]> git.lizzy.rs Git - minetest.git/blob - src/client/clientmap.cpp
Separate drawlist from non-rendered blocks. (#13176)
[minetest.git] / src / client / clientmap.cpp
1 /*
2 Minetest
3 Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU Lesser General Public License as published by
7 the Free Software Foundation; either version 2.1 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 GNU Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public License along
16 with this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "clientmap.h"
21 #include "client.h"
22 #include "mapblock_mesh.h"
23 #include <IMaterialRenderer.h>
24 #include <matrix4.h>
25 #include "mapsector.h"
26 #include "mapblock.h"
27 #include "profiler.h"
28 #include "settings.h"
29 #include "camera.h"               // CameraModes
30 #include "util/basic_macros.h"
31 #include "client/renderingengine.h"
32
33 #include <queue>
34
35 // struct MeshBufListList
36 void MeshBufListList::clear()
37 {
38         for (auto &list : lists)
39                 list.clear();
40 }
41
42 void MeshBufListList::add(scene::IMeshBuffer *buf, v3s16 position, u8 layer)
43 {
44         // Append to the correct layer
45         std::vector<MeshBufList> &list = lists[layer];
46         const video::SMaterial &m = buf->getMaterial();
47         for (MeshBufList &l : list) {
48                 // comparing a full material is quite expensive so we don't do it if
49                 // not even first texture is equal
50                 if (l.m.TextureLayer[0].Texture != m.TextureLayer[0].Texture)
51                         continue;
52
53                 if (l.m == m) {
54                         l.bufs.emplace_back(position, buf);
55                         return;
56                 }
57         }
58         MeshBufList l;
59         l.m = m;
60         l.bufs.emplace_back(position, buf);
61         list.emplace_back(l);
62 }
63
64 static void on_settings_changed(const std::string &name, void *data)
65 {
66         static_cast<ClientMap*>(data)->onSettingChanged(name);
67 }
68 // ClientMap
69
70 ClientMap::ClientMap(
71                 Client *client,
72                 RenderingEngine *rendering_engine,
73                 MapDrawControl &control,
74                 s32 id
75 ):
76         Map(client),
77         scene::ISceneNode(rendering_engine->get_scene_manager()->getRootSceneNode(),
78                 rendering_engine->get_scene_manager(), id),
79         m_client(client),
80         m_rendering_engine(rendering_engine),
81         m_control(control),
82         m_drawlist(MapBlockComparer(v3s16(0,0,0)))
83 {
84
85         /*
86          * @Liso: Sadly C++ doesn't have introspection, so the only way we have to know
87          * the class is whith a name ;) Name property cames from ISceneNode base class.
88          */
89         Name = "ClientMap";
90         m_box = aabb3f(-BS*1000000,-BS*1000000,-BS*1000000,
91                         BS*1000000,BS*1000000,BS*1000000);
92
93         /* TODO: Add a callback function so these can be updated when a setting
94          *       changes.  At this point in time it doesn't matter (e.g. /set
95          *       is documented to change server settings only)
96          *
97          * TODO: Local caching of settings is not optimal and should at some stage
98          *       be updated to use a global settings object for getting thse values
99          *       (as opposed to the this local caching). This can be addressed in
100          *       a later release.
101          */
102         m_cache_trilinear_filter  = g_settings->getBool("trilinear_filter");
103         m_cache_bilinear_filter   = g_settings->getBool("bilinear_filter");
104         m_cache_anistropic_filter = g_settings->getBool("anisotropic_filter");
105         m_cache_transparency_sorting_distance = g_settings->getU16("transparency_sorting_distance");
106         m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
107         g_settings->registerChangedCallback("enable_raytraced_culling", on_settings_changed, this);
108 }
109
110 void ClientMap::onSettingChanged(const std::string &name)
111 {
112         if (name == "enable_raytraced_culling")
113                 m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
114 }
115
116 ClientMap::~ClientMap()
117 {
118         g_settings->deregisterChangedCallback("enable_raytraced_culling", on_settings_changed, this);
119 }
120
121 void ClientMap::updateCamera(v3f pos, v3f dir, f32 fov, v3s16 offset)
122 {
123         v3s16 previous_node = floatToInt(m_camera_position, BS) + m_camera_offset;
124         v3s16 previous_block = getContainerPos(previous_node, MAP_BLOCKSIZE);
125
126         m_camera_position = pos;
127         m_camera_direction = dir;
128         m_camera_fov = fov;
129         m_camera_offset = offset;
130
131         v3s16 current_node = floatToInt(m_camera_position, BS) + m_camera_offset;
132         v3s16 current_block = getContainerPos(current_node, MAP_BLOCKSIZE);
133
134         // reorder the blocks when camera crosses block boundary
135         if (previous_block != current_block)
136                 m_needs_update_drawlist = true;
137
138         // reorder transparent meshes when camera crosses node boundary
139         if (previous_node != current_node)
140                 m_needs_update_transparent_meshes = true;
141 }
142
143 MapSector * ClientMap::emergeSector(v2s16 p2d)
144 {
145         // Check that it doesn't exist already
146         MapSector *sector = getSectorNoGenerate(p2d);
147
148         // Create it if it does not exist yet
149         if (!sector) {
150                 sector = new MapSector(this, p2d, m_gamedef);
151                 m_sectors[p2d] = sector;
152         }
153
154         return sector;
155 }
156
157 void ClientMap::OnRegisterSceneNode()
158 {
159         if(IsVisible)
160         {
161                 SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID);
162                 SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT);
163         }
164
165         ISceneNode::OnRegisterSceneNode();
166         // It's not needed to register this node to the shadow renderer
167         // we have other way to find it
168 }
169
170 void ClientMap::getBlocksInViewRange(v3s16 cam_pos_nodes,
171                 v3s16 *p_blocks_min, v3s16 *p_blocks_max, float range)
172 {
173         if (range <= 0.0f)
174                 range = m_control.wanted_range;
175
176         v3s16 box_nodes_d = range * v3s16(1, 1, 1);
177         // Define p_nodes_min/max as v3s32 because 'cam_pos_nodes -/+ box_nodes_d'
178         // can exceed the range of v3s16 when a large view range is used near the
179         // world edges.
