2763     }
2764
2765     fn lower_pat_slice(&mut self, pats: &[AstP<Pat>]) -> hir::PatKind {
2766         let mut before = Vec::new();
2767         let mut after = Vec::new();
2768         let mut slice = None;
2769         let mut prev_rest_span = None;
2770
2771         let mut iter = pats.iter();
2772         while let Some(pat) = iter.next() {
2773             // Interpret the first `((ref mut?)? x @)? ..` pattern as a subslice pattern.
2774             match pat.node {
2775                 PatKind::Rest => {
2776                     prev_rest_span = Some(pat.span);
2777                     slice = Some(self.pat_wild_with_node_id_of(pat));
2778                     break;
2779                 },
2780                 PatKind::Ident(ref bm, ident, Some(ref sub)) if sub.is_rest() => {
2781                     prev_rest_span = Some(sub.span);
2782                     let lower_sub = |this: &mut Self| Some(this.pat_wild_with_node_id_of(sub));
2783                     let node = self.lower_pat_ident(pat, bm, ident, lower_sub);
2784                     slice = Some(self.pat_with_node_id_of(pat, node));
2785                     break;
2786                 },
2787                 _ => {}
2788             }
2789
2790             // It was not a subslice pattern so lower it normally.
2791             before.push(self.lower_pat(pat));
2792         }
2793
2794         while let Some(pat) = iter.next() {
2795             // There was a previous subslice pattern; make sure we don't allow more.
2796             let rest_span = match pat.node {
2797                 PatKind::Rest => Some(pat.span),
2798                 PatKind::Ident(.., Some(ref sub)) if sub.is_rest() => {
2799                     // The `HirValidator` is merciless; add a `_` pattern to avoid ICEs.
2800                     after.push(self.pat_wild_with_node_id_of(pat));
2801                     Some(sub.span)
2802                 },
2803                 _ => None,
2804             };
2805             if let Some(rest_span) = rest_span {
2806                 self.ban_extra_rest_pat(rest_span, prev_rest_span.unwrap(), "slice");
2807             } else {
2808                 after.push(self.lower_pat(pat));
2809             }
2810         }
2811
2812         hir::PatKind::Slice(before.into(), slice, after.into())
2813     }
2814
2815     fn lower_pat_ident(
2816         &mut self,
2817         p: &Pat,
2818         binding_mode: &BindingMode,
2819         ident: Ident,
2820         lower_sub: impl FnOnce(&mut Self) -> Option<P<hir::Pat>>,
2821     ) -> hir::PatKind {
2822         match self.resolver.get_partial_res(p.id).map(|d| d.base_res()) {
2823             // `None` can occur in body-less function signatures
2824             res @ None | res @ Some(Res::Local(_)) => {
2825                 let canonical_id = match res {
2826                     Some(Res::Local(id)) => id,
2827                     _ => p.id,
2828                 };
2829
2830                 hir::PatKind::Binding(
2831                     self.lower_binding_mode(binding_mode),
2832                     self.lower_node_id(canonical_id),
2833                     ident,
2834                     lower_sub(self),
2835                 )
2836             }
2837             Some(res) => hir::PatKind::Path(hir::QPath::Resolved(
2838                 None,
2839                 P(hir::Path {
2840                     span: ident.span,
2841                     res: self.lower_res(res),
2842                     segments: hir_vec![hir::PathSegment::from_ident(ident)],
2843                 }),
2844             )),
2845         }
2846     }
2847
2848     fn pat_wild_with_node_id_of(&mut self, p: &Pat) -> P<hir::Pat> {
2849         self.pat_with_node_id_of(p, hir::PatKind::Wild)
2850     }
2851
2852     /// Construct a `Pat` with the `HirId` of `p.id` lowered.
2853     fn pat_with_node_id_of(&mut self, p: &Pat, node: hir::PatKind) -> P<hir::Pat> {
2854         P(hir::Pat {
2855             hir_id: self.lower_node_id(p.id),
2856             node,
2857             span: p.span,
2858         })
2859     }
2860
2861     /// Emit a friendly error for extra `..` patterns in a tuple/tuple struct/slice pattern.
