]> git.lizzy.rs Git - rust.git/blob - src/libcore/marker.rs
Fill tracking issue
[rust.git] / src / libcore / marker.rs
1 //! Primitive traits and types representing basic properties of types.
2 //!
3 //! Rust types can be classified in various useful ways according to
4 //! their intrinsic properties. These classifications are represented
5 //! as traits.
6
7 #![stable(feature = "rust1", since = "1.0.0")]
8
9 use crate::cell::UnsafeCell;
10 use crate::cmp;
11 use crate::hash::Hash;
12 use crate::hash::Hasher;
13
14 /// Types that can be transferred across thread boundaries.
15 ///
16 /// This trait is automatically implemented when the compiler determines it's
17 /// appropriate.
18 ///
19 /// An example of a non-`Send` type is the reference-counting pointer
20 /// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same
21 /// reference-counted value, they might try to update the reference count at the
22 /// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic
23 /// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring
24 /// some overhead) and thus is `Send`.
25 ///
26 /// See [the Nomicon](../../nomicon/send-and-sync.html) for more details.
27 ///
28 /// [`Rc`]: ../../std/rc/struct.Rc.html
29 /// [arc]: ../../std/sync/struct.Arc.html
30 /// [ub]: ../../reference/behavior-considered-undefined.html
31 #[stable(feature = "rust1", since = "1.0.0")]
32 #[rustc_on_unimplemented(
33     message="`{Self}` cannot be sent between threads safely",
34     label="`{Self}` cannot be sent between threads safely"
35 )]
36 pub unsafe auto trait Send {
37     // empty.
38 }
39
40 #[stable(feature = "rust1", since = "1.0.0")]
41 impl<T: ?Sized> !Send for *const T { }
42 #[stable(feature = "rust1", since = "1.0.0")]
43 impl<T: ?Sized> !Send for *mut T { }
44
45 /// Types with a constant size known at compile time.
46 ///
47 /// All type parameters have an implicit bound of `Sized`. The special syntax
48 /// `?Sized` can be used to remove this bound if it's not appropriate.
49 ///
50 /// ```
51 /// # #![allow(dead_code)]
52 /// struct Foo<T>(T);
53 /// struct Bar<T: ?Sized>(T);
54 ///
55 /// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32]
56 /// struct BarUse(Bar<[i32]>); // OK
57 /// ```
58 ///
59 /// The one exception is the implicit `Self` type of a trait. A trait does not
60 /// have an implicit `Sized` bound as this is incompatible with [trait object]s
61 /// where, by definition, the trait needs to work with all possible implementors,
62 /// and thus could be any size.
63 ///
64 /// Although Rust will let you bind `Sized` to a trait, you won't
65 /// be able to use it to form a trait object later:
66 ///
67 /// ```
68 /// # #![allow(unused_variables)]
69 /// trait Foo { }
70 /// trait Bar: Sized { }
71 ///
72 /// struct Impl;
73 /// impl Foo for Impl { }
74 /// impl Bar for Impl { }
75 ///
76 /// let x: &dyn Foo = &Impl;    // OK
77 /// // let y: &dyn Bar = &Impl; // error: the trait `Bar` cannot
78 ///                             // be made into an object
79 /// ```
80 ///
81 /// [trait object]: ../../book/ch17-02-trait-objects.html
82 #[stable(feature = "rust1", since = "1.0.0")]
83 #[lang = "sized"]
84 #[rustc_on_unimplemented(
85     on(parent_trait="std::path::Path", label="borrow the `Path` instead"),
86     message="the size for values of type `{Self}` cannot be known at compilation time",
87     label="doesn't have a size known at compile-time",
88     note="to learn more, visit <https://doc.rust-lang.org/book/\
89           ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait>",
90 )]
91 #[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable
92 pub trait Sized {
93     // Empty.
94 }
95
96 /// Types that can be "unsized" to a dynamically-sized type.
97 ///
98 /// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and
99 /// `Unsize<fmt::Debug>`.
100 ///
101 /// All implementations of `Unsize` are provided automatically by the compiler.
