]> git.lizzy.rs Git - rust.git/blob - src/abi.rs
Use get_function_name_and_sig for calling function from backend
[rust.git] / src / abi.rs
1 use std::iter;
2
3 use rustc::hir;
4 use rustc_target::spec::abi::Abi;
5
6 use crate::prelude::*;
7
8 #[derive(Debug)]
9 enum PassMode {
10     NoPass,
11     ByVal(Type),
12     ByRef,
13 }
14
15 impl PassMode {
16     fn get_param_ty(self, _fx: &FunctionCx) -> Type {
17         match self {
18             PassMode::NoPass => unimplemented!("pass mode nopass"),
19             PassMode::ByVal(cton_type) => cton_type,
20             PassMode::ByRef => types::I64,
21         }
22     }
23 }
24
25 fn get_pass_mode<'a, 'tcx: 'a>(
26     tcx: TyCtxt<'a, 'tcx, 'tcx>,
27     abi: Abi,
28     ty: Ty<'tcx>,
29     is_return: bool,
30 ) -> PassMode {
31     if ty.sty == tcx.mk_nil().sty {
32         if is_return {
33             //if false {
34             PassMode::NoPass
35         } else {
36             PassMode::ByRef
37         }
38     } else if let Some(ret_ty) = crate::common::cton_type_from_ty(tcx, ty) {
39         PassMode::ByVal(ret_ty)
40     } else {
41         if abi == Abi::C {
42             unimplemented!("Non scalars are not yet supported for \"C\" abi");
43         }
44         PassMode::ByRef
45     }
46 }
47
48 pub fn cton_sig_from_fn_ty<'a, 'tcx: 'a>(
49     tcx: TyCtxt<'a, 'tcx, 'tcx>,
50     fn_ty: Ty<'tcx>,
51 ) -> Signature {
52     let sig = ty_fn_sig(tcx, fn_ty);
53     assert!(!sig.variadic, "Variadic function are not yet supported");
54     let (call_conv, inputs, output): (CallConv, Vec<Ty>, Ty) = match sig.abi {
55         Abi::Rust => (CallConv::Fast, sig.inputs().to_vec(), sig.output()),
56         Abi::C => (CallConv::SystemV, sig.inputs().to_vec(), sig.output()),
57         Abi::RustCall => {
58             println!(
59                 "rust-call sig: {:?} inputs: {:?} output: {:?}",
60                 sig,
61                 sig.inputs(),
62                 sig.output()
63             );
64             assert_eq!(sig.inputs().len(), 2);
65             let extra_args = match sig.inputs().last().unwrap().sty {
66                 ty::TyTuple(ref tupled_arguments) => tupled_arguments,
67                 _ => bug!("argument to function with \"rust-call\" ABI is not a tuple"),
68             };
69             let mut inputs: Vec<Ty> = vec![sig.inputs()[0]];
70             inputs.extend(extra_args.into_iter());
71             (CallConv::Fast, inputs, sig.output())
72         }
73         Abi::System => bug!("system abi should be selected elsewhere"),
74         Abi::RustIntrinsic => (CallConv::SystemV, sig.inputs().to_vec(), sig.output()),
75         _ => unimplemented!("unsupported abi {:?}", sig.abi),
76     };
77
78     let inputs = inputs
79         .into_iter()
80         .filter_map(|ty| match get_pass_mode(tcx, sig.abi, ty, false) {
81             PassMode::ByVal(cton_ty) => Some(cton_ty),
82             PassMode::NoPass => unimplemented!("pass mode nopass"),
83             PassMode::ByRef => Some(types::I64),
84         });
85
86     let (params, returns) = match get_pass_mode(tcx, sig.abi, output, true) {
87         PassMode::NoPass => (inputs.map(AbiParam::new).collect(), vec![]),
88         PassMode::ByVal(ret_ty) => (
89             inputs.map(AbiParam::new).collect(),
90             vec![AbiParam::new(ret_ty)],
91         ),
92         PassMode::ByRef => {
93             (
94                 Some(types::I64).into_iter() // First param is place to put return val
95                     .chain(inputs)
96                     .map(AbiParam::new)
97                     .collect(),
98                 vec![],
99             )
100         }
101     };
102
103     Signature {
104         params,
105         returns,
106         call_conv,
107         argument_bytes: None,
108     }
109 }
110
111 fn ty_fn_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> ty::FnSig<'tcx> {
112     let sig = match ty.sty {
113         ty::TyFnDef(..) |
114         // Shims currently have type TyFnPtr. Not sure this should remain.