180         v3s32 p_nodes_min(
181                 cam_pos_nodes.X - box_nodes_d.X,
182                 cam_pos_nodes.Y - box_nodes_d.Y,
183                 cam_pos_nodes.Z - box_nodes_d.Z);
184         v3s32 p_nodes_max(
185                 cam_pos_nodes.X + box_nodes_d.X,
186                 cam_pos_nodes.Y + box_nodes_d.Y,
187                 cam_pos_nodes.Z + box_nodes_d.Z);
188         // Take a fair amount as we will be dropping more out later
189         // Umm... these additions are a bit strange but they are needed.
190         *p_blocks_min = v3s16(
191                         p_nodes_min.X / MAP_BLOCKSIZE - 3,
192                         p_nodes_min.Y / MAP_BLOCKSIZE - 3,
193                         p_nodes_min.Z / MAP_BLOCKSIZE - 3);
194         *p_blocks_max = v3s16(
195                         p_nodes_max.X / MAP_BLOCKSIZE + 1,
196                         p_nodes_max.Y / MAP_BLOCKSIZE + 1,
197                         p_nodes_max.Z / MAP_BLOCKSIZE + 1);
198 }
199
200 class MapBlockFlags
201 {
202 public:
203         static constexpr u16 CHUNK_EDGE = 8;
204         static constexpr u16 CHUNK_MASK = CHUNK_EDGE - 1;
205         static constexpr std::size_t CHUNK_VOLUME = CHUNK_EDGE * CHUNK_EDGE * CHUNK_EDGE; // volume of a chunk
206
207         MapBlockFlags(v3s16 min_pos, v3s16 max_pos)
208                         : min_pos(min_pos), volume((max_pos - min_pos) / CHUNK_EDGE + 1)
209         {
210                 chunks.resize(volume.X * volume.Y * volume.Z);
211         }
212
213         class Chunk
214         {
215         public:
216                 inline u8 &getBits(v3s16 pos)
217                 {
218                         std::size_t address = getAddress(pos);
219                         return bits[address];
220                 }
221
222         private:
223                 inline std::size_t getAddress(v3s16 pos) {
224                         std::size_t address = (pos.X & CHUNK_MASK) + (pos.Y & CHUNK_MASK) * CHUNK_EDGE + (pos.Z & CHUNK_MASK) * (CHUNK_EDGE * CHUNK_EDGE);
225                         return address;
226                 }
227
228                 std::array<u8, CHUNK_VOLUME> bits;
229         };
230
231         Chunk &getChunk(v3s16 pos)
232         {
233                 v3s16 delta = (pos - min_pos) / CHUNK_EDGE;
234                 std::size_t address = delta.X + delta.Y * volume.X + delta.Z * volume.X * volume.Y;
235                 Chunk *chunk = chunks[address].get();
236                 if (!chunk) {
237                         chunk = new Chunk();
238                         chunks[address].reset(chunk);
239                 }
240                 return *chunk;
241         }
242 private:
243         std::vector<std::unique_ptr<Chunk>> chunks;
244         v3s16 min_pos;
245         v3s16 volume;
246 };
247
248 void ClientMap::updateDrawList()
249 {
250         ScopeProfiler sp(g_profiler, "CM::updateDrawList()", SPT_AVG);
251
252         m_needs_update_drawlist = false;
253
254         for (auto &i : m_drawlist) {
255                 MapBlock *block = i.second;
256                 block->refDrop();
257         }
258         m_drawlist.clear();
259
260         for (auto &block : m_keeplist) {
261                 block->refDrop();
262         }
263         m_keeplist.clear();
264
265         v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
266
267         v3s16 p_blocks_min;
268         v3s16 p_blocks_max;
269         getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
270
271         // Number of blocks occlusion culled
272         u32 blocks_occlusion_culled = 0;
273         // Blocks visited by the algorithm
274         u32 blocks_visited = 0;
275         // Block sides that were not traversed
276         u32 sides_skipped = 0;
277
278         // No occlusion culling when free_move is on and camera is inside ground
279         bool occlusion_culling_enabled = true;
280         if (m_control.allow_noclip) {
281                 MapNode n = getNode(cam_pos_nodes);
282                 if (n.getContent() == CONTENT_IGNORE || m_nodedef->get(n).solidness == 2)
283                         occlusion_culling_enabled = false;
284         }
285
286         v3s16 camera_block = getContainerPos(cam_pos_nodes, MAP_BLOCKSIZE);
287         m_drawlist = std::map<v3s16, MapBlock*, MapBlockComparer>(MapBlockComparer(camera_block));
288
289         auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
290
291         // Uncomment to debug occluded blocks in the wireframe mode
292         // TODO: Include this as a flag for an extended debugging setting
293         // if (occlusion_culling_enabled && m_control.show_wireframe)
294         //      occlusion_culling_enabled = porting::getTimeS() & 1;
295
296         std::queue<v3s16> blocks_to_consider;
297
298         // Bits per block:
299         // [ visited | 0 | 0 | 0 | 0 | Z visible | Y visible | X visible ]
300         MapBlockFlags blocks_seen(p_blocks_min, p_blocks_max);
301
302         // Start breadth-first search with the block the camera is in
303         blocks_to_consider.push(camera_block);
304         blocks_seen.getChunk(camera_block).getBits(camera_block) = 0x07; // mark all sides as visible
305
306         std::set<v3s16> shortlist;
307
308         // Recursively walk the space and pick mapblocks for drawing
309         while (blocks_to_consider.size() > 0) {
310
311                 v3s16 block_coord = blocks_to_consider.front();
312                 blocks_to_consider.pop();
313
314                 auto &flags = blocks_seen.getChunk(block_coord).getBits(block_coord);
315
316                 // Only visit each block once (it may have been queued up to three times)
317                 if ((flags & 0x80) == 0x80)
318                         continue;
319                 flags |= 0x80;
320
321                 blocks_visited++;
322
323                 // Get the sector, block and mesh
324                 MapSector *sector = this->getSectorNoGenerate(v2s16(block_coord.X, block_coord.Z));
325
326                 if (!sector)
327                         continue;
328
329                 MapBlock *block = sector->getBlockNoCreateNoEx(block_coord.Y);
330
331                 MapBlockMesh *mesh = block ? block->mesh : nullptr;
332
333
334                 // Calculate the coordinates for range and frutum culling
335                 v3f mesh_sphere_center;
336                 f32 mesh_sphere_radius;
337
338                 v3s16 block_pos_nodes = block_coord * MAP_BLOCKSIZE;
339
340                 if (mesh) {
341                         mesh_sphere_center = intToFloat(block_pos_nodes, BS)
342                                         + mesh->getBoundingSphereCenter();
343                         mesh_sphere_radius = mesh->getBoundingRadius();
344                 }
345                 else {
346                         mesh_sphere_center = intToFloat(block_pos_nodes, BS) + v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
347                         mesh_sphere_radius = 0.0f;
348                 }
349
350                 // First, perform a simple distance check.
