]> git.lizzy.rs Git - minetest.git/blob - src/client/clientmap.cpp
Remove the 'loops' occlusion culler (#13169)
[minetest.git] / src / client / clientmap.cpp
1 /*
2 Minetest
3 Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU Lesser General Public License as published by
7 the Free Software Foundation; either version 2.1 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 GNU Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public License along
16 with this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "clientmap.h"
21 #include "client.h"
22 #include "mapblock_mesh.h"
23 #include <IMaterialRenderer.h>
24 #include <matrix4.h>
25 #include "mapsector.h"
26 #include "mapblock.h"
27 #include "profiler.h"
28 #include "settings.h"
29 #include "camera.h"               // CameraModes
30 #include "util/basic_macros.h"
31 #include "client/renderingengine.h"
32
33 #include <queue>
34
35 // struct MeshBufListList
36 void MeshBufListList::clear()
37 {
38         for (auto &list : lists)
39                 list.clear();
40 }
41
42 void MeshBufListList::add(scene::IMeshBuffer *buf, v3s16 position, u8 layer)
43 {
44         // Append to the correct layer
45         std::vector<MeshBufList> &list = lists[layer];
46         const video::SMaterial &m = buf->getMaterial();
47         for (MeshBufList &l : list) {
48                 // comparing a full material is quite expensive so we don't do it if
49                 // not even first texture is equal
50                 if (l.m.TextureLayer[0].Texture != m.TextureLayer[0].Texture)
51                         continue;
52
53                 if (l.m == m) {
54                         l.bufs.emplace_back(position, buf);
55                         return;
56                 }
57         }
58         MeshBufList l;
59         l.m = m;
60         l.bufs.emplace_back(position, buf);
61         list.emplace_back(l);
62 }
63
64 static void on_settings_changed(const std::string &name, void *data)
65 {
66         static_cast<ClientMap*>(data)->onSettingChanged(name);
67 }
68 // ClientMap
69
70 ClientMap::ClientMap(
71                 Client *client,
72                 RenderingEngine *rendering_engine,
73                 MapDrawControl &control,
74                 s32 id
75 ):
76         Map(client),
77         scene::ISceneNode(rendering_engine->get_scene_manager()->getRootSceneNode(),
78                 rendering_engine->get_scene_manager(), id),
79         m_client(client),
80         m_rendering_engine(rendering_engine),
81         m_control(control),
82         m_drawlist(MapBlockComparer(v3s16(0,0,0)))
83 {
84
85         /*
86          * @Liso: Sadly C++ doesn't have introspection, so the only way we have to know
87          * the class is whith a name ;) Name property cames from ISceneNode base class.
88          */
89         Name = "ClientMap";
90         m_box = aabb3f(-BS*1000000,-BS*1000000,-BS*1000000,
91                         BS*1000000,BS*1000000,BS*1000000);
92
93         /* TODO: Add a callback function so these can be updated when a setting
94          *       changes.  At this point in time it doesn't matter (e.g. /set
95          *       is documented to change server settings only)
96          *
97          * TODO: Local caching of settings is not optimal and should at some stage
98          *       be updated to use a global settings object for getting thse values
99          *       (as opposed to the this local caching). This can be addressed in
100          *       a later release.
101          */
102         m_cache_trilinear_filter  = g_settings->getBool("trilinear_filter");
103         m_cache_bilinear_filter   = g_settings->getBool("bilinear_filter");
104         m_cache_anistropic_filter = g_settings->getBool("anisotropic_filter");
105         m_cache_transparency_sorting_distance = g_settings->getU16("transparency_sorting_distance");
106         m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
107         g_settings->registerChangedCallback("enable_raytraced_culling", on_settings_changed, this);
108 }
109
110 void ClientMap::onSettingChanged(const std::string &name)
111 {
112         if (name == "enable_raytraced_culling")
113                 m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
114 }
115
116 ClientMap::~ClientMap()
117 {
118         g_settings->deregisterChangedCallback("enable_raytraced_culling", on_settings_changed, this);
119 }
120
121 void ClientMap::updateCamera(v3f pos, v3f dir, f32 fov, v3s16 offset)
122 {
123         v3s16 previous_node = floatToInt(m_camera_position, BS) + m_camera_offset;
124         v3s16 previous_block = getContainerPos(previous_node, MAP_BLOCKSIZE);
125
126         m_camera_position = pos;
127         m_camera_direction = dir;
128         m_camera_fov = fov;
129         m_camera_offset = offset;
130
131         v3s16 current_node = floatToInt(m_camera_position, BS) + m_camera_offset;
132         v3s16 current_block = getContainerPos(current_node, MAP_BLOCKSIZE);
133
134         // reorder the blocks when camera crosses block boundary
135         if (previous_block != current_block)
136                 m_needs_update_drawlist = true;
137
138         // reorder transparent meshes when camera crosses node boundary
139         if (previous_node != current_node)
140                 m_needs_update_transparent_meshes = true;
141 }
142
143 MapSector * ClientMap::emergeSector(v2s16 p2d)
144 {
145         // Check that it doesn't exist already
146         MapSector *sector = getSectorNoGenerate(p2d);
147
148         // Create it if it does not exist yet
149         if (!sector) {
150                 sector = new MapSector(this, p2d, m_gamedef);
151                 m_sectors[p2d] = sector;
152         }
153
154         return sector;
155 }
156
157 void ClientMap::OnRegisterSceneNode()
158 {
159         if(IsVisible)
160         {
161                 SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID);
162                 SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT);
163         }
164
165         ISceneNode::OnRegisterSceneNode();
166         // It's not needed to register this node to the shadow renderer
167         // we have other way to find it
168 }
169
170 void ClientMap::getBlocksInViewRange(v3s16 cam_pos_nodes,
171                 v3s16 *p_blocks_min, v3s16 *p_blocks_max, float range)
172 {
173         if (range <= 0.0f)
174                 range = m_control.wanted_range;
175
176         v3s16 box_nodes_d = range * v3s16(1, 1, 1);
177         // Define p_nodes_min/max as v3s32 because 'cam_pos_nodes -/+ box_nodes_d'
178         // can exceed the range of v3s16 when a large view range is used near the
179         // world edges.
