]> git.lizzy.rs Git - rust.git/blob - library/core/src/result.rs
RustWrapper: simplify removing attributes
[rust.git] / library / core / src / result.rs
1 //! Error handling with the `Result` type.
2 //!
3 //! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4 //! errors. It is an enum with the variants, [`Ok(T)`], representing
5 //! success and containing a value, and [`Err(E)`], representing error
6 //! and containing an error value.
7 //!
8 //! ```
9 //! # #[allow(dead_code)]
10 //! enum Result<T, E> {
11 //!    Ok(T),
12 //!    Err(E),
13 //! }
14 //! ```
15 //!
16 //! Functions return [`Result`] whenever errors are expected and
17 //! recoverable. In the `std` crate, [`Result`] is most prominently used
18 //! for [I/O](../../std/io/index.html).
19 //!
20 //! A simple function returning [`Result`] might be
21 //! defined and used like so:
22 //!
23 //! ```
24 //! #[derive(Debug)]
25 //! enum Version { Version1, Version2 }
26 //!
27 //! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28 //!     match header.get(0) {
29 //!         None => Err("invalid header length"),
30 //!         Some(&1) => Ok(Version::Version1),
31 //!         Some(&2) => Ok(Version::Version2),
32 //!         Some(_) => Err("invalid version"),
33 //!     }
34 //! }
35 //!
36 //! let version = parse_version(&[1, 2, 3, 4]);
37 //! match version {
38 //!     Ok(v) => println!("working with version: {:?}", v),
39 //!     Err(e) => println!("error parsing header: {:?}", e),
40 //! }
41 //! ```
42 //!
43 //! Pattern matching on [`Result`]s is clear and straightforward for
44 //! simple cases, but [`Result`] comes with some convenience methods
45 //! that make working with it more succinct.
46 //!
47 //! ```
48 //! let good_result: Result<i32, i32> = Ok(10);
49 //! let bad_result: Result<i32, i32> = Err(10);
50 //!
51 //! // The `is_ok` and `is_err` methods do what they say.
52 //! assert!(good_result.is_ok() && !good_result.is_err());
53 //! assert!(bad_result.is_err() && !bad_result.is_ok());
54 //!
55 //! // `map` consumes the `Result` and produces another.
56 //! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
57 //! let bad_result: Result<i32, i32> = bad_result.map(|i| i - 1);
58 //!
59 //! // Use `and_then` to continue the computation.
60 //! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
61 //!
62 //! // Use `or_else` to handle the error.
63 //! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
64 //!
65 //! // Consume the result and return the contents with `unwrap`.
66 //! let final_awesome_result = good_result.unwrap();
67 //! ```
68 //!
69 //! # Results must be used
70 //!
71 //! A common problem with using return values to indicate errors is
72 //! that it is easy to ignore the return value, thus failing to handle
73 //! the error. [`Result`] is annotated with the `#[must_use]` attribute,
74 //! which will cause the compiler to issue a warning when a Result
75 //! value is ignored. This makes [`Result`] especially useful with
76 //! functions that may encounter errors but don't otherwise return a
77 //! useful value.
78 //!
79 //! Consider the [`write_all`] method defined for I/O types
80 //! by the [`Write`] trait:
81 //!
82 //! ```
83 //! use std::io;
84 //!
85 //! trait Write {
86 //!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
87 //! }
88 //! ```
89 //!
90 //! *Note: The actual definition of [`Write`] uses [`io::Result`], which
91 //! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
92 //!
93 //! This method doesn't produce a value, but the write may
94 //! fail. It's crucial to handle the error case, and *not* write
95 //! something like this:
96 //!
97 //! ```no_run
98 //! # #![allow(unused_must_use)] // \o/
99 //! use std::fs::File;
100 //! use std::io::prelude::*;
101 //!
102 //! let mut file = File::create("valuable_data.txt").unwrap();
103 //! // If `write_all` errors, then we'll never know, because the return
104 //! // value is ignored.
105 //! file.write_all(b"important message");
106 //! ```
107 //!
108 //! If you *do* write that in Rust, the compiler will give you a
109 //! warning (by default, controlled by the `unused_must_use` lint).
110 //!
111 //! You might instead, if you don't want to handle the error, simply
112 //! assert success with [`expect`]. This will panic if the
113 //! write fails, providing a marginally useful message indicating why:
114 //!
115 //! ```no_run
116 //! use std::fs::File;
117 //! use std::io::prelude::*;
118 //!
119 //! let mut file = File::create("valuable_data.txt").unwrap();
120 //! file.write_all(b"important message").expect("failed to write message");
121 //! ```
122 //!
123 //! You might also simply assert success:
124 //!
125 //! ```no_run
126 //! # use std::fs::File;
127 //! # use std::io::prelude::*;
128 //! # let mut file = File::create("valuable_data.txt").unwrap();
129 //! assert!(file.write_all(b"important message").is_ok());
130 //! ```
131 //!
132 //! Or propagate the error up the call stack with [`?`]:
133 //!
134 //! ```
135 //! # use std::fs::File;
136 //! # use std::io::prelude::*;
137 //! # use std::io;
138 //! # #[allow(dead_code)]
139 //! fn write_message() -> io::Result<()> {
140 //!     let mut file = File::create("valuable_data.txt")?;
141 //!     file.write_all(b"important message")?;
142 //!     Ok(())
143 //! }
144 //! ```
145 //!
146 //! # The question mark operator, `?`
147 //!
148 //! When writing code that calls many functions that return the
149 //! [`Result`] type, the error handling can be tedious. The question mark
150 //! operator, [`?`], hides some of the boilerplate of propagating errors
151 //! up the call stack.
152 //!
153 //! It replaces this:
154 //!
155 //! ```
156 //! # #![allow(dead_code)]
157 //! use std::fs::File;
158 //! use std::io::prelude::*;
159 //! use std::io;
160 //!
161 //! struct Info {
162 //!     name: String,
163 //!     age: i32,
164 //!     rating: i32,
165 //! }
166 //!
167 //! fn write_info(info: &Info) -> io::Result<()> {
168 //!     // Early return on error
169 //!     let mut file = match File::create("my_best_friends.txt") {
170 //!            Err(e) => return Err(e),
171 //!            Ok(f) => f,
172 //!     };
173 //!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
174 //!         return Err(e)
175 //!     }
176 //!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
177 //!         return Err(e)
178 //!     }
179 //!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
180 //!         return Err(e)
181 //!     }
182 //!     Ok(())
183 //! }
184 //! ```
185 //!
186 //! With this:
187 //!
188 //! ```
189 //! # #![allow(dead_code)]
190 //! use std::fs::File;
191 //! use std::io::prelude::*;
192 //! use std::io;
193 //!
194 //! struct Info {
195 //!     name: String,
196 //!     age: i32,
197 //!     rating: i32,
198 //! }
199 //!
200 //! fn write_info(info: &Info) -> io::Result<()> {
201 //!     let mut file = File::create("my_best_friends.txt")?;
202 //!     // Early return on error
203 //!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
204 //!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
205 //!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
206 //!     Ok(())
207 //! }
208 //! ```
209 //!
210 //! *It's much nicer!*
211 //!
212 //! Ending the expression with [`?`] will result in the unwrapped
213 //! success ([`Ok`]) value, unless the result is [`Err`], in which case
214 //! [`Err`] is returned early from the enclosing function.
215 //!
216 //! [`?`] can only be used in functions that return [`Result`] because of the
217 //! early return of [`Err`] that it provides.
218 //!
219 //! [`expect`]: Result::expect
220 //! [`Write`]: ../../std/io/trait.Write.html "io::Write"
221 //! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
222 //! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
223 //! [`?`]: crate::ops::Try
224 //! [`Ok(T)`]: Ok
225 //! [`Err(E)`]: Err
226 //! [io::Error]: ../../std/io/struct.Error.html "io::Error"
227 //!
228 //! # Method overview
229 //!
230 //! In addition to working with pattern matching, [`Result`] provides a
231 //! wide variety of different methods.
232 //!
233 //! ## Querying the variant
234 //!
235 //! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
236 //! is [`Ok`] or [`Err`], respectively.
237 //!
238 //! [`is_err`]: Result::is_err
239 //! [`is_ok`]: Result::is_ok
240 //!
241 //! ## Adapters for working with references
242 //!
243 //! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
244 //! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
245 //! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
246 //! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
247 //!   `Result<&mut T::Target, &mut E>`
248 //!
249 //! [`as_deref`]: Result::as_deref
250 //! [`as_deref_mut`]: Result::as_deref_mut
251 //! [`as_mut`]: Result::as_mut
252 //! [`as_ref`]: Result::as_ref
253 //!
