]> git.lizzy.rs Git - dragonfireclient.git/blob - src/collision.cpp
Merge pull request #59 from PrairieAstronomer/readme_irrlicht_change
[dragonfireclient.git] / src / collision.cpp
1 /*
2 Minetest
3 Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU Lesser General Public License as published by
7 the Free Software Foundation; either version 2.1 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 GNU Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public License along
16 with this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "collision.h"
21 #include <cmath>
22 #include "mapblock.h"
23 #include "map.h"
24 #include "nodedef.h"
25 #include "gamedef.h"
26 #ifndef SERVER
27 #include "client/clientenvironment.h"
28 #include "client/localplayer.h"
29 #endif
30 #include "serverenvironment.h"
31 #include "server/serveractiveobject.h"
32 #include "util/timetaker.h"
33 #include "profiler.h"
34
35 #ifdef __FAST_MATH__
36 #warning "-ffast-math is known to cause bugs in collision code, do not use!"
37 #endif
38
39 struct NearbyCollisionInfo {
40         // node
41         NearbyCollisionInfo(bool is_ul, int bouncy, const v3s16 &pos,
42                         const aabb3f &box) :
43                 is_unloaded(is_ul),
44                 obj(nullptr),
45                 bouncy(bouncy),
46                 position(pos),
47                 box(box)
48         {}
49
50         // object
51         NearbyCollisionInfo(ActiveObject *obj, int bouncy,
52                         const aabb3f &box) :
53                 is_unloaded(false),
54                 obj(obj),
55                 bouncy(bouncy),
56                 box(box)
57         {}
58
59         inline bool isObject() const { return obj != nullptr; }
60
61         bool is_unloaded;
62         bool is_step_up = false;
63         ActiveObject *obj;
64         int bouncy;
65         v3s16 position;
66         aabb3f box;
67 };
68
69 // Helper functions:
70 // Truncate floating point numbers to specified number of decimal places
71 // in order to move all the floating point error to one side of the correct value
72 static inline f32 truncate(const f32 val, const f32 factor)
73 {
74         return truncf(val * factor) / factor;
75 }
76
77 static inline v3f truncate(const v3f& vec, const f32 factor)
78 {
79         return v3f(
80                 truncate(vec.X, factor),
81                 truncate(vec.Y, factor),
82                 truncate(vec.Z, factor)
83         );
84 }
85
86 // Helper function:
87 // Checks for collision of a moving aabbox with a static aabbox
88 // Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
89 // The time after which the collision occurs is stored in dtime.
90 CollisionAxis axisAlignedCollision(
91                 const aabb3f &staticbox, const aabb3f &movingbox,
92                 const v3f &speed, f32 *dtime)
93 {
94         //TimeTaker tt("axisAlignedCollision");
95
96         aabb3f relbox(
97                         (movingbox.MaxEdge.X - movingbox.MinEdge.X) + (staticbox.MaxEdge.X - staticbox.MinEdge.X),                                              // sum of the widths
98                         (movingbox.MaxEdge.Y - movingbox.MinEdge.Y) + (staticbox.MaxEdge.Y - staticbox.MinEdge.Y),
99                         (movingbox.MaxEdge.Z - movingbox.MinEdge.Z) + (staticbox.MaxEdge.Z - staticbox.MinEdge.Z),
100                         std::max(movingbox.MaxEdge.X, staticbox.MaxEdge.X) - std::min(movingbox.MinEdge.X, staticbox.MinEdge.X),        //outer bounding 'box' dimensions
101                         std::max(movingbox.MaxEdge.Y, staticbox.MaxEdge.Y) - std::min(movingbox.MinEdge.Y, staticbox.MinEdge.Y),
102                         std::max(movingbox.MaxEdge.Z, staticbox.MaxEdge.Z) - std::min(movingbox.MinEdge.Z, staticbox.MinEdge.Z)
103         );
104
105         const f32 dtime_max = *dtime;
106         f32 inner_margin;               // the distance of clipping recovery
107         f32 distance;
108         f32 time;
109
110
111         if (speed.Y) {
112                 distance = relbox.MaxEdge.Y - relbox.MinEdge.Y;
113                 *dtime = distance / std::abs(speed.Y);
114                 time = std::max(*dtime, 0.0f);
115
116                 if (*dtime <= dtime_max) {
117                         inner_margin = std::max(-0.5f * (staticbox.MaxEdge.Y - staticbox.MinEdge.Y), -2.0f);
118