115         ty::TyFnPtr(_) => ty.fn_sig(tcx),
116         ty::TyClosure(def_id, substs) => {
117             let sig = substs.closure_sig(def_id, tcx);
118
119             let env_ty = tcx.closure_env_ty(def_id, substs).unwrap();
120             sig.map_bound(|sig| tcx.mk_fn_sig(
121                 iter::once(*env_ty.skip_binder()).chain(sig.inputs().iter().cloned()),
122                 sig.output(),
123                 sig.variadic,
124                 sig.unsafety,
125                 sig.abi
126             ))
127         }
128         ty::TyGenerator(def_id, substs, _) => {
129             let sig = substs.poly_sig(def_id, tcx);
130
131             let env_region = ty::ReLateBound(ty::INNERMOST, ty::BrEnv);
132             let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty);
133
134             sig.map_bound(|sig| {
135                 let state_did = tcx.lang_items().gen_state().unwrap();
136                 let state_adt_ref = tcx.adt_def(state_did);
137                 let state_substs = tcx.intern_substs(&[
138                     sig.yield_ty.into(),
139                     sig.return_ty.into(),
140                 ]);
141                 let ret_ty = tcx.mk_adt(state_adt_ref, state_substs);
142
143                 tcx.mk_fn_sig(iter::once(env_ty),
144                     ret_ty,
145                     false,
146                     hir::Unsafety::Normal,
147                     Abi::Rust
148                 )
149             })
150         }
151         _ => bug!("unexpected type {:?} to ty_fn_sig", ty)
152     };
153     tcx.normalize_erasing_late_bound_regions(ParamEnv::reveal_all(), &sig)
154 }
155
156 pub fn get_function_name_and_sig<'a, 'tcx>(
157     tcx: TyCtxt<'a, 'tcx, 'tcx>,
158     inst: Instance<'tcx>,
159 ) -> (String, Signature) {
160     assert!(!inst.substs.needs_infer() && !inst.substs.has_param_types());
161     let fn_ty = inst.ty(tcx);
162     let sig = cton_sig_from_fn_ty(tcx, fn_ty);
163     let def_path_based_names =
164         ::rustc_mir::monomorphize::item::DefPathBasedNames::new(tcx, false, false);
165     let mut name = String::new();
166     def_path_based_names.push_instance_as_string(inst, &mut name);
167     (name, sig)
168 }
169
170 impl<'a, 'tcx: 'a> CodegenCx<'a, 'tcx, CurrentBackend> {
171     pub fn predefine_function(&mut self, inst: Instance<'tcx>) -> (FuncId, Function) {
172         let (name, sig) = crate::abi::get_function_name_and_sig(self.tcx, inst);
173         let func_id = self
174             .module
175             .declare_function(&name, Linkage::Export, &sig)
176             .unwrap();
177         let func =
178             Function::with_name_signature(ExternalName::user(0, func_id.index() as u32), sig);
179         (func_id, func)
180     }
181 }
182
183 impl<'a, 'tcx: 'a> FunctionCx<'a, 'tcx> {
184     /// Instance must be monomorphized
185     pub fn get_function_ref(&mut self, inst: Instance<'tcx>) -> FuncRef {
186         let (name, sig) = get_function_name_and_sig(self.tcx, inst);
187         let func_id = self
188             .module
189             .declare_function(&name, Linkage::Import, &sig)
190             .unwrap();
191         self.module
192             .declare_func_in_func(func_id, &mut self.bcx.func)
193     }
194
195     fn lib_call(
196         &mut self,
197         name: &str,
198         input_tys: Vec<types::Type>,
199         output_ty: Option<types::Type>,
200         args: &[Value],
201     ) -> Option<Value> {
202         let sig = Signature {
203             params: input_tys.iter().cloned().map(AbiParam::new).collect(),