180         v3s32 p_nodes_min(
181                 cam_pos_nodes.X - box_nodes_d.X,
182                 cam_pos_nodes.Y - box_nodes_d.Y,
183                 cam_pos_nodes.Z - box_nodes_d.Z);
184         v3s32 p_nodes_max(
185                 cam_pos_nodes.X + box_nodes_d.X,
186                 cam_pos_nodes.Y + box_nodes_d.Y,
187                 cam_pos_nodes.Z + box_nodes_d.Z);
188         // Take a fair amount as we will be dropping more out later
189         // Umm... these additions are a bit strange but they are needed.
190         *p_blocks_min = v3s16(
191                         p_nodes_min.X / MAP_BLOCKSIZE - 3,
192                         p_nodes_min.Y / MAP_BLOCKSIZE - 3,
193                         p_nodes_min.Z / MAP_BLOCKSIZE - 3);
194         *p_blocks_max = v3s16(
195                         p_nodes_max.X / MAP_BLOCKSIZE + 1,
196                         p_nodes_max.Y / MAP_BLOCKSIZE + 1,
197                         p_nodes_max.Z / MAP_BLOCKSIZE + 1);
198 }
199
200 class MapBlockFlags
201 {
202 public:
203         static constexpr u16 CHUNK_EDGE = 8;
204         static constexpr u16 CHUNK_MASK = CHUNK_EDGE - 1;
205         static constexpr std::size_t CHUNK_VOLUME = CHUNK_EDGE * CHUNK_EDGE * CHUNK_EDGE; // volume of a chunk
206
207         MapBlockFlags(v3s16 min_pos, v3s16 max_pos)
208                         : min_pos(min_pos), volume((max_pos - min_pos) / CHUNK_EDGE + 1)
209         {
210                 chunks.resize(volume.X * volume.Y * volume.Z);
211         }
212
213         class Chunk
214         {
215         public:
216                 inline u8 &getBits(v3s16 pos)
217                 {
218                         std::size_t address = getAddress(pos);
219                         return bits[address];
220                 }
221
222         private:
223                 inline std::size_t getAddress(v3s16 pos) {
224                         std::size_t address = (pos.X & CHUNK_MASK) + (pos.Y & CHUNK_MASK) * CHUNK_EDGE + (pos.Z & CHUNK_MASK) * (CHUNK_EDGE * CHUNK_EDGE);
225                         return address;
226                 }
227
228                 std::array<u8, CHUNK_VOLUME> bits;
229         };
230
231         Chunk &getChunk(v3s16 pos)
232         {
233                 v3s16 delta = (pos - min_pos) / CHUNK_EDGE;
234                 std::size_t address = delta.X + delta.Y * volume.X + delta.Z * volume.X * volume.Y;
235                 Chunk *chunk = chunks[address].get();
236                 if (!chunk) {
237                         chunk = new Chunk();
238                         chunks[address].reset(chunk);
239                 }
240                 return *chunk;
241         }
242 private:
243         std::vector<std::unique_ptr<Chunk>> chunks;
244         v3s16 min_pos;
245         v3s16 volume;
246 };
247
248 void ClientMap::updateDrawList()
249 {
250         ScopeProfiler sp(g_profiler, "CM::updateDrawList()", SPT_AVG);
251
252         m_needs_update_drawlist = false;
253
254         for (auto &i : m_drawlist) {
255                 MapBlock *block = i.second;
256                 block->refDrop();
257         }
258         m_drawlist.clear();
259
260         v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
261
262         v3s16 p_blocks_min;
263         v3s16 p_blocks_max;
264         getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
265
266         // Number of blocks occlusion culled
267         u32 blocks_occlusion_culled = 0;
268         // Blocks visited by the algorithm
269         u32 blocks_visited = 0;
270         // Block sides that were not traversed
271         u32 sides_skipped = 0;
272
273         // No occlusion culling when free_move is on and camera is inside ground
274         bool occlusion_culling_enabled = true;
275         if (m_control.allow_noclip) {
276                 MapNode n = getNode(cam_pos_nodes);
277                 if (n.getContent() == CONTENT_IGNORE || m_nodedef->get(n).solidness == 2)
278                         occlusion_culling_enabled = false;
279         }
280
281         v3s16 camera_block = getContainerPos(cam_pos_nodes, MAP_BLOCKSIZE);
282         m_drawlist = std::map<v3s16, MapBlock*, MapBlockComparer>(MapBlockComparer(camera_block));
283
284         auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
285
286         // Uncomment to debug occluded blocks in the wireframe mode
287         // TODO: Include this as a flag for an extended debugging setting
288         // if (occlusion_culling_enabled && m_control.show_wireframe)
289         //      occlusion_culling_enabled = porting::getTimeS() & 1;
290
291         std::queue<v3s16> blocks_to_consider;
292
293         // Bits per block:
294         // [ visited | 0 | 0 | 0 | 0 | Z visible | Y visible | X visible ]
295         MapBlockFlags blocks_seen(p_blocks_min, p_blocks_max);
296
297         // Start breadth-first search with the block the camera is in
298         blocks_to_consider.push(camera_block);
299         blocks_seen.getChunk(camera_block).getBits(camera_block) = 0x07; // mark all sides as visible
300
301         // Recursively walk the space and pick mapblocks for drawing
302         while (blocks_to_consider.size() > 0) {
303
304                 v3s16 block_coord = blocks_to_consider.front();
305                 blocks_to_consider.pop();
306
307                 auto &flags = blocks_seen.getChunk(block_coord).getBits(block_coord);
308
309                 // Only visit each block once (it may have been queued up to three times)
310                 if ((flags & 0x80) == 0x80)
311                         continue;
312                 flags |= 0x80;
313
314                 blocks_visited++;
315
316                 // Get the sector, block and mesh
317                 MapSector *sector = this->getSectorNoGenerate(v2s16(block_coord.X, block_coord.Z));
318
319                 if (!sector)
320                         continue;
321
322                 MapBlock *block = sector->getBlockNoCreateNoEx(block_coord.Y);
323
324                 MapBlockMesh *mesh = block ? block->mesh : nullptr;
325
326
327                 // Calculate the coordinates for range and frutum culling
328                 v3f mesh_sphere_center;
329                 f32 mesh_sphere_radius;
330
331                 v3s16 block_pos_nodes = block_coord * MAP_BLOCKSIZE;
332
333                 if (mesh) {
334                         mesh_sphere_center = intToFloat(block_pos_nodes, BS)
335                                         + mesh->getBoundingSphereCenter();
336                         mesh_sphere_radius = mesh->getBoundingRadius();
337                 }
338                 else {
339                         mesh_sphere_center = intToFloat(block_pos_nodes, BS) + v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
340                         mesh_sphere_radius = 0.0f;
341                 }
342
343                 // First, perform a simple distance check.