351                 if (!m_control.range_all &&
352                         mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
353                                 m_control.wanted_range * BS + mesh_sphere_radius)
354                         continue; // Out of range, skip.
355
356                 // Frustum culling
357                 // Only do coarse culling here, to account for fast camera movement.
358                 // This is needed because this function is not called every frame.
359                 float frustum_cull_extra_radius = 300.0f;
360                 if (is_frustum_culled(mesh_sphere_center,
361                                 mesh_sphere_radius + frustum_cull_extra_radius))
362                         continue;
363
364                 // Calculate the vector from the camera block to the current block
365                 // We use it to determine through which sides of the current block we can continue the search
366                 v3s16 look = block_coord - camera_block;
367
368                 // Occluded near sides will further occlude the far sides
369                 u8 visible_outer_sides = flags & 0x07;
370
371                 // Raytraced occlusion culling - send rays from the camera to the block's corners
372                 if (occlusion_culling_enabled && m_enable_raytraced_culling &&
373                                 block && mesh &&
374                                 visible_outer_sides != 0x07 && isBlockOccluded(block, cam_pos_nodes)) {
375                         blocks_occlusion_culled++;
376                         continue;
377                 }
378
379                 // Block meshes are stored in blocks where all coordinates are even (lowest bit set to 0)
380                 // Add them to the de-dup set.
381                 shortlist.emplace(block_coord.X & ~1, block_coord.Y & ~1, block_coord.Z & ~1);
382                 // All other blocks we can grab and add to the keeplist right away.
383                 if (block) {
384                         m_keeplist.push_back(block);
385                         block->refGrab();
386                 }
387
388                 // Decide which sides to traverse next or to block away
389
390                 // First, find the near sides that would occlude the far sides
391                 // * A near side can itself be occluded by a nearby block (the test above ^^)
392                 // * A near side can be visible but fully opaque by itself (e.g. ground at the 0 level)
393
394                 // mesh solid sides are +Z-Z+Y-Y+X-X
395                 // if we are inside the block's coordinates on an axis, 
396                 // treat these sides as opaque, as they should not allow to reach the far sides
397                 u8 block_inner_sides = (look.X == 0 ? 3 : 0) |
398                         (look.Y == 0 ? 12 : 0) |
399                         (look.Z == 0 ? 48 : 0);
400
401                 // get the mask for the sides that are relevant based on the direction
402                 u8 near_inner_sides = (look.X > 0 ? 1 : 2) |
403                                 (look.Y > 0 ? 4 : 8) |
404                                 (look.Z > 0 ? 16 : 32);
405                 
406                 // This bitset is +Z-Z+Y-Y+X-X (See MapBlockMesh), and axis is XYZ.
407                 // Get he block's transparent sides
408                 u8 transparent_sides = (occlusion_culling_enabled && block) ? ~block->solid_sides : 0x3F;
409
410                 // compress block transparent sides to ZYX mask of see-through axes
411                 u8 near_transparency =  (block_inner_sides == 0x3F) ? near_inner_sides : (transparent_sides & near_inner_sides);
412
413                 // when we are inside the camera block, do not block any sides
414                 if (block_inner_sides == 0x3F)
415                         block_inner_sides = 0;
416
417                 near_transparency &= ~block_inner_sides & 0x3F;
418
419                 near_transparency |= (near_transparency >> 1);
420                 near_transparency = (near_transparency & 1) |
421                                 ((near_transparency >> 1) & 2) |
422                                 ((near_transparency >> 2) & 4);
423
424                 // combine with known visible sides that matter
425                 near_transparency &= visible_outer_sides;
426
427                 // The rule for any far side to be visible:
428                 // * Any of the adjacent near sides is transparent (different axes)
429                 // * The opposite near side (same axis) is transparent, if it is the dominant axis of the look vector
430
431                 // Calculate vector from camera to mapblock center. Because we only need relation between
432                 // coordinates we scale by 2 to avoid precision loss.