204             returns: vec![AbiParam::new(output_ty.unwrap_or(types::VOID))],
205             call_conv: CallConv::SystemV,
206             argument_bytes: None,
207         };
208         let func_id = self
209             .module
210             .declare_function(&name, Linkage::Import, &sig)
211             .unwrap();
212         let func_ref = self
213             .module
214             .declare_func_in_func(func_id, &mut self.bcx.func);
215         let call_inst = self.bcx.ins().call(func_ref, args);
216         if output_ty.is_none() {
217             return None;
218         }
219         let results = self.bcx.inst_results(call_inst);
220         assert_eq!(results.len(), 1);
221         Some(results[0])
222     }
223
224     pub fn easy_call(
225         &mut self,
226         name: &str,
227         args: &[CValue<'tcx>],
228         return_ty: Ty<'tcx>,
229     ) -> CValue<'tcx> {
230         let (input_tys, args): (Vec<_>, Vec<_>) = args
231             .into_iter()
232             .map(|arg| {
233                 (
234                     self.cton_type(arg.layout().ty).unwrap(),
235                     arg.load_value(self),
236                 )
237             }).unzip();
238         let return_layout = self.layout_of(return_ty);
239         let return_ty = if let TypeVariants::TyTuple(tup) = return_ty.sty {
240             if !tup.is_empty() {
241                 bug!("easy_call( (...) -> <non empty tuple> ) is not allowed");
242             }
243             None
244         } else {
245             Some(self.cton_type(return_ty).unwrap())
246         };
247         if let Some(val) = self.lib_call(name, input_tys, return_ty, &args) {
248             CValue::ByVal(val, return_layout)
249         } else {
250             CValue::ByRef(self.bcx.ins().iconst(types::I64, 0), return_layout)
251         }
252     }
253
254     fn self_sig(&self) -> FnSig<'tcx> {
255         ty_fn_sig(self.tcx, self.instance.ty(self.tcx))
256     }
257
258     fn return_type(&self) -> Ty<'tcx> {
259         self.self_sig().output()
260     }
261 }
262
263 pub fn codegen_fn_prelude<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, start_ebb: Ebb) {
264     let ssa_analyzed = crate::analyze::analyze(fx);
265     fx.tcx.sess.warn(&format!("ssa {:?}", ssa_analyzed));
266
267     match fx.self_sig().abi {
268         Abi::Rust | Abi::RustCall => {}
269         _ => unimplemented!("declared function with non \"rust\" or \"rust-call\" abi"),
270     }
271
272     let ret_layout = fx.layout_of(fx.return_type());
273     let output_pass_mode = get_pass_mode(fx.tcx, fx.self_sig().abi, fx.return_type(), true);
274     let ret_param = match output_pass_mode {
275         PassMode::NoPass => None,
276         PassMode::ByVal(ret_ty) => None,
277         PassMode::ByRef => Some(fx.bcx.append_ebb_param(start_ebb, types::I64)),
278     };
279
280     enum ArgKind {
281         Normal(Value),
282         Spread(Vec<Value>),
283     }
284
285     let func_params = fx.mir.args_iter().map(|local| {
286         let arg_ty = fx.monomorphize(&fx.mir.local_decls[local].ty);
287
288         // Adapted from https://github.com/rust-lang/rust/blob/145155dc96757002c7b2e9de8489416e2fdbbd57/src/librustc_codegen_llvm/mir/mod.rs#L442-L482
289         if Some(local) == fx.mir.spread_arg {
290             // This argument (e.g. the last argument in the "rust-call" ABI)
291             // is a tuple that was spread at the ABI level and now we have
292             // to reconstruct it into a tuple local variable, from multiple
293             // individual function arguments.