344                 if (!m_control.range_all &&
345                         mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
346                                 m_control.wanted_range * BS + mesh_sphere_radius)
347                         continue; // Out of range, skip.
348
349                 // Frustum culling
350                 // Only do coarse culling here, to account for fast camera movement.
351                 // This is needed because this function is not called every frame.
352                 float frustum_cull_extra_radius = 300.0f;
353                 if (is_frustum_culled(mesh_sphere_center,
354                                 mesh_sphere_radius + frustum_cull_extra_radius))
355                         continue;
356
357                 // Calculate the vector from the camera block to the current block
358                 // We use it to determine through which sides of the current block we can continue the search
359                 v3s16 look = block_coord - camera_block;
360
361                 // Occluded near sides will further occlude the far sides
362                 u8 visible_outer_sides = flags & 0x07;
363
364                 // Raytraced occlusion culling - send rays from the camera to the block's corners
365                 if (occlusion_culling_enabled && m_enable_raytraced_culling &&
366                                 block && mesh &&
367                                 visible_outer_sides != 0x07 && isBlockOccluded(block, cam_pos_nodes)) {
368                         blocks_occlusion_culled++;
369                         continue;
370                 }
371
372                 // The block is visible, add to the draw list
373                 if (mesh) {
374                         // Add to set
375                         block->refGrab();
376                         m_drawlist[block_coord] = block;
377                 }
378
379                 // Decide which sides to traverse next or to block away
380
381                 // First, find the near sides that would occlude the far sides
382                 // * A near side can itself be occluded by a nearby block (the test above ^^)
383                 // * A near side can be visible but fully opaque by itself (e.g. ground at the 0 level)
384
385                 // mesh solid sides are +Z-Z+Y-Y+X-X
386                 // if we are inside the block's coordinates on an axis, 
387                 // treat these sides as opaque, as they should not allow to reach the far sides
388                 u8 block_inner_sides = (look.X == 0 ? 3 : 0) |
389                         (look.Y == 0 ? 12 : 0) |
390                         (look.Z == 0 ? 48 : 0);
391
392                 // get the mask for the sides that are relevant based on the direction
393                 u8 near_inner_sides = (look.X > 0 ? 1 : 2) |
394                                 (look.Y > 0 ? 4 : 8) |
395                                 (look.Z > 0 ? 16 : 32);
396                 
397                 // This bitset is +Z-Z+Y-Y+X-X (See MapBlockMesh), and axis is XYZ.
398                 // Get he block's transparent sides
399                 u8 transparent_sides = (occlusion_culling_enabled && block) ? ~block->solid_sides : 0x3F;
400
401                 // compress block transparent sides to ZYX mask of see-through axes
402                 u8 near_transparency =  (block_inner_sides == 0x3F) ? near_inner_sides : (transparent_sides & near_inner_sides);
403
404                 // when we are inside the camera block, do not block any sides
405                 if (block_inner_sides == 0x3F)
406                         block_inner_sides = 0;
407
408                 near_transparency &= ~block_inner_sides & 0x3F;
409
410                 near_transparency |= (near_transparency >> 1);
411                 near_transparency = (near_transparency & 1) |
412                                 ((near_transparency >> 1) & 2) |
413                                 ((near_transparency >> 2) & 4);
414
415                 // combine with known visible sides that matter
416                 near_transparency &= visible_outer_sides;
417
418                 // The rule for any far side to be visible:
419                 // * Any of the adjacent near sides is transparent (different axes)
420                 // * The opposite near side (same axis) is transparent, if it is the dominant axis of the look vector
421
422                 // Calculate vector from camera to mapblock center. Because we only need relation between
423                 // coordinates we scale by 2 to avoid precision loss.