433                 v3s16 precise_look = 2 * (block_pos_nodes - cam_pos_nodes) + MAP_BLOCKSIZE - 1;
434
435                 // dominant axis flag
436                 u8 dominant_axis = (abs(precise_look.X) > abs(precise_look.Y) && abs(precise_look.X) > abs(precise_look.Z)) |
437                                         ((abs(precise_look.Y) > abs(precise_look.Z) && abs(precise_look.Y) > abs(precise_look.X)) << 1) |
438                                         ((abs(precise_look.Z) > abs(precise_look.X) && abs(precise_look.Z) > abs(precise_look.Y)) << 2);
439
440                 // Queue next blocks for processing:
441                 // - Examine "far" sides of the current blocks, i.e. never move towards the camera
442                 // - Only traverse the sides that are not occluded
443                 // - Only traverse the sides that are not opaque
444                 // When queueing, mark the relevant side on the next block as 'visible'
445                 for (s16 axis = 0; axis < 3; axis++) {
446
447                         // Select a bit from transparent_sides for the side
448                         u8 far_side_mask = 1 << (2 * axis);
449
450                         // axis flag
451                         u8 my_side = 1 << axis;
452                         u8 adjacent_sides = my_side ^ 0x07;
453
454                         auto traverse_far_side = [&](s8 next_pos_offset) {
455                                 // far side is visible if adjacent near sides are transparent, or if opposite side on dominant axis is transparent
456                                 bool side_visible = ((near_transparency & adjacent_sides) | (near_transparency & my_side & dominant_axis)) != 0;
457                                 side_visible = side_visible && ((far_side_mask & transparent_sides) != 0);
458
459                                 v3s16 next_pos = block_coord;
460                                 next_pos[axis] += next_pos_offset;
461
462                                 // If a side is a see-through, mark the next block's side as visible, and queue
463                                 if (side_visible) {
464                                         auto &next_flags = blocks_seen.getChunk(next_pos).getBits(next_pos);
465                                         next_flags |= my_side;
466                                         blocks_to_consider.push(next_pos);
467                                 }
468                                 else {
469                                         sides_skipped++;
470                                 }
471                         };
472
473
474                         // Test the '-' direction of the axis
475                         if (look[axis] <= 0 && block_coord[axis] > p_blocks_min[axis])
476                                 traverse_far_side(-1);
477
478                         // Test the '+' direction of the axis
479                         far_side_mask <<= 1;
480
481                         if (look[axis] >= 0 && block_coord[axis] < p_blocks_max[axis])
482                                 traverse_far_side(+1);
483                 }
484         }
485
486         g_profiler->avg("MapBlocks shortlist [#]", shortlist.size());
487
488         assert(m_drawlist.empty());
489         for (auto pos : shortlist) {
490                 MapBlock * block = getBlockNoCreateNoEx(pos);
491                 if (block) {
492                         block->refGrab();
493                         m_drawlist.emplace(pos, block);
494                 }
495         }
496
497         g_profiler->avg("MapBlocks occlusion culled [#]", blocks_occlusion_culled);
498         g_profiler->avg("MapBlocks sides skipped [#]", sides_skipped);
499         g_profiler->avg("MapBlocks examined [#]", blocks_visited);
500         g_profiler->avg("MapBlocks drawn [#]", m_drawlist.size());
501 }
502
503 void ClientMap::touchMapBlocks()
504 {
505         v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
506
507         v3s16 p_blocks_min;
508         v3s16 p_blocks_max;
509         getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
510
511         // Number of blocks currently loaded by the client
512         u32 blocks_loaded = 0;
513         // Number of blocks with mesh in rendering range
514         u32 blocks_in_range_with_mesh = 0;
515
516         for (const auto &sector_it : m_sectors) {
517                 MapSector *sector = sector_it.second;
518                 v2s16 sp = sector->getPos();
519
520                 blocks_loaded += sector->size();
521                 if (!m_control.range_all) {
522                         if (sp.X < p_blocks_min.X || sp.X > p_blocks_max.X ||
523                                         sp.Y < p_blocks_min.Z || sp.Y > p_blocks_max.Z)
524                                 continue;
525                 }
526
527                 MapBlockVect sectorblocks;
528                 sector->getBlocks(sectorblocks);
529
530                 /*
531                         Loop through blocks in sector
532                 */
533
534                 for (MapBlock *block : sectorblocks) {
535                         /*
536                                 Compare block position to camera position, skip
537                                 if not seen on display
538                         */
539
540                         if (!block->mesh) {
541                                 // Ignore if mesh doesn't exist
542                                 continue;
543                         }
544
545                         v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
546                                         + block->mesh->getBoundingSphereCenter();
547                         f32 mesh_sphere_radius = block->mesh->getBoundingRadius();
548                         // First, perform a simple distance check.
549                         if (!m_control.range_all &&
550                                 mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
551                                         m_control.wanted_range * BS + mesh_sphere_radius)
552                                 continue; // Out of range, skip.
553
554                         // Keep the block alive as long as it is in range.
555                         block->resetUsageTimer();
556                         blocks_in_range_with_mesh++;
557                 }
558         }
559         g_profiler->avg("MapBlock meshes in range [#]", blocks_in_range_with_mesh);
560         g_profiler->avg("MapBlocks loaded [#]", blocks_loaded);
561 }
562
563 void ClientMap::renderMap(video::IVideoDriver* driver, s32 pass)
564 {
565         bool is_transparent_pass = pass == scene::ESNRP_TRANSPARENT;
566
567         std::string prefix;
568         if (pass == scene::ESNRP_SOLID)
569                 prefix = "renderMap(SOLID): ";
570         else
571                 prefix = "renderMap(TRANSPARENT): ";
572
573         /*
574                 This is called two times per frame, reset on the non-transparent one
575         */
576         if (pass == scene::ESNRP_SOLID)
577                 m_last_drawn_sectors.clear();
578
579         /*
580                 Get animation parameters
581         */
582         const float animation_time = m_client->getAnimationTime();
583         const int crack = m_client->getCrackLevel();
584         const u32 daynight_ratio = m_client->getEnv().getDayNightRatio();
585
586         const v3f camera_position = m_camera_position;
587
588         /*
589                 Get all blocks and draw all visible ones
590         */
591
592         u32 vertex_count = 0;
593         u32 drawcall_count = 0;
594
595         // For limiting number of mesh animations per frame
596         u32 mesh_animate_count = 0;
597         //u32 mesh_animate_count_far = 0;
598
599         /*
600                 Update transparent meshes
601         */
602         if (is_transparent_pass)
603                 updateTransparentMeshBuffers();
604
605         /*
606                 Draw the selected MapBlocks
607         */
608
609         MeshBufListList grouped_buffers;
610         std::vector<DrawDescriptor> draw_order;
611         video::SMaterial previous_material;
612
613         auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
614
615         for (auto &i : m_drawlist) {
616                 v3s16 block_pos = i.first;
617                 MapBlock *block = i.second;
618                 MapBlockMesh *block_mesh = block->mesh;
619
620                 // If the mesh of the block happened to get deleted, ignore it
621                 if (!block_mesh)
622                         continue;
623
624                 // Do exact frustum culling
625                 // (The one in updateDrawList is only coarse.)