254 //! ## Extracting contained values
255 //!
256 //! These methods extract the contained value in a [`Result<T, E>`] when it
257 //! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
258 //!
259 //! * [`expect`] panics with a provided custom message
260 //! * [`unwrap`] panics with a generic message
261 //! * [`unwrap_or`] returns the provided default value
262 //! * [`unwrap_or_default`] returns the default value of the type `T`
263 //!   (which must implement the [`Default`] trait)
264 //! * [`unwrap_or_else`] returns the result of evaluating the provided
265 //!   function
266 //!
267 //! The panicking methods [`expect`] and [`unwrap`] require `E` to
268 //! implement the [`Debug`] trait.
269 //!
270 //! [`Debug`]: crate::fmt::Debug
271 //! [`expect`]: Result::expect
272 //! [`unwrap`]: Result::unwrap
273 //! [`unwrap_or`]: Result::unwrap_or
274 //! [`unwrap_or_default`]: Result::unwrap_or_default
275 //! [`unwrap_or_else`]: Result::unwrap_or_else
276 //!
277 //! These methods extract the contained value in a [`Result<T, E>`] when it
278 //! is the [`Err`] variant. They require `T` to implement the [`Debug`]
279 //! trait. If the [`Result`] is [`Ok`]:
280 //!
281 //! * [`expect_err`] panics with a provided custom message
282 //! * [`unwrap_err`] panics with a generic message
283 //!
284 //! [`Debug`]: crate::fmt::Debug
285 //! [`expect_err`]: Result::expect_err
286 //! [`unwrap_err`]: Result::unwrap_err
287 //!
288 //! ## Transforming contained values
289 //!
290 //! These methods transform [`Result`] to [`Option`]:
291 //!
292 //! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
293 //!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
294 //! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
295 //!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
296 //! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
297 //!   [`Option`] of a [`Result`]
298 //!
299 // Do NOT add link reference definitions for `err` or `ok`, because they
300 // will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
301 // to case folding.
302 //!
303 //! [`Err(e)`]: Err
304 //! [`Ok(v)`]: Ok
305 //! [`Some(e)`]: Option::Some
306 //! [`Some(v)`]: Option::Some
307 //! [`transpose`]: Result::transpose
308 //!
309 //! This method transforms the contained value of the [`Ok`] variant:
310 //!
311 //! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
312 //!   the provided function to the contained value of [`Ok`] and leaving
313 //!   [`Err`] values unchanged
314 //!
315 //! [`map`]: Result::map
316 //!
317 //! This method transforms the contained value of the [`Err`] variant:
318 //!
319 //! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
320 //!   applying the provided function to the contained value of [`Err`] and
321 //!   leaving [`Ok`] values unchanged
322 //!
323 //! [`map_err`]: Result::map_err
324 //!
325 //! These methods transform a [`Result<T, E>`] into a value of a possibly
326 //! different type `U`:
327 //!
328 //! * [`map_or`] applies the provided function to the contained value of
329 //!   [`Ok`], or returns the provided default value if the [`Result`] is
330 //!   [`Err`]
331 //! * [`map_or_else`] applies the provided function to the contained value
332 //!   of [`Ok`], or applies the provided default fallback function to the
333 //!   contained value of [`Err`]
334 //!
335 //! [`map_or`]: Result::map_or
336 //! [`map_or_else`]: Result::map_or_else
337 //!
338 //! ## Boolean operators
339 //!
340 //! These methods treat the [`Result`] as a boolean value, where [`Ok`]
341 //! acts like [`true`] and [`Err`] acts like [`false`]. There are two
342 //! categories of these methods: ones that take a [`Result`] as input, and
343 //! ones that take a function as input (to be lazily evaluated).
344 //!
345 //! The [`and`] and [`or`] methods take another [`Result`] as input, and
346 //! produce a [`Result`] as output. The [`and`] method can produce a
347 //! [`Result<U, E>`] value having a different inner type `U` than
348 //! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
349 //! value having a different error type `F` than [`Result<T, E>`].
350 //!
351 //! | method  | self     | input     | output   |
352 //! |---------|----------|-----------|----------|
353 //! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
354 //! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
355 //! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
356 //! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
357 //! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
358 //! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
359 //!
360 //! [`and`]: Result::and
361 //! [`or`]: Result::or
362 //!
363 //! The [`and_then`] and [`or_else`] methods take a function as input, and
364 //! only evaluate the function when they need to produce a new value. The
365 //! [`and_then`] method can produce a [`Result<U, E>`] value having a
366 //! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
367 //! can produce a [`Result<T, F>`] value having a different error type `F`
368 //! than [`Result<T, E>`].
369 //!
370 //! | method       | self     | function input | function result | output   |
371 //! |--------------|----------|----------------|-----------------|----------|
372 //! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
373 //! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
374 //! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
375 //! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
376 //! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
377 //! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
378 //!
379 //! [`and_then`]: Result::and_then
380 //! [`or_else`]: Result::or_else
381 //!
382 //! ## Comparison operators
383 //!
384 //! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
385 //! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
386 //! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
387 //! compare as their contained values would in `T` or `E` respectively.  If `T`
388 //! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
389 //!
390 //! ```
391 //! assert!(Ok(1) < Err(0));
392 //! let x: Result<i32, ()> = Ok(0);
393 //! let y = Ok(1);
394 //! assert!(x < y);
395 //! let x: Result<(), i32> = Err(0);
396 //! let y = Err(1);
397 //! assert!(x < y);
398 //! ```
399 //!
400 //! ## Iterating over `Result`
401 //!
402 //! A [`Result`] can be iterated over. This can be helpful if you need an
403 //! iterator that is conditionally empty. The iterator will either produce
404 //! a single value (when the [`Result`] is [`Ok`]), or produce no values
405 //! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
406 //! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
407 //! [`Result`] is [`Err`].
408 //!
409 //! [`Ok(v)`]: Ok
410 //! [`empty()`]: crate::iter::empty
411 //! [`once(v)`]: crate::iter::once
412 //!
413 //! Iterators over [`Result<T, E>`] come in three types:
414 //!
415 //! * [`into_iter`] consumes the [`Result`] and produces the contained
416 //!   value
417 //! * [`iter`] produces an immutable reference of type `&T` to the
418 //!   contained value
419 //! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
420 //!   contained value
421 //!
422 //! See [Iterating over `Option`] for examples of how this can be useful.
423 //!
424 //! [Iterating over `Option`]: crate::option#iterating-over-option
425 //! [`into_iter`]: Result::into_iter
426 //! [`iter`]: Result::iter
427 //! [`iter_mut`]: Result::iter_mut
428 //!
429 //! You might want to use an iterator chain to do multiple instances of an
430 //! operation that can fail, but would like to ignore failures while
431 //! continuing to process the successful results. In this example, we take
432 //! advantage of the iterable nature of [`Result`] to select only the
433 //! [`Ok`] values using [`flatten`][Iterator::flatten].
434 //!
435 //! ```
436 //! # use std::str::FromStr;
437 //! let mut results = vec![];
438 //! let mut errs = vec![];
439 //! let nums: Vec<_> = vec!["17", "not a number", "99", "-27", "768"]
440 //!    .into_iter()
441 //!    .map(u8::from_str)
442 //!    // Save clones of the raw `Result` values to inspect
443 //!    .inspect(|x| results.push(x.clone()))
444 //!    // Challenge: explain how this captures only the `Err` values
445 //!    .inspect(|x| errs.extend(x.clone().err()))
446 //!    .flatten()
447 //!    .collect();
448 //! assert_eq!(errs.len(), 3);
449 //! assert_eq!(nums, [17, 99]);
450 //! println!("results {:?}", results);
451 //! println!("errs {:?}", errs);
452 //! println!("nums {:?}", nums);
453 //! ```
454 //!
455 //! ## Collecting into `Result`
456 //!
457 //! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
458 //! which allows an iterator over [`Result`] values to be collected into a
459 //! [`Result`] of a collection of each contained value of the original
460 //! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
461 //!
462 //! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA%2C%20E%3E%3E
463 //!
464 //! ```
465 //! let v = vec![Ok(2), Ok(4), Err("err!"), Ok(8)];
466 //! let res: Result<Vec<_>, &str> = v.into_iter().collect();
467 //! assert_eq!(res, Err("err!"));
468 //! let v = vec![Ok(2), Ok(4), Ok(8)];
469 //! let res: Result<Vec<_>, &str> = v.into_iter().collect();
470 //! assert_eq!(res, Ok(vec![2, 4, 8]));
471 //! ```
472 //!