424                 v3s16 precise_look = 2 * (block_pos_nodes - cam_pos_nodes) + MAP_BLOCKSIZE - 1;
425
426                 // dominant axis flag
427                 u8 dominant_axis = (abs(precise_look.X) > abs(precise_look.Y) && abs(precise_look.X) > abs(precise_look.Z)) |
428                                         ((abs(precise_look.Y) > abs(precise_look.Z) && abs(precise_look.Y) > abs(precise_look.X)) << 1) |
429                                         ((abs(precise_look.Z) > abs(precise_look.X) && abs(precise_look.Z) > abs(precise_look.Y)) << 2);
430
431                 // Queue next blocks for processing:
432                 // - Examine "far" sides of the current blocks, i.e. never move towards the camera
433                 // - Only traverse the sides that are not occluded
434                 // - Only traverse the sides that are not opaque
435                 // When queueing, mark the relevant side on the next block as 'visible'
436                 for (s16 axis = 0; axis < 3; axis++) {
437
438                         // Select a bit from transparent_sides for the side
439                         u8 far_side_mask = 1 << (2 * axis);
440
441                         // axis flag
442                         u8 my_side = 1 << axis;
443                         u8 adjacent_sides = my_side ^ 0x07;
444
445                         auto traverse_far_side = [&](s8 next_pos_offset) {
446                                 // far side is visible if adjacent near sides are transparent, or if opposite side on dominant axis is transparent
447                                 bool side_visible = ((near_transparency & adjacent_sides) | (near_transparency & my_side & dominant_axis)) != 0;
448                                 side_visible = side_visible && ((far_side_mask & transparent_sides) != 0);
449
450                                 v3s16 next_pos = block_coord;
451                                 next_pos[axis] += next_pos_offset;
452
453                                 // If a side is a see-through, mark the next block's side as visible, and queue
454                                 if (side_visible) {
455                                         auto &next_flags = blocks_seen.getChunk(next_pos).getBits(next_pos);
456                                         next_flags |= my_side;
457                                         blocks_to_consider.push(next_pos);
458                                 }
459                                 else {
460                                         sides_skipped++;
461                                 }
462                         };
463
464
465                         // Test the '-' direction of the axis
466                         if (look[axis] <= 0 && block_coord[axis] > p_blocks_min[axis])
467                                 traverse_far_side(-1);
468
469                         // Test the '+' direction of the axis
470                         far_side_mask <<= 1;
471
472                         if (look[axis] >= 0 && block_coord[axis] < p_blocks_max[axis])
473                                 traverse_far_side(+1);
474                 }
475         }
476
477         g_profiler->avg("MapBlocks occlusion culled [#]", blocks_occlusion_culled);
478         g_profiler->avg("MapBlocks sides skipped [#]", sides_skipped);
479         g_profiler->avg("MapBlocks examined [#]", blocks_visited);
480         g_profiler->avg("MapBlocks drawn [#]", m_drawlist.size());
481 }
482
483 void ClientMap::touchMapBlocks()
484 {
485         v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
486
487         v3s16 p_blocks_min;
488         v3s16 p_blocks_max;
489         getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
490
491         // Number of blocks currently loaded by the client
492         u32 blocks_loaded = 0;
493         // Number of blocks with mesh in rendering range
494         u32 blocks_in_range_with_mesh = 0;
495
496         for (const auto &sector_it : m_sectors) {
497                 MapSector *sector = sector_it.second;
498                 v2s16 sp = sector->getPos();
499
500                 blocks_loaded += sector->size();
501                 if (!m_control.range_all) {
502                         if (sp.X < p_blocks_min.X || sp.X > p_blocks_max.X ||
503                                         sp.Y < p_blocks_min.Z || sp.Y > p_blocks_max.Z)
504                                 continue;
505                 }
506
507                 MapBlockVect sectorblocks;
508                 sector->getBlocks(sectorblocks);
509
510                 /*
511                         Loop through blocks in sector
512                 */
513
514                 for (MapBlock *block : sectorblocks) {
515                         /*
516                                 Compare block position to camera position, skip
517                                 if not seen on display
518                         */
519
520                         if (!block->mesh) {
521                                 // Ignore if mesh doesn't exist
522                                 continue;
523                         }
524
525                         v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
526                                         + block->mesh->getBoundingSphereCenter();
527                         f32 mesh_sphere_radius = block->mesh->getBoundingRadius();
528                         // First, perform a simple distance check.
529                         if (!m_control.range_all &&
530                                 mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
531                                         m_control.wanted_range * BS + mesh_sphere_radius)
532                                 continue; // Out of range, skip.
533
534                         // Keep the block alive as long as it is in range.
535                         block->resetUsageTimer();
536                         blocks_in_range_with_mesh++;
537                 }
538         }
539         g_profiler->avg("MapBlock meshes in range [#]", blocks_in_range_with_mesh);
540         g_profiler->avg("MapBlocks loaded [#]", blocks_loaded);
541 }
542
543 void ClientMap::renderMap(video::IVideoDriver* driver, s32 pass)
544 {
545         bool is_transparent_pass = pass == scene::ESNRP_TRANSPARENT;
546
547         std::string prefix;
548         if (pass == scene::ESNRP_SOLID)
549                 prefix = "renderMap(SOLID): ";
550         else
551                 prefix = "renderMap(TRANSPARENT): ";
552
553         /*
554                 This is called two times per frame, reset on the non-transparent one
555         */
556         if (pass == scene::ESNRP_SOLID)
557                 m_last_drawn_sectors.clear();
558
559         /*
560                 Get animation parameters
561         */
562         const float animation_time = m_client->getAnimationTime();
563         const int crack = m_client->getCrackLevel();
564         const u32 daynight_ratio = m_client->getEnv().getDayNightRatio();
565
566         const v3f camera_position = m_camera_position;
567
568         /*
569                 Get all blocks and draw all visible ones
570         */
571
572         u32 vertex_count = 0;
573         u32 drawcall_count = 0;
574
575         // For limiting number of mesh animations per frame
576         u32 mesh_animate_count = 0;
577         //u32 mesh_animate_count_far = 0;
578
579         /*
580                 Update transparent meshes
581         */
582         if (is_transparent_pass)
583                 updateTransparentMeshBuffers();
584
585         /*
586                 Draw the selected MapBlocks
587         */
588
589         MeshBufListList grouped_buffers;
590         std::vector<DrawDescriptor> draw_order;
591         video::SMaterial previous_material;
592
593         auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
594
595         for (auto &i : m_drawlist) {
596                 v3s16 block_pos = i.first;
597                 MapBlock *block = i.second;
598                 MapBlockMesh *block_mesh = block->mesh;
599
600                 // If the mesh of the block happened to get deleted, ignore it
601                 if (!block_mesh)
602                         continue;
603
604                 // Do exact frustum culling
605                 // (The one in updateDrawList is only coarse.)
