]> git.lizzy.rs Git - minetest.git/blob - src/collision.cpp
Little collision.cpp cleanups
[minetest.git] / src / collision.cpp
1 /*
2 Minetest
3 Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU Lesser General Public License as published by
7 the Free Software Foundation; either version 2.1 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 GNU Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public License along
16 with this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "collision.h"
21 #include "mapblock.h"
22 #include "map.h"
23 #include "nodedef.h"
24 #include "gamedef.h"
25 #include "log.h"
26 #include "environment.h"
27 #include "serverobject.h"
28 #include <vector>
29 #include <set>
30 #include "util/timetaker.h"
31 #include "profiler.h"
32
33 // float error is 10 - 9.96875 = 0.03125
34 //#define COLL_ZERO 0.032 // broken unit tests
35 #define COLL_ZERO 0
36
37 // Helper function:
38 // Checks for collision of a moving aabbox with a static aabbox
39 // Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
40 // The time after which the collision occurs is stored in dtime.
41 int axisAlignedCollision(
42                 const aabb3f &staticbox, const aabb3f &movingbox,
43                 const v3f &speed, f32 d, f32 *dtime)
44 {
45         //TimeTaker tt("axisAlignedCollision");
46
47         f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X) - COLL_ZERO;     // reduce box size for solve collision stuck (flying sand)
48         f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); // - COLL_ZERO; // Y - no sense for falling, but maybe try later
49         f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z) - COLL_ZERO;
50
51         aabb3f relbox(
52                         movingbox.MinEdge.X - staticbox.MinEdge.X,
53                         movingbox.MinEdge.Y - staticbox.MinEdge.Y,
54                         movingbox.MinEdge.Z - staticbox.MinEdge.Z,
55                         movingbox.MaxEdge.X - staticbox.MinEdge.X,
56                         movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
57                         movingbox.MaxEdge.Z - staticbox.MinEdge.Z
58         );
59
60         if(speed.X > 0) // Check for collision with X- plane
61         {
62                 if (relbox.MaxEdge.X <= d) {
63                         *dtime = -relbox.MaxEdge.X / speed.X;
64                         if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
65                                         (relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
66                                         (relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
67                                         (relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
68                                 return 0;
69                 }
70                 else if(relbox.MinEdge.X > xsize)
71                 {
72                         return -1;
73                 }
74         }
75         else if(speed.X < 0) // Check for collision with X+ plane
76         {
77                 if (relbox.MinEdge.X >= xsize - d) {
78                         *dtime = (xsize - relbox.MinEdge.X) / speed.X;
79                         if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
80                                         (relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
81                                         (relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
82                                         (relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
83                                 return 0;
84                 }
85                 else if(relbox.MaxEdge.X < 0)
86                 {
87                         return -1;
88                 }
89         }
90
91         // NO else if here
92
93         if(speed.Y > 0) // Check for collision with Y- plane
94         {
95                 if (relbox.MaxEdge.Y <= d) {
96                         *dtime = -relbox.MaxEdge.Y / speed.Y;
97                         if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
98                                         (relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
99                                         (relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
100                                         (relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
101                                 return 1;
102                 }
103                 else if(relbox.MinEdge.Y > ysize)
104                 {
105                         return -1;
106                 }
107         }
108         else if(speed.Y < 0) // Check for collision with Y+ plane
109         {
110                 if (relbox.MinEdge.Y >= ysize - d) {
111                         *dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
112                         if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
113                                         (relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
114                                         (relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
115                                         (relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
116                                 return 1;
117                 }
118                 else if(relbox.MaxEdge.Y < 0)
119                 {
120                         return -1;
121                 }
122         }
123
124         // NO else if here
125
126         if(speed.Z > 0) // Check for collision with Z- plane
127         {
128                 if (relbox.MaxEdge.Z <= d) {
129                         *dtime = -relbox.MaxEdge.Z / speed.Z;
130                         if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
131                                         (relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
132                                         (relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
133                                         (relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
134                                 return 2;
135                 }
136                 //else if(relbox.MinEdge.Z > zsize)
137                 //{
138                 //      return -1;
139                 //}
140         }
141         else if(speed.Z < 0) // Check for collision with Z+ plane
142         {
143                 if (relbox.MinEdge.Z >= zsize - d) {
144                         *dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
145                         if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
146                                         (relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
147                                         (relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
148                                         (relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
149                                 return 2;
150                 }
151                 //else if(relbox.MaxEdge.Z < 0)
152                 //{
153                 //      return -1;
154                 //}
155         }
156
157         return -1;
158 }
159
160 // Helper function:
161 // Checks if moving the movingbox up by the given distance would hit a ceiling.
