]> git.lizzy.rs Git - rust.git/blob - library/core/src/mem/mod.rs
Use intra-doc links in `core::mem`
[rust.git] / library / core / src / mem / mod.rs
1 //! Basic functions for dealing with memory.
2 //!
3 //! This module contains functions for querying the size and alignment of
4 //! types, initializing and manipulating memory.
5
6 #![stable(feature = "rust1", since = "1.0.0")]
7
8 use crate::clone;
9 use crate::cmp;
10 use crate::fmt;
11 use crate::hash;
12 use crate::intrinsics;
13 use crate::marker::{Copy, DiscriminantKind, Sized};
14 use crate::ptr;
15
16 mod manually_drop;
17 #[stable(feature = "manually_drop", since = "1.20.0")]
18 pub use manually_drop::ManuallyDrop;
19
20 mod maybe_uninit;
21 #[stable(feature = "maybe_uninit", since = "1.36.0")]
22 pub use maybe_uninit::MaybeUninit;
23
24 #[stable(feature = "rust1", since = "1.0.0")]
25 #[doc(inline)]
26 pub use crate::intrinsics::transmute;
27
28 /// Takes ownership and "forgets" about the value **without running its destructor**.
29 ///
30 /// Any resources the value manages, such as heap memory or a file handle, will linger
31 /// forever in an unreachable state. However, it does not guarantee that pointers
32 /// to this memory will remain valid.
33 ///
34 /// * If you want to leak memory, see [`Box::leak`].
35 /// * If you want to obtain a raw pointer to the memory, see [`Box::into_raw`].
36 /// * If you want to dispose of a value properly, running its destructor, see
37 /// [`mem::drop`].
38 ///
39 /// # Safety
40 ///
41 /// `forget` is not marked as `unsafe`, because Rust's safety guarantees
42 /// do not include a guarantee that destructors will always run. For example,
43 /// a program can create a reference cycle using [`Rc`][rc], or call
44 /// [`process::exit`][exit] to exit without running destructors. Thus, allowing
45 /// `mem::forget` from safe code does not fundamentally change Rust's safety
46 /// guarantees.
47 ///
48 /// That said, leaking resources such as memory or I/O objects is usually undesirable.
49 /// The need comes up in some specialized use cases for FFI or unsafe code, but even
50 /// then, [`ManuallyDrop`] is typically preferred.
51 ///
52 /// Because forgetting a value is allowed, any `unsafe` code you write must
53 /// allow for this possibility. You cannot return a value and expect that the
54 /// caller will necessarily run the value's destructor.
55 ///
56 /// [rc]: ../../std/rc/struct.Rc.html
57 /// [exit]: ../../std/process/fn.exit.html
58 ///
59 /// # Examples
60 ///
61 /// The canonical safe use of `mem::forget` is to circumvent a value's destructor
62 /// implemented by the `Drop` trait. For example, this will leak a `File`, i.e. reclaim
63 /// the space taken by the variable but never close the underlying system resource:
64 ///
65 /// ```no_run
66 /// use std::mem;
67 /// use std::fs::File;
68 ///
69 /// let file = File::open("foo.txt").unwrap();
70 /// mem::forget(file);
71 /// ```
72 ///
73 /// This is useful when the ownership of the underlying resource was previously
74 /// transferred to code outside of Rust, for example by transmitting the raw
75 /// file descriptor to C code.
76 ///
77 /// # Relationship with `ManuallyDrop`
78 ///
79 /// While `mem::forget` can also be used to transfer *memory* ownership, doing so is error-prone.
80 /// [`ManuallyDrop`] should be used instead. Consider, for example, this code:
81 ///
82 /// ```
83 /// use std::mem;
84 ///
85 /// let mut v = vec![65, 122];
86 /// // Build a `String` using the contents of `v`
87 /// let s = unsafe { String::from_raw_parts(v.as_mut_ptr(), v.len(), v.capacity()) };
88 /// // leak `v` because its memory is now managed by `s`
89 /// mem::forget(v);  // ERROR - v is invalid and must not be passed to a function
90 /// assert_eq!(s, "Az");
91 /// // `s` is implicitly dropped and its memory deallocated.