294
295             let tupled_arg_tys = match arg_ty.sty {
296                 ty::TyTuple(ref tys) => tys,
297                 _ => bug!("spread argument isn't a tuple?! but {:?}", arg_ty),
298             };
299
300             let mut ebb_params = Vec::new();
301             for arg_ty in tupled_arg_tys.iter() {
302                 let cton_type = get_pass_mode(fx.tcx, fx.self_sig().abi, arg_ty, false).get_param_ty(fx);
303                 ebb_params.push(fx.bcx.append_ebb_param(start_ebb, cton_type));
304             }
305
306             (local, ArgKind::Spread(ebb_params), arg_ty)
307         } else {
308             let cton_type = get_pass_mode(fx.tcx, fx.self_sig().abi, arg_ty, false).get_param_ty(fx);
309             (local, ArgKind::Normal(fx.bcx.append_ebb_param(start_ebb, cton_type)), arg_ty)
310         }
311     }).collect::<Vec<(Local, ArgKind, Ty)>>();
312
313     match output_pass_mode {
314         PassMode::NoPass => {
315             let null = fx.bcx.ins().iconst(types::I64, 0);
316             //unimplemented!("pass mode nopass");
317             fx.local_map.insert(
318                 RETURN_PLACE,
319                 CPlace::Addr(null, fx.layout_of(fx.return_type())),
320             );
321         }
322         PassMode::ByVal(ret_ty) => {
323             let var = Variable(RETURN_PLACE);
324             fx.bcx.declare_var(var, ret_ty);
325             fx.local_map
326                 .insert(RETURN_PLACE, CPlace::Var(var, ret_layout));
327         }
328         PassMode::ByRef => {
329             fx.local_map
330                 .insert(RETURN_PLACE, CPlace::Addr(ret_param.unwrap(), ret_layout));
331         }
332     }
333
334     for (local, arg_kind, ty) in func_params {
335         let layout = fx.layout_of(ty);
336
337         if let ArgKind::Normal(ebb_param) = arg_kind {
338             if !ssa_analyzed
339                 .get(&local)
340                 .unwrap()
341                 .contains(crate::analyze::Flags::NOT_SSA)
342             {
343                 let var = Variable(local);
344                 fx.bcx.declare_var(var, fx.cton_type(ty).unwrap());
345                 match get_pass_mode(fx.tcx, fx.self_sig().abi, ty, false) {
346                     PassMode::NoPass => unimplemented!("pass mode nopass"),
347                     PassMode::ByVal(_) => fx.bcx.def_var(var, ebb_param),
348                     PassMode::ByRef => {
349                         let val = CValue::ByRef(ebb_param, fx.layout_of(ty)).load_value(fx);
350                         fx.bcx.def_var(var, val);
351                     }
352                 }
353                 fx.local_map.insert(local, CPlace::Var(var, layout));
354                 continue;
355             }
356         }
357
358         let stack_slot = fx.bcx.create_stack_slot(StackSlotData {
359             kind: StackSlotKind::ExplicitSlot,
360             size: layout.size.bytes() as u32,
361             offset: None,
362         });
363
364         let place = CPlace::from_stack_slot(fx, stack_slot, ty);
365
366         match arg_kind {
367             ArgKind::Normal(ebb_param) => match get_pass_mode(fx.tcx, fx.self_sig().abi, ty, false)
368             {
369                 PassMode::NoPass => unimplemented!("pass mode nopass"),
370                 PassMode::ByVal(_) => {
371                     place.write_cvalue(fx, CValue::ByVal(ebb_param, place.layout()))
372                 }
373                 PassMode::ByRef => place.write_cvalue(fx, CValue::ByRef(ebb_param, place.layout())),
374             },
375             ArgKind::Spread(ebb_params) => {
376                 for (i, ebb_param) in ebb_params.into_iter().enumerate() {
377                     let sub_place = place.place_field(fx, mir::Field::new(i));
378                     match get_pass_mode(fx.tcx, fx.self_sig().abi, sub_place.layout().ty, false) {
379                         PassMode::NoPass => unimplemented!("pass mode nopass"),
380                         PassMode::ByVal(_) => {
381                             sub_place.write_cvalue(fx, CValue::ByVal(ebb_param, sub_place.layout()))
382                         }
383                         PassMode::ByRef => {
