]> git.lizzy.rs Git - dragonfireclient.git/blob - src/collision.cpp
Translated using Weblate (German)
[dragonfireclient.git] / src / collision.cpp
1 /*
2 Minetest
3 Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU Lesser General Public License as published by
7 the Free Software Foundation; either version 2.1 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 GNU Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public License along
16 with this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "collision.h"
21 #include "mapblock.h"
22 #include "map.h"
23 #include "nodedef.h"
24 #include "gamedef.h"
25 #include "log.h"
26 #include "environment.h"
27 #include "serverobject.h"
28 #include <vector>
29 #include <set>
30 #include "util/timetaker.h"
31 #include "profiler.h"
32
33 // float error is 10 - 9.96875 = 0.03125
34 //#define COLL_ZERO 0.032 // broken unit tests
35 #define COLL_ZERO 0
36
37 // Helper function:
38 // Checks for collision of a moving aabbox with a static aabbox
39 // Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
40 // The time after which the collision occurs is stored in dtime.
41 int axisAlignedCollision(
42                 const aabb3f &staticbox, const aabb3f &movingbox,
43                 const v3f &speed, f32 d, f32 &dtime)
44 {
45         //TimeTaker tt("axisAlignedCollision");
46
47         f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X) - COLL_ZERO;     // reduce box size for solve collision stuck (flying sand)
48         f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); // - COLL_ZERO; // Y - no sense for falling, but maybe try later
49         f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z) - COLL_ZERO;
50
51         aabb3f relbox(
52                         movingbox.MinEdge.X - staticbox.MinEdge.X,
53                         movingbox.MinEdge.Y - staticbox.MinEdge.Y,
54                         movingbox.MinEdge.Z - staticbox.MinEdge.Z,
55                         movingbox.MaxEdge.X - staticbox.MinEdge.X,
56                         movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
57                         movingbox.MaxEdge.Z - staticbox.MinEdge.Z
58         );
59
60         if(speed.X > 0) // Check for collision with X- plane
61         {
62                 if(relbox.MaxEdge.X <= d)
63                 {
64                         dtime = - relbox.MaxEdge.X / speed.X;
65                         if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
66                                         (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO) &&
67                                         (relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
68                                         (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
69                                 return 0;
70                 }
71                 else if(relbox.MinEdge.X > xsize)
72                 {
73                         return -1;
74                 }
75         }
76         else if(speed.X < 0) // Check for collision with X+ plane
77         {
78                 if(relbox.MinEdge.X >= xsize - d)
79                 {
80                         dtime = (xsize - relbox.MinEdge.X) / speed.X;
81                         if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
82                                         (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO) &&
83                                         (relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
84                                         (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
85                                 return 0;
86                 }
87                 else if(relbox.MaxEdge.X < 0)
88                 {
89                         return -1;
90                 }
91         }
92
93         // NO else if here
94
95         if(speed.Y > 0) // Check for collision with Y- plane
96         {
97                 if(relbox.MaxEdge.Y <= d)
98                 {
99                         dtime = - relbox.MaxEdge.Y / speed.Y;
100                         if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
101                                         (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
102                                         (relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
103                                         (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
104                                 return 1;
105                 }
106                 else if(relbox.MinEdge.Y > ysize)
107                 {
108                         return -1;
109                 }
110         }
111         else if(speed.Y < 0) // Check for collision with Y+ plane
112         {
113                 if(relbox.MinEdge.Y >= ysize - d)
114                 {
115                         dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
116                         if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
117                                         (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
118                                         (relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
119                                         (relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
120                                 return 1;
121                 }
122                 else if(relbox.MaxEdge.Y < 0)
123                 {
124                         return -1;
125                 }
126         }
127
128         // NO else if here
129
130         if(speed.Z > 0) // Check for collision with Z- plane
131         {
132                 if(relbox.MaxEdge.Z <= d)
133                 {
134                         dtime = - relbox.MaxEdge.Z / speed.Z;
135                         if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
136                                         (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
137                                         (relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
138                                         (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO))
139                                 return 2;
140                 }
141                 //else if(relbox.MinEdge.Z > zsize)
142                 //{
143                 //      return -1;
144                 //}
145         }
146         else if(speed.Z < 0) // Check for collision with Z+ plane
147         {
148                 if(relbox.MinEdge.Z >= zsize - d)
149                 {
150                         dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
151                         if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
152                                         (relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
153                                         (relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
154                                         (relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO))
155                                 return 2;
156                 }
157                 //else if(relbox.MaxEdge.Z < 0)
158                 //{
159                 //      return -1;
160                 //}
161         }
162
163         return -1;
164 }
165
166 // Helper function:
167 // Checks if moving the movingbox up by the given distance would hit a ceiling.