473 //! [`Result`] also implements the [`Product`][impl-Product] and
474 //! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
475 //! to provide the [`product`][Iterator::product] and
476 //! [`sum`][Iterator::sum] methods.
477 //!
478 //! [impl-Product]: Result#impl-Product%3CResult%3CU%2C%20E%3E%3E
479 //! [impl-Sum]: Result#impl-Sum%3CResult%3CU%2C%20E%3E%3E
480 //!
481 //! ```
482 //! let v = vec![Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
483 //! let res: Result<i32, &str> = v.into_iter().sum();
484 //! assert_eq!(res, Err("error!"));
485 //! let v: Vec<Result<i32, &str>> = vec![Ok(1), Ok(2), Ok(21)];
486 //! let res: Result<i32, &str> = v.into_iter().product();
487 //! assert_eq!(res, Ok(42));
488 //! ```
489
490 #![stable(feature = "rust1", since = "1.0.0")]
491
492 use crate::iter::{self, FromIterator, FusedIterator, TrustedLen};
493 use crate::ops::{self, ControlFlow, Deref, DerefMut};
494 use crate::{convert, fmt, hint};
495
496 /// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
497 ///
498 /// See the [module documentation](self) for details.
499 #[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
500 #[must_use = "this `Result` may be an `Err` variant, which should be handled"]
501 #[rustc_diagnostic_item = "Result"]
502 #[stable(feature = "rust1", since = "1.0.0")]
503 pub enum Result<T, E> {
504     /// Contains the success value
505     #[lang = "Ok"]
506     #[stable(feature = "rust1", since = "1.0.0")]
507     Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
508
509     /// Contains the error value
510     #[lang = "Err"]
511     #[stable(feature = "rust1", since = "1.0.0")]
512     Err(#[stable(feature = "rust1", since = "1.0.0")] E),
513 }
514
515 /////////////////////////////////////////////////////////////////////////////
516 // Type implementation
517 /////////////////////////////////////////////////////////////////////////////
518
519 impl<T, E> Result<T, E> {
520     /////////////////////////////////////////////////////////////////////////
521     // Querying the contained values
522     /////////////////////////////////////////////////////////////////////////
523
524     /// Returns `true` if the result is [`Ok`].
525     ///
526     /// # Examples
527     ///
528     /// Basic usage:
529     ///
530     /// ```
531     /// let x: Result<i32, &str> = Ok(-3);
532     /// assert_eq!(x.is_ok(), true);
533     ///
534     /// let x: Result<i32, &str> = Err("Some error message");
535     /// assert_eq!(x.is_ok(), false);
536     /// ```
537     #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
538     #[rustc_const_stable(feature = "const_result", since = "1.48.0")]
539     #[inline]
540     #[stable(feature = "rust1", since = "1.0.0")]
541     pub const fn is_ok(&self) -> bool {
542         matches!(*self, Ok(_))
543     }
544
545     /// Returns `true` if the result is [`Err`].
546     ///
547     /// # Examples
548     ///
549     /// Basic usage:
550     ///
551     /// ```
552     /// let x: Result<i32, &str> = Ok(-3);
553     /// assert_eq!(x.is_err(), false);
554     ///
555     /// let x: Result<i32, &str> = Err("Some error message");
556     /// assert_eq!(x.is_err(), true);
557     /// ```
558     #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
559     #[rustc_const_stable(feature = "const_result", since = "1.48.0")]
560     #[inline]
561     #[stable(feature = "rust1", since = "1.0.0")]
562     pub const fn is_err(&self) -> bool {
563         !self.is_ok()
564     }
565
566     /// Returns `true` if the result is an [`Ok`] value containing the given value.
567     ///
568     /// # Examples
569     ///
570     /// ```
571     /// #![feature(option_result_contains)]
572     ///
573     /// let x: Result<u32, &str> = Ok(2);
574     /// assert_eq!(x.contains(&2), true);
575     ///
576     /// let x: Result<u32, &str> = Ok(3);
577     /// assert_eq!(x.contains(&2), false);
578     ///
579     /// let x: Result<u32, &str> = Err("Some error message");
580     /// assert_eq!(x.contains(&2), false);
581     /// ```
582     #[must_use]
583     #[inline]
584     #[unstable(feature = "option_result_contains", issue = "62358")]
585     pub fn contains<U>(&self, x: &U) -> bool
586     where
587         U: PartialEq<T>,
588     {
589         match self {
590             Ok(y) => x == y,
591             Err(_) => false,
592         }
593     }
594
595     /// Returns `true` if the result is an [`Err`] value containing the given value.
596     ///
597     /// # Examples
598     ///
599     /// ```
600     /// #![feature(result_contains_err)]
601     ///
602     /// let x: Result<u32, &str> = Ok(2);
603     /// assert_eq!(x.contains_err(&"Some error message"), false);
604     ///
605     /// let x: Result<u32, &str> = Err("Some error message");
606     /// assert_eq!(x.contains_err(&"Some error message"), true);
607     ///
608     /// let x: Result<u32, &str> = Err("Some other error message");
609     /// assert_eq!(x.contains_err(&"Some error message"), false);
610     /// ```
611     #[must_use]
612     #[inline]
613     #[unstable(feature = "result_contains_err", issue = "62358")]
614     pub fn contains_err<F>(&self, f: &F) -> bool
615     where
616         F: PartialEq<E>,
617     {
618         match self {
619             Ok(_) => false,
620             Err(e) => f == e,
621         }
622     }
623
624     /////////////////////////////////////////////////////////////////////////
625     // Adapter for each variant
626     /////////////////////////////////////////////////////////////////////////
627
628     /// Converts from `Result<T, E>` to [`Option<T>`].
629     ///
630     /// Converts `self` into an [`Option<T>`], consuming `self`,
631     /// and discarding the error, if any.
632     ///
633     /// # Examples
634     ///
635     /// Basic usage:
636     ///
637     /// ```
638     /// let x: Result<u32, &str> = Ok(2);
639     /// assert_eq!(x.ok(), Some(2));
640     ///
641     /// let x: Result<u32, &str> = Err("Nothing here");
642     /// assert_eq!(x.ok(), None);
643     /// ```
644     #[inline]
645     #[stable(feature = "rust1", since = "1.0.0")]
646     pub fn ok(self) -> Option<T> {
647         match self {
648             Ok(x) => Some(x),
649             Err(_) => None,
650         }
651     }
652
653     /// Converts from `Result<T, E>` to [`Option<E>`].
654     ///
655     /// Converts `self` into an [`Option<E>`], consuming `self`,
656     /// and discarding the success value, if any.
657     ///
658     /// # Examples
659     ///
660     /// Basic usage:
661     ///
662     /// ```
663     /// let x: Result<u32, &str> = Ok(2);
664     /// assert_eq!(x.err(), None);
665     ///
666     /// let x: Result<u32, &str> = Err("Nothing here");
667     /// assert_eq!(x.err(), Some("Nothing here"));
668     /// ```
669     #[inline]
670     #[stable(feature = "rust1", since = "1.0.0")]
671     pub fn err(self) -> Option<E> {
672         match self {
673             Ok(_) => None,
674             Err(x) => Some(x),
675         }
676     }
677
678     /////////////////////////////////////////////////////////////////////////
679     // Adapter for working with references
680     /////////////////////////////////////////////////////////////////////////
681
682     /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
683     ///
684     /// Produces a new `Result`, containing a reference
685     /// into the original, leaving the original in place.
686     ///
687     /// # Examples
688     ///
689     /// Basic usage:
690     ///
691     /// ```
692     /// let x: Result<u32, &str> = Ok(2);
693     /// assert_eq!(x.as_ref(), Ok(&2));
694     ///
695     /// let x: Result<u32, &str> = Err("Error");
696     /// assert_eq!(x.as_ref(), Err(&"Error"));
697     /// ```
698     #[inline]
699     #[rustc_const_stable(feature = "const_result", since = "1.48.0")]
700     #[stable(feature = "rust1", since = "1.0.0")]
701     pub const fn as_ref(&self) -> Result<&T, &E> {
702         match *self {
703             Ok(ref x) => Ok(x),
704             Err(ref x) => Err(x),
705         }
706     }
707
708     /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
709     ///
710     /// # Examples
711     ///
712     /// Basic usage:
713     ///
714     /// ```
715     /// fn mutate(r: &mut Result<i32, i32>) {
716     ///     match r.as_mut() {
717     ///         Ok(v) => *v = 42,
718     ///         Err(e) => *e = 0,
719     ///     }
720     /// }
721     ///
722     /// let mut x: Result<i32, i32> = Ok(2);
723     /// mutate(&mut x);
724     /// assert_eq!(x.unwrap(), 42);
725     ///
726     /// let mut x: Result<i32, i32> = Err(13);
727     /// mutate(&mut x);
728     /// assert_eq!(x.unwrap_err(), 0);
729     /// ```
730     #[inline]
731     #[stable(feature = "rust1", since = "1.0.0")]
732     #[rustc_const_unstable(feature = "const_result", issue = "82814")]
733     pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
734         match *self {
735             Ok(ref mut x) => Ok(x),
736             Err(ref mut x) => Err(x),
737         }
738     }
739
740     /////////////////////////////////////////////////////////////////////////
741     // Transforming contained values
742     /////////////////////////////////////////////////////////////////////////
743
744     /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
745     /// contained [`Ok`] value, leaving an [`Err`] value untouched.