92 /// ```
93 ///
94 /// There are two issues with the above example:
95 ///
96 /// * If more code were added between the construction of `String` and the invocation of
97 ///   `mem::forget()`, a panic within it would cause a double free because the same memory
98 ///   is handled by both `v` and `s`.
99 /// * After calling `v.as_mut_ptr()` and transmitting the ownership of the data to `s`,
100 ///   the `v` value is invalid. Even when a value is just moved to `mem::forget` (which won't
101 ///   inspect it), some types have strict requirements on their values that
102 ///   make them invalid when dangling or no longer owned. Using invalid values in any
103 ///   way, including passing them to or returning them from functions, constitutes
104 ///   undefined behavior and may break the assumptions made by the compiler.
105 ///
106 /// Switching to `ManuallyDrop` avoids both issues:
107 ///
108 /// ```
109 /// use std::mem::ManuallyDrop;
110 ///
111 /// let v = vec![65, 122];
112 /// // Before we disassemble `v` into its raw parts, make sure it
113 /// // does not get dropped!
114 /// let mut v = ManuallyDrop::new(v);
115 /// // Now disassemble `v`. These operations cannot panic, so there cannot be a leak.
116 /// let (ptr, len, cap) = (v.as_mut_ptr(), v.len(), v.capacity());
117 /// // Finally, build a `String`.
118 /// let s = unsafe { String::from_raw_parts(ptr, len, cap) };
119 /// assert_eq!(s, "Az");
120 /// // `s` is implicitly dropped and its memory deallocated.
121 /// ```
122 ///
123 /// `ManuallyDrop` robustly prevents double-free because we disable `v`'s destructor
124 /// before doing anything else. `mem::forget()` doesn't allow this because it consumes its
125 /// argument, forcing us to call it only after extracting anything we need from `v`. Even
126 /// if a panic were introduced between construction of `ManuallyDrop` and building the
127 /// string (which cannot happen in the code as shown), it would result in a leak and not a
128 /// double free. In other words, `ManuallyDrop` errs on the side of leaking instead of
129 /// erring on the side of (double-)dropping.
130 ///
131 /// Also, `ManuallyDrop` prevents us from having to "touch" `v` after transferring the
132 /// ownership to `s` — the final step of interacting with `v` to dispose of it without
133 /// running its destructor is entirely avoided.
134 ///
135 /// [`Box`]: ../../std/boxed/struct.Box.html
136 /// [`Box::leak`]: ../../std/boxed/struct.Box.html#method.leak
137 /// [`Box::into_raw`]: ../../std/boxed/struct.Box.html#method.into_raw
138 /// [`mem::drop`]: drop
139 /// [ub]: ../../reference/behavior-considered-undefined.html
140 #[inline]
141 #[rustc_const_stable(feature = "const_forget", since = "1.46.0")]
142 #[stable(feature = "rust1", since = "1.0.0")]
143 pub const fn forget<T>(t: T) {
144     let _ = ManuallyDrop::new(t);
145 }
146
147 /// Like [`forget`], but also accepts unsized values.
148 ///
149 /// This function is just a shim intended to be removed when the `unsized_locals` feature gets
150 /// stabilized.
151 #[inline]
152 #[unstable(feature = "forget_unsized", issue = "none")]
153 pub fn forget_unsized<T: ?Sized>(t: T) {
154     // SAFETY: the forget intrinsic could be safe, but there's no point in making it safe since
155     // we'll be implementing this function soon via `ManuallyDrop`
156     unsafe { intrinsics::forget(t) }
157 }
158
159 /// Returns the size of a type in bytes.
160 ///
161 /// More specifically, this is the offset in bytes between successive elements
162 /// in an array with that item type including alignment padding. Thus, for any
163 /// type `T` and length `n`, `[T; n]` has a size of `n * size_of::<T>()`.
