]> git.lizzy.rs Git - rust.git/blob - src/abi.rs
Pass CPlace to codegen_intrinsic_call
[rust.git] / src / abi.rs
1 use std::iter;
2
3 use rustc::hir;
4 use rustc_target::spec::abi::Abi;
5
6 use crate::prelude::*;
7
8 pub fn cton_sig_from_fn_ty<'a, 'tcx: 'a>(
9     tcx: TyCtxt<'a, 'tcx, 'tcx>,
10     fn_ty: Ty<'tcx>,
11 ) -> Signature {
12     let sig = ty_fn_sig(tcx, fn_ty);
13     assert!(!sig.variadic, "Variadic function are not yet supported");
14     let (call_conv, inputs, _output): (CallConv, Vec<Ty>, Ty) = match sig.abi {
15         Abi::Rust => (CallConv::Fast, sig.inputs().to_vec(), sig.output()),
16         Abi::C => (CallConv::SystemV, sig.inputs().to_vec(), sig.output()),
17         Abi::RustCall => {
18             println!(
19                 "rust-call sig: {:?} inputs: {:?} output: {:?}",
20                 sig,
21                 sig.inputs(),
22                 sig.output()
23             );
24             assert_eq!(sig.inputs().len(), 2);
25             let extra_args = match sig.inputs().last().unwrap().sty {
26                 ty::TyTuple(ref tupled_arguments) => tupled_arguments,
27                 _ => bug!("argument to function with \"rust-call\" ABI is not a tuple"),
28             };
29             let mut inputs: Vec<Ty> = vec![sig.inputs()[0]];
30             inputs.extend(extra_args.into_iter());
31             (CallConv::Fast, inputs, sig.output())
32         }
33         Abi::System => bug!("system abi should be selected elsewhere"),
34         Abi::RustIntrinsic => (CallConv::SystemV, sig.inputs().to_vec(), sig.output()),
35         _ => unimplemented!("unsupported abi {:?}", sig.abi),
36     };
37     Signature {
38         params: Some(types::I64).into_iter() // First param is place to put return val
39             .chain(inputs.into_iter().map(|ty| {
40                 let cton_ty = cton_type_from_ty(tcx, ty);
41                 if let Some(cton_ty) = cton_ty {
42                     cton_ty
43                 } else {
44                     if sig.abi == Abi::C {
45                         unimplemented!("Non scalars are not yet supported for \"C\" abi");
46                     }
47                     types::I64
48                 }
49             }))
50             .map(AbiParam::new).collect(),
51         returns: vec![],
52         call_conv,
53         argument_bytes: None,
54     }
55 }
56
57 fn ty_fn_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> ty::FnSig<'tcx> {
58     let sig = match ty.sty {
59         ty::TyFnDef(..) |
60         // Shims currently have type TyFnPtr. Not sure this should remain.
61         ty::TyFnPtr(_) => ty.fn_sig(tcx),
62         ty::TyClosure(def_id, substs) => {
63             let sig = substs.closure_sig(def_id, tcx);
64
65             let env_ty = tcx.closure_env_ty(def_id, substs).unwrap();
66             sig.map_bound(|sig| tcx.mk_fn_sig(
67                 iter::once(*env_ty.skip_binder()).chain(sig.inputs().iter().cloned()),
68                 sig.output(),
69                 sig.variadic,
70                 sig.unsafety,
71                 sig.abi
72             ))
73         }
74         ty::TyGenerator(def_id, substs, _) => {
75             let sig = substs.poly_sig(def_id, tcx);
76
77             let env_region = ty::ReLateBound(ty::INNERMOST, ty::BrEnv);
78             let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty);
79
80             sig.map_bound(|sig| {
81                 let state_did = tcx.lang_items().gen_state().unwrap();
82                 let state_adt_ref = tcx.adt_def(state_did);
83                 let state_substs = tcx.intern_substs(&[
84                     sig.yield_ty.into(),
85                     sig.return_ty.into(),
86                 ]);
87                 let ret_ty = tcx.mk_adt(state_adt_ref, state_substs);
88
89                 tcx.mk_fn_sig(iter::once(env_ty),
90                     ret_ty,
91                     false,
92                     hir::Unsafety::Normal,
93                     Abi::Rust
94                 )
95             })
96         }
97         _ => bug!("unexpected type {:?} to ty_fn_sig", ty)
98     };
99     tcx.normalize_erasing_late_bound_regions(ParamEnv::reveal_all(), &sig)
100 }
101
102 impl<'a, 'tcx: 'a> FunctionCx<'a, 'tcx> {
103     /// Instance must be monomorphized
104     pub fn get_function_ref(&mut self, inst: Instance<'tcx>) -> FuncRef {