102 ///
103 /// `Unsize` is implemented for:
104 ///
105 /// - `[T; N]` is `Unsize<[T]>`
106 /// - `T` is `Unsize<dyn Trait>` when `T: Trait`
107 /// - `Foo<..., T, ...>` is `Unsize<Foo<..., U, ...>>` if:
108 ///   - `T: Unsize<U>`
109 ///   - Foo is a struct
110 ///   - Only the last field of `Foo` has a type involving `T`
111 ///   - `T` is not part of the type of any other fields
112 ///   - `Bar<T>: Unsize<Bar<U>>`, if the last field of `Foo` has type `Bar<T>`
113 ///
114 /// `Unsize` is used along with [`ops::CoerceUnsized`][coerceunsized] to allow
115 /// "user-defined" containers such as [`rc::Rc`][rc] to contain dynamically-sized
116 /// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce]
117 /// for more details.
118 ///
119 /// [coerceunsized]: ../ops/trait.CoerceUnsized.html
120 /// [rc]: ../../std/rc/struct.Rc.html
121 /// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
122 /// [nomicon-coerce]: ../../nomicon/coercions.html
123 #[unstable(feature = "unsize", issue = "27732")]
124 #[lang = "unsize"]
125 pub trait Unsize<T: ?Sized> {
126     // Empty.
127 }
128
129 /// Required trait for constants used in pattern matches.
130 ///
131 /// Any type that derives `PartialEq` automatically implements this trait,
132 /// *regardless* of whether its type-parameters implement `Eq`.
133 ///
134 /// If a `const` item contains some type that does not implement this trait,
135 /// then that type either (1.) does not implement `PartialEq` (which means the
136 /// constant will not provide that comparison method, which code generation
137 /// assumes is available), or (2.) it implements *its own* version of
138 /// `PartialEq` (which we assume does not conform to a structural-equality
139 /// comparison).
140 ///
141 /// In either of the two scenarios above, we reject usage of such a constant in
142 /// a pattern match.
143 ///
144 /// See also the [structural match RFC][RFC1445], and [issue 63438][] which
145 /// motivated migrating from attribute-based design to this trait.
146 ///
147 /// [RFC1445]: https://github.com/rust-lang/rfcs/blob/master/text/1445-restrict-constants-in-patterns.md
148 /// [issue 63438]: https://github.com/rust-lang/rust/issues/63438
149 #[cfg(not(bootstrap))]
150 #[unstable(feature = "structural_match", issue = "31434")]
151 #[rustc_on_unimplemented(message="the type `{Self}` does not `#[derive(PartialEq)]`")]
152 #[lang = "structural_peq"]
153 pub trait StructuralPartialEq {
154     // Empty.
155 }
156
157 /// Required trait for constants used in pattern matches.
158 ///
159 /// Any type that derives `Eq` automatically implements this trait, *regardless*
160 /// of whether its type-parameters implement `Eq`.
161 ///
162 /// This is a hack to workaround a limitation in our type-system.
163 ///
164 /// Background:
165 ///
166 /// We want to require that types of consts used in pattern matches
167 /// have the attribute `#[derive(PartialEq, Eq)]`.
168 ///
169 /// In a more ideal world, we could check that requirement by just checking that
170 /// the given type implements both (1.) the `StructuralPartialEq` trait *and*
171 /// (2.) the `Eq` trait. However, you can have ADTs that *do* `derive(PartialEq, Eq)`,
172 /// and be a case that we want the compiler to accept, and yet the constant's
173 /// type fails to implement `Eq`.
174 ///
175 /// Namely, a case like this:
176 ///
177 /// ```rust
178 /// #[derive(PartialEq, Eq)]
179 /// struct Wrap<X>(X);
180 /// fn higher_order(_: &()) { }
181 /// const CFN: Wrap<fn(&())> = Wrap(higher_order);
182 /// fn main() {
183 ///     match CFN {
184 ///         CFN => {}
185 ///         _ => {}
186 ///     }
187 /// }
188 /// ```
189 ///
190 /// (The problem in the above code is that `Wrap<fn(&())>` does not implement
191 /// `PartialEq`, nor `Eq`, because `for<'a> fn(&'a _)` does not implement those
192 /// traits.)