164 ///
165 /// In general, the size of a type is not stable across compilations, but
166 /// specific types such as primitives are.
167 ///
168 /// The following table gives the size for primitives.
169 ///
170 /// Type | size_of::\<Type>()
171 /// ---- | ---------------
172 /// () | 0
173 /// bool | 1
174 /// u8 | 1
175 /// u16 | 2
176 /// u32 | 4
177 /// u64 | 8
178 /// u128 | 16
179 /// i8 | 1
180 /// i16 | 2
181 /// i32 | 4
182 /// i64 | 8
183 /// i128 | 16
184 /// f32 | 4
185 /// f64 | 8
186 /// char | 4
187 ///
188 /// Furthermore, `usize` and `isize` have the same size.
189 ///
190 /// The types `*const T`, `&T`, `Box<T>`, `Option<&T>`, and `Option<Box<T>>` all have
191 /// the same size. If `T` is Sized, all of those types have the same size as `usize`.
192 ///
193 /// The mutability of a pointer does not change its size. As such, `&T` and `&mut T`
194 /// have the same size. Likewise for `*const T` and `*mut T`.
195 ///
196 /// # Size of `#[repr(C)]` items
197 ///
198 /// The `C` representation for items has a defined layout. With this layout,
199 /// the size of items is also stable as long as all fields have a stable size.
200 ///
201 /// ## Size of Structs
202 ///
203 /// For `structs`, the size is determined by the following algorithm.
204 ///
205 /// For each field in the struct ordered by declaration order:
206 ///
207 /// 1. Add the size of the field.
208 /// 2. Round up the current size to the nearest multiple of the next field's [alignment].
209 ///
210 /// Finally, round the size of the struct to the nearest multiple of its [alignment].
211 /// The alignment of the struct is usually the largest alignment of all its
212 /// fields; this can be changed with the use of `repr(align(N))`.
213 ///
214 /// Unlike `C`, zero sized structs are not rounded up to one byte in size.
215 ///
216 /// ## Size of Enums
217 ///
218 /// Enums that carry no data other than the discriminant have the same size as C enums
219 /// on the platform they are compiled for.
220 ///
221 /// ## Size of Unions
222 ///
223 /// The size of a union is the size of its largest field.
224 ///
225 /// Unlike `C`, zero sized unions are not rounded up to one byte in size.
226 ///
227 /// # Examples
228 ///
229 /// ```
230 /// use std::mem;
231 ///
232 /// // Some primitives
233 /// assert_eq!(4, mem::size_of::<i32>());
234 /// assert_eq!(8, mem::size_of::<f64>());
235 /// assert_eq!(0, mem::size_of::<()>());
236 ///
237 /// // Some arrays
238 /// assert_eq!(8, mem::size_of::<[i32; 2]>());
239 /// assert_eq!(12, mem::size_of::<[i32; 3]>());
240 /// assert_eq!(0, mem::size_of::<[i32; 0]>());
241 ///
242 ///
243 /// // Pointer size equality
244 /// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<*const i32>());
245 /// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<Box<i32>>());
246 /// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<Option<&i32>>());
247 /// assert_eq!(mem::size_of::<Box<i32>>(), mem::size_of::<Option<Box<i32>>>());
248 /// ```
249 ///
250 /// Using `#[repr(C)]`.
251 ///
252 /// ```
253 /// use std::mem;
254 ///
255 /// #[repr(C)]
256 /// struct FieldStruct {
257 ///     first: u8,
258 ///     second: u16,
259 ///     third: u8
260 /// }
261 ///
262 /// // The size of the first field is 1, so add 1 to the size. Size is 1.
263 /// // The alignment of the second field is 2, so add 1 to the size for padding. Size is 2.
264 /// // The size of the second field is 2, so add 2 to the size. Size is 4.
265 /// // The alignment of the third field is 1, so add 0 to the size for padding. Size is 4.