105         assert!(!inst.substs.needs_infer() && !inst.substs.has_param_types());
106         let fn_ty = inst.ty(self.tcx);
107         let sig = cton_sig_from_fn_ty(self.tcx, fn_ty);
108         let def_path_based_names =
109             ::rustc_mir::monomorphize::item::DefPathBasedNames::new(self.tcx, false, false);
110         let mut name = String::new();
111         def_path_based_names.push_instance_as_string(inst, &mut name);
112         let func_id = self
113             .module
114             .declare_function(&name, Linkage::Import, &sig)
115             .unwrap();
116         self.module
117             .declare_func_in_func(func_id, &mut self.bcx.func)
118     }
119
120     fn lib_call(
121         &mut self,
122         name: &str,
123         input_tys: Vec<types::Type>,
124         output_ty: Option<types::Type>,
125         args: &[Value],
126     ) -> Option<Value> {
127         let sig = Signature {
128             params: input_tys.iter().cloned().map(AbiParam::new).collect(),
129             returns: vec![AbiParam::new(output_ty.unwrap_or(types::VOID))],
130             call_conv: CallConv::SystemV,
131             argument_bytes: None,
132         };
133         let func_id = self
134             .module
135             .declare_function(&name, Linkage::Import, &sig)
136             .unwrap();
137         let func_ref = self
138             .module
139             .declare_func_in_func(func_id, &mut self.bcx.func);
140         let call_inst = self.bcx.ins().call(func_ref, args);
141         if output_ty.is_none() {
142             return None;
143         }
144         let results = self.bcx.inst_results(call_inst);
145         assert_eq!(results.len(), 1);
146         Some(results[0])
147     }
148
149     pub fn easy_call(
150         &mut self,
151         name: &str,
152         args: &[CValue<'tcx>],
153         return_ty: Ty<'tcx>,
154     ) -> CValue<'tcx> {
155         let (input_tys, args): (Vec<_>, Vec<_>) = args
156             .into_iter()
157             .map(|arg| {
158                 (
159                     self.cton_type(arg.layout().ty).unwrap(),
160                     arg.load_value(self),
161                 )
162             }).unzip();
163         let return_layout = self.layout_of(return_ty);
164         let return_ty = if let TypeVariants::TyTuple(tup) = return_ty.sty {
165             if !tup.is_empty() {
166                 bug!("easy_call( (...) -> <non empty tuple> ) is not allowed");
167             }
168             None
169         } else {
170             Some(self.cton_type(return_ty).unwrap())
171         };
172         if let Some(val) = self.lib_call(name, input_tys, return_ty, &args) {
173             CValue::ByVal(val, return_layout)
174         } else {
175             CValue::ByRef(self.bcx.ins().iconst(types::I64, 0), return_layout)
176         }
177     }
178
179     fn self_sig(&self) -> FnSig<'tcx> {
180         ty_fn_sig(self.tcx, self.instance.ty(self.tcx))
181     }
182
183     fn return_type(&self) -> Ty<'tcx> {
184         self.self_sig().output()
185     }
186 }
187
188 pub fn codegen_fn_prelude<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, start_ebb: Ebb) {
189     let ssa_analyzed = crate::analyze::analyze(fx);
190     fx.tcx.sess.warn(&format!("ssa {:?}", ssa_analyzed));
191
192     match fx.self_sig().abi {
193         Abi::Rust | Abi::RustCall => {}
194         _ => unimplemented!("declared function with non \"rust\" or \"rust-call\" abi"),
195     }
196
197     let ret_param = fx.bcx.append_ebb_param(start_ebb, types::I64);
198
199     enum ArgKind {
200         Normal(Value),
201         Spread(Vec<Value>),
202     }
203
204     let func_params = fx.mir.args_iter().map(|local| {
205         let arg_ty = fx.monomorphize(&fx.mir.local_decls[local].ty);
206
207         // Adapted from https://github.com/rust-lang/rust/blob/145155dc96757002c7b2e9de8489416e2fdbbd57/src/librustc_codegen_llvm/mir/mod.rs#L442-L482
208         if Some(local) == fx.mir.spread_arg {
209             // This argument (e.g. the last argument in the "rust-call" ABI)
210             // is a tuple that was spread at the ABI level and now we have
211             // to reconstruct it into a tuple local variable, from multiple
212             // individual function arguments.