193 ///
194 /// Therefore, we cannot rely on naive check for `StructuralPartialEq` and
195 /// mere `Eq`.
196 ///
197 /// As a hack to work around this, we use two separate traits injected by each
198 /// of the two derives (`#[derive(PartialEq)]` and `#[derive(Eq)]`) and check
199 /// that both of them are present as part of structural-match checking.
200 #[cfg(not(bootstrap))]
201 #[unstable(feature = "structural_match", issue = "31434")]
202 #[rustc_on_unimplemented(message="the type `{Self}` does not `#[derive(Eq)]`")]
203 #[lang = "structural_teq"]
204 pub trait StructuralEq {
205     // Empty.
206 }
207
208 /// Types whose values can be duplicated simply by copying bits.
209 ///
210 /// By default, variable bindings have 'move semantics.' In other
211 /// words:
212 ///
213 /// ```
214 /// #[derive(Debug)]
215 /// struct Foo;
216 ///
217 /// let x = Foo;
218 ///
219 /// let y = x;
220 ///
221 /// // `x` has moved into `y`, and so cannot be used
222 ///
223 /// // println!("{:?}", x); // error: use of moved value
224 /// ```
225 ///
226 /// However, if a type implements `Copy`, it instead has 'copy semantics':
227 ///
228 /// ```
229 /// // We can derive a `Copy` implementation. `Clone` is also required, as it's
230 /// // a supertrait of `Copy`.
231 /// #[derive(Debug, Copy, Clone)]
232 /// struct Foo;
233 ///
234 /// let x = Foo;
235 ///
236 /// let y = x;
237 ///
238 /// // `y` is a copy of `x`
239 ///
240 /// println!("{:?}", x); // A-OK!
241 /// ```
242 ///
243 /// It's important to note that in these two examples, the only difference is whether you
244 /// are allowed to access `x` after the assignment. Under the hood, both a copy and a move
245 /// can result in bits being copied in memory, although this is sometimes optimized away.
246 ///
247 /// ## How can I implement `Copy`?
248 ///
249 /// There are two ways to implement `Copy` on your type. The simplest is to use `derive`:
250 ///
251 /// ```
252 /// #[derive(Copy, Clone)]
253 /// struct MyStruct;
254 /// ```
255 ///
256 /// You can also implement `Copy` and `Clone` manually:
257 ///
258 /// ```
259 /// struct MyStruct;
260 ///
261 /// impl Copy for MyStruct { }
262 ///
263 /// impl Clone for MyStruct {
264 ///     fn clone(&self) -> MyStruct {
265 ///         *self
266 ///     }
267 /// }
268 /// ```
269 ///
270 /// There is a small difference between the two: the `derive` strategy will also place a `Copy`
271 /// bound on type parameters, which isn't always desired.
272 ///
273 /// ## What's the difference between `Copy` and `Clone`?
274 ///
275 /// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of
276 /// `Copy` is not overloadable; it is always a simple bit-wise copy.
277 ///
278 /// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can
279 /// provide any type-specific behavior necessary to duplicate values safely. For example,
280 /// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string
281 /// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the
282 /// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`]
283 /// but not `Copy`.
284 ///
285 /// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement
286 /// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation only needs to return `*self`
287 /// (see the example above).
288 ///
289 /// ## When can my type be `Copy`?
290 ///
291 /// A type can implement `Copy` if all of its components implement `Copy`. For example, this
292 /// struct can be `Copy`:
293 ///
294 /// ```
295 /// # #[allow(dead_code)]
296 /// struct Point {
297 ///    x: i32,
298 ///    y: i32,
299 /// }
300 /// ```
301 ///
302 /// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`.
303 /// By contrast, consider
304 ///
305 /// ```
306 /// # #![allow(dead_code)]
307 /// # struct Point;
308 /// struct PointList {
309 ///     points: Vec<Point>,
310 /// }
311 /// ```
312 ///
313 /// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we
314 /// attempt to derive a `Copy` implementation, we'll get an error:
315 ///
316 /// ```text
317 /// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy`
318 /// ```
319 ///
320 /// ## When *can't* my type be `Copy`?