2862     fn ban_extra_rest_pat(&self, sp: Span, prev_sp: Span, ctx: &str) {
2863         self.diagnostic()
2864             .struct_span_err(sp, &format!("`..` can only be used once per {} pattern", ctx))
2865             .span_label(sp, &format!("can only be used once per {} pattern", ctx))
2866             .span_label(prev_sp, "previously used here")
2867             .emit();
2868     }
2869
2870     /// Used to ban the `..` pattern in places it shouldn't be semantically.
2871     fn ban_illegal_rest_pat(&self, sp: Span) -> hir::PatKind {
2872         self.diagnostic()
2873             .struct_span_err(sp, "`..` patterns are not allowed here")
2874             .note("only allowed in tuple, tuple struct, and slice patterns")
2875             .emit();
2876
2877         // We're not in a list context so `..` can be reasonably treated
2878         // as `_` because it should always be valid and roughly matches the
2879         // intent of `..` (notice that the rest of a single slot is that slot).
2880         hir::PatKind::Wild
2881     }
2882
2883     fn lower_range_end(&mut self, e: &RangeEnd) -> hir::RangeEnd {
2884         match *e {
2885             RangeEnd::Included(_) => hir::RangeEnd::Included,
2886             RangeEnd::Excluded => hir::RangeEnd::Excluded,
2887         }
2888     }
2889
2890     fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
2891         self.with_new_scopes(|this| {
2892             hir::AnonConst {
2893                 hir_id: this.lower_node_id(c.id),
2894                 body: this.lower_const_body(&c.value),
2895             }
2896         })
2897     }
2898
2899     fn lower_stmt(&mut self, s: &Stmt) -> SmallVec<[hir::Stmt; 1]> {
2900         let node = match s.node {
2901             StmtKind::Local(ref l) => {
2902                 let (l, item_ids) = self.lower_local(l);
2903                 let mut ids: SmallVec<[hir::Stmt; 1]> = item_ids
2904                     .into_iter()
2905                     .map(|item_id| {
2906                         let item_id = hir::ItemId { id: self.lower_node_id(item_id) };
2907                         self.stmt(s.span, hir::StmtKind::Item(item_id))
2908                     })
2909                     .collect();
2910                 ids.push({
2911                     hir::Stmt {
2912                         hir_id: self.lower_node_id(s.id),
2913                         node: hir::StmtKind::Local(P(l)),
2914                         span: s.span,
2915                     }
2916                 });
2917                 return ids;
2918             },
2919             StmtKind::Item(ref it) => {
2920                 // Can only use the ID once.
2921                 let mut id = Some(s.id);
2922                 return self.lower_item_id(it)
2923                     .into_iter()
2924                     .map(|item_id| {
2925                         let hir_id = id.take()
2926                           .map(|id| self.lower_node_id(id))
2927                           .unwrap_or_else(|| self.next_id());
2928
2929                         hir::Stmt {
2930                             hir_id,
2931                             node: hir::StmtKind::Item(item_id),
2932                             span: s.span,
2933                         }
2934                     })
2935                     .collect();
2936             }
2937             StmtKind::Expr(ref e) => hir::StmtKind::Expr(P(self.lower_expr(e))),
2938             StmtKind::Semi(ref e) => hir::StmtKind::Semi(P(self.lower_expr(e))),
2939             StmtKind::Mac(..) => panic!("Shouldn't exist here"),
2940         };
2941         smallvec![hir::Stmt {
2942             hir_id: self.lower_node_id(s.id),
2943             node,
2944             span: s.span,
2945         }]
2946     }
2947
2948     fn lower_block_check_mode(&mut self, b: &BlockCheckMode) -> hir::BlockCheckMode {
2949         match *b {
2950             BlockCheckMode::Default => hir::DefaultBlock,
2951             BlockCheckMode::Unsafe(u) => hir::UnsafeBlock(self.lower_unsafe_source(u)),
2952         }
2953     }
2954
2955     fn lower_binding_mode(&mut self, b: &BindingMode) -> hir::BindingAnnotation {
2956         match *b {
2957             BindingMode::ByValue(Mutability::Immutable) => hir::BindingAnnotation::Unannotated,
2958             BindingMode::ByRef(Mutability::Immutable) => hir::BindingAnnotation::Ref,
2959             BindingMode::ByValue(Mutability::Mutable) => hir::BindingAnnotation::Mutable,
2960             BindingMode::ByRef(Mutability::Mutable) => hir::BindingAnnotation::RefMut,
2961         }
2962     }
2963
2964     fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
2965         match u {
2966             CompilerGenerated => hir::CompilerGenerated,
2967             UserProvided => hir::UserProvided,
2968         }
2969     }
2970
2971     fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
2972         match f {
2973             TraitBoundModifier::None => hir::TraitBoundModifier::None,
2974             TraitBoundModifier::Maybe => hir::TraitBoundModifier::Maybe,
2975         }
2976     }
2977
2978     // Helper methods for building HIR.