266 /// // The size of the third field is 1, so add 1 to the size. Size is 5.
267 /// // Finally, the alignment of the struct is 2 (because the largest alignment amongst its
268 /// // fields is 2), so add 1 to the size for padding. Size is 6.
269 /// assert_eq!(6, mem::size_of::<FieldStruct>());
270 ///
271 /// #[repr(C)]
272 /// struct TupleStruct(u8, u16, u8);
273 ///
274 /// // Tuple structs follow the same rules.
275 /// assert_eq!(6, mem::size_of::<TupleStruct>());
276 ///
277 /// // Note that reordering the fields can lower the size. We can remove both padding bytes
278 /// // by putting `third` before `second`.
279 /// #[repr(C)]
280 /// struct FieldStructOptimized {
281 ///     first: u8,
282 ///     third: u8,
283 ///     second: u16
284 /// }
285 ///
286 /// assert_eq!(4, mem::size_of::<FieldStructOptimized>());
287 ///
288 /// // Union size is the size of the largest field.
289 /// #[repr(C)]
290 /// union ExampleUnion {
291 ///     smaller: u8,
292 ///     larger: u16
293 /// }
294 ///
295 /// assert_eq!(2, mem::size_of::<ExampleUnion>());
296 /// ```
297 ///
298 /// [alignment]: align_of
299 #[inline(always)]
300 #[stable(feature = "rust1", since = "1.0.0")]
301 #[rustc_promotable]
302 #[rustc_const_stable(feature = "const_size_of", since = "1.32.0")]
303 pub const fn size_of<T>() -> usize {
304     intrinsics::size_of::<T>()
305 }
306
307 /// Returns the size of the pointed-to value in bytes.
308 ///
309 /// This is usually the same as `size_of::<T>()`. However, when `T` *has* no
310 /// statically-known size, e.g., a slice [`[T]`][slice] or a [trait object],
311 /// then `size_of_val` can be used to get the dynamically-known size.
312 ///
313 /// [slice]: ../../std/primitive.slice.html
314 /// [trait object]: ../../book/ch17-02-trait-objects.html
315 ///
316 /// # Examples
317 ///
318 /// ```
319 /// use std::mem;
320 ///
321 /// assert_eq!(4, mem::size_of_val(&5i32));
322 ///
323 /// let x: [u8; 13] = [0; 13];
324 /// let y: &[u8] = &x;
325 /// assert_eq!(13, mem::size_of_val(y));
326 /// ```
327 #[inline]
328 #[stable(feature = "rust1", since = "1.0.0")]
329 #[rustc_const_unstable(feature = "const_size_of_val", issue = "46571")]
330 pub const fn size_of_val<T: ?Sized>(val: &T) -> usize {
331     intrinsics::size_of_val(val)
332 }
333
334 /// Returns the size of the pointed-to value in bytes.
335 ///
336 /// This is usually the same as `size_of::<T>()`. However, when `T` *has* no
337 /// statically-known size, e.g., a slice [`[T]`][slice] or a [trait object],
338 /// then `size_of_val_raw` can be used to get the dynamically-known size.
339 ///
340 /// # Safety
341 ///
342 /// This function is only safe to call if the following conditions hold:
343 ///
344 /// - If `T` is `Sized`, this function is always safe to call.
345 /// - If the unsized tail of `T` is:
346 ///     - a [slice], then the length of the slice tail must be an initialized
347 ///       integer, and the size of the *entire value*
348 ///       (dynamic tail length + statically sized prefix) must fit in `isize`.
349 ///     - a [trait object], then the vtable part of the pointer must point
350 ///       to a valid vtable acquired by an unsizing coercion, and the size
351 ///       of the *entire value* (dynamic tail length + statically sized prefix)
352 ///       must fit in `isize`.
353 ///     - an (unstable) [extern type], then this function is always safe to
354 ///       call, but may panic or otherwise return the wrong value, as the
355 ///       extern type's layout is not known. This is the same behavior as
356 ///       [`size_of_val`] on a reference to a type with an extern type tail.