168 bool wouldCollideWithCeiling(
169                 const std::vector<aabb3f> &staticboxes,
170                 const aabb3f &movingbox,
171                 f32 y_increase, f32 d)
172 {
173         //TimeTaker tt("wouldCollideWithCeiling");
174
175         assert(y_increase >= 0);        // pre-condition
176
177         for(std::vector<aabb3f>::const_iterator
178                         i = staticboxes.begin();
179                         i != staticboxes.end(); ++i)
180         {
181                 const aabb3f& staticbox = *i;
182                 if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
183                                 (movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
184                                 (movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
185                                 (movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
186                                 (movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
187                                 (movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
188                         return true;
189         }
190
191         return false;
192 }
193
194
195 collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
196                 f32 pos_max_d, const aabb3f &box_0,
197                 f32 stepheight, f32 dtime,
198                 v3f &pos_f, v3f &speed_f,
199                 v3f &accel_f,ActiveObject* self,
200                 bool collideWithObjects)
201 {
202         Map *map = &env->getMap();
203         //TimeTaker tt("collisionMoveSimple");
204     ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
205
206         collisionMoveResult result;
207
208         /*
209                 Calculate new velocity
210         */
211         if( dtime > 0.5 ) {
212                 warningstream<<"collisionMoveSimple: maximum step interval exceeded, lost movement details!"<<std::endl;
213                 dtime = 0.5;
214         }
215         speed_f += accel_f * dtime;
216
217         // If there is no speed, there are no collisions
218         if(speed_f.getLength() == 0)
219                 return result;
220
221         // Limit speed for avoiding hangs
222         speed_f.Y=rangelim(speed_f.Y,-5000,5000);
223         speed_f.X=rangelim(speed_f.X,-5000,5000);
224         speed_f.Z=rangelim(speed_f.Z,-5000,5000);
225
226         /*
227                 Collect node boxes in movement range
228         */
229         std::vector<aabb3f> cboxes;
230         std::vector<bool> is_unloaded;
231         std::vector<bool> is_step_up;
232         std::vector<bool> is_object;
233         std::vector<int> bouncy_values;
234         std::vector<v3s16> node_positions;
235         {
236         //TimeTaker tt2("collisionMoveSimple collect boxes");
237     ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
238
239         v3s16 oldpos_i = floatToInt(pos_f, BS);
240         v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS);
241         s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
242         s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
243         s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
244         s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
245         s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
246         s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
247
248         bool any_position_valid = false;
249
250         for(s16 x = min_x; x <= max_x; x++)
251         for(s16 y = min_y; y <= max_y; y++)
252         for(s16 z = min_z; z <= max_z; z++)
253         {
254                 v3s16 p(x,y,z);
255
256                 bool is_position_valid;
257                 MapNode n = map->getNodeNoEx(p, &is_position_valid);
258
259                 if (is_position_valid) {
260                         // Object collides into walkable nodes
261
262                         any_position_valid = true;
263                         const ContentFeatures &f = gamedef->getNodeDefManager()->get(n);
264                         if(f.walkable == false)
265                                 continue;
266                         int n_bouncy_value = itemgroup_get(f.groups, "bouncy");
267
268                         std::vector<aabb3f> nodeboxes = n.getCollisionBoxes(gamedef->ndef());
269                         for(std::vector<aabb3f>::iterator
270                                         i = nodeboxes.begin();
271                                         i != nodeboxes.end(); ++i)
272                         {
273                                 aabb3f box = *i;
274                                 box.MinEdge += v3f(x, y, z)*BS;
275                                 box.MaxEdge += v3f(x, y, z)*BS;
276                                 cboxes.push_back(box);
277                                 is_unloaded.push_back(false);
278                                 is_step_up.push_back(false);
279                                 bouncy_values.push_back(n_bouncy_value);
280                                 node_positions.push_back(p);
281                                 is_object.push_back(false);
282                         }
283                 }
284                 else {
285                         // Collide with unloaded nodes
286                         aabb3f box = getNodeBox(p, BS);
287                         cboxes.push_back(box);
288                         is_unloaded.push_back(true);
289                         is_step_up.push_back(false);
290                         bouncy_values.push_back(0);
291                         node_positions.push_back(p);
292                         is_object.push_back(false);
293                 }
294         }
295
296         // Do not move if world has not loaded yet, since custom node boxes
297         // are not available for collision detection.