162 bool wouldCollideWithCeiling(
163                 const std::vector<aabb3f> &staticboxes,
164                 const aabb3f &movingbox,
165                 f32 y_increase, f32 d)
166 {
167         //TimeTaker tt("wouldCollideWithCeiling");
168
169         assert(y_increase >= 0);        // pre-condition
170
171         for(std::vector<aabb3f>::const_iterator
172                         i = staticboxes.begin();
173                         i != staticboxes.end(); ++i)
174         {
175                 const aabb3f& staticbox = *i;
176                 if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
177                                 (movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
178                                 (movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
179                                 (movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
180                                 (movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
181                                 (movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
182                         return true;
183         }
184
185         return false;
186 }
187
188
189 collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
190                 f32 pos_max_d, const aabb3f &box_0,
191                 f32 stepheight, f32 dtime,
192                 v3f *pos_f, v3f *speed_f,
193                 v3f accel_f, ActiveObject *self,
194                 bool collideWithObjects)
195 {
196         static bool time_notification_done = false;
197         Map *map = &env->getMap();
198         //TimeTaker tt("collisionMoveSimple");
199         ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
200
201         collisionMoveResult result;
202
203         /*
204                 Calculate new velocity
205         */
206         if (dtime > 0.5) {
207                 if (!time_notification_done) {
208                         time_notification_done = true;
209                         infostream << "collisionMoveSimple: maximum step interval exceeded,"
210                                         " lost movement details!"<<std::endl;
211                 }
212                 dtime = 0.5;
213         } else {
214                 time_notification_done = false;
215         }
216         *speed_f += accel_f * dtime;
217
218         // If there is no speed, there are no collisions
219         if (speed_f->getLength() == 0)
220                 return result;
221
222         // Limit speed for avoiding hangs
223         speed_f->Y = rangelim(speed_f->Y, -5000, 5000);
224         speed_f->X = rangelim(speed_f->X, -5000, 5000);
225         speed_f->Z = rangelim(speed_f->Z, -5000, 5000);
226
227         /*
228                 Collect node boxes in movement range
229         */
230         std::vector<aabb3f> cboxes;
231         std::vector<bool> is_unloaded;
232         std::vector<bool> is_step_up;
233         std::vector<bool> is_object;
234         std::vector<int> bouncy_values;
235         std::vector<v3s16> node_positions;
236         {
237         //TimeTaker tt2("collisionMoveSimple collect boxes");
238         ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
239
240         v3s16 oldpos_i = floatToInt(*pos_f, BS);
241         v3s16 newpos_i = floatToInt(*pos_f + *speed_f * dtime, BS);
242         s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
243         s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
244         s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
245         s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
246         s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
247         s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
248
249         bool any_position_valid = false;
250
251         // The order is important here, must be y first
252         for(s16 y = max_y; y >= min_y; y--)
253         for(s16 x = min_x; x <= max_x; x++)
254         for(s16 z = min_z; z <= max_z; z++)
255         {
256                 v3s16 p(x,y,z);
257
258                 bool is_position_valid;
259                 MapNode n = map->getNodeNoEx(p, &is_position_valid);
260
261                 if (is_position_valid) {
262                         // Object collides into walkable nodes
263
264                         any_position_valid = true;
265                         const ContentFeatures &f = gamedef->getNodeDefManager()->get(n);
266                         if(f.walkable == false)
267                                 continue;
268                         int n_bouncy_value = itemgroup_get(f.groups, "bouncy");
269
270                         std::vector<aabb3f> nodeboxes = n.getCollisionBoxes(gamedef->ndef());
271                         for(std::vector<aabb3f>::iterator
272                                         i = nodeboxes.begin();
273                                         i != nodeboxes.end(); ++i)
274                         {
275                                 aabb3f box = *i;
276                                 box.MinEdge += v3f(x, y, z)*BS;
277                                 box.MaxEdge += v3f(x, y, z)*BS;
278                                 cboxes.push_back(box);
279                                 is_unloaded.push_back(false);
280                                 is_step_up.push_back(false);
281                                 bouncy_values.push_back(n_bouncy_value);
282                                 node_positions.push_back(p);
283                                 is_object.push_back(false);
284                         }
285                 }
286                 else {
287                         // Collide with unloaded nodes
288                         aabb3f box = getNodeBox(p, BS);
289                         cboxes.push_back(box);
290                         is_unloaded.push_back(true);
291                         is_step_up.push_back(false);
292                         bouncy_values.push_back(0);
293                         node_positions.push_back(p);
294                         is_object.push_back(false);
295                 }
296         }
297
298         // Do not move if world has not loaded yet, since custom node boxes
299         // are not available for collision detection.
