]> git.lizzy.rs Git - minetest.git/blob - src/collision.cpp
Use std::vector instead of std::set for Environment::getObjectsInsideRadius
[minetest.git] / src / collision.cpp
1 /*
2 Minetest
3 Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU Lesser General Public License as published by
7 the Free Software Foundation; either version 2.1 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 GNU Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public License along
16 with this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "collision.h"
21 #include "mapblock.h"
22 #include "map.h"
23 #include "nodedef.h"
24 #include "gamedef.h"
25 #include "log.h"
26 #include "environment.h"
27 #include "serverobject.h"
28 #include <vector>
29 #include <set>
30 #include "util/timetaker.h"
31 #include "profiler.h"
32
33 // float error is 10 - 9.96875 = 0.03125
34 //#define COLL_ZERO 0.032 // broken unit tests
35 #define COLL_ZERO 0
36
37 // Helper function:
38 // Checks for collision of a moving aabbox with a static aabbox
39 // Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
40 // The time after which the collision occurs is stored in dtime.
41 int axisAlignedCollision(
42                 const aabb3f &staticbox, const aabb3f &movingbox,
43                 const v3f &speed, f32 d, f32 &dtime)
44 {
45         //TimeTaker tt("axisAlignedCollision");
46
47         f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X) - COLL_ZERO;     // reduce box size for solve collision stuck (flying sand)
48         f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); // - COLL_ZERO; // Y - no sense for falling, but maybe try later
49         f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z) - COLL_ZERO;
50
51         aabb3f relbox(
52                         movingbox.MinEdge.X - staticbox.MinEdge.X,
53                         movingbox.MinEdge.Y - staticbox.MinEdge.Y,
54                         movingbox.MinEdge.Z - staticbox.MinEdge.Z,
55                         movingbox.MaxEdge.X - staticbox.MinEdge.X,
56                         movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
57                         movingbox.MaxEdge.Z - staticbox.MinEdge.Z
58         );
59
60         if(speed.X > 0) // Check for collision with X- plane
61         {
62                 if(relbox.MaxEdge.X <= d)
63                 {
64                         dtime = - relbox.MaxEdge.X / speed.X;
65                         if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
66                                         (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO) &&
67                                         (relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
68                                         (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
69                                 return 0;
70                 }
71                 else if(relbox.MinEdge.X > xsize)
72                 {
73                         return -1;
74                 }
75         }
76         else if(speed.X < 0) // Check for collision with X+ plane
77         {
78                 if(relbox.MinEdge.X >= xsize - d)
79                 {
80                         dtime = (xsize - relbox.MinEdge.X) / speed.X;
81                         if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
82                                         (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO) &&
83                                         (relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
84                                         (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
85                                 return 0;
86                 }
87                 else if(relbox.MaxEdge.X < 0)
88                 {
89                         return -1;
90                 }
91         }
92
93         // NO else if here
94
95         if(speed.Y > 0) // Check for collision with Y- plane
96         {
97                 if(relbox.MaxEdge.Y <= d)
98                 {
99                         dtime = - relbox.MaxEdge.Y / speed.Y;
100                         if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
101                                         (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
102                                         (relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
103                                         (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
104                                 return 1;
105                 }
106                 else if(relbox.MinEdge.Y > ysize)
107                 {
108                         return -1;
109                 }
110         }
111         else if(speed.Y < 0) // Check for collision with Y+ plane
112         {
113                 if(relbox.MinEdge.Y >= ysize - d)
114                 {
115                         dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
116                         if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
117                                         (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
118                                         (relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
119                                         (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
120                                 return 1;
121                 }
122                 else if(relbox.MaxEdge.Y < 0)
123                 {
124                         return -1;
125                 }
126         }
127
128         // NO else if here
129
130         if(speed.Z > 0) // Check for collision with Z- plane
131         {
132                 if(relbox.MaxEdge.Z <= d)
133                 {
134                         dtime = - relbox.MaxEdge.Z / speed.Z;
135                         if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
136                                         (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
137                                         (relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
138                                         (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO))
139                                 return 2;
140                 }
141                 //else if(relbox.MinEdge.Z > zsize)
142                 //{
143                 //      return -1;
144                 //}
145         }
146         else if(speed.Z < 0) // Check for collision with Z+ plane
147         {
148                 if(relbox.MinEdge.Z >= zsize - d)
149                 {
150                         dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
151                         if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
152                                         (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
153                                         (relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
154                                         (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO))
155                                 return 2;
156                 }
157                 //else if(relbox.MaxEdge.Z < 0)
158                 //{
159                 //      return -1;
160                 //}
161         }
162
163         return -1;
164 }
165
166 // Helper function:
167 // Checks if moving the movingbox up by the given distance would hit a ceiling.