298         if (!any_position_valid)
299                 return result;
300
301         } // tt2
302
303         if(collideWithObjects)
304         {
305                 ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG);
306                 //TimeTaker tt3("collisionMoveSimple collect object boxes");
307
308                 /* add object boxes to cboxes */
309
310                 std::vector<ActiveObject*> objects;
311 #ifndef SERVER
312                 ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
313                 if (c_env != 0) {
314                         f32 distance = speed_f.getLength();
315                         std::vector<DistanceSortedActiveObject> clientobjects;
316                         c_env->getActiveObjects(pos_f,distance * 1.5,clientobjects);
317                         for (size_t i=0; i < clientobjects.size(); i++) {
318                                 if ((self == 0) || (self != clientobjects[i].obj)) {
319                                         objects.push_back((ActiveObject*)clientobjects[i].obj);
320                                 }
321                         }
322                 }
323                 else
324 #endif
325                 {
326                         ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
327                         if (s_env != 0) {
328                                 f32 distance = speed_f.getLength();
329                                 std::vector<u16> s_objects;
330                                 s_env->getObjectsInsideRadius(s_objects, pos_f, distance * 1.5);
331                                 for (std::vector<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); ++iter) {
332                                         ServerActiveObject *current = s_env->getActiveObject(*iter);
333                                         if ((self == 0) || (self != current)) {
334                                                 objects.push_back((ActiveObject*)current);
335                                         }
336                                 }
337                         }
338                 }
339
340                 for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
341                                 iter != objects.end(); ++iter) {
342                         ActiveObject *object = *iter;
343
344                         if (object != NULL) {
345                                 aabb3f object_collisionbox;
346                                 if (object->getCollisionBox(&object_collisionbox) &&
347                                                 object->collideWithObjects()) {
348                                         cboxes.push_back(object_collisionbox);
349                                         is_unloaded.push_back(false);
350                                         is_step_up.push_back(false);
351                                         bouncy_values.push_back(0);
352                                         node_positions.push_back(v3s16(0,0,0));
353                                         is_object.push_back(true);
354                                 }
355                         }
356                 }
357         } //tt3
358
359         assert(cboxes.size() == is_unloaded.size());    // post-condition
360         assert(cboxes.size() == is_step_up.size());     // post-condition
361         assert(cboxes.size() == bouncy_values.size());  // post-condition
362         assert(cboxes.size() == node_positions.size()); // post-condition
363         assert(cboxes.size() == is_object.size());      // post-condition
364
365         /*
366                 Collision detection
367         */
368
369         /*
370                 Collision uncertainty radius
371                 Make it a bit larger than the maximum distance of movement
372         */
373         f32 d = pos_max_d * 1.1;
374         // A fairly large value in here makes moving smoother
375         //f32 d = 0.15*BS;
376
377         // This should always apply, otherwise there are glitches
378         assert(d > pos_max_d);  // invariant
379
380         int loopcount = 0;
381
382         while(dtime > BS * 1e-10) {
383                 //TimeTaker tt3("collisionMoveSimple dtime loop");
384         ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
385
386                 // Avoid infinite loop
387                 loopcount++;
388                 if (loopcount >= 100) {
389                         warningstream << "collisionMoveSimple: Loop count exceeded, aborting to avoid infiniite loop" << std::endl;
390                         dtime = 0;
391                         break;
392                 }
393
394                 aabb3f movingbox = box_0;
395                 movingbox.MinEdge += pos_f;
396                 movingbox.MaxEdge += pos_f;
397
398                 int nearest_collided = -1;
399                 f32 nearest_dtime = dtime;
400                 u32 nearest_boxindex = -1;
401
402                 /*
403                         Go through every nodebox, find nearest collision
404                 */
405                 for (u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) {
406                         // Ignore if already stepped up this nodebox.
407                         if(is_step_up[boxindex])
408                                 continue;
409
410                         // Find nearest collision of the two boxes (raytracing-like)
411                         f32 dtime_tmp;
412                         int collided = axisAlignedCollision(
413                                         cboxes[boxindex], movingbox, speed_f, d, dtime_tmp);
414
415                         if (collided == -1 || dtime_tmp >= nearest_dtime)
416                                 continue;
417
418                         nearest_dtime = dtime_tmp;
419                         nearest_collided = collided;
420                         nearest_boxindex = boxindex;
421                 }
422
423                 if (nearest_collided == -1) {
424                         // No collision with any collision box.
425                         pos_f += speed_f * dtime;
426                         dtime = 0;  // Set to 0 to avoid "infinite" loop due to small FP numbers
427                 } else {
428                         // Otherwise, a collision occurred.