606                 v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
607                                 + block_mesh->getBoundingSphereCenter();
608                 f32 mesh_sphere_radius = block_mesh->getBoundingRadius();
609                 if (is_frustum_culled(mesh_sphere_center, mesh_sphere_radius))
610                         continue;
611
612                 v3f block_pos_r = intToFloat(block->getPosRelative() + MAP_BLOCKSIZE / 2, BS);
613
614                 float d = camera_position.getDistanceFrom(block_pos_r);
615                 d = MYMAX(0,d - BLOCK_MAX_RADIUS);
616
617                 // Mesh animation
618                 if (pass == scene::ESNRP_SOLID) {
619                         // Pretty random but this should work somewhat nicely
620                         bool faraway = d >= BS * 50;
621                         if (block_mesh->isAnimationForced() || !faraway ||
622                                         mesh_animate_count < (m_control.range_all ? 200 : 50)) {
623
624                                 bool animated = block_mesh->animate(faraway, animation_time,
625                                         crack, daynight_ratio);
626                                 if (animated)
627                                         mesh_animate_count++;
628                         } else {
629                                 block_mesh->decreaseAnimationForceTimer();
630                         }
631                 }
632
633                 /*
634                         Get the meshbuffers of the block
635                 */
636                 if (is_transparent_pass) {
637                         // In transparent pass, the mesh will give us
638                         // the partial buffers in the correct order
639                         for (auto &buffer : block_mesh->getTransparentBuffers())
640                                 draw_order.emplace_back(block_pos, &buffer);
641                 }
642                 else {
643                         // otherwise, group buffers across meshes
644                         // using MeshBufListList
645                         for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
646                                 scene::IMesh *mesh = block_mesh->getMesh(layer);
647                                 assert(mesh);
648
649                                 u32 c = mesh->getMeshBufferCount();
650                                 for (u32 i = 0; i < c; i++) {
651                                         scene::IMeshBuffer *buf = mesh->getMeshBuffer(i);
652
653                                         video::SMaterial& material = buf->getMaterial();
654                                         video::IMaterialRenderer* rnd =
655                                                         driver->getMaterialRenderer(material.MaterialType);
656                                         bool transparent = (rnd && rnd->isTransparent());
657                                         if (!transparent) {
658                                                 if (buf->getVertexCount() == 0)
659                                                         errorstream << "Block [" << analyze_block(block)
660                                                                         << "] contains an empty meshbuf" << std::endl;
661
662                                                 grouped_buffers.add(buf, block_pos, layer);
663                                         }
664                                 }
665                         }
666                 }
667         }
668
669         // Capture draw order for all solid meshes
670         for (auto &lists : grouped_buffers.lists) {
671                 for (MeshBufList &list : lists) {
672                         // iterate in reverse to draw closest blocks first
673                         for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it) {
674                                 draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin());
675                         }
676                 }
677         }
678
679         TimeTaker draw("Drawing mesh buffers");
680
681         core::matrix4 m; // Model matrix
682         v3f offset = intToFloat(m_camera_offset, BS);
683         u32 material_swaps = 0;
684
685         // Render all mesh buffers in order
686         drawcall_count += draw_order.size();
687
688         for (auto &descriptor : draw_order) {
689                 scene::IMeshBuffer *buf = descriptor.getBuffer();
690
691                 if (!descriptor.m_reuse_material) {
692                         auto &material = buf->getMaterial();
693
694                         // Apply filter settings
695                         material.setFlag(video::EMF_TRILINEAR_FILTER,
696                                 m_cache_trilinear_filter);
697                         material.setFlag(video::EMF_BILINEAR_FILTER,
698                                 m_cache_bilinear_filter);
699                         material.setFlag(video::EMF_ANISOTROPIC_FILTER,
700                                 m_cache_anistropic_filter);
701                         material.setFlag(video::EMF_WIREFRAME,
702                                 m_control.show_wireframe);
703
704                         // pass the shadow map texture to the buffer texture
705                         ShadowRenderer *shadow = m_rendering_engine->get_shadow_renderer();
706                         if (shadow && shadow->is_active()) {
707                                 auto &layer = material.TextureLayer[ShadowRenderer::TEXTURE_LAYER_SHADOW];
708                                 layer.Texture = shadow->get_texture();
709                                 layer.TextureWrapU = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
710                                 layer.TextureWrapV = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
711                                 // Do not enable filter on shadow texture to avoid visual artifacts
712                                 // with colored shadows.