300         if (!any_position_valid)
301                 return result;
302
303         } // tt2
304
305         if(collideWithObjects)
306         {
307                 ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG);
308                 //TimeTaker tt3("collisionMoveSimple collect object boxes");
309
310                 /* add object boxes to cboxes */
311
312                 std::vector<ActiveObject*> objects;
313 #ifndef SERVER
314                 ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
315                 if (c_env != 0) {
316                         f32 distance = speed_f->getLength();
317                         std::vector<DistanceSortedActiveObject> clientobjects;
318                         c_env->getActiveObjects(*pos_f, distance * 1.5, clientobjects);
319                         for (size_t i=0; i < clientobjects.size(); i++) {
320                                 if ((self == 0) || (self != clientobjects[i].obj)) {
321                                         objects.push_back((ActiveObject*)clientobjects[i].obj);
322                                 }
323                         }
324                 }
325                 else
326 #endif
327                 {
328                         ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
329                         if (s_env != 0) {
330                                 f32 distance = speed_f->getLength();
331                                 std::vector<u16> s_objects;
332                                 s_env->getObjectsInsideRadius(s_objects, *pos_f, distance * 1.5);
333                                 for (std::vector<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); ++iter) {
334                                         ServerActiveObject *current = s_env->getActiveObject(*iter);
335                                         if ((self == 0) || (self != current)) {
336                                                 objects.push_back((ActiveObject*)current);
337                                         }
338                                 }
339                         }
340                 }
341
342                 for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
343                                 iter != objects.end(); ++iter) {
344                         ActiveObject *object = *iter;
345
346                         if (object != NULL) {
347                                 aabb3f object_collisionbox;
348                                 if (object->getCollisionBox(&object_collisionbox) &&
349                                                 object->collideWithObjects()) {
350                                         cboxes.push_back(object_collisionbox);
351                                         is_unloaded.push_back(false);
352                                         is_step_up.push_back(false);
353                                         bouncy_values.push_back(0);
354                                         node_positions.push_back(v3s16(0,0,0));
355                                         is_object.push_back(true);
356                                 }
357                         }
358                 }
359         } //tt3
360
361         assert(cboxes.size() == is_unloaded.size());    // post-condition
362         assert(cboxes.size() == is_step_up.size());     // post-condition
363         assert(cboxes.size() == bouncy_values.size());  // post-condition
364         assert(cboxes.size() == node_positions.size()); // post-condition
365         assert(cboxes.size() == is_object.size());      // post-condition
366
367         /*
368                 Collision detection
369         */
370
371         /*
372                 Collision uncertainty radius
373                 Make it a bit larger than the maximum distance of movement
374         */
375         f32 d = pos_max_d * 1.1;
376         // A fairly large value in here makes moving smoother
377         //f32 d = 0.15*BS;
378
379         // This should always apply, otherwise there are glitches
380         assert(d > pos_max_d);  // invariant
381
382         int loopcount = 0;
383
384         while(dtime > BS * 1e-10) {
385                 //TimeTaker tt3("collisionMoveSimple dtime loop");
386                 ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
387
388                 // Avoid infinite loop
389                 loopcount++;
390                 if (loopcount >= 100) {
391                         warningstream << "collisionMoveSimple: Loop count exceeded, aborting to avoid infiniite loop" << std::endl;
392                         break;
393                 }
394
395                 aabb3f movingbox = box_0;
396                 movingbox.MinEdge += *pos_f;
397                 movingbox.MaxEdge += *pos_f;
398
399                 int nearest_collided = -1;
400                 f32 nearest_dtime = dtime;
401                 int nearest_boxindex = -1;
402
403                 /*
404                         Go through every nodebox, find nearest collision
405                 */
406                 for (u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) {
407                         // Find nearest collision of the two boxes (raytracing-like)
408                         f32 dtime_tmp;
409                         int collided = axisAlignedCollision(
410                                         cboxes[boxindex], movingbox, *speed_f, d, &dtime_tmp);
411
412                         // Ignore if already stepped up this nodebox.
