]> git.lizzy.rs Git - rust.git/blob - library/core/src/num/dec2flt/mod.rs
Fix automatic_links warnings
[rust.git] / library / core / src / num / dec2flt / mod.rs
1 //! Converting decimal strings into IEEE 754 binary floating point numbers.
2 //!
3 //! # Problem statement
4 //!
5 //! We are given a decimal string such as `12.34e56`. This string consists of integral (`12`),
6 //! fractional (`45`), and exponent (`56`) parts. All parts are optional and interpreted as zero
7 //! when missing.
8 //!
9 //! We seek the IEEE 754 floating point number that is closest to the exact value of the decimal
10 //! string. It is well-known that many decimal strings do not have terminating representations in
11 //! base two, so we round to 0.5 units in the last place (in other words, as well as possible).
12 //! Ties, decimal values exactly half-way between two consecutive floats, are resolved with the
13 //! half-to-even strategy, also known as banker's rounding.
14 //!
15 //! Needless to say, this is quite hard, both in terms of implementation complexity and in terms
16 //! of CPU cycles taken.
17 //!
18 //! # Implementation
19 //!
20 //! First, we ignore signs. Or rather, we remove it at the very beginning of the conversion
21 //! process and re-apply it at the very end. This is correct in all edge cases since IEEE
22 //! floats are symmetric around zero, negating one simply flips the first bit.
23 //!
24 //! Then we remove the decimal point by adjusting the exponent: Conceptually, `12.34e56` turns
25 //! into `1234e54`, which we describe with a positive integer `f = 1234` and an integer `e = 54`.
26 //! The `(f, e)` representation is used by almost all code past the parsing stage.
27 //!
28 //! We then try a long chain of progressively more general and expensive special cases using
29 //! machine-sized integers and small, fixed-sized floating point numbers (first `f32`/`f64`, then
30 //! a type with 64 bit significand, `Fp`). When all these fail, we bite the bullet and resort to a
31 //! simple but very slow algorithm that involved computing `f * 10^e` fully and doing an iterative
32 //! search for the best approximation.
33 //!
34 //! Primarily, this module and its children implement the algorithms described in:
35 //! "How to Read Floating Point Numbers Accurately" by William D. Clinger,
36 //! available online: <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.4152>
37 //!
38 //! In addition, there are numerous helper functions that are used in the paper but not available
39 //! in Rust (or at least in core). Our version is additionally complicated by the need to handle
40 //! overflow and underflow and the desire to handle subnormal numbers. Bellerophon and
41 //! Algorithm R have trouble with overflow, subnormals, and underflow. We conservatively switch to
42 //! Algorithm M (with the modifications described in section 8 of the paper) well before the
43 //! inputs get into the critical region.
44 //!
45 //! Another aspect that needs attention is the ``RawFloat`` trait by which almost all functions
46 //! are parametrized. One might think that it's enough to parse to `f64` and cast the result to
47 //! `f32`. Unfortunately this is not the world we live in, and this has nothing to do with using
48 //! base two or half-to-even rounding.
49 //!
50 //! Consider for example two types `d2` and `d4` representing a decimal type with two decimal
51 //! digits and four decimal digits each and take "0.01499" as input. Let's use half-up rounding.
52 //! Going directly to two decimal digits gives `0.01`, but if we round to four digits first,
53 //! we get `0.0150`, which is then rounded up to `0.02`. The same principle applies to other
54 //! operations as well, if you want 0.5 ULP accuracy you need to do *everything* in full precision
55 //! and round *exactly once, at the end*, by considering all truncated bits at once.
56 //!
57 //! FIXME: Although some code duplication is necessary, perhaps parts of the code could be shuffled
58 //! around such that less code is duplicated. Large parts of the algorithms are independent of the
59 //! float type to output, or only needs access to a few constants, which could be passed in as
60 //! parameters.
61 //!
62 //! # Other
63 //!
64 //! The conversion should *never* panic. There are assertions and explicit panics in the code,
65 //! but they should never be triggered and only serve as internal sanity checks. Any panics should
66 //! be considered a bug.
67 //!