384                             sub_place.write_cvalue(fx, CValue::ByRef(ebb_param, sub_place.layout()))
385                         }
386                     }
387                 }
388             }
389         }
390         fx.local_map.insert(local, place);
391     }
392
393     for local in fx.mir.vars_and_temps_iter() {
394         let ty = fx.mir.local_decls[local].ty;
395         let layout = fx.layout_of(ty);
396
397         let place = if ssa_analyzed
398             .get(&local)
399             .unwrap()
400             .contains(crate::analyze::Flags::NOT_SSA)
401         {
402             let stack_slot = fx.bcx.create_stack_slot(StackSlotData {
403                 kind: StackSlotKind::ExplicitSlot,
404                 size: layout.size.bytes() as u32,
405                 offset: None,
406             });
407             CPlace::from_stack_slot(fx, stack_slot, ty)
408         } else {
409             let var = Variable(local);
410             fx.bcx.declare_var(var, fx.cton_type(ty).unwrap());
411             CPlace::Var(var, layout)
412         };
413
414         fx.local_map.insert(local, place);
415     }
416 }
417
418 pub fn codegen_call<'a, 'tcx: 'a>(
419     fx: &mut FunctionCx<'a, 'tcx>,
420     func: &Operand<'tcx>,
421     args: &[Operand<'tcx>],
422     destination: &Option<(Place<'tcx>, BasicBlock)>,
423 ) {
424     let func = trans_operand(fx, func);
425     let fn_ty = func.layout().ty;
426     let sig = ty_fn_sig(fx.tcx, fn_ty);
427
428     // Unpack arguments tuple for closures
429     let args = if sig.abi == Abi::RustCall {
430         assert_eq!(args.len(), 2, "rust-call abi requires two arguments");
431         let self_arg = trans_operand(fx, &args[0]);
432         let pack_arg = trans_operand(fx, &args[1]);
433         let mut args = Vec::new();
434         args.push(self_arg);
435         match pack_arg.layout().ty.sty {
436             ty::TyTuple(ref tupled_arguments) => {
437                 for (i, _) in tupled_arguments.iter().enumerate() {
438                     args.push(pack_arg.value_field(fx, mir::Field::new(i)));
439                 }
440             }
441             _ => bug!("argument to function with \"rust-call\" ABI is not a tuple"),
442         }
443         println!(
444             "{:?} {:?}",
445             pack_arg.layout().ty,
446             args.iter().map(|a| a.layout().ty).collect::<Vec<_>>()
447         );
448         args
449     } else {
450         args.into_iter()
451             .map(|arg| trans_operand(fx, arg))
452             .collect::<Vec<_>>()
453     };
454
455     let destination = destination
456         .as_ref()
457         .map(|(place, bb)| (trans_place(fx, place), *bb));
458
459     if codegen_intrinsic_call(fx, fn_ty, sig, &args, destination) {
460         return;
461     }
462
463     let ret_layout = fx.layout_of(sig.output());
464
465     let output_pass_mode = get_pass_mode(fx.tcx, sig.abi, sig.output(), true);
466     println!("{:?}", output_pass_mode);
467     let return_ptr = match output_pass_mode {
468         PassMode::NoPass => None,
469         PassMode::ByRef => match destination {
470             Some((place, _)) => Some(place.expect_addr()),
471             None => Some(fx.bcx.ins().iconst(types::I64, 0)),
472         },
473         PassMode::ByVal(_) => None,
474     };
475
476     let call_args: Vec<Value> = return_ptr
477         .into_iter()
478         .chain(args.into_iter().map(|arg| {
479             match get_pass_mode(fx.tcx, sig.abi, arg.layout().ty, false) {
480                 PassMode::NoPass => unimplemented!("pass mode nopass"),
481                 PassMode::ByVal(_) => arg.load_value(fx),
482                 PassMode::ByRef => arg.force_stack(fx),
483             }
484         })).collect::<Vec<_>>();
485
486     let inst = match func {
487         CValue::Func(func, _) => fx.bcx.ins().call(func, &call_args),
488         func => {
489             let func = func.load_value(fx);
490             let sig = fx.bcx.import_signature(cton_sig_from_fn_ty(fx.tcx, fn_ty));
491             fx.bcx.ins().call_indirect(sig, func, &call_args)
492         }
493     };
494
495     match output_pass_mode {
496         PassMode::NoPass => {}
497         PassMode::ByVal(_) => {