626                 v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
627                                 + block_mesh->getBoundingSphereCenter();
628                 f32 mesh_sphere_radius = block_mesh->getBoundingRadius();
629                 if (is_frustum_culled(mesh_sphere_center, mesh_sphere_radius))
630                         continue;
631
632                 v3f block_pos_r = intToFloat(block->getPosRelative() + MAP_BLOCKSIZE / 2, BS);
633
634                 float d = camera_position.getDistanceFrom(block_pos_r);
635                 d = MYMAX(0,d - BLOCK_MAX_RADIUS);
636
637                 // Mesh animation
638                 if (pass == scene::ESNRP_SOLID) {
639                         // Pretty random but this should work somewhat nicely
640                         bool faraway = d >= BS * 50;
641                         if (block_mesh->isAnimationForced() || !faraway ||
642                                         mesh_animate_count < (m_control.range_all ? 200 : 50)) {
643
644                                 bool animated = block_mesh->animate(faraway, animation_time,
645                                         crack, daynight_ratio);
646                                 if (animated)
647                                         mesh_animate_count++;
648                         } else {
649                                 block_mesh->decreaseAnimationForceTimer();
650                         }
651                 }
652
653                 /*
654                         Get the meshbuffers of the block
655                 */
656                 if (is_transparent_pass) {
657                         // In transparent pass, the mesh will give us
658                         // the partial buffers in the correct order
659                         for (auto &buffer : block_mesh->getTransparentBuffers())
660                                 draw_order.emplace_back(block_pos, &buffer);
661                 }
662                 else {
663                         // otherwise, group buffers across meshes
664                         // using MeshBufListList
665                         for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
666                                 scene::IMesh *mesh = block_mesh->getMesh(layer);
667                                 assert(mesh);
668
669                                 u32 c = mesh->getMeshBufferCount();
670                                 for (u32 i = 0; i < c; i++) {
671                                         scene::IMeshBuffer *buf = mesh->getMeshBuffer(i);
672
673                                         video::SMaterial& material = buf->getMaterial();
674                                         video::IMaterialRenderer* rnd =
675                                                         driver->getMaterialRenderer(material.MaterialType);
676                                         bool transparent = (rnd && rnd->isTransparent());
677                                         if (!transparent) {
678                                                 if (buf->getVertexCount() == 0)
679                                                         errorstream << "Block [" << analyze_block(block)
680                                                                         << "] contains an empty meshbuf" << std::endl;
681
682                                                 grouped_buffers.add(buf, block_pos, layer);
683                                         }
684                                 }
685                         }
686                 }
687         }
688
689         // Capture draw order for all solid meshes
690         for (auto &lists : grouped_buffers.lists) {
691                 for (MeshBufList &list : lists) {
692                         // iterate in reverse to draw closest blocks first
693                         for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it) {
694                                 draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin());
695                         }
696                 }
697         }
698
699         TimeTaker draw("Drawing mesh buffers");
700
701         core::matrix4 m; // Model matrix
702         v3f offset = intToFloat(m_camera_offset, BS);
703         u32 material_swaps = 0;
704
705         // Render all mesh buffers in order
706         drawcall_count += draw_order.size();
707
708         for (auto &descriptor : draw_order) {
709                 scene::IMeshBuffer *buf = descriptor.getBuffer();
710
711                 if (!descriptor.m_reuse_material) {
712                         auto &material = buf->getMaterial();
713
714                         // Apply filter settings
715                         material.setFlag(video::EMF_TRILINEAR_FILTER,
716                                 m_cache_trilinear_filter);
717                         material.setFlag(video::EMF_BILINEAR_FILTER,
718                                 m_cache_bilinear_filter);
719                         material.setFlag(video::EMF_ANISOTROPIC_FILTER,
720                                 m_cache_anistropic_filter);
721                         material.setFlag(video::EMF_WIREFRAME,
722                                 m_control.show_wireframe);
723
724                         // pass the shadow map texture to the buffer texture
725                         ShadowRenderer *shadow = m_rendering_engine->get_shadow_renderer();
726                         if (shadow && shadow->is_active()) {
727                                 auto &layer = material.TextureLayer[ShadowRenderer::TEXTURE_LAYER_SHADOW];
728                                 layer.Texture = shadow->get_texture();
729                                 layer.TextureWrapU = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
730                                 layer.TextureWrapV = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
731                                 // Do not enable filter on shadow texture to avoid visual artifacts
732                                 // with colored shadows.