168 bool wouldCollideWithCeiling(
169                 const std::vector<aabb3f> &staticboxes,
170                 const aabb3f &movingbox,
171                 f32 y_increase, f32 d)
172 {
173         //TimeTaker tt("wouldCollideWithCeiling");
174
175         assert(y_increase >= 0);        // pre-condition
176
177         for(std::vector<aabb3f>::const_iterator
178                         i = staticboxes.begin();
179                         i != staticboxes.end(); i++)
180         {
181                 const aabb3f& staticbox = *i;
182                 if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
183                                 (movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
184                                 (movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
185                                 (movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
186                                 (movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
187                                 (movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
188                         return true;
189         }
190
191         return false;
192 }
193
194
195 collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
196                 f32 pos_max_d, const aabb3f &box_0,
197                 f32 stepheight, f32 dtime,
198                 v3f &pos_f, v3f &speed_f,
199                 v3f &accel_f,ActiveObject* self,
200                 bool collideWithObjects)
201 {
202         Map *map = &env->getMap();
203         //TimeTaker tt("collisionMoveSimple");
204     ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
205
206         collisionMoveResult result;
207
208         /*
209                 Calculate new velocity
210         */
211         if( dtime > 0.5 ) {
212                 infostream<<"collisionMoveSimple: WARNING: maximum step interval exceeded, lost movement details!"<<std::endl;
213                 dtime = 0.5;
214         }
215         speed_f += accel_f * dtime;
216
217         // If there is no speed, there are no collisions
218         if(speed_f.getLength() == 0)
219                 return result;
220
221         // Limit speed for avoiding hangs
222         speed_f.Y=rangelim(speed_f.Y,-5000,5000);
223         speed_f.X=rangelim(speed_f.X,-5000,5000);
224         speed_f.Z=rangelim(speed_f.Z,-5000,5000);
225
226         /*
227                 Collect node boxes in movement range
228         */
229         std::vector<aabb3f> cboxes;
230         std::vector<bool> is_unloaded;
231         std::vector<bool> is_step_up;
232         std::vector<bool> is_object;
233         std::vector<int> bouncy_values;
234         std::vector<v3s16> node_positions;
235         {
236         //TimeTaker tt2("collisionMoveSimple collect boxes");
237     ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
238
239         v3s16 oldpos_i = floatToInt(pos_f, BS);
240         v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS);
241         s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
242         s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
243         s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
244         s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
245         s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
246         s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
247
248         for(s16 x = min_x; x <= max_x; x++)
249         for(s16 y = min_y; y <= max_y; y++)
250         for(s16 z = min_z; z <= max_z; z++)
251         {
252                 v3s16 p(x,y,z);
253
254                 bool is_position_valid;
255                 MapNode n = map->getNodeNoEx(p, &is_position_valid);
256
257                 if (is_position_valid) {
258                         // Object collides into walkable nodes
259
260                         const ContentFeatures &f = gamedef->getNodeDefManager()->get(n);
261                         if(f.walkable == false)
262                                 continue;
263                         int n_bouncy_value = itemgroup_get(f.groups, "bouncy");
264
265                         std::vector<aabb3f> nodeboxes = n.getCollisionBoxes(gamedef->ndef());
266                         for(std::vector<aabb3f>::iterator
267                                         i = nodeboxes.begin();
268                                         i != nodeboxes.end(); i++)
269                         {
270                                 aabb3f box = *i;
271                                 box.MinEdge += v3f(x, y, z)*BS;
272                                 box.MaxEdge += v3f(x, y, z)*BS;
273                                 cboxes.push_back(box);
274                                 is_unloaded.push_back(false);
275                                 is_step_up.push_back(false);
276                                 bouncy_values.push_back(n_bouncy_value);
277                                 node_positions.push_back(p);
278                                 is_object.push_back(false);
279                         }
280                 }
281                 else {
282                         // Collide with unloaded nodes
283                         aabb3f box = getNodeBox(p, BS);
284                         cboxes.push_back(box);
285                         is_unloaded.push_back(true);
286                         is_step_up.push_back(false);