746     ///
747     /// This function can be used to compose the results of two functions.
748     ///
749     /// # Examples
750     ///
751     /// Print the numbers on each line of a string multiplied by two.
752     ///
753     /// ```
754     /// let line = "1\n2\n3\n4\n";
755     ///
756     /// for num in line.lines() {
757     ///     match num.parse::<i32>().map(|i| i * 2) {
758     ///         Ok(n) => println!("{}", n),
759     ///         Err(..) => {}
760     ///     }
761     /// }
762     /// ```
763     #[inline]
764     #[stable(feature = "rust1", since = "1.0.0")]
765     pub fn map<U, F: FnOnce(T) -> U>(self, op: F) -> Result<U, E> {
766         match self {
767             Ok(t) => Ok(op(t)),
768             Err(e) => Err(e),
769         }
770     }
771
772     /// Returns the provided default (if [`Err`]), or
773     /// applies a function to the contained value (if [`Ok`]),
774     ///
775     /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
776     /// the result of a function call, it is recommended to use [`map_or_else`],
777     /// which is lazily evaluated.
778     ///
779     /// [`map_or_else`]: Result::map_or_else
780     ///
781     /// # Examples
782     ///
783     /// ```
784     /// let x: Result<_, &str> = Ok("foo");
785     /// assert_eq!(x.map_or(42, |v| v.len()), 3);
786     ///
787     /// let x: Result<&str, _> = Err("bar");
788     /// assert_eq!(x.map_or(42, |v| v.len()), 42);
789     /// ```
790     #[inline]
791     #[stable(feature = "result_map_or", since = "1.41.0")]
792     pub fn map_or<U, F: FnOnce(T) -> U>(self, default: U, f: F) -> U {
793         match self {
794             Ok(t) => f(t),
795             Err(_) => default,
796         }
797     }
798
799     /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
800     /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
801     ///
802     /// This function can be used to unpack a successful result
803     /// while handling an error.
804     ///
805     ///
806     /// # Examples
807     ///
808     /// Basic usage:
809     ///
810     /// ```
811     /// let k = 21;
812     ///
813     /// let x : Result<_, &str> = Ok("foo");
814     /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
815     ///
816     /// let x : Result<&str, _> = Err("bar");
817     /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
818     /// ```
819     #[inline]
820     #[stable(feature = "result_map_or_else", since = "1.41.0")]
821     pub fn map_or_else<U, D: FnOnce(E) -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
822         match self {
823             Ok(t) => f(t),
824             Err(e) => default(e),
825         }
826     }
827
828     /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
829     /// contained [`Err`] value, leaving an [`Ok`] value untouched.
830     ///
831     /// This function can be used to pass through a successful result while handling
832     /// an error.
833     ///
834     ///
835     /// # Examples
836     ///
837     /// Basic usage:
838     ///
839     /// ```
840     /// fn stringify(x: u32) -> String { format!("error code: {}", x) }
841     ///
842     /// let x: Result<u32, u32> = Ok(2);
843     /// assert_eq!(x.map_err(stringify), Ok(2));
844     ///
845     /// let x: Result<u32, u32> = Err(13);
846     /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
847     /// ```
848     #[inline]
849     #[stable(feature = "rust1", since = "1.0.0")]
850     pub fn map_err<F, O: FnOnce(E) -> F>(self, op: O) -> Result<T, F> {
851         match self {
852             Ok(t) => Ok(t),
853             Err(e) => Err(op(e)),
854         }
855     }
856
857     /// Calls the provided closure with a reference to the contained value (if [`Ok`]).
858     ///
859     /// # Examples
860     ///
861     /// ```
862     /// #![feature(result_option_inspect)]
863     ///
864     /// let x: u8 = "4"
865     ///     .parse::<u8>()
866     ///     .inspect(|x| println!("original: {}", x))
867     ///     .map(|x| x.pow(3))
868     ///     .expect("failed to parse number");
869     /// ```
870     #[inline]
871     #[unstable(feature = "result_option_inspect", issue = "91345")]
872     pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self {
873         if let Ok(ref t) = self {
874             f(t);
875         }
876
877         self
878     }
879
880     /// Calls the provided closure with a reference to the contained error (if [`Err`]).
881     ///
882     /// # Examples
883     ///
884     /// ```
885     /// #![feature(result_option_inspect)]
886     ///
887     /// use std::{fs, io};
888     ///
889     /// fn read() -> io::Result<String> {
890     ///     fs::read_to_string("address.txt")
891     ///         .inspect_err(|e| eprintln!("failed to read file: {}", e))
892     /// }
893     /// ```
894     #[inline]
895     #[unstable(feature = "result_option_inspect", issue = "91345")]
896     pub fn inspect_err<F: FnOnce(&E)>(self, f: F) -> Self {
897         if let Err(ref e) = self {
898             f(e);
899         }
900
901         self
902     }
903
904     /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
905     ///
906     /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
907     /// and returns the new [`Result`].
908     ///
909     /// # Examples
910     ///
911     /// ```
912     /// let x: Result<String, u32> = Ok("hello".to_string());
913     /// let y: Result<&str, &u32> = Ok("hello");
914     /// assert_eq!(x.as_deref(), y);
915     ///
916     /// let x: Result<String, u32> = Err(42);
917     /// let y: Result<&str, &u32> = Err(&42);
918     /// assert_eq!(x.as_deref(), y);
919     /// ```
920     #[stable(feature = "inner_deref", since = "1.47.0")]
921     pub fn as_deref(&self) -> Result<&T::Target, &E>
922     where
923         T: Deref,
924     {
925         self.as_ref().map(|t| t.deref())
926     }
927
928     /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
929     ///
930     /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
931     /// and returns the new [`Result`].
932     ///
933     /// # Examples
934     ///
935     /// ```
936     /// let mut s = "HELLO".to_string();
937     /// let mut x: Result<String, u32> = Ok("hello".to_string());
938     /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
939     /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
940     ///
941     /// let mut i = 42;
942     /// let mut x: Result<String, u32> = Err(42);
943     /// let y: Result<&mut str, &mut u32> = Err(&mut i);
944     /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
945     /// ```
946     #[stable(feature = "inner_deref", since = "1.47.0")]
947     pub fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
948     where
949         T: DerefMut,
950     {
951         self.as_mut().map(|t| t.deref_mut())
952     }
953
954     /////////////////////////////////////////////////////////////////////////
955     // Iterator constructors
956     /////////////////////////////////////////////////////////////////////////
957
958     /// Returns an iterator over the possibly contained value.
959     ///
960     /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
961     ///
962     /// # Examples
963     ///
964     /// Basic usage:
965     ///
966     /// ```
967     /// let x: Result<u32, &str> = Ok(7);
968     /// assert_eq!(x.iter().next(), Some(&7));
969     ///
970     /// let x: Result<u32, &str> = Err("nothing!");
971     /// assert_eq!(x.iter().next(), None);
972     /// ```
973     #[inline]
974     #[stable(feature = "rust1", since = "1.0.0")]
975     pub fn iter(&self) -> Iter<'_, T> {
976         Iter { inner: self.as_ref().ok() }
977     }
978
979     /// Returns a mutable iterator over the possibly contained value.
980     ///
981     /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
982     ///
983     /// # Examples
984     ///
985     /// Basic usage:
986     ///
987     /// ```
988     /// let mut x: Result<u32, &str> = Ok(7);
989     /// match x.iter_mut().next() {
990     ///     Some(v) => *v = 40,
991     ///     None => {},
992     /// }
993     /// assert_eq!(x, Ok(40));
994     ///
995     /// let mut x: Result<u32, &str> = Err("nothing!");
996     /// assert_eq!(x.iter_mut().next(), None);
997     /// ```
998     #[inline]
999     #[stable(feature = "rust1", since = "1.0.0")]
1000     pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1001         IterMut { inner: self.as_mut().ok() }
1002     }
1003
1004     /////////////////////////////////////////////////////////////////////////
1005     // Extract a value
1006     /////////////////////////////////////////////////////////////////////////
1007
1008     /// Returns the contained [`Ok`] value, consuming the `self` value.