733                                 // Filtering is done in shader code anyway
734                                 layer.BilinearFilter = false;
735                                 layer.AnisotropicFilter = false;
736                                 layer.TrilinearFilter = false;
737                         }
738                         driver->setMaterial(material);
739                         ++material_swaps;
740                         material.TextureLayer[ShadowRenderer::TEXTURE_LAYER_SHADOW].Texture = nullptr;
741                 }
742
743                 v3f block_wpos = intToFloat(descriptor.m_pos / 8 * 8 * MAP_BLOCKSIZE, BS);
744                 m.setTranslation(block_wpos - offset);
745
746                 driver->setTransform(video::ETS_WORLD, m);
747                 descriptor.draw(driver);
748                 vertex_count += buf->getIndexCount();
749         }
750
751         g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true));
752
753         // Log only on solid pass because values are the same
754         if (pass == scene::ESNRP_SOLID) {
755                 g_profiler->avg("renderMap(): animated meshes [#]", mesh_animate_count);
756         }
757
758         if (pass == scene::ESNRP_TRANSPARENT) {
759                 g_profiler->avg("renderMap(): transparent buffers [#]", draw_order.size());
760         }
761
762         g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
763         g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
764         g_profiler->avg(prefix + "material swaps [#]", material_swaps);
765 }
766
767 static bool getVisibleBrightness(Map *map, const v3f &p0, v3f dir, float step,
768         float step_multiplier, float start_distance, float end_distance,
769         const NodeDefManager *ndef, u32 daylight_factor, float sunlight_min_d,
770         int *result, bool *sunlight_seen)
771 {
772         int brightness_sum = 0;
773         int brightness_count = 0;
774         float distance = start_distance;
775         dir.normalize();
776         v3f pf = p0;
777         pf += dir * distance;
778         int noncount = 0;
779         bool nonlight_seen = false;
780         bool allow_allowing_non_sunlight_propagates = false;
781         bool allow_non_sunlight_propagates = false;
782         // Check content nearly at camera position
783         {
784                 v3s16 p = floatToInt(p0 /*+ dir * 3*BS*/, BS);
785                 MapNode n = map->getNode(p);
786                 if(ndef->getLightingFlags(n).has_light &&
787                                 !ndef->getLightingFlags(n).sunlight_propagates)
788                         allow_allowing_non_sunlight_propagates = true;
789         }
790         // If would start at CONTENT_IGNORE, start closer
791         {
792                 v3s16 p = floatToInt(pf, BS);
793                 MapNode n = map->getNode(p);
794                 if(n.getContent() == CONTENT_IGNORE){
795                         float newd = 2*BS;
796                         pf = p0 + dir * 2*newd;
797                         distance = newd;
798                         sunlight_min_d = 0;
799                 }
800         }
801         for (int i=0; distance < end_distance; i++) {
802                 pf += dir * step;
803                 distance += step;
804                 step *= step_multiplier;
805
806                 v3s16 p = floatToInt(pf, BS);
807                 MapNode n = map->getNode(p);
808                 ContentLightingFlags f = ndef->getLightingFlags(n);
809                 if (allow_allowing_non_sunlight_propagates && i == 0 &&
810                                 f.has_light && !f.sunlight_propagates) {
811                         allow_non_sunlight_propagates = true;
812                 }
813
814                 if (!f.has_light || (!f.sunlight_propagates && !allow_non_sunlight_propagates)){
815                         nonlight_seen = true;
816                         noncount++;
817                         if(noncount >= 4)
818                                 break;
819                         continue;
820                 }
821
822                 if (distance >= sunlight_min_d && !*sunlight_seen && !nonlight_seen)
823                         if (n.getLight(LIGHTBANK_DAY, f) == LIGHT_SUN)
824                                 *sunlight_seen = true;
825                 noncount = 0;
826                 brightness_sum += decode_light(n.getLightBlend(daylight_factor, f));
827                 brightness_count++;
828         }
829         *result = 0;
830         if(brightness_count == 0)
831                 return false;
832         *result = brightness_sum / brightness_count;
833         /*std::cerr<<"Sampled "<<brightness_count<<" points; result="
834                         <<(*result)<<std::endl;*/
835         return true;
836 }
837
838 int ClientMap::getBackgroundBrightness(float max_d, u32 daylight_factor,
839                 int oldvalue, bool *sunlight_seen_result)
840 {
841         ScopeProfiler sp(g_profiler, "CM::getBackgroundBrightness", SPT_AVG);
842         static v3f z_directions[50] = {
843                 v3f(-100, 0, 0)
844         };
845         static f32 z_offsets[50] = {
846                 -1000,
847         };
848
849         if (z_directions[0].X < -99) {
850                 for (u32 i = 0; i < ARRLEN(z_directions); i++) {
851                         // Assumes FOV of 72 and 16/9 aspect ratio
852                         z_directions[i] = v3f(
853                                 0.02 * myrand_range(-100, 100),
854                                 1.0,
855                                 0.01 * myrand_range(-100, 100)
856                         ).normalize();
857                         z_offsets[i] = 0.01 * myrand_range(0,100);
858                 }
859         }
860
861         int sunlight_seen_count = 0;
862         float sunlight_min_d = max_d*0.8;
863         if(sunlight_min_d > 35*BS)
864                 sunlight_min_d = 35*BS;
865         std::vector<int> values;
866         values.reserve(ARRLEN(z_directions));
867         for (u32 i = 0; i < ARRLEN(z_directions); i++) {
868                 v3f z_dir = z_directions[i];
869                 core::CMatrix4<f32> a;
870                 a.buildRotateFromTo(v3f(0,1,0), z_dir);
871                 v3f dir = m_camera_direction;
872                 a.rotateVect(dir);
873                 int br = 0;
874                 float step = BS*1.5;
875                 if(max_d > 35*BS)
876                         step = max_d / 35 * 1.5;
877                 float off = step * z_offsets[i];
878                 bool sunlight_seen_now = false;
879                 bool ok = getVisibleBrightness(this, m_camera_position, dir,
880                                 step, 1.0, max_d*0.6+off, max_d, m_nodedef, daylight_factor,
881                                 sunlight_min_d,
882                                 &br, &sunlight_seen_now);
883                 if(sunlight_seen_now)
884                         sunlight_seen_count++;
885                 if(!ok)
886                         continue;
887                 values.push_back(br);
888                 // Don't try too much if being in the sun is clear
889                 if(sunlight_seen_count >= 20)
890                         break;
891         }
892         int brightness_sum = 0;
893         int brightness_count = 0;
894         std::sort(values.begin(), values.end());
895         u32 num_values_to_use = values.size();
896         if(num_values_to_use >= 10)
897                 num_values_to_use -= num_values_to_use/2;
898         else if(num_values_to_use >= 7)
899                 num_values_to_use -= num_values_to_use/3;
900         u32 first_value_i = (values.size() - num_values_to_use) / 2;
901
902         for (u32 i=first_value_i; i < first_value_i + num_values_to_use; i++) {
903                 brightness_sum += values[i];
904                 brightness_count++;
905         }
906
907         int ret = 0;
908         if(brightness_count == 0){
909                 MapNode n = getNode(floatToInt(m_camera_position, BS));
910                 ContentLightingFlags f = m_nodedef->getLightingFlags(n);
911                 if(f.has_light){
912                         ret = decode_light(n.getLightBlend(daylight_factor, f));
913                 } else {
914                         ret = oldvalue;
915                 }
916         } else {
917                 ret = brightness_sum / brightness_count;
918         }
919
920         *sunlight_seen_result = (sunlight_seen_count > 0);
921         return ret;
922 }
923
924 void ClientMap::renderPostFx(CameraMode cam_mode)
925 {
926         // Sadly ISceneManager has no "post effects" render pass, in that case we
927         // could just register for that and handle it in renderMap().