357 ///     - otherwise, it is conservatively not allowed to call this function.
358 ///
359 /// [slice]: ../../std/primitive.slice.html
360 /// [trait object]: ../../book/ch17-02-trait-objects.html
361 /// [extern type]: ../../unstable-book/language-features/extern-types.html
362 ///
363 /// # Examples
364 ///
365 /// ```
366 /// #![feature(layout_for_ptr)]
367 /// use std::mem;
368 ///
369 /// assert_eq!(4, mem::size_of_val(&5i32));
370 ///
371 /// let x: [u8; 13] = [0; 13];
372 /// let y: &[u8] = &x;
373 /// assert_eq!(13, unsafe { mem::size_of_val_raw(y) });
374 /// ```
375 #[inline]
376 #[unstable(feature = "layout_for_ptr", issue = "69835")]
377 pub unsafe fn size_of_val_raw<T: ?Sized>(val: *const T) -> usize {
378     intrinsics::size_of_val(val)
379 }
380
381 /// Returns the [ABI]-required minimum alignment of a type.
382 ///
383 /// Every reference to a value of the type `T` must be a multiple of this number.
384 ///
385 /// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
386 ///
387 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
388 ///
389 /// # Examples
390 ///
391 /// ```
392 /// # #![allow(deprecated)]
393 /// use std::mem;
394 ///
395 /// assert_eq!(4, mem::min_align_of::<i32>());
396 /// ```
397 #[inline]
398 #[stable(feature = "rust1", since = "1.0.0")]
399 #[rustc_deprecated(reason = "use `align_of` instead", since = "1.2.0")]
400 pub fn min_align_of<T>() -> usize {
401     intrinsics::min_align_of::<T>()
402 }
403
404 /// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to.
405 ///
406 /// Every reference to a value of the type `T` must be a multiple of this number.
407 ///
408 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
409 ///
410 /// # Examples
411 ///
412 /// ```
413 /// # #![allow(deprecated)]
414 /// use std::mem;
415 ///
416 /// assert_eq!(4, mem::min_align_of_val(&5i32));
417 /// ```
418 #[inline]
419 #[stable(feature = "rust1", since = "1.0.0")]
420 #[rustc_deprecated(reason = "use `align_of_val` instead", since = "1.2.0")]
421 pub fn min_align_of_val<T: ?Sized>(val: &T) -> usize {
422     intrinsics::min_align_of_val(val)
423 }
424
425 /// Returns the [ABI]-required minimum alignment of a type.
426 ///
427 /// Every reference to a value of the type `T` must be a multiple of this number.
428 ///
429 /// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
430 ///
431 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
432 ///
433 /// # Examples
434 ///
435 /// ```
436 /// use std::mem;
437 ///
438 /// assert_eq!(4, mem::align_of::<i32>());
439 /// ```
440 #[inline(always)]
441 #[stable(feature = "rust1", since = "1.0.0")]
442 #[rustc_promotable]
443 #[rustc_const_stable(feature = "const_align_of", since = "1.32.0")]
444 pub const fn align_of<T>() -> usize {
445     intrinsics::min_align_of::<T>()
446 }
447
448 /// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to.
449 ///
450 /// Every reference to a value of the type `T` must be a multiple of this number.
451 ///
452 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
453 ///
454 /// # Examples
455 ///
456 /// ```
457 /// use std::mem;
458 ///
459 /// assert_eq!(4, mem::align_of_val(&5i32));
460 /// ```
461 #[inline]
462 #[stable(feature = "rust1", since = "1.0.0")]
463 #[rustc_const_unstable(feature = "const_align_of_val", issue = "46571")]
464 #[allow(deprecated)]
465 pub const fn align_of_val<T: ?Sized>(val: &T) -> usize {
466     intrinsics::min_align_of_val(val)
467 }
468
469 /// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to.