119                         if ((speed.Y > 0 && staticbox.MinEdge.Y - movingbox.MaxEdge.Y > inner_margin) ||
120                                 (speed.Y < 0 && movingbox.MinEdge.Y - staticbox.MaxEdge.Y > inner_margin)) {
121                                 if (
122                                         (std::max(movingbox.MaxEdge.X + speed.X * time, staticbox.MaxEdge.X)
123                                                 - std::min(movingbox.MinEdge.X + speed.X * time, staticbox.MinEdge.X)
124                                                 - relbox.MinEdge.X < 0) &&
125                                                 (std::max(movingbox.MaxEdge.Z + speed.Z * time, staticbox.MaxEdge.Z)
126                                                         - std::min(movingbox.MinEdge.Z + speed.Z * time, staticbox.MinEdge.Z)
127                                                         - relbox.MinEdge.Z < 0)
128                                         )
129                                         return COLLISION_AXIS_Y;
130                         }
131                 }
132                 else {
133                         return COLLISION_AXIS_NONE;
134                 }
135         }
136
137         // NO else if here
138
139         if (speed.X) {
140                 distance = relbox.MaxEdge.X - relbox.MinEdge.X;
141                 *dtime = distance / std::abs(speed.X);
142                 time = std::max(*dtime, 0.0f);
143
144                 if (*dtime <= dtime_max) {
145                         inner_margin = std::max(-0.5f * (staticbox.MaxEdge.X - staticbox.MinEdge.X), -2.0f);
146
147                         if ((speed.X > 0 && staticbox.MinEdge.X - movingbox.MaxEdge.X > inner_margin) ||
148                                 (speed.X < 0 && movingbox.MinEdge.X - staticbox.MaxEdge.X > inner_margin)) {
149                                 if (
150                                         (std::max(movingbox.MaxEdge.Y + speed.Y * time, staticbox.MaxEdge.Y)
151                                                 - std::min(movingbox.MinEdge.Y + speed.Y * time, staticbox.MinEdge.Y)
152                                                 - relbox.MinEdge.Y < 0) &&
153                                                 (std::max(movingbox.MaxEdge.Z + speed.Z * time, staticbox.MaxEdge.Z)
154                                                         - std::min(movingbox.MinEdge.Z + speed.Z * time, staticbox.MinEdge.Z)
155                                                         - relbox.MinEdge.Z < 0)
156                                         )
157                                         return COLLISION_AXIS_X;
158                         }
159                 } else {
160                         return COLLISION_AXIS_NONE;
161                 }
162         }
163
164         // NO else if here
165
166         if (speed.Z) {
167                 distance = relbox.MaxEdge.Z - relbox.MinEdge.Z;
168                 *dtime = distance / std::abs(speed.Z);
169                 time = std::max(*dtime, 0.0f);
170
171                 if (*dtime <= dtime_max) {
172                         inner_margin = std::max(-0.5f * (staticbox.MaxEdge.Z - staticbox.MinEdge.Z), -2.0f);
173
174                         if ((speed.Z > 0 && staticbox.MinEdge.Z - movingbox.MaxEdge.Z > inner_margin) ||
175                                 (speed.Z < 0 && movingbox.MinEdge.Z - staticbox.MaxEdge.Z > inner_margin)) {
176                                 if (
177                                         (std::max(movingbox.MaxEdge.X + speed.X * time, staticbox.MaxEdge.X)
178                                                 - std::min(movingbox.MinEdge.X + speed.X * time, staticbox.MinEdge.X)
179                                                 - relbox.MinEdge.X < 0) &&
180                                                 (std::max(movingbox.MaxEdge.Y + speed.Y * time, staticbox.MaxEdge.Y)
181                                                         - std::min(movingbox.MinEdge.Y + speed.Y * time, staticbox.MinEdge.Y)
182                                                         - relbox.MinEdge.Y < 0)
183                                         )
184                                         return COLLISION_AXIS_Z;
185                         }
186                 }
187         }
188
189         return COLLISION_AXIS_NONE;
190 }
191
192 // Helper function:
193 // Checks if moving the movingbox up by the given distance would hit a ceiling.