713                                 // Filtering is done in shader code anyway
714                                 layer.BilinearFilter = false;
715                                 layer.AnisotropicFilter = false;
716                                 layer.TrilinearFilter = false;
717                         }
718                         driver->setMaterial(material);
719                         ++material_swaps;
720                         material.TextureLayer[ShadowRenderer::TEXTURE_LAYER_SHADOW].Texture = nullptr;
721                 }
722
723                 v3f block_wpos = intToFloat(descriptor.m_pos * MAP_BLOCKSIZE, BS);
724                 m.setTranslation(block_wpos - offset);
725
726                 driver->setTransform(video::ETS_WORLD, m);
727                 descriptor.draw(driver);
728                 vertex_count += buf->getIndexCount();
729         }
730
731         g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true));
732
733         // Log only on solid pass because values are the same
734         if (pass == scene::ESNRP_SOLID) {
735                 g_profiler->avg("renderMap(): animated meshes [#]", mesh_animate_count);
736         }
737
738         if (pass == scene::ESNRP_TRANSPARENT) {
739                 g_profiler->avg("renderMap(): transparent buffers [#]", draw_order.size());
740         }
741
742         g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
743         g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
744         g_profiler->avg(prefix + "material swaps [#]", material_swaps);
745 }
746
747 static bool getVisibleBrightness(Map *map, const v3f &p0, v3f dir, float step,
748         float step_multiplier, float start_distance, float end_distance,
749         const NodeDefManager *ndef, u32 daylight_factor, float sunlight_min_d,
750         int *result, bool *sunlight_seen)
751 {
752         int brightness_sum = 0;
753         int brightness_count = 0;
754         float distance = start_distance;
755         dir.normalize();
756         v3f pf = p0;
757         pf += dir * distance;
758         int noncount = 0;
759         bool nonlight_seen = false;
760         bool allow_allowing_non_sunlight_propagates = false;
761         bool allow_non_sunlight_propagates = false;
762         // Check content nearly at camera position
763         {
764                 v3s16 p = floatToInt(p0 /*+ dir * 3*BS*/, BS);
765                 MapNode n = map->getNode(p);
766                 if(ndef->getLightingFlags(n).has_light &&
767                                 !ndef->getLightingFlags(n).sunlight_propagates)
768                         allow_allowing_non_sunlight_propagates = true;
769         }
770         // If would start at CONTENT_IGNORE, start closer
771         {
772                 v3s16 p = floatToInt(pf, BS);
773                 MapNode n = map->getNode(p);
774                 if(n.getContent() == CONTENT_IGNORE){
775                         float newd = 2*BS;
776                         pf = p0 + dir * 2*newd;
777                         distance = newd;
778                         sunlight_min_d = 0;
779                 }
780         }
781         for (int i=0; distance < end_distance; i++) {
782                 pf += dir * step;
783                 distance += step;
784                 step *= step_multiplier;
785
786                 v3s16 p = floatToInt(pf, BS);
787                 MapNode n = map->getNode(p);
788                 ContentLightingFlags f = ndef->getLightingFlags(n);
789                 if (allow_allowing_non_sunlight_propagates && i == 0 &&
790                                 f.has_light && !f.sunlight_propagates) {
791                         allow_non_sunlight_propagates = true;
792                 }
793
794                 if (!f.has_light || (!f.sunlight_propagates && !allow_non_sunlight_propagates)){
795                         nonlight_seen = true;
796                         noncount++;
797                         if(noncount >= 4)
798                                 break;
799                         continue;
800                 }
801
802                 if (distance >= sunlight_min_d && !*sunlight_seen && !nonlight_seen)
803                         if (n.getLight(LIGHTBANK_DAY, f) == LIGHT_SUN)
804                                 *sunlight_seen = true;
805                 noncount = 0;
806                 brightness_sum += decode_light(n.getLightBlend(daylight_factor, f));
807                 brightness_count++;
808         }
809         *result = 0;
810         if(brightness_count == 0)
811                 return false;
812         *result = brightness_sum / brightness_count;
813         /*std::cerr<<"Sampled "<<brightness_count<<" points; result="
814                         <<(*result)<<std::endl;*/
815         return true;
816 }
817
818 int ClientMap::getBackgroundBrightness(float max_d, u32 daylight_factor,
819                 int oldvalue, bool *sunlight_seen_result)
820 {
821         ScopeProfiler sp(g_profiler, "CM::getBackgroundBrightness", SPT_AVG);
822         static v3f z_directions[50] = {
823                 v3f(-100, 0, 0)
824         };
825         static f32 z_offsets[50] = {
826                 -1000,
827         };
828
829         if (z_directions[0].X < -99) {
830                 for (u32 i = 0; i < ARRLEN(z_directions); i++) {
831                         // Assumes FOV of 72 and 16/9 aspect ratio
832                         z_directions[i] = v3f(
833                                 0.02 * myrand_range(-100, 100),
834                                 1.0,
835                                 0.01 * myrand_range(-100, 100)
836                         ).normalize();
837                         z_offsets[i] = 0.01 * myrand_range(0,100);
838                 }
839         }
840
841         int sunlight_seen_count = 0;
842         float sunlight_min_d = max_d*0.8;
843         if(sunlight_min_d > 35*BS)
844                 sunlight_min_d = 35*BS;
845         std::vector<int> values;
846         values.reserve(ARRLEN(z_directions));
847         for (u32 i = 0; i < ARRLEN(z_directions); i++) {
848                 v3f z_dir = z_directions[i];
849                 core::CMatrix4<f32> a;
850                 a.buildRotateFromTo(v3f(0,1,0), z_dir);
851                 v3f dir = m_camera_direction;
852                 a.rotateVect(dir);
853                 int br = 0;
854                 float step = BS*1.5;
855                 if(max_d > 35*BS)
856                         step = max_d / 35 * 1.5;
857                 float off = step * z_offsets[i];
858                 bool sunlight_seen_now = false;
859                 bool ok = getVisibleBrightness(this, m_camera_position, dir,
860                                 step, 1.0, max_d*0.6+off, max_d, m_nodedef, daylight_factor,
861                                 sunlight_min_d,
862                                 &br, &sunlight_seen_now);
863                 if(sunlight_seen_now)
864                         sunlight_seen_count++;
865                 if(!ok)
866                         continue;
867                 values.push_back(br);
868                 // Don't try too much if being in the sun is clear
869                 if(sunlight_seen_count >= 20)
870                         break;
871         }
872         int brightness_sum = 0;
873         int brightness_count = 0;
874         std::sort(values.begin(), values.end());
875         u32 num_values_to_use = values.size();
876         if(num_values_to_use >= 10)
877                 num_values_to_use -= num_values_to_use/2;
878         else if(num_values_to_use >= 7)
879                 num_values_to_use -= num_values_to_use/3;
880         u32 first_value_i = (values.size() - num_values_to_use) / 2;
881
882         for (u32 i=first_value_i; i < first_value_i + num_values_to_use; i++) {
883                 brightness_sum += values[i];
884                 brightness_count++;
885         }
886
887         int ret = 0;
888         if(brightness_count == 0){
889                 MapNode n = getNode(floatToInt(m_camera_position, BS));
890                 ContentLightingFlags f = m_nodedef->getLightingFlags(n);
891                 if(f.has_light){
892                         ret = decode_light(n.getLightBlend(daylight_factor, f));
893                 } else {
894                         ret = oldvalue;
895                 }
896         } else {
897                 ret = brightness_sum / brightness_count;
898         }
899
900         *sunlight_seen_result = (sunlight_seen_count > 0);
901         return ret;
902 }
903
904 void ClientMap::renderPostFx(CameraMode cam_mode)
905 {
906         // Sadly ISceneManager has no "post effects" render pass, in that case we
907         // could just register for that and handle it in renderMap().