470 ///
471 /// Every reference to a value of the type `T` must be a multiple of this number.
472 ///
473 /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
474 ///
475 /// # Safety
476 ///
477 /// This function is only safe to call if the following conditions hold:
478 ///
479 /// - If `T` is `Sized`, this function is always safe to call.
480 /// - If the unsized tail of `T` is:
481 ///     - a [slice], then the length of the slice tail must be an initialized
482 ///       integer, and the size of the *entire value*
483 ///       (dynamic tail length + statically sized prefix) must fit in `isize`.
484 ///     - a [trait object], then the vtable part of the pointer must point
485 ///       to a valid vtable acquired by an unsizing coercion, and the size
486 ///       of the *entire value* (dynamic tail length + statically sized prefix)
487 ///       must fit in `isize`.
488 ///     - an (unstable) [extern type], then this function is always safe to
489 ///       call, but may panic or otherwise return the wrong value, as the
490 ///       extern type's layout is not known. This is the same behavior as
491 ///       [`align_of_val`] on a reference to a type with an extern type tail.
492 ///     - otherwise, it is conservatively not allowed to call this function.
493 ///
494 /// [slice]: ../../std/primitive.slice.html
495 /// [trait object]: ../../book/ch17-02-trait-objects.html
496 /// [extern type]: ../../unstable-book/language-features/extern-types.html
497 ///
498 /// # Examples
499 ///
500 /// ```
501 /// #![feature(layout_for_ptr)]
502 /// use std::mem;
503 ///
504 /// assert_eq!(4, unsafe { mem::align_of_val_raw(&5i32) });
505 /// ```
506 #[inline]
507 #[unstable(feature = "layout_for_ptr", issue = "69835")]
508 pub unsafe fn align_of_val_raw<T: ?Sized>(val: *const T) -> usize {
509     intrinsics::min_align_of_val(val)
510 }
511
512 /// Returns `true` if dropping values of type `T` matters.
513 ///
514 /// This is purely an optimization hint, and may be implemented conservatively:
515 /// it may return `true` for types that don't actually need to be dropped.
516 /// As such always returning `true` would be a valid implementation of
517 /// this function. However if this function actually returns `false`, then you
518 /// can be certain dropping `T` has no side effect.
519 ///
520 /// Low level implementations of things like collections, which need to manually
521 /// drop their data, should use this function to avoid unnecessarily
522 /// trying to drop all their contents when they are destroyed. This might not
523 /// make a difference in release builds (where a loop that has no side-effects
524 /// is easily detected and eliminated), but is often a big win for debug builds.
525 ///
526 /// Note that [`drop_in_place`] already performs this check, so if your workload
527 /// can be reduced to some small number of [`drop_in_place`] calls, using this is
528 /// unnecessary. In particular note that you can [`drop_in_place`] a slice, and that
529 /// will do a single needs_drop check for all the values.
530 ///
531 /// Types like Vec therefore just `drop_in_place(&mut self[..])` without using
532 /// `needs_drop` explicitly. Types like [`HashMap`], on the other hand, have to drop
533 /// values one at a time and should use this API.
534 ///
535 /// [`drop_in_place`]: crate::ptr::drop_in_place
536 /// [`HashMap`]: ../../std/collections/struct.HashMap.html
537 ///
538 /// # Examples
539 ///
540 /// Here's an example of how a collection might make use of `needs_drop`:
541 ///
542 /// ```
543 /// use std::{mem, ptr};
544 ///
545 /// pub struct MyCollection<T> {
546 /// #   data: [T; 1],
547 ///     /* ... */
548 /// }
549 /// # impl<T> MyCollection<T> {
550 /// #   fn iter_mut(&mut self) -> &mut [T] { &mut self.data }
551 /// #   fn free_buffer(&mut self) {}
552 /// # }
553 ///
554 /// impl<T> Drop for MyCollection<T> {
555 ///     fn drop(&mut self) {
556 ///         unsafe {
557 ///             // drop the data
558 ///             if mem::needs_drop::<T>() {
559 ///                 for x in self.iter_mut() {
560 ///                     ptr::drop_in_place(x);
561 ///                 }
562 ///             }
563 ///             self.free_buffer();
564 ///         }
565 ///     }
566 /// }
567 /// ```
568 #[inline]
569 #[stable(feature = "needs_drop", since = "1.21.0")]
570 #[rustc_const_stable(feature = "const_needs_drop", since = "1.36.0")]
571 pub const fn needs_drop<T>() -> bool {
572     intrinsics::needs_drop::<T>()
573 }
574
575 /// Returns the value of type `T` represented by the all-zero byte-pattern.