194 bool wouldCollideWithCeiling(
195                 const std::vector<NearbyCollisionInfo> &cinfo,
196                 const aabb3f &movingbox,
197                 f32 y_increase, f32 d)
198 {
199         //TimeTaker tt("wouldCollideWithCeiling");
200
201         assert(y_increase >= 0);        // pre-condition
202
203         for (const auto &it : cinfo) {
204                 const aabb3f &staticbox = it.box;
205                 if ((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
206                                 (movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
207                                 (movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
208                                 (movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
209                                 (movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
210                                 (movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
211                         return true;
212         }
213
214         return false;
215 }
216
217 static inline void getNeighborConnectingFace(const v3s16 &p,
218         const NodeDefManager *nodedef, Map *map, MapNode n, int v, int *neighbors)
219 {
220         MapNode n2 = map->getNode(p);
221         if (nodedef->nodeboxConnects(n, n2, v))
222                 *neighbors |= v;
223 }
224
225 collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
226                 f32 pos_max_d, const aabb3f &box_0,
227                 f32 stepheight, f32 dtime,
228                 v3f *pos_f, v3f *speed_f,
229                 v3f accel_f, ActiveObject *self,
230                 bool collideWithObjects, bool jesus)
231 {
232         static bool time_notification_done = false;
233         Map *map = &env->getMap();
234
235         ScopeProfiler sp(g_profiler, "collisionMoveSimple()", SPT_AVG);
236
237         collisionMoveResult result;
238
239         /*
240                 Calculate new velocity
241         */
242         if (dtime > 0.5f) {
243                 if (!time_notification_done) {
244                         time_notification_done = true;
245                         infostream << "collisionMoveSimple: maximum step interval exceeded,"
246                                         " lost movement details!"<<std::endl;
247                 }
248                 dtime = 0.5f;
249         } else {
250                 time_notification_done = false;
251         }
252         *speed_f += accel_f * dtime;
253
254         // If there is no speed, there are no collisions
255         if (speed_f->getLength() == 0)
256                 return result;
257
258         // Limit speed for avoiding hangs
259         speed_f->Y = rangelim(speed_f->Y, -5000, 5000);
260         speed_f->X = rangelim(speed_f->X, -5000, 5000);
261         speed_f->Z = rangelim(speed_f->Z, -5000, 5000);
262
263         *speed_f = truncate(*speed_f, 10000.0f);
264
265         /*
266                 Collect node boxes in movement range
267         */
268         std::vector<NearbyCollisionInfo> cinfo;
269         {
270         //TimeTaker tt2("collisionMoveSimple collect boxes");
271         ScopeProfiler sp2(g_profiler, "collisionMoveSimple(): collect boxes", SPT_AVG);
272
273         v3f newpos_f = *pos_f + *speed_f * dtime;
274         v3f minpos_f(
275                 MYMIN(pos_f->X, newpos_f.X),
276                 MYMIN(pos_f->Y, newpos_f.Y) + 0.01f * BS, // bias rounding, player often at +/-n.5
277                 MYMIN(pos_f->Z, newpos_f.Z)
278         );
279         v3f maxpos_f(
280                 MYMAX(pos_f->X, newpos_f.X),
281                 MYMAX(pos_f->Y, newpos_f.Y),
282                 MYMAX(pos_f->Z, newpos_f.Z)
283         );
284         v3s16 min = floatToInt(minpos_f + box_0.MinEdge, BS) - v3s16(1, 1, 1);
285         v3s16 max = floatToInt(maxpos_f + box_0.MaxEdge, BS) + v3s16(1, 1, 1);
286
287         bool any_position_valid = false;
288         jesus = jesus && g_settings->getBool("jesus");
289
290         v3s16 p;
291         for (p.X = min.X; p.X <= max.X; p.X++)
292         for (p.Y = min.Y; p.Y <= max.Y; p.Y++)
293         for (p.Z = min.Z; p.Z <= max.Z; p.Z++) {
294                 bool is_position_valid;
295                 MapNode n = map->getNode(p, &is_position_valid);
296
297                 if (is_position_valid && n.getContent() != CONTENT_IGNORE) {
298                         // Object collides into walkable nodes
299
300                         any_position_valid = true;
301                         const NodeDefManager *nodedef = gamedef->getNodeDefManager();
302                         const ContentFeatures &f = nodedef->get(n);
303
304                         if (!(f.walkable || (jesus && f.isLiquid())))
305                                 continue;
306
307                         // Negative bouncy may have a meaning, but we need +value here.