908
909         MapNode n = getNode(floatToInt(m_camera_position, BS));
910
911         const ContentFeatures& features = m_nodedef->get(n);
912         video::SColor post_effect_color = features.post_effect_color;
913
914         // If the camera is in a solid node, make everything black.
915         // (first person mode only)
916         if (features.solidness == 2 && cam_mode == CAMERA_MODE_FIRST &&
917                 !m_control.allow_noclip) {
918                 post_effect_color = video::SColor(255, 0, 0, 0);
919         }
920
921         if (post_effect_color.getAlpha() != 0) {
922                 // Draw a full-screen rectangle
923                 video::IVideoDriver* driver = SceneManager->getVideoDriver();
924                 v2u32 ss = driver->getScreenSize();
925                 core::rect<s32> rect(0,0, ss.X, ss.Y);
926                 driver->draw2DRectangle(post_effect_color, rect);
927         }
928 }
929
930 void ClientMap::PrintInfo(std::ostream &out)
931 {
932         out<<"ClientMap: ";
933 }
934
935 void ClientMap::renderMapShadows(video::IVideoDriver *driver,
936                 const video::SMaterial &material, s32 pass, int frame, int total_frames)
937 {
938         bool is_transparent_pass = pass != scene::ESNRP_SOLID;
939         std::string prefix;
940         if (is_transparent_pass)
941                 prefix = "renderMap(SHADOW TRANS): ";
942         else
943                 prefix = "renderMap(SHADOW SOLID): ";
944
945         u32 drawcall_count = 0;
946         u32 vertex_count = 0;
947
948         MeshBufListList grouped_buffers;
949         std::vector<DrawDescriptor> draw_order;
950
951
952         int count = 0;
953         int low_bound = is_transparent_pass ? 0 : m_drawlist_shadow.size() / total_frames * frame;
954         int high_bound = is_transparent_pass ? m_drawlist_shadow.size() : m_drawlist_shadow.size() / total_frames * (frame + 1);
955
956         // transparent pass should be rendered in one go
957         if (is_transparent_pass && frame != total_frames - 1) {
958                 return;
959         }
960
961         for (const auto &i : m_drawlist_shadow) {
962                 // only process specific part of the list & break early
963                 ++count;
964                 if (count <= low_bound)
965                         continue;
966                 if (count > high_bound)
967                         break;
968
969                 v3s16 block_pos = i.first;
970                 MapBlock *block = i.second;
971
972                 // If the mesh of the block happened to get deleted, ignore it
973                 if (!block->mesh)
974                         continue;
975
976                 /*
977                         Get the meshbuffers of the block
978                 */
979                 if (is_transparent_pass) {
980                         // In transparent pass, the mesh will give us
981                         // the partial buffers in the correct order
982                         for (auto &buffer : block->mesh->getTransparentBuffers())
983                                 draw_order.emplace_back(block_pos, &buffer);
984                 }
985                 else {
986                         // otherwise, group buffers across meshes
987                         // using MeshBufListList
988                         MapBlockMesh *mapBlockMesh = block->mesh;
989                         assert(mapBlockMesh);
990
991                         for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
992                                 scene::IMesh *mesh = mapBlockMesh->getMesh(layer);
993                                 assert(mesh);
994
995                                 u32 c = mesh->getMeshBufferCount();
996                                 for (u32 i = 0; i < c; i++) {
997                                         scene::IMeshBuffer *buf = mesh->getMeshBuffer(i);
998
999                                         video::SMaterial &mat = buf->getMaterial();
1000                                         auto rnd = driver->getMaterialRenderer(mat.MaterialType);
1001                                         bool transparent = rnd && rnd->isTransparent();
1002                                         if (!transparent)
1003                                                 grouped_buffers.add(buf, block_pos, layer);
1004                                 }
1005                         }
1006                 }
1007         }
1008
1009         u32 buffer_count = 0;
1010         for (auto &lists : grouped_buffers.lists)
1011                 for (MeshBufList &list : lists)
1012                         buffer_count += list.bufs.size();
1013
1014         draw_order.reserve(draw_order.size() + buffer_count);
1015
1016         // Capture draw order for all solid meshes
1017         for (auto &lists : grouped_buffers.lists) {
1018                 for (MeshBufList &list : lists) {
1019                         // iterate in reverse to draw closest blocks first
1020                         for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it)
1021                                 draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin());
1022                 }
1023         }
1024
1025         TimeTaker draw("Drawing shadow mesh buffers");
1026
1027         core::matrix4 m; // Model matrix
1028         v3f offset = intToFloat(m_camera_offset, BS);
1029         u32 material_swaps = 0;
1030
1031         // Render all mesh buffers in order
1032         drawcall_count += draw_order.size();
1033
1034         for (auto &descriptor : draw_order) {
1035                 scene::IMeshBuffer *buf = descriptor.getBuffer();
1036
1037                 if (!descriptor.m_reuse_material) {
1038                         // override some material properties
1039                         video::SMaterial local_material = buf->getMaterial();
1040                         local_material.MaterialType = material.MaterialType;
1041                         local_material.BackfaceCulling = material.BackfaceCulling;
1042                         local_material.FrontfaceCulling = material.FrontfaceCulling;
1043                         local_material.BlendOperation = material.BlendOperation;
1044                         local_material.Lighting = false;
1045                         driver->setMaterial(local_material);
1046                         ++material_swaps;
1047                 }
1048
1049                 v3f block_wpos = intToFloat(descriptor.m_pos * MAP_BLOCKSIZE, BS);
1050                 m.setTranslation(block_wpos - offset);
1051
1052                 driver->setTransform(video::ETS_WORLD, m);
1053                 descriptor.draw(driver);
1054                 vertex_count += buf->getIndexCount();
1055         }
1056
1057         // restore the driver material state
1058         video::SMaterial clean;
1059         clean.BlendOperation = video::EBO_ADD;
1060         driver->setMaterial(clean); // reset material to defaults
1061         driver->draw3DLine(v3f(), v3f(), video::SColor(0));
1062
1063         g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true));
1064         g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
1065         g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
1066         g_profiler->avg(prefix + "material swaps [#]", material_swaps);