213
214             let tupled_arg_tys = match arg_ty.sty {
215                 ty::TyTuple(ref tys) => tys,
216                 _ => bug!("spread argument isn't a tuple?! but {:?}", arg_ty),
217             };
218
219             let mut ebb_params = Vec::new();
220             for arg_ty in tupled_arg_tys.iter() {
221                 let cton_type = fx.cton_type(arg_ty).unwrap_or(types::I64);
222                 ebb_params.push(fx.bcx.append_ebb_param(start_ebb, cton_type));
223             }
224
225             (local, ArgKind::Spread(ebb_params), arg_ty)
226         } else {
227             let cton_type = fx.cton_type(arg_ty).unwrap_or(types::I64);
228             (local, ArgKind::Normal(fx.bcx.append_ebb_param(start_ebb, cton_type)), arg_ty)
229         }
230     }).collect::<Vec<(Local, ArgKind, Ty)>>();
231
232     let ret_layout = fx.layout_of(fx.return_type());
233     fx.local_map
234         .insert(RETURN_PLACE, CPlace::Addr(ret_param, ret_layout));
235
236     for (local, arg_kind, ty) in func_params {
237         let layout = fx.layout_of(ty);
238
239         if let ArgKind::Normal(ebb_param) = arg_kind {
240             if !ssa_analyzed
241                 .get(&local)
242                 .unwrap()
243                 .contains(crate::analyze::Flags::NOT_SSA)
244             {
245                 let var = Variable(local);
246                 fx.bcx.declare_var(var, fx.cton_type(ty).unwrap());
247                 fx.bcx.def_var(var, ebb_param);
248                 fx.local_map.insert(local, CPlace::Var(var, layout));
249                 continue;
250             }
251         }
252
253         let stack_slot = fx.bcx.create_stack_slot(StackSlotData {
254             kind: StackSlotKind::ExplicitSlot,
255             size: layout.size.bytes() as u32,
256             offset: None,
257         });
258
259         let place = CPlace::from_stack_slot(fx, stack_slot, ty);
260
261         match arg_kind {
262             ArgKind::Normal(ebb_param) => {
263                 if fx.cton_type(ty).is_some() {
264                     place.write_cvalue(fx, CValue::ByVal(ebb_param, place.layout()));
265                 } else {
266                     place.write_cvalue(fx, CValue::ByRef(ebb_param, place.layout()));
267                 }
268             }
269             ArgKind::Spread(ebb_params) => {
270                 for (i, ebb_param) in ebb_params.into_iter().enumerate() {
271                     let sub_place = place.place_field(fx, mir::Field::new(i));
272                     if fx.cton_type(sub_place.layout().ty).is_some() {
273                         sub_place.write_cvalue(fx, CValue::ByVal(ebb_param, sub_place.layout()));
274                     } else {
275                         sub_place.write_cvalue(fx, CValue::ByRef(ebb_param, sub_place.layout()));
276                     }
277                 }
278             }
279         }
280         fx.local_map.insert(local, place);
281     }
282
283     for local in fx.mir.vars_and_temps_iter() {
284         let ty = fx.mir.local_decls[local].ty;
285         let layout = fx.layout_of(ty);
286
287         let place = if ssa_analyzed
288             .get(&local)
289             .unwrap()
290             .contains(crate::analyze::Flags::NOT_SSA)
291         {
292             let stack_slot = fx.bcx.create_stack_slot(StackSlotData {
293                 kind: StackSlotKind::ExplicitSlot,
294                 size: layout.size.bytes() as u32,
295                 offset: None,
296             });
297             CPlace::from_stack_slot(fx, stack_slot, ty)
298         } else {
299             let var = Variable(local);
300             fx.bcx.declare_var(var, fx.cton_type(ty).unwrap());
301             CPlace::Var(var, layout)
302         };
303
304         fx.local_map.insert(local, place);
305     }
306 }
307
308 pub fn codegen_call<'a, 'tcx: 'a>(
309     fx: &mut FunctionCx<'a, 'tcx>,
310     func: &Operand<'tcx>,
311     args: &[Operand<'tcx>],
312     destination: &Option<(Place<'tcx>, BasicBlock)>,
313 ) {
314     let func = trans_operand(fx, func);
315     let fn_ty = func.layout().ty;
316     let sig = ty_fn_sig(fx.tcx, fn_ty);
317
318     // Unpack arguments tuple for closures
319     let args = if sig.abi == Abi::RustCall {
320         assert_eq!(args.len(), 2, "rust-call abi requires two arguments");
321         let self_arg = trans_operand(fx, &args[0]);
322         let pack_arg = trans_operand(fx, &args[1]);
323         let mut args = Vec::new();
324         args.push(self_arg);
325         match pack_arg.layout().ty.sty {
326             ty::TyTuple(ref tupled_arguments) => {