321 ///
322 /// Some types can't be copied safely. For example, copying `&mut T` would create an aliased
323 /// mutable reference. Copying [`String`] would duplicate responsibility for managing the
324 /// [`String`]'s buffer, leading to a double free.
325 ///
326 /// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's
327 /// managing some resource besides its own [`size_of::<T>`] bytes.
328 ///
329 /// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get
330 /// the error [E0204].
331 ///
332 /// [E0204]: ../../error-index.html#E0204
333 ///
334 /// ## When *should* my type be `Copy`?
335 ///
336 /// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though,
337 /// that implementing `Copy` is part of the public API of your type. If the type might become
338 /// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to
339 /// avoid a breaking API change.
340 ///
341 /// ## Additional implementors
342 ///
343 /// In addition to the [implementors listed below][impls],
344 /// the following types also implement `Copy`:
345 ///
346 /// * Function item types (i.e., the distinct types defined for each function)
347 /// * Function pointer types (e.g., `fn() -> i32`)
348 /// * Array types, for all sizes, if the item type also implements `Copy` (e.g., `[i32; 123456]`)
349 /// * Tuple types, if each component also implements `Copy` (e.g., `()`, `(i32, bool)`)
350 /// * Closure types, if they capture no value from the environment
351 ///   or if all such captured values implement `Copy` themselves.
352 ///   Note that variables captured by shared reference always implement `Copy`
353 ///   (even if the referent doesn't),
354 ///   while variables captured by mutable reference never implement `Copy`.
355 ///
356 /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
357 /// [`String`]: ../../std/string/struct.String.html
358 /// [`Drop`]: ../../std/ops/trait.Drop.html
359 /// [`size_of::<T>`]: ../../std/mem/fn.size_of.html
360 /// [`Clone`]: ../clone/trait.Clone.html
361 /// [`String`]: ../../std/string/struct.String.html
362 /// [`i32`]: ../../std/primitive.i32.html
363 /// [impls]: #implementors
364 #[stable(feature = "rust1", since = "1.0.0")]
365 #[lang = "copy"]
366 pub trait Copy : Clone {
367     // Empty.
368 }
369
370 /// Derive macro generating an impl of the trait `Copy`.
371 #[rustc_builtin_macro]
372 #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
373 #[allow_internal_unstable(core_intrinsics, derive_clone_copy)]
374 pub macro Copy($item:item) { /* compiler built-in */ }
375
376 /// Types for which it is safe to share references between threads.
377 ///
378 /// This trait is automatically implemented when the compiler determines
379 /// it's appropriate.
380 ///
381 /// The precise definition is: a type `T` is `Sync` if and only if `&T` is
382 /// [`Send`][send]. In other words, if there is no possibility of
383 /// [undefined behavior][ub] (including data races) when passing
384 /// `&T` references between threads.
385 ///
386 /// As one would expect, primitive types like [`u8`][u8] and [`f64`][f64]
387 /// are all `Sync`, and so are simple aggregate types containing them,
388 /// like tuples, structs and enums. More examples of basic `Sync`
389 /// types include "immutable" types like `&T`, and those with simple
390 /// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and
391 /// most other collection types. (Generic parameters need to be `Sync`
392 /// for their container to be `Sync`.)
393 ///
394 /// A somewhat surprising consequence of the definition is that `&mut T`
395 /// is `Sync` (if `T` is `Sync`) even though it seems like that might
396 /// provide unsynchronized mutation. The trick is that a mutable
397 /// reference behind a shared reference (that is, `& &mut T`)
398 /// becomes read-only, as if it were a `& &T`. Hence there is no risk
399 /// of a data race.
400 ///
401 /// Types that are not `Sync` are those that have "interior
402 /// mutability" in a non-thread-safe form, such as [`cell::Cell`][cell]
403 /// and [`cell::RefCell`][refcell]. These types allow for mutation of
404 /// their contents even through an immutable, shared reference. For
405 /// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires
406 /// only a shared reference [`&Cell<T>`][cell]. The method performs no
407 /// synchronization, thus [`Cell`][cell] cannot be `Sync`.