1067 }
1068
1069 /*
1070         Custom update draw list for the pov of shadow light.
1071 */
1072 void ClientMap::updateDrawListShadow(v3f shadow_light_pos, v3f shadow_light_dir, float radius, float length)
1073 {
1074         ScopeProfiler sp(g_profiler, "CM::updateDrawListShadow()", SPT_AVG);
1075
1076         v3s16 cam_pos_nodes = floatToInt(shadow_light_pos, BS);
1077         v3s16 p_blocks_min;
1078         v3s16 p_blocks_max;
1079         getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max, radius + length);
1080
1081         for (auto &i : m_drawlist_shadow) {
1082                 MapBlock *block = i.second;
1083                 block->refDrop();
1084         }
1085         m_drawlist_shadow.clear();
1086
1087         // Number of blocks currently loaded by the client
1088         u32 blocks_loaded = 0;
1089         // Number of blocks with mesh in rendering range
1090         u32 blocks_in_range_with_mesh = 0;
1091         // Number of blocks occlusion culled
1092         u32 blocks_occlusion_culled = 0;
1093
1094         for (auto &sector_it : m_sectors) {
1095                 MapSector *sector = sector_it.second;
1096                 if (!sector)
1097                         continue;
1098                 blocks_loaded += sector->size();
1099
1100                 MapBlockVect sectorblocks;
1101                 sector->getBlocks(sectorblocks);
1102
1103                 /*
1104                         Loop through blocks in sector
1105                 */
1106                 for (MapBlock *block : sectorblocks) {
1107                         if (!block->mesh) {
1108                                 // Ignore if mesh doesn't exist
1109                                 continue;
1110                         }
1111
1112                         v3f block_pos = intToFloat(block->getPos() * MAP_BLOCKSIZE, BS);
1113                         v3f projection = shadow_light_pos + shadow_light_dir * shadow_light_dir.dotProduct(block_pos - shadow_light_pos);
1114                         if (projection.getDistanceFrom(block_pos) > radius)
1115                                 continue;
1116
1117                         blocks_in_range_with_mesh++;
1118
1119                         // This block is in range. Reset usage timer.
1120                         block->resetUsageTimer();
1121
1122                         // Add to set
1123                         if (m_drawlist_shadow.find(block->getPos()) == m_drawlist_shadow.end()) {
1124                                 block->refGrab();
1125                                 m_drawlist_shadow[block->getPos()] = block;
1126                         }
1127                 }
1128         }
1129
1130         g_profiler->avg("SHADOW MapBlock meshes in range [#]", blocks_in_range_with_mesh);
1131         g_profiler->avg("SHADOW MapBlocks occlusion culled [#]", blocks_occlusion_culled);
1132         g_profiler->avg("SHADOW MapBlocks drawn [#]", m_drawlist_shadow.size());
1133         g_profiler->avg("SHADOW MapBlocks loaded [#]", blocks_loaded);
1134 }
1135
1136 void ClientMap::updateTransparentMeshBuffers()
1137 {
1138         ScopeProfiler sp(g_profiler, "CM::updateTransparentMeshBuffers", SPT_AVG);
1139         u32 sorted_blocks = 0;
1140         u32 unsorted_blocks = 0;
1141         f32 sorting_distance_sq = pow(m_cache_transparency_sorting_distance * BS, 2.0f);
1142
1143
1144         // Update the order of transparent mesh buffers in each mesh
1145         for (auto it = m_drawlist.begin(); it != m_drawlist.end(); it++) {
1146                 MapBlock* block = it->second;
1147                 if (!block->mesh)
1148                         continue;
1149
1150                 if (m_needs_update_transparent_meshes ||
1151                                 block->mesh->getTransparentBuffers().size() == 0) {
1152
1153                         v3s16 block_pos = block->getPos();
1154                         v3f block_pos_f = intToFloat(block_pos * MAP_BLOCKSIZE + MAP_BLOCKSIZE / 2, BS);
1155                         f32 distance = m_camera_position.getDistanceFromSQ(block_pos_f);
1156                         if (distance <= sorting_distance_sq) {
1157                                 block->mesh->updateTransparentBuffers(m_camera_position, block_pos);
1158                                 ++sorted_blocks;
1159                         }
1160                         else {
1161                                 block->mesh->consolidateTransparentBuffers();
1162                                 ++unsorted_blocks;
1163                         }
1164                 }
1165         }
1166
1167         g_profiler->avg("CM::Transparent Buffers - Sorted", sorted_blocks);
1168         g_profiler->avg("CM::Transparent Buffers - Unsorted", unsorted_blocks);
1169         m_needs_update_transparent_meshes = false;
1170 }
1171
1172 scene::IMeshBuffer* ClientMap::DrawDescriptor::getBuffer()
1173 {
1174         return m_use_partial_buffer ? m_partial_buffer->getBuffer() : m_buffer;
1175 }
1176
1177 void ClientMap::DrawDescriptor::draw(video::IVideoDriver* driver)
1178 {
1179         if (m_use_partial_buffer) {
1180                 m_partial_buffer->beforeDraw();
1181                 driver->drawMeshBuffer(m_partial_buffer->getBuffer());
1182                 m_partial_buffer->afterDraw();
1183         } else {
1184                 driver->drawMeshBuffer(m_buffer);
1185         }
1186 }