308                         int n_bouncy_value = abs(itemgroup_get(f.groups, "bouncy"));
309
310                         int neighbors = 0;
311                         if (f.drawtype == NDT_NODEBOX &&
312                                 f.node_box.type == NODEBOX_CONNECTED) {
313                                 v3s16 p2 = p;
314
315                                 p2.Y++;
316                                 getNeighborConnectingFace(p2, nodedef, map, n, 1, &neighbors);
317
318                                 p2 = p;
319                                 p2.Y--;
320                                 getNeighborConnectingFace(p2, nodedef, map, n, 2, &neighbors);
321
322                                 p2 = p;
323                                 p2.Z--;
324                                 getNeighborConnectingFace(p2, nodedef, map, n, 4, &neighbors);
325
326                                 p2 = p;
327                                 p2.X--;
328                                 getNeighborConnectingFace(p2, nodedef, map, n, 8, &neighbors);
329
330                                 p2 = p;
331                                 p2.Z++;
332                                 getNeighborConnectingFace(p2, nodedef, map, n, 16, &neighbors);
333
334                                 p2 = p;
335                                 p2.X++;
336                                 getNeighborConnectingFace(p2, nodedef, map, n, 32, &neighbors);
337                         }
338                         std::vector<aabb3f> nodeboxes;
339                         n.getCollisionBoxes(gamedef->ndef(), &nodeboxes, neighbors);
340
341                         // Calculate float position only once
342                         v3f posf = intToFloat(p, BS);
343                         for (auto box : nodeboxes) {
344                                 box.MinEdge += posf;
345                                 box.MaxEdge += posf;
346                                 cinfo.emplace_back(false, n_bouncy_value, p, box);
347                         }
348                 } else {
349                         // Collide with unloaded nodes (position invalid) and loaded
350                         // CONTENT_IGNORE nodes (position valid)
351                         aabb3f box = getNodeBox(p, BS);
352                         cinfo.emplace_back(true, 0, p, box);
353                 }
354         }
355
356         // Do not move if world has not loaded yet, since custom node boxes
357         // are not available for collision detection.
358         // This also intentionally occurs in the case of the object being positioned
359         // solely on loaded CONTENT_IGNORE nodes, no matter where they come from.
360         if (!any_position_valid) {
361                 *speed_f = v3f(0, 0, 0);
362                 return result;
363         }
364
365         } // tt2
366
367         if(collideWithObjects)
368         {
369                 /* add object boxes to cinfo */
370
371                 std::vector<ActiveObject*> objects;
372 #ifndef SERVER
373                 ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
374                 if (c_env != 0) {
375                         // Calculate distance by speed, add own extent and 1.5m of tolerance
376                         f32 distance = speed_f->getLength() * dtime +
377                                 box_0.getExtent().getLength() + 1.5f * BS;
378                         std::vector<DistanceSortedActiveObject> clientobjects;
379                         c_env->getActiveObjects(*pos_f, distance, clientobjects);
380
381                         for (auto &clientobject : clientobjects) {
382                                 // Do collide with everything but itself and the parent CAO
383                                 if (!self || (self != clientobject.obj &&
384                                                 self != clientobject.obj->getParent())) {
385                                         objects.push_back((ActiveObject*) clientobject.obj);
386                                 }
387                         }
388                 }
389                 else
390 #endif
391                 {
392                         ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
393                         if (s_env != NULL) {
394                                 // Calculate distance by speed, add own extent and 1.5m of tolerance
395                                 f32 distance = speed_f->getLength() * dtime +
396                                         box_0.getExtent().getLength() + 1.5f * BS;
397
398                                 // search for objects which are not us, or we are not its parent
399                                 // we directly use the callback to populate the result to prevent
400                                 // a useless result loop here
401                                 auto include_obj_cb = [self, &objects] (ServerActiveObject *obj) {
402                                         if (!obj->isGone() &&