413                         if (is_step_up[boxindex]) {
414                                 pos_f->Y += (cboxes[boxindex].MaxEdge.Y - movingbox.MinEdge.Y);
415                                 continue;
416                         }
417
418                         if (collided == -1 || dtime_tmp >= nearest_dtime)
419                                 continue;
420
421                         nearest_dtime = dtime_tmp;
422                         nearest_collided = collided;
423                         nearest_boxindex = boxindex;
424                 }
425
426                 if (nearest_collided == -1) {
427                         // No collision with any collision box.
428                         *pos_f += *speed_f * dtime;
429                         dtime = 0;  // Set to 0 to avoid "infinite" loop due to small FP numbers
430                 } else {
431                         // Otherwise, a collision occurred.
432
433                         const aabb3f& cbox = cboxes[nearest_boxindex];
434                         // Check for stairs.
435                         bool step_up = (nearest_collided != 1) && // must not be Y direction
436                                         (movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
437                                         (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
438                                         (!wouldCollideWithCeiling(cboxes, movingbox,
439                                                         cbox.MaxEdge.Y - movingbox.MinEdge.Y,
440                                                         d));
441
442                         // Get bounce multiplier
443                         bool bouncy = (bouncy_values[nearest_boxindex] >= 1);
444                         float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0;
445
446                         // Move to the point of collision and reduce dtime by nearest_dtime
447                         if (nearest_dtime < 0) {
448                                 // Handle negative nearest_dtime (can be caused by the d allowance)
449                                 if (!step_up) {
450                                         if (nearest_collided == 0)
451                                                 pos_f->X += speed_f->X * nearest_dtime;
452                                         if (nearest_collided == 1)
453                                                 pos_f->Y += speed_f->Y * nearest_dtime;
454                                         if (nearest_collided == 2)
455                                                 pos_f->Z += speed_f->Z * nearest_dtime;
456                                 }
457                         } else {
458                                 *pos_f += *speed_f * nearest_dtime;
459                                 dtime -= nearest_dtime;
460                         }
461
462                         bool is_collision = true;
463                         if (is_unloaded[nearest_boxindex])
464                                 is_collision = false;
465
466                         CollisionInfo info;
467                         if (is_object[nearest_boxindex]) {
468                                 info.type = COLLISION_OBJECT;
469                                 result.standing_on_object = true;
470                         } else {
471                                 info.type = COLLISION_NODE;
472                         }
473
474                         info.node_p = node_positions[nearest_boxindex];
475                         info.bouncy = bouncy;
476                         info.old_speed = *speed_f;
477
478                         // Set the speed component that caused the collision to zero
479                         if (step_up) {
480                                 // Special case: Handle stairs
481                                 is_step_up[nearest_boxindex] = true;
482                                 is_collision = false;
483                         } else if(nearest_collided == 0) { // X
484                                 if (fabs(speed_f->X) > BS * 3)
485                                         speed_f->X *= bounce;
486                                 else
487                                         speed_f->X = 0;
488                                 result.collides = true;
489                                 result.collides_xz = true;
490                         } else if(nearest_collided == 1) { // Y
491                                 if (fabs(speed_f->Y) > BS * 3) {
492                                         speed_f->Y *= bounce;
493                                 } else {
494                                         speed_f->Y = 0;
495                                         result.touching_ground = true;
496                                 }
497                                 result.collides = true;
498                         } else if(nearest_collided == 2) { // Z
499                                 if (fabs(speed_f->Z) > BS * 3)
500                                         speed_f->Z *= bounce;
501                                 else
502                                         speed_f->Z = 0;
503                                 result.collides = true;
504                                 result.collides_xz = true;
505                         }
506
507                         info.new_speed = *speed_f;
508                         if (info.new_speed.getDistanceFrom(info.old_speed) < 0.1 * BS)
509                                 is_collision = false;
510
511                         if (is_collision) {
512                                 result.collisions.push_back(info);
513                         }
514                 }
515         }
516
517         return result;
518 }