327                 for (i, _) in tupled_arguments.iter().enumerate() {
328                     args.push(pack_arg.value_field(fx, mir::Field::new(i)));
329                 }
330             }
331             _ => bug!("argument to function with \"rust-call\" ABI is not a tuple"),
332         }
333         println!(
334             "{:?} {:?}",
335             pack_arg.layout().ty,
336             args.iter().map(|a| a.layout().ty).collect::<Vec<_>>()
337         );
338         args
339     } else {
340         args.into_iter()
341             .map(|arg| trans_operand(fx, arg))
342             .collect::<Vec<_>>()
343     };
344
345     let destination = destination.as_ref().map(|(place, bb)| {
346         (trans_place(fx, place), *bb)
347     });
348
349     if codegen_intrinsic_call(fx, fn_ty, sig, &args, destination) {
350         return;
351     }
352
353     let return_ptr = match destination {
354         Some((place, _)) => place.expect_addr(),
355         None => fx.bcx.ins().iconst(types::I64, 0),
356     };
357
358     let call_args = Some(return_ptr)
359         .into_iter()
360         .chain(args.into_iter().map(|arg| {
361             if fx.cton_type(arg.layout().ty).is_some() {
362                 arg.load_value(fx)
363             } else {
364                 arg.force_stack(fx)
365             }
366         })).collect::<Vec<_>>();
367
368     match func {
369         CValue::Func(func, _) => {
370             fx.bcx.ins().call(func, &call_args);
371         }
372         func => {
373             let func_ty = func.layout().ty;
374             let func = func.load_value(fx);
375             let sig = fx
376                 .bcx
377                 .import_signature(cton_sig_from_fn_ty(fx.tcx, func_ty));
378             fx.bcx.ins().call_indirect(sig, func, &call_args);
379         }
380     }
381     if let Some((_, dest)) = destination {
382         let ret_ebb = fx.get_ebb(dest);
383         fx.bcx.ins().jump(ret_ebb, &[]);
384     } else {
385         fx.bcx.ins().trap(TrapCode::User(!0));
386     }
387 }
388
389 fn codegen_intrinsic_call<'a, 'tcx: 'a>(
390     fx: &mut FunctionCx<'a, 'tcx>,
391     fn_ty: Ty<'tcx>,
392     sig: FnSig<'tcx>,
393     args: &[CValue<'tcx>],
394     destination: Option<(CPlace<'tcx>, BasicBlock)>,
395 ) -> bool {
396     if let TypeVariants::TyFnDef(def_id, substs) = fn_ty.sty {
397         if sig.abi == Abi::RustIntrinsic {
398             let intrinsic = fx.tcx.item_name(def_id).as_str();
399             let intrinsic = &intrinsic[..];
400
401             let ret = match destination {
402                 Some((place, _)) => place,
403                 None => {
404                     println!(
405                         "codegen_call(fx, _, {:?}, {:?})",
406                         args, destination
407                     );
408                     // Insert non returning intrinsics here
409                     match intrinsic {
410                         "abort" => {
411                             fx.bcx.ins().trap(TrapCode::User(!0 - 1));
412                         }
413                         "unreachable" => {
414                             fx.bcx.ins().trap(TrapCode::User(!0 - 1));
415                         }
416                         _ => unimplemented!("unsupported instrinsic {}", intrinsic),
417                     }
418                     return true;
419                 }
420             };
421
422             let nil_ty = fx.tcx.mk_nil();
423             let u64_layout = fx.layout_of(fx.tcx.types.u64);
424             let usize_layout = fx.layout_of(fx.tcx.types.usize);
425
426             match intrinsic {
427                 "assume" => {
428                     assert_eq!(args.len(), 1);
429                 }
430                 "arith_offset" => {
431                     assert_eq!(args.len(), 2);
432                     let base = args[0].load_value(fx);
433                     let offset = args[1].load_value(fx);
434                     let res = fx.bcx.ins().iadd(base, offset);
435                     let res = CValue::ByVal(res, ret.layout());
436                     ret.write_cvalue(fx, res);
437                 }
438                 "likely" | "unlikely" => {
439                     assert_eq!(args.len(), 1);
440                     ret.write_cvalue(fx, args[0]);
441                 }
442                 "copy" | "copy_nonoverlapping" => {
443                     let elem_ty = substs.type_at(0);
444                     let elem_size: u64 = fx.layout_of(elem_ty).size.bytes();
445                     let elem_size = fx.bcx.ins().iconst(types::I64, elem_size as i64);