408 ///
409 /// Another example of a non-`Sync` type is the reference-counting
410 /// pointer [`rc::Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone
411 /// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way.
412 ///
413 /// For cases when one does need thread-safe interior mutability,
414 /// Rust provides [atomic data types], as well as explicit locking via
415 /// [`sync::Mutex`][mutex] and [`sync::RwLock`][rwlock]. These types
416 /// ensure that any mutation cannot cause data races, hence the types
417 /// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe
418 /// analogue of [`Rc`][rc].
419 ///
420 /// Any types with interior mutability must also use the
421 /// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which
422 /// can be mutated through a shared reference. Failing to doing this is
423 /// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing
424 /// from `&T` to `&mut T` is invalid.
425 ///
426 /// See [the Nomicon](../../nomicon/send-and-sync.html) for more
427 /// details about `Sync`.
428 ///
429 /// [send]: trait.Send.html
430 /// [u8]: ../../std/primitive.u8.html
431 /// [f64]: ../../std/primitive.f64.html
432 /// [box]: ../../std/boxed/struct.Box.html
433 /// [vec]: ../../std/vec/struct.Vec.html
434 /// [cell]: ../cell/struct.Cell.html
435 /// [refcell]: ../cell/struct.RefCell.html
436 /// [rc]: ../../std/rc/struct.Rc.html
437 /// [arc]: ../../std/sync/struct.Arc.html
438 /// [atomic data types]: ../sync/atomic/index.html
439 /// [mutex]: ../../std/sync/struct.Mutex.html
440 /// [rwlock]: ../../std/sync/struct.RwLock.html
441 /// [unsafecell]: ../cell/struct.UnsafeCell.html
442 /// [ub]: ../../reference/behavior-considered-undefined.html
443 /// [transmute]: ../../std/mem/fn.transmute.html
444 #[stable(feature = "rust1", since = "1.0.0")]
445 #[lang = "sync"]
446 #[rustc_on_unimplemented(
447     message="`{Self}` cannot be shared between threads safely",
448     label="`{Self}` cannot be shared between threads safely"
449 )]
450 pub unsafe auto trait Sync {
451     // FIXME(estebank): once support to add notes in `rustc_on_unimplemented`
452     // lands in beta, and it has been extended to check whether a closure is
453     // anywhere in the requirement chain, extend it as such (#48534):
454     // ```
455     // on(
456     //     closure,
457     //     note="`{Self}` cannot be shared safely, consider marking the closure `move`"
458     // ),
459     // ```
460
461     // Empty
462 }
463
464 #[stable(feature = "rust1", since = "1.0.0")]
465 impl<T: ?Sized> !Sync for *const T { }
466 #[stable(feature = "rust1", since = "1.0.0")]
467 impl<T: ?Sized> !Sync for *mut T { }
468
469 macro_rules! impls{
470     ($t: ident) => (
471         #[stable(feature = "rust1", since = "1.0.0")]
472         impl<T:?Sized> Hash for $t<T> {
473             #[inline]
474             fn hash<H: Hasher>(&self, _: &mut H) {
475             }
476         }
477
478         #[stable(feature = "rust1", since = "1.0.0")]
479         impl<T:?Sized> cmp::PartialEq for $t<T> {
480             fn eq(&self, _other: &$t<T>) -> bool {
481                 true
482             }
483         }
484
485         #[stable(feature = "rust1", since = "1.0.0")]
486         impl<T:?Sized> cmp::Eq for $t<T> {
487         }
488
489         #[stable(feature = "rust1", since = "1.0.0")]
490         impl<T:?Sized> cmp::PartialOrd for $t<T> {
491             fn partial_cmp(&self, _other: &$t<T>) -> Option<cmp::Ordering> {
492                 Option::Some(cmp::Ordering::Equal)
493             }
494         }
495
496         #[stable(feature = "rust1", since = "1.0.0")]
497         impl<T:?Sized> cmp::Ord for $t<T> {
498             fn cmp(&self, _other: &$t<T>) -> cmp::Ordering {
499                 cmp::Ordering::Equal
500             }
501         }
502
503         #[stable(feature = "rust1", since = "1.0.0")]
504         impl<T:?Sized> Copy for $t<T> { }
505
506         #[stable(feature = "rust1", since = "1.0.0")]
507         impl<T:?Sized> Clone for $t<T> {
508             fn clone(&self) -> $t<T> {
509                 $t
510             }
511         }
512
513         #[stable(feature = "rust1", since = "1.0.0")]
514         impl<T:?Sized> Default for $t<T> {
515             fn default() -> $t<T> {
516                 $t
517             }
518         }
519
520         #[cfg(not(bootstrap))]
521         #[unstable(feature = "structural_match", issue = "31434")]
522         impl<T: ?Sized> StructuralPartialEq for $t<T> { }
523
524         #[cfg(not(bootstrap))]
525         #[unstable(feature = "structural_match", issue = "31434")]
526         impl<T: ?Sized> StructuralEq for $t<T> { }
527         )
528 }
529
530 /// Zero-sized type used to mark things that "act like" they own a `T`.