403                                                 (!self || (self != obj && self != obj->getParent()))) {
404                                                 objects.push_back((ActiveObject *)obj);
405                                         }
406                                         return false;
407                                 };
408
409                                 std::vector<ServerActiveObject *> s_objects;
410                                 s_env->getObjectsInsideRadius(s_objects, *pos_f, distance, include_obj_cb);
411                         }
412                 }
413
414                 for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
415                                 iter != objects.end(); ++iter) {
416                         ActiveObject *object = *iter;
417
418                         if (object && object->collideWithObjects()) {
419                                 aabb3f object_collisionbox;
420                                 if (object->getCollisionBox(&object_collisionbox))
421                                         cinfo.emplace_back(object, 0, object_collisionbox);
422                         }
423                 }
424 #ifndef SERVER
425                 if (self && c_env) {
426                         LocalPlayer *lplayer = c_env->getLocalPlayer();
427                         if (lplayer->getParent() == nullptr) {
428                                 aabb3f lplayer_collisionbox = lplayer->getCollisionbox();
429                                 v3f lplayer_pos = lplayer->getPosition();
430                                 lplayer_collisionbox.MinEdge += lplayer_pos;
431                                 lplayer_collisionbox.MaxEdge += lplayer_pos;
432                                 ActiveObject *obj = (ActiveObject*) lplayer->getCAO();
433                                 cinfo.emplace_back(obj, 0, lplayer_collisionbox);
434                         }
435                 }
436 #endif
437         } //tt3
438
439         /*
440                 Collision detection
441         */
442
443         f32 d = 0.0f;
444
445         int loopcount = 0;
446
447         while(dtime > BS * 1e-10f) {
448                 // Avoid infinite loop
449                 loopcount++;
450                 if (loopcount >= 100) {
451                         warningstream << "collisionMoveSimple: Loop count exceeded, aborting to avoid infiniite loop" << std::endl;
452                         break;
453                 }
454
455                 aabb3f movingbox = box_0;
456                 movingbox.MinEdge += *pos_f;
457                 movingbox.MaxEdge += *pos_f;
458
459                 CollisionAxis nearest_collided = COLLISION_AXIS_NONE;
460                 f32 nearest_dtime = dtime;
461                 int nearest_boxindex = -1;
462
463                 /*
464                         Go through every nodebox, find nearest collision
465                 */
466                 for (u32 boxindex = 0; boxindex < cinfo.size(); boxindex++) {
467                         const NearbyCollisionInfo &box_info = cinfo[boxindex];
468                         // Ignore if already stepped up this nodebox.
469                         if (box_info.is_step_up)
470                                 continue;
471
472                         // Find nearest collision of the two boxes (raytracing-like)
473                         f32 dtime_tmp = nearest_dtime;
474                         CollisionAxis collided = axisAlignedCollision(box_info.box,
475                                         movingbox, *speed_f, &dtime_tmp);
476
477                         if (collided == -1 || dtime_tmp >= nearest_dtime)
478                                 continue;
479
480                         nearest_dtime = dtime_tmp;
481                         nearest_collided = collided;
482                         nearest_boxindex = boxindex;
483                 }
484
485                 if (nearest_collided == COLLISION_AXIS_NONE) {
486                         // No collision with any collision box.
487                         *pos_f += truncate(*speed_f * dtime, 100.0f);
488                         dtime = 0;  // Set to 0 to avoid "infinite" loop due to small FP numbers
489                 } else {
490                         // Otherwise, a collision occurred.
491                         NearbyCollisionInfo &nearest_info = cinfo[nearest_boxindex];
492                         const aabb3f& cbox = nearest_info.box;
493
494                         //movingbox except moved to the horizontal position it would be after step up
495                         aabb3f stepbox = movingbox;
496                         stepbox.MinEdge.X += speed_f->X * dtime;
497                         stepbox.MinEdge.Z += speed_f->Z * dtime;
498                         stepbox.MaxEdge.X += speed_f->X * dtime;
499                         stepbox.MaxEdge.Z += speed_f->Z * dtime;
500                         // Check for stairs.