68 //! There are unit tests but they are woefully inadequate at ensuring correctness, they only cover
69 //! a small percentage of possible errors. Far more extensive tests are located in the directory
70 //! `src/etc/test-float-parse` as a Python script.
71 //!
72 //! A note on integer overflow: Many parts of this file perform arithmetic with the decimal
73 //! exponent `e`. Primarily, we shift the decimal point around: Before the first decimal digit,
74 //! after the last decimal digit, and so on. This could overflow if done carelessly. We rely on
75 //! the parsing submodule to only hand out sufficiently small exponents, where "sufficient" means
76 //! "such that the exponent +/- the number of decimal digits fits into a 64 bit integer".
77 //! Larger exponents are accepted, but we don't do arithmetic with them, they are immediately
78 //! turned into {positive,negative} {zero,infinity}.
79
80 #![doc(hidden)]
81 #![unstable(
82     feature = "dec2flt",
83     reason = "internal routines only exposed for testing",
84     issue = "none"
85 )]
86
87 use crate::fmt;
88 use crate::str::FromStr;
89
90 use self::num::digits_to_big;
91 use self::parse::{parse_decimal, Decimal, ParseResult, Sign};
92 use self::rawfp::RawFloat;
93
94 mod algorithm;
95 mod num;
96 mod table;
97 // These two have their own tests.
98 pub mod parse;
99 pub mod rawfp;
100
101 macro_rules! from_str_float_impl {
102     ($t:ty) => {
103         #[stable(feature = "rust1", since = "1.0.0")]
104         impl FromStr for $t {
105             type Err = ParseFloatError;
106
107             /// Converts a string in base 10 to a float.
108             /// Accepts an optional decimal exponent.
109             ///
110             /// This function accepts strings such as
111             ///
112             /// * '3.14'
113             /// * '-3.14'
114             /// * '2.5E10', or equivalently, '2.5e10'
115             /// * '2.5E-10'
116             /// * '5.'
117             /// * '.5', or, equivalently, '0.5'
118             /// * 'inf', '-inf', 'NaN'
119             ///
120             /// Leading and trailing whitespace represent an error.
121             ///
122             /// # Grammar
123             ///
124             /// All strings that adhere to the following [EBNF] grammar
125             /// will result in an [`Ok`] being returned:
126             ///
127             /// ```txt
128             /// Float  ::= Sign? ( 'inf' | 'NaN' | Number )
129             /// Number ::= ( Digit+ |
130             ///              Digit+ '.' Digit* |
131             ///              Digit* '.' Digit+ ) Exp?
132             /// Exp    ::= [eE] Sign? Digit+
133             /// Sign   ::= [+-]
134             /// Digit  ::= [0-9]
135             /// ```
136             ///
137             /// [EBNF]: https://www.w3.org/TR/REC-xml/#sec-notation
138             ///
139             /// # Known bugs
140             ///
141             /// In some situations, some strings that should create a valid float
142             /// instead return an error. See [issue #31407] for details.
143             ///
144             /// [issue #31407]: https://github.com/rust-lang/rust/issues/31407
145             ///
146             /// # Arguments
147             ///
148             /// * src - A string
149             ///
150             /// # Return value
151             ///
152             /// `Err(ParseFloatError)` if the string did not represent a valid
153             /// number. Otherwise, `Ok(n)` where `n` is the floating-point
154             /// number represented by `src`.
155             #[inline]
156             fn from_str(src: &str) -> Result<Self, ParseFloatError> {
157                 dec2flt(src)
158             }
159         }
160     };
161 }
162 from_str_float_impl!(f32);
163 from_str_float_impl!(f64);
164
165 /// An error which can be returned when parsing a float.
166 ///
167 /// This error is used as the error type for the [`FromStr`] implementation
168 /// for [`f32`] and [`f64`].