498             if let Some((ret_place, _)) = destination {
499                 let results = fx.bcx.inst_results(inst);
500                 ret_place.write_cvalue(fx, CValue::ByVal(results[0], ret_layout));
501             }
502         }
503         PassMode::ByRef => {}
504     }
505     if let Some((_, dest)) = destination {
506         let ret_ebb = fx.get_ebb(dest);
507         fx.bcx.ins().jump(ret_ebb, &[]);
508     } else {
509         fx.bcx.ins().trap(TrapCode::User(!0));
510     }
511 }
512
513 pub fn codegen_return(fx: &mut FunctionCx) {
514     match get_pass_mode(fx.tcx, fx.self_sig().abi, fx.return_type(), true) {
515         PassMode::NoPass | PassMode::ByRef => {
516             fx.bcx.ins().return_(&[]);
517         }
518         PassMode::ByVal(_) => {
519             let place = fx.get_local_place(RETURN_PLACE);
520             let ret_val = place.to_cvalue(fx).load_value(fx);
521             fx.bcx.ins().return_(&[ret_val]);
522         }
523     }
524 }
525
526 fn codegen_intrinsic_call<'a, 'tcx: 'a>(
527     fx: &mut FunctionCx<'a, 'tcx>,
528     fn_ty: Ty<'tcx>,
529     sig: FnSig<'tcx>,
530     args: &[CValue<'tcx>],
531     destination: Option<(CPlace<'tcx>, BasicBlock)>,
532 ) -> bool {
533     if let TypeVariants::TyFnDef(def_id, substs) = fn_ty.sty {
534         if sig.abi == Abi::RustIntrinsic {
535             let intrinsic = fx.tcx.item_name(def_id).as_str();
536             let intrinsic = &intrinsic[..];
537
538             let ret = match destination {
539                 Some((place, _)) => place,
540                 None => {
541                     println!("codegen_call(fx, _, {:?}, {:?})", args, destination);
542                     // Insert non returning intrinsics here
543                     match intrinsic {
544                         "abort" => {
545                             fx.bcx.ins().trap(TrapCode::User(!0 - 1));
546                         }
547                         "unreachable" => {
548                             fx.bcx.ins().trap(TrapCode::User(!0 - 1));
549                         }
550                         _ => unimplemented!("unsupported instrinsic {}", intrinsic),
551                     }
552                     return true;
553                 }
554             };
555
556             let nil_ty = fx.tcx.mk_nil();
557             let u64_layout = fx.layout_of(fx.tcx.types.u64);
558             let usize_layout = fx.layout_of(fx.tcx.types.usize);
559
560             match intrinsic {
561                 "assume" => {
562                     assert_eq!(args.len(), 1);
563                 }
564                 "arith_offset" => {
565                     assert_eq!(args.len(), 2);
566                     let base = args[0].load_value(fx);
567                     let offset = args[1].load_value(fx);
568                     let res = fx.bcx.ins().iadd(base, offset);
569                     let res = CValue::ByVal(res, ret.layout());
570                     ret.write_cvalue(fx, res);
571                 }
572                 "likely" | "unlikely" => {
573                     assert_eq!(args.len(), 1);
574                     ret.write_cvalue(fx, args[0]);
575                 }
576                 "copy" | "copy_nonoverlapping" => {
577                     let elem_ty = substs.type_at(0);
578                     let elem_size: u64 = fx.layout_of(elem_ty).size.bytes();
579                     let elem_size = fx.bcx.ins().iconst(types::I64, elem_size as i64);
580                     assert_eq!(args.len(), 3);
581                     let src = args[0];
582                     let dst = args[1];
583                     let count = args[2].load_value(fx);
584                     let byte_amount = fx.bcx.ins().imul(count, elem_size);
585                     fx.easy_call(
586                         "memmove",
587                         &[dst, src, CValue::ByVal(byte_amount, usize_layout)],
588                         nil_ty,
589                     );
590                 }
591                 "discriminant_value" => {
592                     assert_eq!(args.len(), 1);
593                     let discr = crate::base::trans_get_discriminant(fx, args[0], ret.layout());