531 ///
532 /// Adding a `PhantomData<T>` field to your type tells the compiler that your
533 /// type acts as though it stores a value of type `T`, even though it doesn't
534 /// really. This information is used when computing certain safety properties.
535 ///
536 /// For a more in-depth explanation of how to use `PhantomData<T>`, please see
537 /// [the Nomicon](../../nomicon/phantom-data.html).
538 ///
539 /// # A ghastly note ðŸ‘»ðŸ‘»ðŸ‘»
540 ///
541 /// Though they both have scary names, `PhantomData` and 'phantom types' are
542 /// related, but not identical. A phantom type parameter is simply a type
543 /// parameter which is never used. In Rust, this often causes the compiler to
544 /// complain, and the solution is to add a "dummy" use by way of `PhantomData`.
545 ///
546 /// # Examples
547 ///
548 /// ## Unused lifetime parameters
549 ///
550 /// Perhaps the most common use case for `PhantomData` is a struct that has an
551 /// unused lifetime parameter, typically as part of some unsafe code. For
552 /// example, here is a struct `Slice` that has two pointers of type `*const T`,
553 /// presumably pointing into an array somewhere:
554 ///
555 /// ```compile_fail,E0392
556 /// struct Slice<'a, T> {
557 ///     start: *const T,
558 ///     end: *const T,
559 /// }
560 /// ```
561 ///
562 /// The intention is that the underlying data is only valid for the
563 /// lifetime `'a`, so `Slice` should not outlive `'a`. However, this
564 /// intent is not expressed in the code, since there are no uses of
565 /// the lifetime `'a` and hence it is not clear what data it applies
566 /// to. We can correct this by telling the compiler to act *as if* the
567 /// `Slice` struct contained a reference `&'a T`:
568 ///
569 /// ```
570 /// use std::marker::PhantomData;
571 ///
572 /// # #[allow(dead_code)]
573 /// struct Slice<'a, T: 'a> {
574 ///     start: *const T,
575 ///     end: *const T,
576 ///     phantom: PhantomData<&'a T>,
577 /// }
578 /// ```
579 ///
580 /// This also in turn requires the annotation `T: 'a`, indicating
581 /// that any references in `T` are valid over the lifetime `'a`.
582 ///
583 /// When initializing a `Slice` you simply provide the value
584 /// `PhantomData` for the field `phantom`:
585 ///
586 /// ```
587 /// # #![allow(dead_code)]
588 /// # use std::marker::PhantomData;
589 /// # struct Slice<'a, T: 'a> {
590 /// #     start: *const T,
591 /// #     end: *const T,
592 /// #     phantom: PhantomData<&'a T>,
593 /// # }
594 /// fn borrow_vec<T>(vec: &Vec<T>) -> Slice<'_, T> {
595 ///     let ptr = vec.as_ptr();
596 ///     Slice {
597 ///         start: ptr,
598 ///         end: unsafe { ptr.add(vec.len()) },
599 ///         phantom: PhantomData,
600 ///     }
601 /// }
602 /// ```
603 ///
604 /// ## Unused type parameters
605 ///
606 /// It sometimes happens that you have unused type parameters which
607 /// indicate what type of data a struct is "tied" to, even though that
608 /// data is not actually found in the struct itself. Here is an
609 /// example where this arises with [FFI]. The foreign interface uses
610 /// handles of type `*mut ()` to refer to Rust values of different
611 /// types. We track the Rust type using a phantom type parameter on
612 /// the struct `ExternalResource` which wraps a handle.