2979
2980     fn stmt(&mut self, span: Span, node: hir::StmtKind) -> hir::Stmt {
2981         hir::Stmt { span, node, hir_id: self.next_id() }
2982     }
2983
2984     fn stmt_expr(&mut self, span: Span, expr: hir::Expr) -> hir::Stmt {
2985         self.stmt(span, hir::StmtKind::Expr(P(expr)))
2986     }
2987
2988     fn stmt_let_pat(
2989         &mut self,
2990         attrs: ThinVec<Attribute>,
2991         span: Span,
2992         init: Option<P<hir::Expr>>,
2993         pat: P<hir::Pat>,
2994         source: hir::LocalSource,
2995     ) -> hir::Stmt {
2996         let local = hir::Local {
2997             attrs,
2998             hir_id: self.next_id(),
2999             init,
3000             pat,
3001             source,
3002             span,
3003             ty: None,
3004         };
3005         self.stmt(span, hir::StmtKind::Local(P(local)))
3006     }
3007
3008     fn block_expr(&mut self, expr: P<hir::Expr>) -> hir::Block {
3009         self.block_all(expr.span, hir::HirVec::new(), Some(expr))
3010     }
3011
3012     fn block_all(
3013         &mut self,
3014         span: Span,
3015         stmts: hir::HirVec<hir::Stmt>,
3016         expr: Option<P<hir::Expr>>,
3017     ) -> hir::Block {
3018         hir::Block {
3019             stmts,
3020             expr,
3021             hir_id: self.next_id(),
3022             rules: hir::DefaultBlock,
3023             span,
3024             targeted_by_break: false,
3025         }
3026     }
3027
3028     /// Constructs a `true` or `false` literal pattern.
3029     fn pat_bool(&mut self, span: Span, val: bool) -> P<hir::Pat> {
3030         let expr = self.expr_bool(span, val);
3031         self.pat(span, hir::PatKind::Lit(P(expr)))
3032     }
3033
3034     fn pat_ok(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3035         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Ok], hir_vec![pat])
3036     }
3037
3038     fn pat_err(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3039         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Err], hir_vec![pat])
3040     }
3041
3042     fn pat_some(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3043         self.pat_std_enum(span, &[sym::option, sym::Option, sym::Some], hir_vec![pat])
3044     }
3045
3046     fn pat_none(&mut self, span: Span) -> P<hir::Pat> {
3047         self.pat_std_enum(span, &[sym::option, sym::Option, sym::None], hir_vec![])
3048     }
3049
3050     fn pat_std_enum(
3051         &mut self,
3052         span: Span,
3053         components: &[Symbol],
3054         subpats: hir::HirVec<P<hir::Pat>>,
3055     ) -> P<hir::Pat> {
3056         let path = self.std_path(span, components, None, true);
3057         let qpath = hir::QPath::Resolved(None, P(path));
3058         let pt = if subpats.is_empty() {
3059             hir::PatKind::Path(qpath)
3060         } else {
3061             hir::PatKind::TupleStruct(qpath, subpats, None)
3062         };
3063         self.pat(span, pt)
3064     }
3065
3066     fn pat_ident(&mut self, span: Span, ident: Ident) -> (P<hir::Pat>, hir::HirId) {
3067         self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
3068     }
3069
3070     fn pat_ident_binding_mode(
3071         &mut self,
3072         span: Span,
3073         ident: Ident,
3074         bm: hir::BindingAnnotation,
3075     ) -> (P<hir::Pat>, hir::HirId) {
3076         let hir_id = self.next_id();
3077
3078         (
3079             P(hir::Pat {
3080                 hir_id,
3081                 node: hir::PatKind::Binding(bm, hir_id, ident.with_span_pos(span), None),
3082                 span,
3083             }),