1009     ///
1010     /// # Panics
1011     ///
1012     /// Panics if the value is an [`Err`], with a panic message including the
1013     /// passed message, and the content of the [`Err`].
1014     ///
1015     ///
1016     /// # Examples
1017     ///
1018     /// Basic usage:
1019     ///
1020     /// ```should_panic
1021     /// let x: Result<u32, &str> = Err("emergency failure");
1022     /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1023     /// ```
1024     #[inline]
1025     #[track_caller]
1026     #[stable(feature = "result_expect", since = "1.4.0")]
1027     pub fn expect(self, msg: &str) -> T
1028     where
1029         E: fmt::Debug,
1030     {
1031         match self {
1032             Ok(t) => t,
1033             Err(e) => unwrap_failed(msg, &e),
1034         }
1035     }
1036
1037     /// Returns the contained [`Ok`] value, consuming the `self` value.
1038     ///
1039     /// Because this function may panic, its use is generally discouraged.
1040     /// Instead, prefer to use pattern matching and handle the [`Err`]
1041     /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1042     /// [`unwrap_or_default`].
1043     ///
1044     /// [`unwrap_or`]: Result::unwrap_or
1045     /// [`unwrap_or_else`]: Result::unwrap_or_else
1046     /// [`unwrap_or_default`]: Result::unwrap_or_default
1047     ///
1048     /// # Panics
1049     ///
1050     /// Panics if the value is an [`Err`], with a panic message provided by the
1051     /// [`Err`]'s value.
1052     ///
1053     ///
1054     /// # Examples
1055     ///
1056     /// Basic usage:
1057     ///
1058     /// ```
1059     /// let x: Result<u32, &str> = Ok(2);
1060     /// assert_eq!(x.unwrap(), 2);
1061     /// ```
1062     ///
1063     /// ```should_panic
1064     /// let x: Result<u32, &str> = Err("emergency failure");
1065     /// x.unwrap(); // panics with `emergency failure`
1066     /// ```
1067     #[inline]
1068     #[track_caller]
1069     #[stable(feature = "rust1", since = "1.0.0")]
1070     pub fn unwrap(self) -> T
1071     where
1072         E: fmt::Debug,
1073     {
1074         match self {
1075             Ok(t) => t,
1076             Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1077         }
1078     }
1079
1080     /// Returns the contained [`Ok`] value or a default
1081     ///
1082     /// Consumes the `self` argument then, if [`Ok`], returns the contained
1083     /// value, otherwise if [`Err`], returns the default value for that
1084     /// type.
1085     ///
1086     /// # Examples
1087     ///
1088     /// Converts a string to an integer, turning poorly-formed strings
1089     /// into 0 (the default value for integers). [`parse`] converts
1090     /// a string to any other type that implements [`FromStr`], returning an
1091     /// [`Err`] on error.
1092     ///
1093     /// ```
1094     /// let good_year_from_input = "1909";
1095     /// let bad_year_from_input = "190blarg";
1096     /// let good_year = good_year_from_input.parse().unwrap_or_default();
1097     /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1098     ///
1099     /// assert_eq!(1909, good_year);
1100     /// assert_eq!(0, bad_year);
1101     /// ```
1102     ///
1103     /// [`parse`]: str::parse
1104     /// [`FromStr`]: crate::str::FromStr
1105     #[inline]
1106     #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1107     pub fn unwrap_or_default(self) -> T
1108     where
1109         T: Default,
1110     {
1111         match self {
1112             Ok(x) => x,
1113             Err(_) => Default::default(),
1114         }
1115     }
1116
1117     /// Returns the contained [`Err`] value, consuming the `self` value.
1118     ///
1119     /// # Panics
1120     ///
1121     /// Panics if the value is an [`Ok`], with a panic message including the
1122     /// passed message, and the content of the [`Ok`].
1123     ///
1124     ///
1125     /// # Examples
1126     ///
1127     /// Basic usage:
1128     ///
1129     /// ```should_panic
1130     /// let x: Result<u32, &str> = Ok(10);
1131     /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1132     /// ```
1133     #[inline]
1134     #[track_caller]
1135     #[stable(feature = "result_expect_err", since = "1.17.0")]
1136     pub fn expect_err(self, msg: &str) -> E
1137     where
1138         T: fmt::Debug,
1139     {
1140         match self {
1141             Ok(t) => unwrap_failed(msg, &t),
1142             Err(e) => e,
1143         }
1144     }
1145
1146     /// Returns the contained [`Err`] value, consuming the `self` value.
1147     ///
1148     /// # Panics
1149     ///
1150     /// Panics if the value is an [`Ok`], with a custom panic message provided
1151     /// by the [`Ok`]'s value.
1152     ///
1153     /// # Examples
1154     ///
1155     /// ```should_panic
1156     /// let x: Result<u32, &str> = Ok(2);
1157     /// x.unwrap_err(); // panics with `2`
1158     /// ```
1159     ///
1160     /// ```
1161     /// let x: Result<u32, &str> = Err("emergency failure");
1162     /// assert_eq!(x.unwrap_err(), "emergency failure");
1163     /// ```
1164     #[inline]
1165     #[track_caller]
1166     #[stable(feature = "rust1", since = "1.0.0")]
1167     pub fn unwrap_err(self) -> E
1168     where
1169         T: fmt::Debug,
1170     {
1171         match self {
1172             Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1173             Err(e) => e,
1174         }
1175     }
1176
1177     /// Returns the contained [`Ok`] value, but never panics.
1178     ///
1179     /// Unlike [`unwrap`], this method is known to never panic on the
1180     /// result types it is implemented for. Therefore, it can be used
1181     /// instead of `unwrap` as a maintainability safeguard that will fail
1182     /// to compile if the error type of the `Result` is later changed
1183     /// to an error that can actually occur.
1184     ///
1185     /// [`unwrap`]: Result::unwrap
1186     ///
1187     /// # Examples
1188     ///
1189     /// Basic usage:
1190     ///
1191     /// ```
1192     /// # #![feature(never_type)]
1193     /// # #![feature(unwrap_infallible)]
1194     ///
1195     /// fn only_good_news() -> Result<String, !> {
1196     ///     Ok("this is fine".into())
1197     /// }
1198     ///
1199     /// let s: String = only_good_news().into_ok();
1200     /// println!("{}", s);
1201     /// ```
1202     #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1203     #[inline]
1204     pub fn into_ok(self) -> T
1205     where
1206         E: Into<!>,
1207     {
1208         match self {
1209             Ok(x) => x,
1210             Err(e) => e.into(),
1211         }
1212     }
1213
1214     /// Returns the contained [`Err`] value, but never panics.
1215     ///
1216     /// Unlike [`unwrap_err`], this method is known to never panic on the
1217     /// result types it is implemented for. Therefore, it can be used
1218     /// instead of `unwrap_err` as a maintainability safeguard that will fail
1219     /// to compile if the ok type of the `Result` is later changed
1220     /// to a type that can actually occur.
1221     ///
1222     /// [`unwrap_err`]: Result::unwrap_err
1223     ///
1224     /// # Examples
1225     ///
1226     /// Basic usage:
1227     ///
1228     /// ```
1229     /// # #![feature(never_type)]
1230     /// # #![feature(unwrap_infallible)]
1231     ///
1232     /// fn only_bad_news() -> Result<!, String> {
1233     ///     Err("Oops, it failed".into())
1234     /// }
1235     ///
1236     /// let error: String = only_bad_news().into_err();
1237     /// println!("{}", error);
1238     /// ```
1239     #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1240     #[inline]
1241     pub fn into_err(self) -> E
1242     where
1243         T: Into<!>,
1244     {
1245         match self {
1246             Ok(x) => x.into(),
1247             Err(e) => e,
1248         }
1249     }
1250
1251     ////////////////////////////////////////////////////////////////////////
1252     // Boolean operations on the values, eager and lazy
1253     /////////////////////////////////////////////////////////////////////////
1254
1255     /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1256     ///
1257     ///
1258     /// # Examples
1259     ///
1260     /// Basic usage:
1261     ///
1262     /// ```
1263     /// let x: Result<u32, &str> = Ok(2);
1264     /// let y: Result<&str, &str> = Err("late error");
1265     /// assert_eq!(x.and(y), Err("late error"));
1266     ///
1267     /// let x: Result<u32, &str> = Err("early error");
1268     /// let y: Result<&str, &str> = Ok("foo");
1269     /// assert_eq!(x.and(y), Err("early error"));
1270     ///
1271     /// let x: Result<u32, &str> = Err("not a 2");
1272     /// let y: Result<&str, &str> = Err("late error");
1273     /// assert_eq!(x.and(y), Err("not a 2"));
1274     ///
1275     /// let x: Result<u32, &str> = Ok(2);
1276     /// let y: Result<&str, &str> = Ok("different result type");
1277     /// assert_eq!(x.and(y), Ok("different result type"));
1278     /// ```
1279     #[inline]
1280     #[stable(feature = "rust1", since = "1.0.0")]
1281     pub fn and<U>(self, res: Result<U, E>) -> Result<U, E> {
1282         match self {
1283             Ok(_) => res,
1284             Err(e) => Err(e),
1285         }
1286     }
1287
1288     /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1289     ///
1290     ///
1291     /// This function can be used for control flow based on `Result` values.