287                         bouncy_values.push_back(0);
288                         node_positions.push_back(p);
289                         is_object.push_back(false);
290                 }
291         }
292         } // tt2
293
294         if(collideWithObjects)
295         {
296                 ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG);
297                 //TimeTaker tt3("collisionMoveSimple collect object boxes");
298
299                 /* add object boxes to cboxes */
300
301
302                 std::vector<ActiveObject*> objects;
303 #ifndef SERVER
304                 ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
305                 if (c_env != 0) {
306                         f32 distance = speed_f.getLength();
307                         std::vector<DistanceSortedActiveObject> clientobjects;
308                         c_env->getActiveObjects(pos_f,distance * 1.5,clientobjects);
309                         for (size_t i=0; i < clientobjects.size(); i++) {
310                                 if ((self == 0) || (self != clientobjects[i].obj)) {
311                                         objects.push_back((ActiveObject*)clientobjects[i].obj);
312                                 }
313                         }
314                 }
315                 else
316 #endif
317                 {
318                         ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
319                         if (s_env != 0) {
320                                 f32 distance = speed_f.getLength();
321                                 std::vector<u16> s_objects;
322                                 s_env->getObjectsInsideRadius(s_objects, pos_f, distance * 1.5);
323                                 for (std::vector<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); iter++) {
324                                         ServerActiveObject *current = s_env->getActiveObject(*iter);
325                                         if ((self == 0) || (self != current)) {
326                                                 objects.push_back((ActiveObject*)current);
327                                         }
328                                 }
329                         }
330                 }
331
332                 for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
333                                 iter != objects.end(); ++iter) {
334                         ActiveObject *object = *iter;
335
336                         if (object != NULL) {
337                                 aabb3f object_collisionbox;
338                                 if (object->getCollisionBox(&object_collisionbox) &&
339                                                 object->collideWithObjects()) {
340                                         cboxes.push_back(object_collisionbox);
341                                         is_unloaded.push_back(false);
342                                         is_step_up.push_back(false);
343                                         bouncy_values.push_back(0);
344                                         node_positions.push_back(v3s16(0,0,0));
345                                         is_object.push_back(true);
346                                 }
347                         }
348                 }
349         } //tt3
350
351         assert(cboxes.size() == is_unloaded.size());    // post-condition
352         assert(cboxes.size() == is_step_up.size());     // post-condition
353         assert(cboxes.size() == bouncy_values.size());  // post-condition
354         assert(cboxes.size() == node_positions.size()); // post-condition
355         assert(cboxes.size() == is_object.size());      // post-condition
356
357         /*
358                 Collision detection
359         */
360
361         /*
362                 Collision uncertainty radius
363                 Make it a bit larger than the maximum distance of movement
364         */
365         f32 d = pos_max_d * 1.1;
366         // A fairly large value in here makes moving smoother
367         //f32 d = 0.15*BS;
368
369         // This should always apply, otherwise there are glitches
370         assert(d > pos_max_d);  // invariant
371
372         int loopcount = 0;
373
374         while(dtime > BS*1e-10)
375         {
376                 //TimeTaker tt3("collisionMoveSimple dtime loop");
377         ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
378
379                 // Avoid infinite loop
380                 loopcount++;
381                 if(loopcount >= 100)
382                 {
383                         infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl;
384                         dtime = 0;
385                         break;
386                 }
387
388                 aabb3f movingbox = box_0;
389                 movingbox.MinEdge += pos_f;
390                 movingbox.MaxEdge += pos_f;
391
392                 int nearest_collided = -1;
393                 f32 nearest_dtime = dtime;
394                 u32 nearest_boxindex = -1;
395
396                 /*
397                         Go through every nodebox, find nearest collision
398                 */
399                 for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++)
400                 {
401                         // Ignore if already stepped up this nodebox.