3084             hir_id
3085         )
3086     }
3087
3088     fn pat_wild(&mut self, span: Span) -> P<hir::Pat> {
3089         self.pat(span, hir::PatKind::Wild)
3090     }
3091
3092     fn pat(&mut self, span: Span, pat: hir::PatKind) -> P<hir::Pat> {
3093         P(hir::Pat {
3094             hir_id: self.next_id(),
3095             node: pat,
3096             span,
3097         })
3098     }
3099
3100     /// Given a suffix `["b", "c", "d"]`, returns path `::std::b::c::d` when
3101     /// `fld.cx.use_std`, and `::core::b::c::d` otherwise.
3102     /// The path is also resolved according to `is_value`.
3103     fn std_path(
3104         &mut self,
3105         span: Span,
3106         components: &[Symbol],
3107         params: Option<P<hir::GenericArgs>>,
3108         is_value: bool,
3109     ) -> hir::Path {
3110         let ns = if is_value { Namespace::ValueNS } else { Namespace::TypeNS };
3111         let (path, res) = self.resolver.resolve_str_path(span, self.crate_root, components, ns);
3112
3113         let mut segments: Vec<_> = path.segments.iter().map(|segment| {
3114             let res = self.expect_full_res(segment.id);
3115             hir::PathSegment {
3116                 ident: segment.ident,
3117                 hir_id: Some(self.lower_node_id(segment.id)),
3118                 res: Some(self.lower_res(res)),
3119                 infer_args: true,
3120                 args: None,
3121             }
3122         }).collect();
3123         segments.last_mut().unwrap().args = params;
3124
3125         hir::Path {
3126             span,
3127             res: res.map_id(|_| panic!("unexpected node_id")),
3128             segments: segments.into(),
3129         }
3130     }
3131
3132     fn ty_path(&mut self, mut hir_id: hir::HirId, span: Span, qpath: hir::QPath) -> hir::Ty {
3133         let node = match qpath {
3134             hir::QPath::Resolved(None, path) => {
3135                 // Turn trait object paths into `TyKind::TraitObject` instead.
3136                 match path.res {
3137                     Res::Def(DefKind::Trait, _) | Res::Def(DefKind::TraitAlias, _) => {
3138                         let principal = hir::PolyTraitRef {
3139                             bound_generic_params: hir::HirVec::new(),
3140                             trait_ref: hir::TraitRef {
3141                                 path,
3142                                 hir_ref_id: hir_id,
3143                             },
3144                             span,
3145                         };
3146
3147                         // The original ID is taken by the `PolyTraitRef`,
3148                         // so the `Ty` itself needs a different one.
3149                         hir_id = self.next_id();
3150                         hir::TyKind::TraitObject(hir_vec![principal], self.elided_dyn_bound(span))
3151                     }
3152                     _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
3153                 }
3154             }
3155             _ => hir::TyKind::Path(qpath),
3156         };
3157         hir::Ty {
3158             hir_id,
3159             node,
3160             span,
3161         }
3162     }
3163
3164     /// Invoked to create the lifetime argument for a type `&T`
3165     /// with no explicit lifetime.
3166     fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
3167         match self.anonymous_lifetime_mode {
3168             // Intercept when we are in an impl header or async fn and introduce an in-band
3169             // lifetime.
3170             // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
3171             // `'f`.