594                     ret.write_cvalue(fx, discr);
595                 }
596                 "size_of" => {
597                     assert_eq!(args.len(), 0);
598                     let size_of = fx.layout_of(substs.type_at(0)).size.bytes();
599                     let size_of = CValue::const_val(fx, usize_layout.ty, size_of as i64);
600                     ret.write_cvalue(fx, size_of);
601                 }
602                 "type_id" => {
603                     assert_eq!(args.len(), 0);
604                     let type_id = fx.tcx.type_id_hash(substs.type_at(0));
605                     let type_id = CValue::const_val(fx, u64_layout.ty, type_id as i64);
606                     ret.write_cvalue(fx, type_id);
607                 }
608                 "min_align_of" => {
609                     assert_eq!(args.len(), 0);
610                     let min_align = fx.layout_of(substs.type_at(0)).align.abi();
611                     let min_align = CValue::const_val(fx, usize_layout.ty, min_align as i64);
612                     ret.write_cvalue(fx, min_align);
613                 }
614                 _ if intrinsic.starts_with("unchecked_") => {
615                     assert_eq!(args.len(), 2);
616                     let bin_op = match intrinsic {
617                         "unchecked_div" => BinOp::Div,
618                         "unchecked_rem" => BinOp::Rem,
619                         "unchecked_shl" => BinOp::Shl,
620                         "unchecked_shr" => BinOp::Shr,
621                         _ => unimplemented!("intrinsic {}", intrinsic),
622                     };
623                     let res = match ret.layout().ty.sty {
624                         TypeVariants::TyUint(_) => crate::base::trans_int_binop(
625                             fx,
626                             bin_op,
627                             args[0],
628                             args[1],
629                             ret.layout().ty,
630                             false,
631                         ),
632                         TypeVariants::TyInt(_) => crate::base::trans_int_binop(
633                             fx,
634                             bin_op,
635                             args[0],
636                             args[1],
637                             ret.layout().ty,
638                             true,
639                         ),
640                         _ => panic!(),
641                     };
642                     ret.write_cvalue(fx, res);
643                 }
644                 _ if intrinsic.ends_with("_with_overflow") => {
645                     assert_eq!(args.len(), 2);
646                     assert_eq!(args[0].layout().ty, args[1].layout().ty);
647                     let bin_op = match intrinsic {
648                         "add_with_overflow" => BinOp::Add,
649                         "sub_with_overflow" => BinOp::Sub,
650                         "mul_with_overflow" => BinOp::Mul,
651                         _ => unimplemented!("intrinsic {}", intrinsic),
652                     };
653                     let res = match args[0].layout().ty.sty {
654                         TypeVariants::TyUint(_) => crate::base::trans_checked_int_binop(
655                             fx,
656                             bin_op,
657                             args[0],
658                             args[1],
659                             ret.layout().ty,
660                             false,
661                         ),
662                         TypeVariants::TyInt(_) => crate::base::trans_checked_int_binop(
663                             fx,
664                             bin_op,
665                             args[0],
666                             args[1],
667                             ret.layout().ty,
668                             true,
669                         ),
670                         _ => panic!(),
671                     };
672                     ret.write_cvalue(fx, res);
673                 }
674                 _ if intrinsic.starts_with("overflowing_") => {
675                     assert_eq!(args.len(), 2);
676                     assert_eq!(args[0].layout().ty, args[1].layout().ty);