402                         if(is_step_up[boxindex])
403                                 continue;
404
405                         // Find nearest collision of the two boxes (raytracing-like)
406                         f32 dtime_tmp;
407                         int collided = axisAlignedCollision(
408                                         cboxes[boxindex], movingbox, speed_f, d, dtime_tmp);
409
410                         if(collided == -1 || dtime_tmp >= nearest_dtime)
411                                 continue;
412
413                         nearest_dtime = dtime_tmp;
414                         nearest_collided = collided;
415                         nearest_boxindex = boxindex;
416                 }
417
418                 if(nearest_collided == -1)
419                 {
420                         // No collision with any collision box.
421                         pos_f += speed_f * dtime;
422                         dtime = 0;  // Set to 0 to avoid "infinite" loop due to small FP numbers
423                 }
424                 else
425                 {
426                         // Otherwise, a collision occurred.
427
428                         const aabb3f& cbox = cboxes[nearest_boxindex];
429
430                         // Check for stairs.
431                         bool step_up = (nearest_collided != 1) && // must not be Y direction
432                                         (movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
433                                         (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
434                                         (!wouldCollideWithCeiling(cboxes, movingbox,
435                                                         cbox.MaxEdge.Y - movingbox.MinEdge.Y,
436                                                         d));
437
438                         // Get bounce multiplier
439                         bool bouncy = (bouncy_values[nearest_boxindex] >= 1);
440                         float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0;
441
442                         // Move to the point of collision and reduce dtime by nearest_dtime
443                         if(nearest_dtime < 0)
444                         {
445                                 // Handle negative nearest_dtime (can be caused by the d allowance)
446                                 if(!step_up)
447                                 {
448                                         if(nearest_collided == 0)
449                                                 pos_f.X += speed_f.X * nearest_dtime;
450                                         if(nearest_collided == 1)
451                                                 pos_f.Y += speed_f.Y * nearest_dtime;
452                                         if(nearest_collided == 2)
453                                                 pos_f.Z += speed_f.Z * nearest_dtime;
454                                 }
455                         }
456                         else
457                         {
458                                 pos_f += speed_f * nearest_dtime;
459                                 dtime -= nearest_dtime;
460                         }
461                         
462                         bool is_collision = true;
463                         if(is_unloaded[nearest_boxindex])
464                                 is_collision = false;
465
466                         CollisionInfo info;
467                         if (is_object[nearest_boxindex]) {
468                                 info.type = COLLISION_OBJECT;
469                         }
470                         else {
471                                 info.type = COLLISION_NODE;
472                         }
473                         info.node_p = node_positions[nearest_boxindex];
474                         info.bouncy = bouncy;
475                         info.old_speed = speed_f;
476
477                         // Set the speed component that caused the collision to zero
478                         if(step_up)
479                         {
480                                 // Special case: Handle stairs
481                                 is_step_up[nearest_boxindex] = true;
482                                 is_collision = false;
483                         }
484                         else if(nearest_collided == 0) // X
485                         {
486                                 if(fabs(speed_f.X) > BS*3)
487                                         speed_f.X *= bounce;
488                                 else
489                                         speed_f.X = 0;
490                                 result.collides = true;
491                                 result.collides_xz = true;
492                         }
493                         else if(nearest_collided == 1) // Y
494                         {
495                                 if(fabs(speed_f.Y) > BS*3)
496                                         speed_f.Y *= bounce;
497                                 else
498                                         speed_f.Y = 0;
499                                 result.collides = true;
500                         }
501                         else if(nearest_collided == 2) // Z
502                         {
503                                 if(fabs(speed_f.Z) > BS*3)
504                                         speed_f.Z *= bounce;
505                                 else
506                                         speed_f.Z = 0;
507                                 result.collides = true;
508                                 result.collides_xz = true;
509                         }
510
511                         info.new_speed = speed_f;
512                         if(info.new_speed.getDistanceFrom(info.old_speed) < 0.1*BS)
513                                 is_collision = false;
514
515                         if(is_collision){
516                                 result.collisions.push_back(info);