501                         bool step_up = (nearest_collided != COLLISION_AXIS_Y) && // must not be Y direction
502                                         (movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
503                                         (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
504                                         (!wouldCollideWithCeiling(cinfo, stepbox,
505                                                         cbox.MaxEdge.Y - movingbox.MinEdge.Y,
506                                                         d));
507
508                         // Get bounce multiplier
509                         float bounce = -(float)nearest_info.bouncy / 100.0f;
510
511                         // Move to the point of collision and reduce dtime by nearest_dtime
512                         if (nearest_dtime < 0) {
513                                 // Handle negative nearest_dtime
514                                 if (!step_up) {
515                                         if (nearest_collided == COLLISION_AXIS_X)
516                                                 pos_f->X += speed_f->X * nearest_dtime;
517                                         if (nearest_collided == COLLISION_AXIS_Y)
518                                                 pos_f->Y += speed_f->Y * nearest_dtime;
519                                         if (nearest_collided == COLLISION_AXIS_Z)
520                                                 pos_f->Z += speed_f->Z * nearest_dtime;
521                                 }
522                         } else {
523                                 *pos_f += truncate(*speed_f * nearest_dtime, 100.0f);
524                                 dtime -= nearest_dtime;
525                         }
526
527                         bool is_collision = true;
528                         if (nearest_info.is_unloaded)
529                                 is_collision = false;
530
531                         CollisionInfo info;
532                         if (nearest_info.isObject())
533                                 info.type = COLLISION_OBJECT;
534                         else
535                                 info.type = COLLISION_NODE;
536
537                         info.node_p = nearest_info.position;
538                         info.object = nearest_info.obj;
539                         info.old_speed = *speed_f;
540                         info.plane = nearest_collided;
541
542                         // Set the speed component that caused the collision to zero
543                         if (step_up) {
544                                 // Special case: Handle stairs
545                                 nearest_info.is_step_up = true;
546                                 is_collision = false;
547                         } else if (nearest_collided == COLLISION_AXIS_X) {
548                                 if (fabs(speed_f->X) > BS * 3)
549                                         speed_f->X *= bounce;
550                                 else
551                                         speed_f->X = 0;
552                                 result.collides = true;
553                         } else if (nearest_collided == COLLISION_AXIS_Y) {
554                                 if(fabs(speed_f->Y) > BS * 3)
555                                         speed_f->Y *= bounce;
556                                 else
557                                         speed_f->Y = 0;
558                                 result.collides = true;
559                         } else if (nearest_collided == COLLISION_AXIS_Z) {
560                                 if (fabs(speed_f->Z) > BS * 3)
561                                         speed_f->Z *= bounce;
562                                 else
563                                         speed_f->Z = 0;
564                                 result.collides = true;
565                         }
566
567                         info.new_speed = *speed_f;
568                         if (info.new_speed.getDistanceFrom(info.old_speed) < 0.1f * BS)
569                                 is_collision = false;
570
571                         if (is_collision) {
572                                 info.axis = nearest_collided;
573                                 result.collisions.push_back(info);
574                         }
575                 }
576         }
577
578         /*
579                 Final touches: Check if standing on ground, step up stairs.
580         */
581         aabb3f box = box_0;
582         box.MinEdge += *pos_f;
583         box.MaxEdge += *pos_f;
584         for (const auto &box_info : cinfo) {
585                 const aabb3f &cbox = box_info.box;
586
587                 /*
588                         See if the object is touching ground.
589
590                         Object touches ground if object's minimum Y is near node's
591                         maximum Y and object's X-Z-area overlaps with the node's
592                         X-Z-area.
593                 */
594
595                 if (cbox.MaxEdge.X - d > box.MinEdge.X && cbox.MinEdge.X + d < box.MaxEdge.X &&
596                                 cbox.MaxEdge.Z - d > box.MinEdge.Z &&
597                                 cbox.MinEdge.Z + d < box.MaxEdge.Z) {
598                         if (box_info.is_step_up) {
599                                 pos_f->Y += cbox.MaxEdge.Y - box.MinEdge.Y;
600                                 box = box_0;
601                                 box.MinEdge += *pos_f;
602                                 box.MaxEdge += *pos_f;
603                         }
604                         if (std::fabs(cbox.MaxEdge.Y - box.MinEdge.Y) < 0.05f) {
605                                 result.touching_ground = true;
606
607                                 if (box_info.isObject())
608                                         result.standing_on_object = true;
609                         }
610                 }
611         }
612
613         return result;
614 }