1292     ///
1293     /// # Examples
1294     ///
1295     /// Basic usage:
1296     ///
1297     /// ```
1298     /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1299     /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1300     ///
1301     /// assert_eq!(Ok(2).and_then(sq).and_then(sq), Ok(16));
1302     /// assert_eq!(Ok(2).and_then(sq).and_then(err), Err(4));
1303     /// assert_eq!(Ok(2).and_then(err).and_then(sq), Err(2));
1304     /// assert_eq!(Err(3).and_then(sq).and_then(sq), Err(3));
1305     /// ```
1306     #[inline]
1307     #[stable(feature = "rust1", since = "1.0.0")]
1308     pub fn and_then<U, F: FnOnce(T) -> Result<U, E>>(self, op: F) -> Result<U, E> {
1309         match self {
1310             Ok(t) => op(t),
1311             Err(e) => Err(e),
1312         }
1313     }
1314
1315     /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1316     ///
1317     /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1318     /// result of a function call, it is recommended to use [`or_else`], which is
1319     /// lazily evaluated.
1320     ///
1321     /// [`or_else`]: Result::or_else
1322     ///
1323     /// # Examples
1324     ///
1325     /// Basic usage:
1326     ///
1327     /// ```
1328     /// let x: Result<u32, &str> = Ok(2);
1329     /// let y: Result<u32, &str> = Err("late error");
1330     /// assert_eq!(x.or(y), Ok(2));
1331     ///
1332     /// let x: Result<u32, &str> = Err("early error");
1333     /// let y: Result<u32, &str> = Ok(2);
1334     /// assert_eq!(x.or(y), Ok(2));
1335     ///
1336     /// let x: Result<u32, &str> = Err("not a 2");
1337     /// let y: Result<u32, &str> = Err("late error");
1338     /// assert_eq!(x.or(y), Err("late error"));
1339     ///
1340     /// let x: Result<u32, &str> = Ok(2);
1341     /// let y: Result<u32, &str> = Ok(100);
1342     /// assert_eq!(x.or(y), Ok(2));
1343     /// ```
1344     #[inline]
1345     #[stable(feature = "rust1", since = "1.0.0")]
1346     pub fn or<F>(self, res: Result<T, F>) -> Result<T, F> {
1347         match self {
1348             Ok(v) => Ok(v),
1349             Err(_) => res,
1350         }
1351     }
1352
1353     /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1354     ///
1355     /// This function can be used for control flow based on result values.
1356     ///
1357     ///
1358     /// # Examples
1359     ///
1360     /// Basic usage:
1361     ///
1362     /// ```
1363     /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1364     /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1365     ///
1366     /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1367     /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1368     /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1369     /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1370     /// ```
1371     #[inline]
1372     #[stable(feature = "rust1", since = "1.0.0")]
1373     pub fn or_else<F, O: FnOnce(E) -> Result<T, F>>(self, op: O) -> Result<T, F> {
1374         match self {
1375             Ok(t) => Ok(t),
1376             Err(e) => op(e),
1377         }
1378     }
1379
1380     /// Returns the contained [`Ok`] value or a provided default.
1381     ///
1382     /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1383     /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1384     /// which is lazily evaluated.
1385     ///
1386     /// [`unwrap_or_else`]: Result::unwrap_or_else
1387     ///
1388     /// # Examples
1389     ///
1390     /// Basic usage:
1391     ///
1392     /// ```
1393     /// let default = 2;
1394     /// let x: Result<u32, &str> = Ok(9);
1395     /// assert_eq!(x.unwrap_or(default), 9);
1396     ///
1397     /// let x: Result<u32, &str> = Err("error");
1398     /// assert_eq!(x.unwrap_or(default), default);
1399     /// ```
1400     #[inline]
1401     #[stable(feature = "rust1", since = "1.0.0")]
1402     pub fn unwrap_or(self, default: T) -> T {
1403         match self {
1404             Ok(t) => t,
1405             Err(_) => default,
1406         }
1407     }
1408
1409     /// Returns the contained [`Ok`] value or computes it from a closure.
1410     ///
1411     ///
1412     /// # Examples
1413     ///
1414     /// Basic usage:
1415     ///
1416     /// ```
1417     /// fn count(x: &str) -> usize { x.len() }
1418     ///
1419     /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1420     /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1421     /// ```
1422     #[inline]
1423     #[stable(feature = "rust1", since = "1.0.0")]
1424     pub fn unwrap_or_else<F: FnOnce(E) -> T>(self, op: F) -> T {
1425         match self {
1426             Ok(t) => t,
1427             Err(e) => op(e),
1428         }
1429     }
1430
1431     /// Returns the contained [`Ok`] value, consuming the `self` value,
1432     /// without checking that the value is not an [`Err`].
1433     ///
1434     /// # Safety
1435     ///
1436     /// Calling this method on an [`Err`] is *[undefined behavior]*.
1437     ///
1438     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1439     ///
1440     /// # Examples
1441     ///
1442     /// ```
1443     /// let x: Result<u32, &str> = Ok(2);
1444     /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1445     /// ```
1446     ///
1447     /// ```no_run
1448     /// let x: Result<u32, &str> = Err("emergency failure");
1449     /// unsafe { x.unwrap_unchecked(); } // Undefined behavior!
1450     /// ```
1451     #[inline]
1452     #[track_caller]
1453     #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1454     pub unsafe fn unwrap_unchecked(self) -> T {
1455         debug_assert!(self.is_ok());
1456         match self {
1457             Ok(t) => t,
1458             // SAFETY: the safety contract must be upheld by the caller.
1459             Err(_) => unsafe { hint::unreachable_unchecked() },
1460         }
1461     }
1462
1463     /// Returns the contained [`Err`] value, consuming the `self` value,
1464     /// without checking that the value is not an [`Ok`].
1465     ///
1466     /// # Safety
1467     ///
1468     /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1469     ///
1470     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1471     ///
1472     /// # Examples
1473     ///
1474     /// ```no_run
1475     /// let x: Result<u32, &str> = Ok(2);
1476     /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1477     /// ```
1478     ///
1479     /// ```
1480     /// let x: Result<u32, &str> = Err("emergency failure");
1481     /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1482     /// ```
1483     #[inline]
1484     #[track_caller]
1485     #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1486     pub unsafe fn unwrap_err_unchecked(self) -> E {
1487         debug_assert!(self.is_err());
1488         match self {
1489             // SAFETY: the safety contract must be upheld by the caller.
1490             Ok(_) => unsafe { hint::unreachable_unchecked() },
1491             Err(e) => e,
1492         }
1493     }
1494 }
1495
1496 impl<T, E> Result<&T, E> {
1497     /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1498     /// `Ok` part.
1499     ///
1500     /// # Examples
1501     ///
1502     /// ```
1503     /// #![feature(result_copied)]
1504     /// let val = 12;
1505     /// let x: Result<&i32, i32> = Ok(&val);
1506     /// assert_eq!(x, Ok(&12));
1507     /// let copied = x.copied();
1508     /// assert_eq!(copied, Ok(12));
1509     /// ```
1510     #[unstable(feature = "result_copied", reason = "newly added", issue = "63168")]
1511     pub fn copied(self) -> Result<T, E>
1512     where
1513         T: Copy,
1514     {
1515         self.map(|&t| t)
1516     }
1517
1518     /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1519     /// `Ok` part.