517                         }
518                 }
519         }
520
521         /*
522                 Final touches: Check if standing on ground, step up stairs.
523         */
524         aabb3f box = box_0;
525         box.MinEdge += pos_f;
526         box.MaxEdge += pos_f;
527         for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++)
528         {
529                 const aabb3f& cbox = cboxes[boxindex];
530
531                 /*
532                         See if the object is touching ground.
533
534                         Object touches ground if object's minimum Y is near node's
535                         maximum Y and object's X-Z-area overlaps with the node's
536                         X-Z-area.
537
538                         Use 0.15*BS so that it is easier to get on a node.
539                 */
540                 if(
541                                 cbox.MaxEdge.X-d > box.MinEdge.X &&
542                                 cbox.MinEdge.X+d < box.MaxEdge.X &&
543                                 cbox.MaxEdge.Z-d > box.MinEdge.Z &&
544                                 cbox.MinEdge.Z+d < box.MaxEdge.Z
545                 ){
546                         if(is_step_up[boxindex])
547                         {
548                                 pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y);
549                                 box = box_0;
550                                 box.MinEdge += pos_f;
551                                 box.MaxEdge += pos_f;
552                         }
553                         if(fabs(cbox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS)
554                         {
555                                 result.touching_ground = true;
556                                 if(is_unloaded[boxindex])
557                                         result.standing_on_unloaded = true;
558                         }
559                 }
560         }
561
562         return result;
563 }
564
565 #if 0
566 // This doesn't seem to work and isn't used
567 collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef,
568                 f32 pos_max_d, const aabb3f &box_0,
569                 f32 stepheight, f32 dtime,
570                 v3f &pos_f, v3f &speed_f, v3f &accel_f)
571 {
572         //TimeTaker tt("collisionMovePrecise");
573     ScopeProfiler sp(g_profiler, "collisionMovePrecise avg", SPT_AVG);
574         
575         collisionMoveResult final_result;
576
577         // If there is no speed, there are no collisions
578         if(speed_f.getLength() == 0)
579                 return final_result;
580
581         // Don't allow overly huge dtime
582         if(dtime > 2.0)
583                 dtime = 2.0;
584
585         f32 dtime_downcount = dtime;
586
587         u32 loopcount = 0;
588         do
589         {
590                 loopcount++;
591
592                 // Maximum time increment (for collision detection etc)
593                 // time = distance / speed
594                 f32 dtime_max_increment = 1.0;
595                 if(speed_f.getLength() != 0)
596                         dtime_max_increment = pos_max_d / speed_f.getLength();
597
598                 // Maximum time increment is 10ms or lower
599                 if(dtime_max_increment > 0.01)
600                         dtime_max_increment = 0.01;
601
602                 f32 dtime_part;
603                 if(dtime_downcount > dtime_max_increment)
604                 {
605                         dtime_part = dtime_max_increment;
606                         dtime_downcount -= dtime_part;
607                 }
608                 else
609                 {
610                         dtime_part = dtime_downcount;
611                         /*
612                                 Setting this to 0 (no -=dtime_part) disables an infinite loop
613                                 when dtime_part is so small that dtime_downcount -= dtime_part
614                                 does nothing
615                         */
616                         dtime_downcount = 0;
617                 }
618
619                 collisionMoveResult result = collisionMoveSimple(map, gamedef,
620                                 pos_max_d, box_0, stepheight, dtime_part,
621                                 pos_f, speed_f, accel_f);
622
623                 if(result.touching_ground)
624                         final_result.touching_ground = true;
625                 if(result.collides)
626                         final_result.collides = true;
627                 if(result.collides_xz)
628                         final_result.collides_xz = true;
629                 if(result.standing_on_unloaded)
630                         final_result.standing_on_unloaded = true;
631         }
632         while(dtime_downcount > 0.001);
633
634         return final_result;
635 }
636 #endif