169 ///
170 /// # Example
171 ///
172 /// ```
173 /// use std::str::FromStr;
174 ///
175 /// if let Err(e) = f64::from_str("a.12") {
176 ///     println!("Failed conversion to f64: {}", e);
177 /// }
178 /// ```
179 #[derive(Debug, Clone, PartialEq, Eq)]
180 #[stable(feature = "rust1", since = "1.0.0")]
181 pub struct ParseFloatError {
182     kind: FloatErrorKind,
183 }
184
185 #[derive(Debug, Clone, PartialEq, Eq)]
186 enum FloatErrorKind {
187     Empty,
188     Invalid,
189 }
190
191 impl ParseFloatError {
192     #[unstable(
193         feature = "int_error_internals",
194         reason = "available through Error trait and this method should \
195                   not be exposed publicly",
196         issue = "none"
197     )]
198     #[doc(hidden)]
199     pub fn __description(&self) -> &str {
200         match self.kind {
201             FloatErrorKind::Empty => "cannot parse float from empty string",
202             FloatErrorKind::Invalid => "invalid float literal",
203         }
204     }
205 }
206
207 #[stable(feature = "rust1", since = "1.0.0")]
208 impl fmt::Display for ParseFloatError {
209     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
210         self.__description().fmt(f)
211     }
212 }
213
214 fn pfe_empty() -> ParseFloatError {
215     ParseFloatError { kind: FloatErrorKind::Empty }
216 }
217
218 fn pfe_invalid() -> ParseFloatError {
219     ParseFloatError { kind: FloatErrorKind::Invalid }
220 }
221
222 /// Splits a decimal string into sign and the rest, without inspecting or validating the rest.
223 fn extract_sign(s: &str) -> (Sign, &str) {
224     match s.as_bytes()[0] {
225         b'+' => (Sign::Positive, &s[1..]),
226         b'-' => (Sign::Negative, &s[1..]),
227         // If the string is invalid, we never use the sign, so we don't need to validate here.
228         _ => (Sign::Positive, s),
229     }
230 }
231
232 /// Converts a decimal string into a floating point number.
233 fn dec2flt<T: RawFloat>(s: &str) -> Result<T, ParseFloatError> {
234     if s.is_empty() {
235         return Err(pfe_empty());
236     }
237     let (sign, s) = extract_sign(s);
238     let flt = match parse_decimal(s) {
239         ParseResult::Valid(decimal) => convert(decimal)?,
240         ParseResult::ShortcutToInf => T::INFINITY,
241         ParseResult::ShortcutToZero => T::ZERO,
242         ParseResult::Invalid => match s {
243             "inf" => T::INFINITY,
244             "NaN" => T::NAN,
245             _ => {
246                 return Err(pfe_invalid());
247             }
248         },
249     };
250
251     match sign {
252         Sign::Positive => Ok(flt),
253         Sign::Negative => Ok(-flt),
254     }
255 }
256
257 /// The main workhorse for the decimal-to-float conversion: Orchestrate all the preprocessing
258 /// and figure out which algorithm should do the actual conversion.
259 fn convert<T: RawFloat>(mut decimal: Decimal<'_>) -> Result<T, ParseFloatError> {
260     simplify(&mut decimal);
261     if let Some(x) = trivial_cases(&decimal) {
262         return Ok(x);
263     }
264     // Remove/shift out the decimal point.
265     let e = decimal.exp - decimal.fractional.len() as i64;
266     if let Some(x) = algorithm::fast_path(decimal.integral, decimal.fractional, e) {
267         return Ok(x);
268     }
269     // Big32x40 is limited to 1280 bits, which translates to about 385 decimal digits.
270     // If we exceed this, we'll crash, so we error out before getting too close (within 10^10).
271     let upper_bound = bound_intermediate_digits(&decimal, e);
272     if upper_bound > 375 {
273         return Err(pfe_invalid());
274     }
275     let f = digits_to_big(decimal.integral, decimal.fractional);
276
277     // Now the exponent certainly fits in 16 bit, which is used throughout the main algorithms.
278     let e = e as i16;
279     // FIXME These bounds are rather conservative. A more careful analysis of the failure modes
280     // of Bellerophon could allow using it in more cases for a massive speed up.