677                     let bin_op = match intrinsic {
678                         "overflowing_add" => BinOp::Add,
679                         "overflowing_sub" => BinOp::Sub,
680                         "overflowing_mul" => BinOp::Mul,
681                         _ => unimplemented!("intrinsic {}", intrinsic),
682                     };
683                     let res = match args[0].layout().ty.sty {
684                         TypeVariants::TyUint(_) => crate::base::trans_int_binop(
685                             fx,
686                             bin_op,
687                             args[0],
688                             args[1],
689                             ret.layout().ty,
690                             false,
691                         ),
692                         TypeVariants::TyInt(_) => crate::base::trans_int_binop(
693                             fx,
694                             bin_op,
695                             args[0],
696                             args[1],
697                             ret.layout().ty,
698                             true,
699                         ),
700                         _ => panic!(),
701                     };
702                     ret.write_cvalue(fx, res);
703                 }
704                 "offset" => {
705                     assert_eq!(args.len(), 2);
706                     let base = args[0].load_value(fx);
707                     let offset = args[1].load_value(fx);
708                     let res = fx.bcx.ins().iadd(base, offset);
709                     ret.write_cvalue(fx, CValue::ByVal(res, args[0].layout()));
710                 }
711                 "transmute" => {
712                     assert_eq!(args.len(), 1);
713                     let src_ty = substs.type_at(0);
714                     let dst_ty = substs.type_at(1);
715                     assert_eq!(args[0].layout().ty, src_ty);
716                     let addr = args[0].force_stack(fx);
717                     let dst_layout = fx.layout_of(dst_ty);
718                     ret.write_cvalue(fx, CValue::ByRef(addr, dst_layout))
719                 }
720                 "uninit" => {
721                     assert_eq!(args.len(), 0);
722                     let ty = substs.type_at(0);
723                     let layout = fx.layout_of(ty);
724                     let stack_slot = fx.bcx.create_stack_slot(StackSlotData {
725                         kind: StackSlotKind::ExplicitSlot,
726                         size: layout.size.bytes() as u32,
727                         offset: None,
728                     });
729
730                     let uninit_place = CPlace::from_stack_slot(fx, stack_slot, ty);
731                     let uninit_val = uninit_place.to_cvalue(fx);
732                     ret.write_cvalue(fx, uninit_val);
733                 }
734                 "ctlz" | "ctlz_nonzero" => {
735                     assert_eq!(args.len(), 1);
736                     let arg = args[0].load_value(fx);
737                     let res = CValue::ByVal(fx.bcx.ins().clz(arg), args[0].layout());
738                     ret.write_cvalue(fx, res);
739                 }
740                 "cttz" | "cttz_nonzero" => {
741                     assert_eq!(args.len(), 1);
742                     let arg = args[0].load_value(fx);
743                     let res = CValue::ByVal(fx.bcx.ins().clz(arg), args[0].layout());
744                     ret.write_cvalue(fx, res);
745                 }
746                 "ctpop" => {
747                     assert_eq!(args.len(), 1);
748                     let arg = args[0].load_value(fx);
749                     let res = CValue::ByVal(fx.bcx.ins().popcnt(arg), args[0].layout());
750                     ret.write_cvalue(fx, res);
751                 }
752                 _ => unimpl!("unsupported intrinsic {}", intrinsic),
753             }
754
755             if let Some((_, dest)) = destination {
756                 let ret_ebb = fx.get_ebb(dest);
757                 fx.bcx.ins().jump(ret_ebb, &[]);
758             } else {
759                 fx.bcx.ins().trap(TrapCode::User(!0));
760             }
761             return true;
762         }
763     }
764
765     false
766 }