446                     assert_eq!(args.len(), 3);
447                     let src = args[0];
448                     let dst = args[1];
449                     let count = args[2].load_value(fx);
450                     let byte_amount = fx.bcx.ins().imul(count, elem_size);
451                     fx.easy_call(
452                         "memmove",
453                         &[dst, src, CValue::ByVal(byte_amount, usize_layout)],
454                         nil_ty,
455                     );
456                 }
457                 "discriminant_value" => {
458                     assert_eq!(args.len(), 1);
459                     let discr = crate::base::trans_get_discriminant(fx, args[0], ret.layout());
460                     ret.write_cvalue(fx, discr);
461                 }
462                 "size_of" => {
463                     assert_eq!(args.len(), 0);
464                     let size_of = fx.layout_of(substs.type_at(0)).size.bytes();
465                     let size_of = CValue::const_val(fx, usize_layout.ty, size_of as i64);
466                     ret.write_cvalue(fx, size_of);
467                 }
468                 "type_id" => {
469                     assert_eq!(args.len(), 0);
470                     let type_id = fx.tcx.type_id_hash(substs.type_at(0));
471                     let type_id = CValue::const_val(fx, u64_layout.ty, type_id as i64);
472                     ret.write_cvalue(fx, type_id);
473                 }
474                 "min_align_of" => {
475                     assert_eq!(args.len(), 0);
476                     let min_align = fx.layout_of(substs.type_at(0)).align.abi();
477                     let min_align = CValue::const_val(fx, usize_layout.ty, min_align as i64);
478                     ret.write_cvalue(fx, min_align);
479                 }
480                 _ if intrinsic.starts_with("unchecked_") => {
481                     assert_eq!(args.len(), 2);
482                     let bin_op = match intrinsic {
483                         "unchecked_div" => BinOp::Div,
484                         "unchecked_rem" => BinOp::Rem,
485                         "unchecked_shl" => BinOp::Shl,
486                         "unchecked_shr" => BinOp::Shr,
487                         _ => unimplemented!("intrinsic {}", intrinsic),
488                     };
489                     let res = match ret.layout().ty.sty {
490                         TypeVariants::TyUint(_) => crate::base::trans_int_binop(
491                             fx,
492                             bin_op,
493                             args[0],
494                             args[1],
495                             ret.layout().ty,
496                             false,
497                         ),
498                         TypeVariants::TyInt(_) => crate::base::trans_int_binop(
499                             fx,
500                             bin_op,
501                             args[0],
502                             args[1],
503                             ret.layout().ty,
504                             true,
505                         ),
506                         _ => panic!(),
507                     };
508                     ret.write_cvalue(fx, res);
509                 }
510                 _ if intrinsic.ends_with("_with_overflow") => {
511                     assert_eq!(args.len(), 2);
512                     assert_eq!(args[0].layout().ty, args[1].layout().ty);
513                     let bin_op = match intrinsic {
514                         "add_with_overflow" => BinOp::Add,
515                         "sub_with_overflow" => BinOp::Sub,
516                         "mul_with_overflow" => BinOp::Mul,
517                         _ => unimplemented!("intrinsic {}", intrinsic),
518                     };
519                     let res = match args[0].layout().ty.sty {
520                         TypeVariants::TyUint(_) => crate::base::trans_checked_int_binop(
521                             fx,
522                             bin_op,
523                             args[0],
524                             args[1],
525                             ret.layout().ty,
526                             false,
527                         ),
528                         TypeVariants::TyInt(_) => crate::base::trans_checked_int_binop(
529                             fx,
530                             bin_op,
531                             args[0],
532                             args[1],
533                             ret.layout().ty,
534                             true,
