]> git.lizzy.rs Git - rust.git/blob - src/libcore/num/f32.rs
Rollup merge of #34742 - abhijeetbhagat:master, r=steveklabnik
[rust.git] / src / libcore / num / f32.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! Operations and constants for 32-bits floats (`f32` type)
12
13 // FIXME: MIN_VALUE and MAX_VALUE literals are parsed as -inf and inf #14353
14 #![allow(overflowing_literals)]
15
16 #![stable(feature = "rust1", since = "1.0.0")]
17
18 use intrinsics;
19 use mem;
20 use num::Float;
21 use num::FpCategory as Fp;
22
23 /// The radix or base of the internal representation of `f32`.
24 #[stable(feature = "rust1", since = "1.0.0")]
25 pub const RADIX: u32 = 2;
26
27 /// Number of significant digits in base 2.
28 #[stable(feature = "rust1", since = "1.0.0")]
29 pub const MANTISSA_DIGITS: u32 = 24;
30 /// Approximate number of significant digits in base 10.
31 #[stable(feature = "rust1", since = "1.0.0")]
32 pub const DIGITS: u32 = 6;
33
34 /// Difference between `1.0` and the next largest representable number.
35 #[stable(feature = "rust1", since = "1.0.0")]
36 pub const EPSILON: f32 = 1.19209290e-07_f32;
37
38 /// Smallest finite `f32` value.
39 #[stable(feature = "rust1", since = "1.0.0")]
40 pub const MIN: f32 = -3.40282347e+38_f32;
41 /// Smallest positive normal `f32` value.
42 #[stable(feature = "rust1", since = "1.0.0")]
43 pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32;
44 /// Largest finite `f32` value.
45 #[stable(feature = "rust1", since = "1.0.0")]
46 pub const MAX: f32 = 3.40282347e+38_f32;
47
48 /// One greater than the minimum possible normal power of 2 exponent.
49 #[stable(feature = "rust1", since = "1.0.0")]
50 pub const MIN_EXP: i32 = -125;
51 /// Maximum possible power of 2 exponent.
52 #[stable(feature = "rust1", since = "1.0.0")]
53 pub const MAX_EXP: i32 = 128;
54
55 /// Minimum possible normal power of 10 exponent.
56 #[stable(feature = "rust1", since = "1.0.0")]
57 pub const MIN_10_EXP: i32 = -37;
58 /// Maximum possible power of 10 exponent.
59 #[stable(feature = "rust1", since = "1.0.0")]
60 pub const MAX_10_EXP: i32 = 38;
61
62 /// Not a Number (NaN).
63 #[stable(feature = "rust1", since = "1.0.0")]
64 pub const NAN: f32 = 0.0_f32/0.0_f32;
65 /// Infinity (∞).
66 #[stable(feature = "rust1", since = "1.0.0")]
67 pub const INFINITY: f32 = 1.0_f32/0.0_f32;
68 /// Negative infinity (-∞).
69 #[stable(feature = "rust1", since = "1.0.0")]
70 pub const NEG_INFINITY: f32 = -1.0_f32/0.0_f32;
71
72 /// Basic mathematical constants.
73 #[stable(feature = "rust1", since = "1.0.0")]
74 pub mod consts {
75     // FIXME: replace with mathematical constants from cmath.
76
77     /// Archimedes' constant (π)
78     #[stable(feature = "rust1", since = "1.0.0")]
79     pub const PI: f32 = 3.14159265358979323846264338327950288_f32;
80
81     /// π/2
82     #[stable(feature = "rust1", since = "1.0.0")]
83     pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32;
84
85     /// π/3
86     #[stable(feature = "rust1", since = "1.0.0")]
87     pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32;
88
89     /// π/4
90     #[stable(feature = "rust1", since = "1.0.0")]
91     pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32;
92
93     /// π/6
94     #[stable(feature = "rust1", since = "1.0.0")]
95     pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32;
96
97     /// π/8
98     #[stable(feature = "rust1", since = "1.0.0")]
99     pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32;
100
101     /// 1/π
102     #[stable(feature = "rust1", since = "1.0.0")]
103     pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32;
104
105     /// 2/π
106     #[stable(feature = "rust1", since = "1.0.0")]
107     pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32;
108
109     /// 2/sqrt(π)
110     #[stable(feature = "rust1", since = "1.0.0")]
111     pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32;
112
113     /// sqrt(2)
114     #[stable(feature = "rust1", since = "1.0.0")]
115     pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32;
116
117     /// 1/sqrt(2)
118     #[stable(feature = "rust1", since = "1.0.0")]
119     pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32;
120
121     /// Euler's number (e)
122     #[stable(feature = "rust1", since = "1.0.0")]
123     pub const E: f32 = 2.71828182845904523536028747135266250_f32;
124
125     /// log<sub>2</sub>(e)
126     #[stable(feature = "rust1", since = "1.0.0")]
127     pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32;
128
129     /// log<sub>10</sub>(e)
130     #[stable(feature = "rust1", since = "1.0.0")]
131     pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32;
132
133     /// ln(2)
134     #[stable(feature = "rust1", since = "1.0.0")]
135     pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32;
136
137     /// ln(10)
138     #[stable(feature = "rust1", since = "1.0.0")]
139     pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32;
140 }
141
142 #[unstable(feature = "core_float",
143            reason = "stable interface is via `impl f{32,64}` in later crates",
144            issue = "32110")]
145 impl Float for f32 {
146     #[inline]
147     fn nan() -> f32 { NAN }
148
149     #[inline]
150     fn infinity() -> f32 { INFINITY }
151
152     #[inline]
153     fn neg_infinity() -> f32 { NEG_INFINITY }
154
155     #[inline]
156     fn zero() -> f32 { 0.0 }
157
158     #[inline]
159     fn neg_zero() -> f32 { -0.0 }
160
161     #[inline]
162     fn one() -> f32 { 1.0 }
163
164     /// Returns `true` if the number is NaN.