3172             AnonymousLifetimeMode::CreateParameter => {
3173                 let fresh_name = self.collect_fresh_in_band_lifetime(span);
3174                 hir::Lifetime {
3175                     hir_id: self.next_id(),
3176                     span,
3177                     name: hir::LifetimeName::Param(fresh_name),
3178                 }
3179             }
3180
3181             AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
3182
3183             AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
3184
3185             AnonymousLifetimeMode::Replace(replacement) => {
3186                 self.new_replacement_lifetime(replacement, span)
3187             }
3188         }
3189     }
3190
3191     /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
3192     /// return a "error lifetime".
3193     fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
3194         let (id, msg, label) = match id {
3195             Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),
3196
3197             None => (
3198                 self.sess.next_node_id(),
3199                 "`&` without an explicit lifetime name cannot be used here",
3200                 "explicit lifetime name needed here",
3201             ),
3202         };
3203
3204         let mut err = struct_span_err!(
3205             self.sess,
3206             span,
3207             E0637,
3208             "{}",
3209             msg,
3210         );
3211         err.span_label(span, label);
3212         err.emit();
3213
3214         self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3215     }
3216
3217     /// Invoked to create the lifetime argument(s) for a path like
3218     /// `std::cell::Ref<T>`; note that implicit lifetimes in these
3219     /// sorts of cases are deprecated. This may therefore report a warning or an
3220     /// error, depending on the mode.
3221     fn elided_path_lifetimes(&mut self, span: Span, count: usize) -> P<[hir::Lifetime]> {
3222         (0..count)
3223             .map(|_| self.elided_path_lifetime(span))
3224             .collect()
3225     }
3226
3227     fn elided_path_lifetime(&mut self, span: Span) -> hir::Lifetime {
3228         match self.anonymous_lifetime_mode {
3229             AnonymousLifetimeMode::CreateParameter => {
3230                 // We should have emitted E0726 when processing this path above
3231                 self.sess.delay_span_bug(
3232                     span,
3233                     "expected 'implicit elided lifetime not allowed' error",
3234                 );
3235                 let id = self.sess.next_node_id();
3236                 self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3237             }
3238             // This is the normal case.
3239             AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
3240
3241             AnonymousLifetimeMode::Replace(replacement) => {
3242                 self.new_replacement_lifetime(replacement, span)
3243             }
3244
3245             AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
3246         }
3247     }
3248
3249     /// Invoked to create the lifetime argument(s) for an elided trait object
3250     /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
3251     /// when the bound is written, even if it is written with `'_` like in
3252     /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
3253     fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
3254         match self.anonymous_lifetime_mode {
3255             // NB. We intentionally ignore the create-parameter mode here.
3256             // and instead "pass through" to resolve-lifetimes, which will apply
3257             // the object-lifetime-defaulting rules. Elided object lifetime defaults
3258             // do not act like other elided lifetimes. In other words, given this:
3259             //
3260             //     impl Foo for Box<dyn Debug>
3261             //
3262             // we do not introduce a fresh `'_` to serve as the bound, but instead
3263             // ultimately translate to the equivalent of:
3264             //
3265             //     impl Foo for Box<dyn Debug + 'static>
3266             //
3267             // `resolve_lifetime` has the code to make that happen.
3268             AnonymousLifetimeMode::CreateParameter => {}
3269
3270             AnonymousLifetimeMode::ReportError => {
3271                 // ReportError applies to explicit use of `'_`.
3272             }
3273
3274             // This is the normal case.
3275             AnonymousLifetimeMode::PassThrough => {}
3276
3277             // We don't need to do any replacement here as this lifetime
3278             // doesn't refer to an elided lifetime elsewhere in the function
3279             // signature.
3280             AnonymousLifetimeMode::Replace(_) => {}
3281         }
3282
3283         self.new_implicit_lifetime(span)
3284     }
3285
3286     fn new_replacement_lifetime(
3287         &mut self,
3288         replacement: LtReplacement,
3289         span: Span,
3290     ) -> hir::Lifetime {
3291         let hir_id = self.next_id();
3292         self.replace_elided_lifetime(hir_id, span, replacement)
3293     }
3294
3295     fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
3296         hir::Lifetime {
3297             hir_id: self.next_id(),
3298             span,
3299             name: hir::LifetimeName::Implicit,
3300         }
3301     }
3302
3303     fn maybe_lint_bare_trait(&self, span: Span, id: NodeId, is_global: bool) {
3304         // FIXME(davidtwco): This is a hack to detect macros which produce spans of the
3305         // call site which do not have a macro backtrace. See #61963.