281     let exponent_in_range = table::MIN_E <= e && e <= table::MAX_E;
282     let value_in_range = upper_bound <= T::MAX_NORMAL_DIGITS as u64;
283     if exponent_in_range && value_in_range {
284         Ok(algorithm::bellerophon(&f, e))
285     } else {
286         Ok(algorithm::algorithm_m(&f, e))
287     }
288 }
289
290 // As written, this optimizes badly (see #27130, though it refers to an old version of the code).
291 // `inline(always)` is a workaround for that. There are only two call sites overall and it doesn't
292 // make code size worse.
293
294 /// Strip zeros where possible, even when this requires changing the exponent
295 #[inline(always)]
296 fn simplify(decimal: &mut Decimal<'_>) {
297     let is_zero = &|&&d: &&u8| -> bool { d == b'0' };
298     // Trimming these zeros does not change anything but may enable the fast path (< 15 digits).
299     let leading_zeros = decimal.integral.iter().take_while(is_zero).count();
300     decimal.integral = &decimal.integral[leading_zeros..];
301     let trailing_zeros = decimal.fractional.iter().rev().take_while(is_zero).count();
302     let end = decimal.fractional.len() - trailing_zeros;
303     decimal.fractional = &decimal.fractional[..end];
304     // Simplify numbers of the form 0.0...x and x...0.0, adjusting the exponent accordingly.
305     // This may not always be a win (possibly pushes some numbers out of the fast path), but it
306     // simplifies other parts significantly (notably, approximating the magnitude of the value).
307     if decimal.integral.is_empty() {
308         let leading_zeros = decimal.fractional.iter().take_while(is_zero).count();
309         decimal.fractional = &decimal.fractional[leading_zeros..];
310         decimal.exp -= leading_zeros as i64;
311     } else if decimal.fractional.is_empty() {
312         let trailing_zeros = decimal.integral.iter().rev().take_while(is_zero).count();
313         let end = decimal.integral.len() - trailing_zeros;
314         decimal.integral = &decimal.integral[..end];
315         decimal.exp += trailing_zeros as i64;
316     }
317 }
318
319 /// Returns a quick-an-dirty upper bound on the size (log10) of the largest value that Algorithm R
320 /// and Algorithm M will compute while working on the given decimal.
321 fn bound_intermediate_digits(decimal: &Decimal<'_>, e: i64) -> u64 {
322     // We don't need to worry too much about overflow here thanks to trivial_cases() and the
323     // parser, which filter out the most extreme inputs for us.
324     let f_len: u64 = decimal.integral.len() as u64 + decimal.fractional.len() as u64;
325     if e >= 0 {
326         // In the case e >= 0, both algorithms compute about `f * 10^e`. Algorithm R proceeds to
327         // do some complicated calculations with this but we can ignore that for the upper bound
328         // because it also reduces the fraction beforehand, so we have plenty of buffer there.
329         f_len + (e as u64)
330     } else {
331         // If e < 0, Algorithm R does roughly the same thing, but Algorithm M differs:
332         // It tries to find a positive number k such that `f << k / 10^e` is an in-range
333         // significand. This will result in about `2^53 * f * 10^e` < `10^17 * f * 10^e`.
334         // One input that triggers this is 0.33...33 (375 x 3).
335         f_len + (e.abs() as u64) + 17
336     }
337 }
338
339 /// Detects obvious overflows and underflows without even looking at the decimal digits.
340 fn trivial_cases<T: RawFloat>(decimal: &Decimal<'_>) -> Option<T> {
341     // There were zeros but they were stripped by simplify()
342     if decimal.integral.is_empty() && decimal.fractional.is_empty() {
343         return Some(T::ZERO);
344     }
345     // This is a crude approximation of ceil(log10(the real value)). We don't need to worry too
346     // much about overflow here because the input length is tiny (at least compared to 2^64) and
347     // the parser already handles exponents whose absolute value is greater than 10^18
348     // (which is still 10^19 short of 2^64).
349     let max_place = decimal.exp + decimal.integral.len() as i64;
350     if max_place > T::INF_CUTOFF {
351         return Some(T::INFINITY);
352     } else if max_place < T::ZERO_CUTOFF {
353         return Some(T::ZERO);
354     }
355     None
356 }