535                         ),
536                         _ => panic!(),
537                     };
538                     ret.write_cvalue(fx, res);
539                 }
540                 _ if intrinsic.starts_with("overflowing_") => {
541                     assert_eq!(args.len(), 2);
542                     assert_eq!(args[0].layout().ty, args[1].layout().ty);
543                     let bin_op = match intrinsic {
544                         "overflowing_add" => BinOp::Add,
545                         "overflowing_sub" => BinOp::Sub,
546                         "overflowing_mul" => BinOp::Mul,
547                         _ => unimplemented!("intrinsic {}", intrinsic),
548                     };
549                     let res = match args[0].layout().ty.sty {
550                         TypeVariants::TyUint(_) => crate::base::trans_int_binop(
551                             fx,
552                             bin_op,
553                             args[0],
554                             args[1],
555                             ret.layout().ty,
556                             false,
557                         ),
558                         TypeVariants::TyInt(_) => crate::base::trans_int_binop(
559                             fx,
560                             bin_op,
561                             args[0],
562                             args[1],
563                             ret.layout().ty,
564                             true,
565                         ),
566                         _ => panic!(),
567                     };
568                     ret.write_cvalue(fx, res);
569                 }
570                 "offset" => {
571                     assert_eq!(args.len(), 2);
572                     let base = args[0].load_value(fx);
573                     let offset = args[1].load_value(fx);
574                     let res = fx.bcx.ins().iadd(base, offset);
575                     ret.write_cvalue(fx, CValue::ByVal(res, args[0].layout()));
576                 }
577                 "transmute" => {
578                     assert_eq!(args.len(), 1);
579                     let src_ty = substs.type_at(0);
580                     let dst_ty = substs.type_at(1);
581                     assert_eq!(args[0].layout().ty, src_ty);
582                     let addr = args[0].force_stack(fx);
583                     let dst_layout = fx.layout_of(dst_ty);
584                     ret.write_cvalue(fx, CValue::ByRef(addr, dst_layout))
585                 }
586                 "uninit" => {
587                     assert_eq!(args.len(), 0);
588                     let ty = substs.type_at(0);
589                     let layout = fx.layout_of(ty);
590                     let stack_slot = fx.bcx.create_stack_slot(StackSlotData {
591                         kind: StackSlotKind::ExplicitSlot,
592                         size: layout.size.bytes() as u32,
593                         offset: None,
594                     });
595
596                     let uninit_place = CPlace::from_stack_slot(fx, stack_slot, ty);
597                     let uninit_val = uninit_place.to_cvalue(fx);
598                     ret.write_cvalue(fx, uninit_val);
599                 }
600                 "ctlz" | "ctlz_nonzero" => {
601                     assert_eq!(args.len(), 1);
602                     let arg = args[0].load_value(fx);
603                     let res = CValue::ByVal(fx.bcx.ins().clz(arg), args[0].layout());
604                     ret.write_cvalue(fx, res);
605                 }
606                 "cttz" | "cttz_nonzero" => {
607                     assert_eq!(args.len(), 1);
608                     let arg = args[0].load_value(fx);
609                     let res = CValue::ByVal(fx.bcx.ins().clz(arg), args[0].layout());
610                     ret.write_cvalue(fx, res);
611                 }
612                 "ctpop" => {
613                     assert_eq!(args.len(), 1);
614                     let arg = args[0].load_value(fx);
615                     let res = CValue::ByVal(fx.bcx.ins().popcnt(arg), args[0].layout());
616                     ret.write_cvalue(fx, res);
617                 }
618                 _ => unimpl!("unsupported intrinsic {}", intrinsic),
619             }
620
621             if let Some((_, dest)) = destination {
622                 let ret_ebb = fx.get_ebb(dest);
623                 fx.bcx.ins().jump(ret_ebb, &[]);
624             } else {
625                 fx.bcx.ins().trap(TrapCode::User(!0));
626             }
627             return true;
628         }
629     }
630
631     false
632 }