1520     ///
1521     /// # Examples
1522     ///
1523     /// ```
1524     /// #![feature(result_cloned)]
1525     /// let val = 12;
1526     /// let x: Result<&i32, i32> = Ok(&val);
1527     /// assert_eq!(x, Ok(&12));
1528     /// let cloned = x.cloned();
1529     /// assert_eq!(cloned, Ok(12));
1530     /// ```
1531     #[unstable(feature = "result_cloned", reason = "newly added", issue = "63168")]
1532     pub fn cloned(self) -> Result<T, E>
1533     where
1534         T: Clone,
1535     {
1536         self.map(|t| t.clone())
1537     }
1538 }
1539
1540 impl<T, E> Result<&mut T, E> {
1541     /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1542     /// `Ok` part.
1543     ///
1544     /// # Examples
1545     ///
1546     /// ```
1547     /// #![feature(result_copied)]
1548     /// let mut val = 12;
1549     /// let x: Result<&mut i32, i32> = Ok(&mut val);
1550     /// assert_eq!(x, Ok(&mut 12));
1551     /// let copied = x.copied();
1552     /// assert_eq!(copied, Ok(12));
1553     /// ```
1554     #[unstable(feature = "result_copied", reason = "newly added", issue = "63168")]
1555     pub fn copied(self) -> Result<T, E>
1556     where
1557         T: Copy,
1558     {
1559         self.map(|&mut t| t)
1560     }
1561
1562     /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1563     /// `Ok` part.
1564     ///
1565     /// # Examples
1566     ///
1567     /// ```
1568     /// #![feature(result_cloned)]
1569     /// let mut val = 12;
1570     /// let x: Result<&mut i32, i32> = Ok(&mut val);
1571     /// assert_eq!(x, Ok(&mut 12));
1572     /// let cloned = x.cloned();
1573     /// assert_eq!(cloned, Ok(12));
1574     /// ```
1575     #[unstable(feature = "result_cloned", reason = "newly added", issue = "63168")]
1576     pub fn cloned(self) -> Result<T, E>
1577     where
1578         T: Clone,
1579     {
1580         self.map(|t| t.clone())
1581     }
1582 }
1583
1584 impl<T, E> Result<Option<T>, E> {
1585     /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1586     ///
1587     /// `Ok(None)` will be mapped to `None`.
1588     /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1589     ///
1590     /// # Examples
1591     ///
1592     /// ```
1593     /// #[derive(Debug, Eq, PartialEq)]
1594     /// struct SomeErr;
1595     ///
1596     /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1597     /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1598     /// assert_eq!(x.transpose(), y);
1599     /// ```
1600     #[inline]
1601     #[stable(feature = "transpose_result", since = "1.33.0")]
1602     #[rustc_const_unstable(feature = "const_result", issue = "82814")]
1603     pub const fn transpose(self) -> Option<Result<T, E>> {
1604         match self {
1605             Ok(Some(x)) => Some(Ok(x)),
1606             Ok(None) => None,
1607             Err(e) => Some(Err(e)),
1608         }
1609     }
1610 }
1611
1612 impl<T, E> Result<Result<T, E>, E> {
1613     /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1614     ///
1615     /// # Examples
1616     ///
1617     /// Basic usage:
1618     ///
1619     /// ```
1620     /// #![feature(result_flattening)]
1621     /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1622     /// assert_eq!(Ok("hello"), x.flatten());
1623     ///
1624     /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1625     /// assert_eq!(Err(6), x.flatten());
1626     ///
1627     /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1628     /// assert_eq!(Err(6), x.flatten());
1629     /// ```
1630     ///
1631     /// Flattening only removes one level of nesting at a time:
1632     ///
1633     /// ```
1634     /// #![feature(result_flattening)]
1635     /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1636     /// assert_eq!(Ok(Ok("hello")), x.flatten());
1637     /// assert_eq!(Ok("hello"), x.flatten().flatten());
1638     /// ```
1639     #[inline]
1640     #[unstable(feature = "result_flattening", issue = "70142")]
1641     pub fn flatten(self) -> Result<T, E> {
1642         self.and_then(convert::identity)
1643     }
1644 }
1645
1646 impl<T> Result<T, T> {
1647     /// Returns the [`Ok`] value if `self` is `Ok`, and the [`Err`] value if
1648     /// `self` is `Err`.
1649     ///
1650     /// In other words, this function returns the value (the `T`) of a
1651     /// `Result<T, T>`, regardless of whether or not that result is `Ok` or
1652     /// `Err`.
1653     ///
1654     /// This can be useful in conjunction with APIs such as
1655     /// [`Atomic*::compare_exchange`], or [`slice::binary_search`], but only in
1656     /// cases where you don't care if the result was `Ok` or not.
1657     ///
1658     /// [`Atomic*::compare_exchange`]: crate::sync::atomic::AtomicBool::compare_exchange
1659     ///
1660     /// # Examples
1661     ///
1662     /// ```
1663     /// #![feature(result_into_ok_or_err)]
1664     /// let ok: Result<u32, u32> = Ok(3);
1665     /// let err: Result<u32, u32> = Err(4);
1666     ///
1667     /// assert_eq!(ok.into_ok_or_err(), 3);
1668     /// assert_eq!(err.into_ok_or_err(), 4);
1669     /// ```
1670     #[inline]
1671     #[unstable(feature = "result_into_ok_or_err", reason = "newly added", issue = "82223")]
1672     pub const fn into_ok_or_err(self) -> T {
1673         match self {
1674             Ok(v) => v,
1675             Err(v) => v,
1676         }
1677     }
1678 }
1679
1680 // This is a separate function to reduce the code size of the methods
1681 #[cfg(not(feature = "panic_immediate_abort"))]
1682 #[inline(never)]
1683 #[cold]
1684 #[track_caller]
1685 fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1686     panic!("{}: {:?}", msg, error)
1687 }
1688
1689 // This is a separate function to avoid constructing a `dyn Debug`
1690 // that gets immediately thrown away, since vtables don't get cleaned up
1691 // by dead code elimination if a trait object is constructed even if it goes
1692 // unused
1693 #[cfg(feature = "panic_immediate_abort")]
1694 #[inline]
1695 #[cold]
1696 #[track_caller]
1697 fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1698     panic!()
1699 }
1700
1701 /////////////////////////////////////////////////////////////////////////////
1702 // Trait implementations
1703 /////////////////////////////////////////////////////////////////////////////
1704
1705 #[stable(feature = "rust1", since = "1.0.0")]
1706 impl<T: Clone, E: Clone> Clone for Result<T, E> {
1707     #[inline]
1708     fn clone(&self) -> Self {
1709         match self {
1710             Ok(x) => Ok(x.clone()),
1711             Err(x) => Err(x.clone()),
1712         }
1713     }
1714
1715     #[inline]
1716     fn clone_from(&mut self, source: &Self) {
1717         match (self, source) {
1718             (Ok(to), Ok(from)) => to.clone_from(from),
1719             (Err(to), Err(from)) => to.clone_from(from),
1720             (to, from) => *to = from.clone(),
1721         }
1722     }
1723 }
1724
1725 #[stable(feature = "rust1", since = "1.0.0")]
1726 impl<T, E> IntoIterator for Result<T, E> {
1727     type Item = T;
1728     type IntoIter = IntoIter<T>;
1729
1730     /// Returns a consuming iterator over the possibly contained value.
1731     ///
1732     /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1733     ///
1734     /// # Examples
1735     ///
1736     /// Basic usage:
1737     ///
1738     /// ```
1739     /// let x: Result<u32, &str> = Ok(5);
1740     /// let v: Vec<u32> = x.into_iter().collect();
1741     /// assert_eq!(v, [5]);
1742     ///
1743     /// let x: Result<u32, &str> = Err("nothing!");
1744     /// let v: Vec<u32> = x.into_iter().collect();
1745     /// assert_eq!(v, []);
1746     /// ```
1747     #[inline]
1748     fn into_iter(self) -> IntoIter<T> {
1749         IntoIter { inner: self.ok() }
1750     }
1751 }
1752
1753 #[stable(since = "1.4.0", feature = "result_iter")]
1754 impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1755     type Item = &'a T;
1756     type IntoIter = Iter<'a, T>;
1757
1758     fn into_iter(self) -> Iter<'a, T> {
1759         self.iter()
1760     }
1761 }
1762
1763 #[stable(since = "1.4.0", feature = "result_iter")]
1764 impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1765     type Item = &'a mut T;
1766     type IntoIter = IterMut<'a, T>;
1767
1768     fn into_iter(self) -> IterMut<'a, T> {
1769         self.iter_mut()
1770     }
1771 }
1772
1773 /////////////////////////////////////////////////////////////////////////////
1774 // The Result Iterators
1775 /////////////////////////////////////////////////////////////////////////////
1776
1777 /// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1778 ///
1779 /// The iterator yields one value if the result is [`Ok`], otherwise none.