165     #[inline]
166     fn is_nan(self) -> bool { self != self }
167
168     /// Returns `true` if the number is infinite.
169     #[inline]
170     fn is_infinite(self) -> bool {
171         self == INFINITY || self == NEG_INFINITY
172     }
173
174     /// Returns `true` if the number is neither infinite or NaN.
175     #[inline]
176     fn is_finite(self) -> bool {
177         !(self.is_nan() || self.is_infinite())
178     }
179
180     /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
181     #[inline]
182     fn is_normal(self) -> bool {
183         self.classify() == Fp::Normal
184     }
185
186     /// Returns the floating point category of the number. If only one property
187     /// is going to be tested, it is generally faster to use the specific
188     /// predicate instead.
189     fn classify(self) -> Fp {
190         const EXP_MASK: u32 = 0x7f800000;
191         const MAN_MASK: u32 = 0x007fffff;
192
193         let bits: u32 = unsafe { mem::transmute(self) };
194         match (bits & MAN_MASK, bits & EXP_MASK) {
195             (0, 0)        => Fp::Zero,
196             (_, 0)        => Fp::Subnormal,
197             (0, EXP_MASK) => Fp::Infinite,
198             (_, EXP_MASK) => Fp::Nan,
199             _             => Fp::Normal,
200         }
201     }
202
203     /// Returns the mantissa, exponent and sign as integers.
204     fn integer_decode(self) -> (u64, i16, i8) {
205         let bits: u32 = unsafe { mem::transmute(self) };
206         let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
207         let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
208         let mantissa = if exponent == 0 {
209             (bits & 0x7fffff) << 1
210         } else {
211             (bits & 0x7fffff) | 0x800000
212         };
213         // Exponent bias + mantissa shift
214         exponent -= 127 + 23;
215         (mantissa as u64, exponent, sign)
216     }
217
218     /// Computes the absolute value of `self`. Returns `Float::nan()` if the
219     /// number is `Float::nan()`.
220     #[inline]
221     fn abs(self) -> f32 {
222         unsafe { intrinsics::fabsf32(self) }
223     }
224
225     /// Returns a number that represents the sign of `self`.
226     ///
227     /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
228     /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
229     /// - `Float::nan()` if the number is `Float::nan()`
230     #[inline]
231     fn signum(self) -> f32 {
232         if self.is_nan() {
233             NAN
234         } else {
235             unsafe { intrinsics::copysignf32(1.0, self) }
236         }
237     }
238
239     /// Returns `true` if `self` is positive, including `+0.0` and
240     /// `Float::infinity()`.
241     #[inline]
242     fn is_sign_positive(self) -> bool {
243         self > 0.0 || (1.0 / self) == INFINITY
244     }
245
246     /// Returns `true` if `self` is negative, including `-0.0` and
247     /// `Float::neg_infinity()`.
248     #[inline]
249     fn is_sign_negative(self) -> bool {
250         self < 0.0 || (1.0 / self) == NEG_INFINITY
251     }
252
253     /// Returns the reciprocal (multiplicative inverse) of the number.
254     #[inline]
255     fn recip(self) -> f32 { 1.0 / self }
256
257     #[inline]
258     fn powi(self, n: i32) -> f32 {
259         unsafe { intrinsics::powif32(self, n) }
260     }
261
262     /// Converts to degrees, assuming the number is in radians.
263     #[inline]
264     fn to_degrees(self) -> f32 { self * (180.0f32 / consts::PI) }
265
266     /// Converts to radians, assuming the number is in degrees.
267     #[inline]
268     fn to_radians(self) -> f32 {
269         let value: f32 = consts::PI;
270         self * (value / 180.0f32)
271     }
272 }