613 ///
614 /// [FFI]: ../../book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
615 ///
616 /// ```
617 /// # #![allow(dead_code)]
618 /// # trait ResType { }
619 /// # struct ParamType;
620 /// # mod foreign_lib {
621 /// #     pub fn new(_: usize) -> *mut () { 42 as *mut () }
622 /// #     pub fn do_stuff(_: *mut (), _: usize) {}
623 /// # }
624 /// # fn convert_params(_: ParamType) -> usize { 42 }
625 /// use std::marker::PhantomData;
626 /// use std::mem;
627 ///
628 /// struct ExternalResource<R> {
629 ///    resource_handle: *mut (),
630 ///    resource_type: PhantomData<R>,
631 /// }
632 ///
633 /// impl<R: ResType> ExternalResource<R> {
634 ///     fn new() -> ExternalResource<R> {
635 ///         let size_of_res = mem::size_of::<R>();
636 ///         ExternalResource {
637 ///             resource_handle: foreign_lib::new(size_of_res),
638 ///             resource_type: PhantomData,
639 ///         }
640 ///     }
641 ///
642 ///     fn do_stuff(&self, param: ParamType) {
643 ///         let foreign_params = convert_params(param);
644 ///         foreign_lib::do_stuff(self.resource_handle, foreign_params);
645 ///     }
646 /// }
647 /// ```
648 ///
649 /// ## Ownership and the drop check
650 ///
651 /// Adding a field of type `PhantomData<T>` indicates that your
652 /// type owns data of type `T`. This in turn implies that when your
653 /// type is dropped, it may drop one or more instances of the type
654 /// `T`. This has bearing on the Rust compiler's [drop check]
655 /// analysis.
656 ///
657 /// If your struct does not in fact *own* the data of type `T`, it is
658 /// better to use a reference type, like `PhantomData<&'a T>`
659 /// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so
660 /// as not to indicate ownership.
661 ///
662 /// [drop check]: ../../nomicon/dropck.html
663 #[lang = "phantom_data"]
664 #[structural_match]
665 #[stable(feature = "rust1", since = "1.0.0")]
666 pub struct PhantomData<T:?Sized>;
667
668 impls! { PhantomData }
669
670 mod impls {
671     #[stable(feature = "rust1", since = "1.0.0")]
672     unsafe impl<T: Sync + ?Sized> Send for &T {}
673     #[stable(feature = "rust1", since = "1.0.0")]
674     unsafe impl<T: Send + ?Sized> Send for &mut T {}
675 }
676
677 /// Compiler-internal trait used to determine whether a type contains
678 /// any `UnsafeCell` internally, but not through an indirection.
679 /// This affects, for example, whether a `static` of that type is
680 /// placed in read-only static memory or writable static memory.
681 #[lang = "freeze"]
682 pub(crate) unsafe auto trait Freeze {}
683
684 impl<T: ?Sized> !Freeze for UnsafeCell<T> {}
685 unsafe impl<T: ?Sized> Freeze for PhantomData<T> {}
686 unsafe impl<T: ?Sized> Freeze for *const T {}
687 unsafe impl<T: ?Sized> Freeze for *mut T {}
688 unsafe impl<T: ?Sized> Freeze for &T {}
689 unsafe impl<T: ?Sized> Freeze for &mut T {}
690
691 /// Types that can be safely moved after being pinned.
692 ///
693 /// Since Rust itself has no notion of immovable types, and considers moves
694 /// (e.g., through assignment or [`mem::replace`]) to always be safe,
695 /// this trait cannot prevent types from moving by itself.