928
929         MapNode n = getNode(floatToInt(m_camera_position, BS));
930
931         const ContentFeatures& features = m_nodedef->get(n);
932         video::SColor post_effect_color = features.post_effect_color;
933
934         // If the camera is in a solid node, make everything black.
935         // (first person mode only)
936         if (features.solidness == 2 && cam_mode == CAMERA_MODE_FIRST &&
937                 !m_control.allow_noclip) {
938                 post_effect_color = video::SColor(255, 0, 0, 0);
939         }
940
941         if (post_effect_color.getAlpha() != 0) {
942                 // Draw a full-screen rectangle
943                 video::IVideoDriver* driver = SceneManager->getVideoDriver();
944                 v2u32 ss = driver->getScreenSize();
945                 core::rect<s32> rect(0,0, ss.X, ss.Y);
946                 driver->draw2DRectangle(post_effect_color, rect);
947         }
948 }
949
950 void ClientMap::PrintInfo(std::ostream &out)
951 {
952         out<<"ClientMap: ";
953 }
954
955 void ClientMap::renderMapShadows(video::IVideoDriver *driver,
956                 const video::SMaterial &material, s32 pass, int frame, int total_frames)
957 {
958         bool is_transparent_pass = pass != scene::ESNRP_SOLID;
959         std::string prefix;
960         if (is_transparent_pass)
961                 prefix = "renderMap(SHADOW TRANS): ";
962         else
963                 prefix = "renderMap(SHADOW SOLID): ";
964
965         u32 drawcall_count = 0;
966         u32 vertex_count = 0;
967
968         MeshBufListList grouped_buffers;
969         std::vector<DrawDescriptor> draw_order;
970
971
972         int count = 0;
973         int low_bound = is_transparent_pass ? 0 : m_drawlist_shadow.size() / total_frames * frame;
974         int high_bound = is_transparent_pass ? m_drawlist_shadow.size() : m_drawlist_shadow.size() / total_frames * (frame + 1);
975
976         // transparent pass should be rendered in one go
977         if (is_transparent_pass && frame != total_frames - 1) {
978                 return;
979         }
980
981         for (const auto &i : m_drawlist_shadow) {
982                 // only process specific part of the list & break early
983                 ++count;
984                 if (count <= low_bound)
985                         continue;
986                 if (count > high_bound)
987                         break;
988
989                 v3s16 block_pos = i.first;
990                 MapBlock *block = i.second;
991
992                 // If the mesh of the block happened to get deleted, ignore it
993                 if (!block->mesh)
994                         continue;
995
996                 /*
997                         Get the meshbuffers of the block
998                 */
999                 if (is_transparent_pass) {
1000                         // In transparent pass, the mesh will give us
1001                         // the partial buffers in the correct order
1002                         for (auto &buffer : block->mesh->getTransparentBuffers())
1003                                 draw_order.emplace_back(block_pos, &buffer);
1004                 }
1005                 else {
1006                         // otherwise, group buffers across meshes
1007                         // using MeshBufListList
1008                         MapBlockMesh *mapBlockMesh = block->mesh;
1009                         assert(mapBlockMesh);
1010
1011                         for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
1012                                 scene::IMesh *mesh = mapBlockMesh->getMesh(layer);
1013                                 assert(mesh);
1014
1015                                 u32 c = mesh->getMeshBufferCount();
1016                                 for (u32 i = 0; i < c; i++) {
1017                                         scene::IMeshBuffer *buf = mesh->getMeshBuffer(i);
1018
1019                                         video::SMaterial &mat = buf->getMaterial();
1020                                         auto rnd = driver->getMaterialRenderer(mat.MaterialType);
1021                                         bool transparent = rnd && rnd->isTransparent();
1022                                         if (!transparent)
1023                                                 grouped_buffers.add(buf, block_pos, layer);
1024                                 }
1025                         }
1026                 }
1027         }
1028
1029         u32 buffer_count = 0;
1030         for (auto &lists : grouped_buffers.lists)
1031                 for (MeshBufList &list : lists)
1032                         buffer_count += list.bufs.size();
1033
1034         draw_order.reserve(draw_order.size() + buffer_count);
1035
1036         // Capture draw order for all solid meshes
1037         for (auto &lists : grouped_buffers.lists) {
1038                 for (MeshBufList &list : lists) {
1039                         // iterate in reverse to draw closest blocks first
1040                         for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it)
1041                                 draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin());
1042                 }
1043         }
1044
1045         TimeTaker draw("Drawing shadow mesh buffers");
1046
1047         core::matrix4 m; // Model matrix
1048         v3f offset = intToFloat(m_camera_offset, BS);
1049         u32 material_swaps = 0;
1050
1051         // Render all mesh buffers in order
1052         drawcall_count += draw_order.size();
1053
1054         for (auto &descriptor : draw_order) {
1055                 scene::IMeshBuffer *buf = descriptor.getBuffer();
1056
1057                 if (!descriptor.m_reuse_material) {
1058                         // override some material properties
1059                         video::SMaterial local_material = buf->getMaterial();
1060                         local_material.MaterialType = material.MaterialType;
1061                         local_material.BackfaceCulling = material.BackfaceCulling;
1062                         local_material.FrontfaceCulling = material.FrontfaceCulling;
1063                         local_material.BlendOperation = material.BlendOperation;
1064                         local_material.Lighting = false;
1065                         driver->setMaterial(local_material);
1066                         ++material_swaps;
1067                 }
1068
1069                 v3f block_wpos = intToFloat(descriptor.m_pos / 8 * 8 * MAP_BLOCKSIZE, BS);
1070                 m.setTranslation(block_wpos - offset);
1071
1072                 driver->setTransform(video::ETS_WORLD, m);
1073                 descriptor.draw(driver);
1074                 vertex_count += buf->getIndexCount();
1075         }
1076
1077         // restore the driver material state
1078         video::SMaterial clean;
1079         clean.BlendOperation = video::EBO_ADD;
1080         driver->setMaterial(clean); // reset material to defaults
1081         driver->draw3DLine(v3f(), v3f(), video::SColor(0));
1082
1083         g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true));
1084         g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
1085         g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
1086         g_profiler->avg(prefix + "material swaps [#]", material_swaps);