429
430                         const aabb3f& cbox = cboxes[nearest_boxindex];
431                         // Check for stairs.
432                         bool step_up = (nearest_collided != 1) && // must not be Y direction
433                                         (movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
434                                         (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
435                                         (!wouldCollideWithCeiling(cboxes, movingbox,
436                                                         cbox.MaxEdge.Y - movingbox.MinEdge.Y,
437                                                         d));
438
439                         // Get bounce multiplier
440                         bool bouncy = (bouncy_values[nearest_boxindex] >= 1);
441                         float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0;
442
443                         // Move to the point of collision and reduce dtime by nearest_dtime
444                         if (nearest_dtime < 0) {
445                                 // Handle negative nearest_dtime (can be caused by the d allowance)
446                                 if (!step_up) {
447                                         if (nearest_collided == 0)
448                                                 pos_f.X += speed_f.X * nearest_dtime;
449                                         if (nearest_collided == 1)
450                                                 pos_f.Y += speed_f.Y * nearest_dtime;
451                                         if (nearest_collided == 2)
452                                                 pos_f.Z += speed_f.Z * nearest_dtime;
453                                 }
454                         } else {
455                                 pos_f += speed_f * nearest_dtime;
456                                 dtime -= nearest_dtime;
457                         }
458
459                         bool is_collision = true;
460                         if (is_unloaded[nearest_boxindex])
461                                 is_collision = false;
462
463                         CollisionInfo info;
464                         if (is_object[nearest_boxindex])
465                                 info.type = COLLISION_OBJECT;
466                         else
467                                 info.type = COLLISION_NODE;
468
469                         info.node_p = node_positions[nearest_boxindex];
470                         info.bouncy = bouncy;
471                         info.old_speed = speed_f;
472
473                         // Set the speed component that caused the collision to zero
474                         if (step_up) {
475                                 // Special case: Handle stairs
476                                 is_step_up[nearest_boxindex] = true;
477                                 is_collision = false;
478                         } else if(nearest_collided == 0) { // X
479                                 if (fabs(speed_f.X) > BS * 3)
480                                         speed_f.X *= bounce;
481                                 else
482                                         speed_f.X = 0;
483                                 result.collides = true;
484                                 result.collides_xz = true;
485                         }
486                         else if(nearest_collided == 1) { // Y
487                                 if(fabs(speed_f.Y) > BS * 3)
488                                         speed_f.Y *= bounce;
489                                 else
490                                         speed_f.Y = 0;
491                                 result.collides = true;
492                         } else if(nearest_collided == 2) { // Z
493                                 if (fabs(speed_f.Z) > BS * 3)
494                                         speed_f.Z *= bounce;
495                                 else
496                                         speed_f.Z = 0;
497                                 result.collides = true;
498                                 result.collides_xz = true;
499                         }
500
501                         info.new_speed = speed_f;
502                         if (info.new_speed.getDistanceFrom(info.old_speed) < 0.1 * BS)
503                                 is_collision = false;
504
505                         if (is_collision) {
506                                 result.collisions.push_back(info);
507                         }
508                 }
509         }
510
511         /*
512                 Final touches: Check if standing on ground, step up stairs.
513         */
514         aabb3f box = box_0;
515         box.MinEdge += pos_f;
516         box.MaxEdge += pos_f;
517         for (u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) {
518                 const aabb3f& cbox = cboxes[boxindex];
519
520                 /*
521                         See if the object is touching ground.
522
523                         Object touches ground if object's minimum Y is near node's
524                         maximum Y and object's X-Z-area overlaps with the node's
525                         X-Z-area.
526
527                         Use 0.15*BS so that it is easier to get on a node.
528                 */
529                 if (cbox.MaxEdge.X - d > box.MinEdge.X && cbox.MinEdge.X + d < box.MaxEdge.X &&
530                                 cbox.MaxEdge.Z - d > box.MinEdge.Z &&
531                                 cbox.MinEdge.Z + d < box.MaxEdge.Z) {
532                         if (is_step_up[boxindex]) {
533                                 pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y);
534                                 box = box_0;
535                                 box.MinEdge += pos_f;
536                                 box.MaxEdge += pos_f;
537                         }
538                         if (fabs(cbox.MaxEdge.Y - box.MinEdge.Y) < 0.15 * BS) {
539                                 result.touching_ground = true;
540
541                                 if (is_object[boxindex])
542                                         result.standing_on_object = true;
543                                 if (is_unloaded[boxindex])
544                                         result.standing_on_unloaded = true;
545                         }
546                 }
547         }
548
549         return result;
550 }