696 ///
697 /// Instead it is used to prevent moves through the type system,
698 /// by controlling the behavior of pointers `P` wrapped in the [`Pin<P>`] wrapper,
699 /// which "pin" the type in place by not allowing it to be moved out of them.
700 /// See the [`pin module`] documentation for more information on pinning.
701 ///
702 /// Implementing this trait lifts the restrictions of pinning off a type,
703 /// which then allows it to move out with functions such as [`mem::replace`].
704 ///
705 /// `Unpin` has no consequence at all for non-pinned data. In particular,
706 /// [`mem::replace`] happily moves `!Unpin` data (it works for any `&mut T`, not
707 /// just when `T: Unpin`). However, you cannot use
708 /// [`mem::replace`] on data wrapped inside a [`Pin<P>`] because you cannot get the
709 /// `&mut T` you need for that, and *that* is what makes this system work.
710 ///
711 /// So this, for example, can only be done on types implementing `Unpin`:
712 ///
713 /// ```rust
714 /// use std::mem;
715 /// use std::pin::Pin;
716 ///
717 /// let mut string = "this".to_string();
718 /// let mut pinned_string = Pin::new(&mut string);
719 ///
720 /// // We need a mutable reference to call `mem::replace`.
721 /// // We can obtain such a reference by (implicitly) invoking `Pin::deref_mut`,
722 /// // but that is only possible because `String` implements `Unpin`.
723 /// mem::replace(&mut *pinned_string, "other".to_string());
724 /// ```
725 ///
726 /// This trait is automatically implemented for almost every type.
727 ///
728 /// [`mem::replace`]: ../../std/mem/fn.replace.html
729 /// [`Pin<P>`]: ../pin/struct.Pin.html
730 /// [`pin module`]: ../../std/pin/index.html
731 #[stable(feature = "pin", since = "1.33.0")]
732 #[lang = "unpin"]
733 pub auto trait Unpin {}
734
735 /// A marker type which does not implement `Unpin`.
736 ///
737 /// If a type contains a `PhantomPinned`, it will not implement `Unpin` by default.
738 #[stable(feature = "pin", since = "1.33.0")]
739 #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
740 pub struct PhantomPinned;
741
742 #[stable(feature = "pin", since = "1.33.0")]
743 impl !Unpin for PhantomPinned {}
744
745 #[stable(feature = "pin", since = "1.33.0")]
746 impl<'a, T: ?Sized + 'a> Unpin for &'a T {}
747
748 #[stable(feature = "pin", since = "1.33.0")]
749 impl<'a, T: ?Sized + 'a> Unpin for &'a mut T {}
750
751 #[stable(feature = "pin_raw", since = "1.38.0")]
752 impl<T: ?Sized> Unpin for *const T {}
753
754 #[stable(feature = "pin_raw", since = "1.38.0")]
755 impl<T: ?Sized> Unpin for *mut T {}
756
757 /// Implementations of `Copy` for primitive types.
758 ///
759 /// Implementations that cannot be described in Rust
760 /// are implemented in `SelectionContext::copy_clone_conditions()` in librustc.
761 mod copy_impls {
762
763     use super::Copy;
764
765     macro_rules! impl_copy {
766         ($($t:ty)*) => {
767             $(
768                 #[stable(feature = "rust1", since = "1.0.0")]
769                 impl Copy for $t {}
770             )*
771         }
772     }
773
774     impl_copy! {
775         usize u8 u16 u32 u64 u128
776         isize i8 i16 i32 i64 i128
777         f32 f64
778         bool char
779     }
780
781     #[unstable(feature = "never_type", issue = "35121")]
782     impl Copy for ! {}
783
784     #[stable(feature = "rust1", since = "1.0.0")]
785     impl<T: ?Sized> Copy for *const T {}
786
787     #[stable(feature = "rust1", since = "1.0.0")]
788     impl<T: ?Sized> Copy for *mut T {}
789
790     // Shared references can be copied, but mutable references *cannot*!
791     #[stable(feature = "rust1", since = "1.0.0")]
792     impl<T: ?Sized> Copy for &T {}
793
794 }