1780 ///
1781 /// Created by [`Result::iter`].
1782 #[derive(Debug)]
1783 #[stable(feature = "rust1", since = "1.0.0")]
1784 pub struct Iter<'a, T: 'a> {
1785     inner: Option<&'a T>,
1786 }
1787
1788 #[stable(feature = "rust1", since = "1.0.0")]
1789 impl<'a, T> Iterator for Iter<'a, T> {
1790     type Item = &'a T;
1791
1792     #[inline]
1793     fn next(&mut self) -> Option<&'a T> {
1794         self.inner.take()
1795     }
1796     #[inline]
1797     fn size_hint(&self) -> (usize, Option<usize>) {
1798         let n = if self.inner.is_some() { 1 } else { 0 };
1799         (n, Some(n))
1800     }
1801 }
1802
1803 #[stable(feature = "rust1", since = "1.0.0")]
1804 impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1805     #[inline]
1806     fn next_back(&mut self) -> Option<&'a T> {
1807         self.inner.take()
1808     }
1809 }
1810
1811 #[stable(feature = "rust1", since = "1.0.0")]
1812 impl<T> ExactSizeIterator for Iter<'_, T> {}
1813
1814 #[stable(feature = "fused", since = "1.26.0")]
1815 impl<T> FusedIterator for Iter<'_, T> {}
1816
1817 #[unstable(feature = "trusted_len", issue = "37572")]
1818 unsafe impl<A> TrustedLen for Iter<'_, A> {}
1819
1820 #[stable(feature = "rust1", since = "1.0.0")]
1821 impl<T> Clone for Iter<'_, T> {
1822     #[inline]
1823     fn clone(&self) -> Self {
1824         Iter { inner: self.inner }
1825     }
1826 }
1827
1828 /// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
1829 ///
1830 /// Created by [`Result::iter_mut`].
1831 #[derive(Debug)]
1832 #[stable(feature = "rust1", since = "1.0.0")]
1833 pub struct IterMut<'a, T: 'a> {
1834     inner: Option<&'a mut T>,
1835 }
1836
1837 #[stable(feature = "rust1", since = "1.0.0")]
1838 impl<'a, T> Iterator for IterMut<'a, T> {
1839     type Item = &'a mut T;
1840
1841     #[inline]
1842     fn next(&mut self) -> Option<&'a mut T> {
1843         self.inner.take()
1844     }
1845     #[inline]
1846     fn size_hint(&self) -> (usize, Option<usize>) {
1847         let n = if self.inner.is_some() { 1 } else { 0 };
1848         (n, Some(n))
1849     }
1850 }
1851
1852 #[stable(feature = "rust1", since = "1.0.0")]
1853 impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
1854     #[inline]
1855     fn next_back(&mut self) -> Option<&'a mut T> {
1856         self.inner.take()
1857     }
1858 }
1859
1860 #[stable(feature = "rust1", since = "1.0.0")]
1861 impl<T> ExactSizeIterator for IterMut<'_, T> {}
1862
1863 #[stable(feature = "fused", since = "1.26.0")]
1864 impl<T> FusedIterator for IterMut<'_, T> {}
1865
1866 #[unstable(feature = "trusted_len", issue = "37572")]
1867 unsafe impl<A> TrustedLen for IterMut<'_, A> {}
1868
1869 /// An iterator over the value in a [`Ok`] variant of a [`Result`].
1870 ///
1871 /// The iterator yields one value if the result is [`Ok`], otherwise none.
1872 ///
1873 /// This struct is created by the [`into_iter`] method on
1874 /// [`Result`] (provided by the [`IntoIterator`] trait).
1875 ///
1876 /// [`into_iter`]: IntoIterator::into_iter
1877 #[derive(Clone, Debug)]
1878 #[stable(feature = "rust1", since = "1.0.0")]
1879 pub struct IntoIter<T> {
1880     inner: Option<T>,
1881 }
1882
1883 #[stable(feature = "rust1", since = "1.0.0")]
1884 impl<T> Iterator for IntoIter<T> {
1885     type Item = T;
1886
1887     #[inline]
1888     fn next(&mut self) -> Option<T> {
1889         self.inner.take()
1890     }
1891     #[inline]
1892     fn size_hint(&self) -> (usize, Option<usize>) {
1893         let n = if self.inner.is_some() { 1 } else { 0 };
1894         (n, Some(n))
1895     }
1896 }
1897
1898 #[stable(feature = "rust1", since = "1.0.0")]
1899 impl<T> DoubleEndedIterator for IntoIter<T> {
1900     #[inline]
1901     fn next_back(&mut self) -> Option<T> {
1902         self.inner.take()
1903     }
1904 }
1905
1906 #[stable(feature = "rust1", since = "1.0.0")]
1907 impl<T> ExactSizeIterator for IntoIter<T> {}
1908
1909 #[stable(feature = "fused", since = "1.26.0")]
1910 impl<T> FusedIterator for IntoIter<T> {}
1911
1912 #[unstable(feature = "trusted_len", issue = "37572")]
1913 unsafe impl<A> TrustedLen for IntoIter<A> {}
1914
1915 /////////////////////////////////////////////////////////////////////////////
1916 // FromIterator
1917 /////////////////////////////////////////////////////////////////////////////
1918
1919 #[stable(feature = "rust1", since = "1.0.0")]
1920 impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
1921     /// Takes each element in the `Iterator`: if it is an `Err`, no further
1922     /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
1923     /// container with the values of each `Result` is returned.
1924     ///
1925     /// Here is an example which increments every integer in a vector,
1926     /// checking for overflow:
1927     ///
1928     /// ```
1929     /// let v = vec![1, 2];
1930     /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
1931     ///     x.checked_add(1).ok_or("Overflow!")
1932     /// ).collect();
1933     /// assert_eq!(res, Ok(vec![2, 3]));
1934     /// ```
1935     ///
1936     /// Here is another example that tries to subtract one from another list
1937     /// of integers, this time checking for underflow:
1938     ///
1939     /// ```
1940     /// let v = vec![1, 2, 0];
1941     /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
1942     ///     x.checked_sub(1).ok_or("Underflow!")
1943     /// ).collect();
1944     /// assert_eq!(res, Err("Underflow!"));
1945     /// ```
1946     ///
1947     /// Here is a variation on the previous example, showing that no
1948     /// further elements are taken from `iter` after the first `Err`.
1949     ///
1950     /// ```
1951     /// let v = vec![3, 2, 1, 10];
1952     /// let mut shared = 0;
1953     /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
1954     ///     shared += x;
1955     ///     x.checked_sub(2).ok_or("Underflow!")
1956     /// }).collect();
1957     /// assert_eq!(res, Err("Underflow!"));
1958     /// assert_eq!(shared, 6);
1959     /// ```
1960     ///
1961     /// Since the third element caused an underflow, no further elements were taken,
1962     /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
1963     #[inline]
1964     fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
1965         // FIXME(#11084): This could be replaced with Iterator::scan when this
1966         // performance bug is closed.
1967
1968         iter::process_results(iter.into_iter(), |i| i.collect())
1969     }
1970 }
1971
1972 #[unstable(feature = "try_trait_v2", issue = "84277")]
1973 #[rustc_const_unstable(feature = "const_convert", issue = "88674")]
1974 impl<T, E> const ops::Try for Result<T, E> {
1975     type Output = T;
1976     type Residual = Result<convert::Infallible, E>;
1977
1978     #[inline]
1979     fn from_output(output: Self::Output) -> Self {
1980         Ok(output)
1981     }
1982
1983     #[inline]
1984     fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
1985         match self {
1986             Ok(v) => ControlFlow::Continue(v),
1987             Err(e) => ControlFlow::Break(Err(e)),
1988         }
1989     }
1990 }
1991
1992 #[unstable(feature = "try_trait_v2", issue = "84277")]
1993 #[rustc_const_unstable(feature = "const_convert", issue = "88674")]
1994 impl<T, E, F: ~const From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
1995     for Result<T, F>
1996 {
1997     #[inline]
1998     #[track_caller]
1999     fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2000         match residual {
2001             Err(e) => Err(From::from(e)),
2002         }
2003     }
2004 }
2005
2006 #[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2007 impl<T, E> ops::Residual<T> for Result<convert::Infallible, E> {
2008     type TryType = Result<T, E>;
2009 }