1087 }
1088
1089 /*
1090         Custom update draw list for the pov of shadow light.
1091 */
1092 void ClientMap::updateDrawListShadow(v3f shadow_light_pos, v3f shadow_light_dir, float radius, float length)
1093 {
1094         ScopeProfiler sp(g_profiler, "CM::updateDrawListShadow()", SPT_AVG);
1095
1096         v3s16 cam_pos_nodes = floatToInt(shadow_light_pos, BS);
1097         v3s16 p_blocks_min;
1098         v3s16 p_blocks_max;
1099         getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max, radius + length);
1100
1101         for (auto &i : m_drawlist_shadow) {
1102                 MapBlock *block = i.second;
1103                 block->refDrop();
1104         }
1105         m_drawlist_shadow.clear();
1106
1107         // Number of blocks currently loaded by the client
1108         u32 blocks_loaded = 0;
1109         // Number of blocks with mesh in rendering range
1110         u32 blocks_in_range_with_mesh = 0;
1111         // Number of blocks occlusion culled
1112         u32 blocks_occlusion_culled = 0;
1113
1114         for (auto &sector_it : m_sectors) {
1115                 MapSector *sector = sector_it.second;
1116                 if (!sector)
1117                         continue;
1118                 blocks_loaded += sector->size();
1119
1120                 MapBlockVect sectorblocks;
1121                 sector->getBlocks(sectorblocks);
1122
1123                 /*
1124                         Loop through blocks in sector
1125                 */
1126                 for (MapBlock *block : sectorblocks) {
1127                         if (!block->mesh) {
1128                                 // Ignore if mesh doesn't exist
1129                                 continue;
1130                         }
1131
1132                         v3f block_pos = intToFloat(block->getPos() * MAP_BLOCKSIZE, BS);
1133                         v3f projection = shadow_light_pos + shadow_light_dir * shadow_light_dir.dotProduct(block_pos - shadow_light_pos);
1134                         if (projection.getDistanceFrom(block_pos) > radius)
1135                                 continue;
1136
1137                         blocks_in_range_with_mesh++;
1138
1139                         // This block is in range. Reset usage timer.
1140                         block->resetUsageTimer();
1141
1142                         // Add to set
1143                         if (m_drawlist_shadow.emplace(block->getPos(), block).second) {
1144                                 block->refGrab();
1145                         }
1146                 }
1147         }
1148
1149         g_profiler->avg("SHADOW MapBlock meshes in range [#]", blocks_in_range_with_mesh);
1150         g_profiler->avg("SHADOW MapBlocks occlusion culled [#]", blocks_occlusion_culled);
1151         g_profiler->avg("SHADOW MapBlocks drawn [#]", m_drawlist_shadow.size());
1152         g_profiler->avg("SHADOW MapBlocks loaded [#]", blocks_loaded);
1153 }
1154
1155 void ClientMap::reportMetrics(u64 save_time_us, u32 saved_blocks, u32 all_blocks)
1156 {
1157         g_profiler->avg("CM::reportMetrics loaded blocks [#]", all_blocks);
1158 }
1159
1160 void ClientMap::updateTransparentMeshBuffers()
1161 {
1162         ScopeProfiler sp(g_profiler, "CM::updateTransparentMeshBuffers", SPT_AVG);
1163         u32 sorted_blocks = 0;
1164         u32 unsorted_blocks = 0;
1165         f32 sorting_distance_sq = pow(m_cache_transparency_sorting_distance * BS, 2.0f);
1166
1167
1168         // Update the order of transparent mesh buffers in each mesh
1169         for (auto it = m_drawlist.begin(); it != m_drawlist.end(); it++) {
1170                 MapBlock* block = it->second;
1171                 if (!block->mesh)
1172                         continue;
1173
1174                 if (m_needs_update_transparent_meshes ||
1175                                 block->mesh->getTransparentBuffers().size() == 0) {
1176
1177                         v3s16 block_pos = block->getPos();
1178                         v3f block_pos_f = intToFloat(block_pos * MAP_BLOCKSIZE + MAP_BLOCKSIZE / 2, BS);
1179                         f32 distance = m_camera_position.getDistanceFromSQ(block_pos_f);
1180                         if (distance <= sorting_distance_sq) {
1181                                 block->mesh->updateTransparentBuffers(m_camera_position, block_pos);
1182                                 ++sorted_blocks;
1183                         }
1184                         else {
1185                                 block->mesh->consolidateTransparentBuffers();
1186                                 ++unsorted_blocks;
1187                         }
1188                 }
1189         }
1190
1191         g_profiler->avg("CM::Transparent Buffers - Sorted", sorted_blocks);
1192         g_profiler->avg("CM::Transparent Buffers - Unsorted", unsorted_blocks);
1193         m_needs_update_transparent_meshes = false;
1194 }
1195
1196 scene::IMeshBuffer* ClientMap::DrawDescriptor::getBuffer()
1197 {
1198         return m_use_partial_buffer ? m_partial_buffer->getBuffer() : m_buffer;
1199 }
1200
1201 void ClientMap::DrawDescriptor::draw(video::IVideoDriver* driver)
1202 {
1203         if (m_use_partial_buffer) {
1204                 m_partial_buffer->beforeDraw();
1205                 driver->drawMeshBuffer(m_partial_buffer->getBuffer());
1206                 m_partial_buffer->afterDraw();
1207         } else {
1208                 driver->drawMeshBuffer(m_buffer);
1209         }
1210 }