3306         let is_macro_callsite = self.sess.source_map()
3307             .span_to_snippet(span)
3308             .map(|snippet| snippet.starts_with("#["))
3309             .unwrap_or(true);
3310         if !is_macro_callsite {
3311             self.sess.buffer_lint_with_diagnostic(
3312                 builtin::BARE_TRAIT_OBJECTS,
3313                 id,
3314                 span,
3315                 "trait objects without an explicit `dyn` are deprecated",
3316                 builtin::BuiltinLintDiagnostics::BareTraitObject(span, is_global),
3317             )
3318         }
3319     }
3320 }
3321
3322 fn body_ids(bodies: &BTreeMap<hir::BodyId, hir::Body>) -> Vec<hir::BodyId> {
3323     // Sorting by span ensures that we get things in order within a
3324     // file, and also puts the files in a sensible order.
3325     let mut body_ids: Vec<_> = bodies.keys().cloned().collect();
3326     body_ids.sort_by_key(|b| bodies[b].value.span);
3327     body_ids
3328 }
3329
3330 /// Checks if the specified expression is a built-in range literal.
3331 /// (See: `LoweringContext::lower_expr()`).
3332 pub fn is_range_literal(sess: &Session, expr: &hir::Expr) -> bool {
3333     use hir::{Path, QPath, ExprKind, TyKind};
3334
3335     // Returns whether the given path represents a (desugared) range,
3336     // either in std or core, i.e. has either a `::std::ops::Range` or
3337     // `::core::ops::Range` prefix.
3338     fn is_range_path(path: &Path) -> bool {
3339         let segs: Vec<_> = path.segments.iter().map(|seg| seg.ident.as_str().to_string()).collect();
3340         let segs: Vec<_> = segs.iter().map(|seg| &**seg).collect();
3341
3342         // "{{root}}" is the equivalent of `::` prefix in `Path`.
3343         if let ["{{root}}", std_core, "ops", range] = segs.as_slice() {
3344             (*std_core == "std" || *std_core == "core") && range.starts_with("Range")
3345         } else {
3346             false
3347         }
3348     };
3349
3350     // Check whether a span corresponding to a range expression is a
3351     // range literal, rather than an explicit struct or `new()` call.
3352     fn is_lit(sess: &Session, span: &Span) -> bool {
3353         let source_map = sess.source_map();
3354         let end_point = source_map.end_point(*span);
3355
3356         if let Ok(end_string) = source_map.span_to_snippet(end_point) {
3357             !(end_string.ends_with("}") || end_string.ends_with(")"))
3358         } else {
3359             false
3360         }
3361     };
3362
3363     match expr.node {
3364         // All built-in range literals but `..=` and `..` desugar to `Struct`s.
3365         ExprKind::Struct(ref qpath, _, _) => {
3366             if let QPath::Resolved(None, ref path) = **qpath {
3367                 return is_range_path(&path) && is_lit(sess, &expr.span);
3368             }
3369         }
3370
3371         // `..` desugars to its struct path.
3372         ExprKind::Path(QPath::Resolved(None, ref path)) => {
3373             return is_range_path(&path) && is_lit(sess, &expr.span);
3374         }
3375
3376         // `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
3377         ExprKind::Call(ref func, _) => {
3378             if let ExprKind::Path(QPath::TypeRelative(ref ty, ref segment)) = func.node {
3379                 if let TyKind::Path(QPath::Resolved(None, ref path)) = ty.node {
3380                     let new_call = segment.ident.as_str() == "new";
3381                     return is_range_path(&path) && is_lit(sess, &expr.span) && new_call;
3382                 }
3383             }
3384         }
3385
3386         _ => {}
3387     }
3388
3389     false
3390 }