576 ///
577 /// This means that, for example, the padding byte in `(u8, u16)` is not
578 /// necessarily zeroed.
579 ///
580 /// There is no guarantee that an all-zero byte-pattern represents a valid value
581 /// of some type `T`. For example, the all-zero byte-pattern is not a valid value
582 /// for reference types (`&T`, `&mut T`) and functions pointers. Using `zeroed`
583 /// on such types causes immediate [undefined behavior][ub] because [the Rust
584 /// compiler assumes][inv] that there always is a valid value in a variable it
585 /// considers initialized.
586 ///
587 /// This has the same effect as [`MaybeUninit::zeroed().assume_init()`][zeroed].
588 /// It is useful for FFI sometimes, but should generally be avoided.
589 ///
590 /// [zeroed]: MaybeUninit::zeroed
591 /// [ub]: ../../reference/behavior-considered-undefined.html
592 /// [inv]: MaybeUninit#initialization-invariant
593 ///
594 /// # Examples
595 ///
596 /// Correct usage of this function: initializing an integer with zero.
597 ///
598 /// ```
599 /// use std::mem;
600 ///
601 /// let x: i32 = unsafe { mem::zeroed() };
602 /// assert_eq!(0, x);
603 /// ```
604 ///
605 /// *Incorrect* usage of this function: initializing a reference with zero.
606 ///
607 /// ```rust,no_run
608 /// # #![allow(invalid_value)]
609 /// use std::mem;
610 ///
611 /// let _x: &i32 = unsafe { mem::zeroed() }; // Undefined behavior!
612 /// let _y: fn() = unsafe { mem::zeroed() }; // And again!
613 /// ```
614 #[inline(always)]
615 #[stable(feature = "rust1", since = "1.0.0")]
616 #[allow(deprecated_in_future)]
617 #[allow(deprecated)]
618 #[rustc_diagnostic_item = "mem_zeroed"]
619 pub unsafe fn zeroed<T>() -> T {
620     // SAFETY: the caller must guarantee that an all-zero value is valid for `T`.
621     unsafe {
622         intrinsics::assert_zero_valid::<T>();
623         MaybeUninit::zeroed().assume_init()
624     }
625 }
626
627 /// Bypasses Rust's normal memory-initialization checks by pretending to
628 /// produce a value of type `T`, while doing nothing at all.
629 ///
630 /// **This function is deprecated.** Use [`MaybeUninit<T>`] instead.
631 ///
632 /// The reason for deprecation is that the function basically cannot be used
633 /// correctly: it has the same effect as [`MaybeUninit::uninit().assume_init()`][uninit].
634 /// As the [`assume_init` documentation][assume_init] explains,
635 /// [the Rust compiler assumes][inv] that values are properly initialized.
636 /// As a consequence, calling e.g. `mem::uninitialized::<bool>()` causes immediate
637 /// undefined behavior for returning a `bool` that is not definitely either `true`
638 /// or `false`. Worse, truly uninitialized memory like what gets returned here
639 /// is special in that the compiler knows that it does not have a fixed value.
640 /// This makes it undefined behavior to have uninitialized data in a variable even
641 /// if that variable has an integer type.
642 /// (Notice that the rules around uninitialized integers are not finalized yet, but
643 /// until they are, it is advisable to avoid them.)
644 ///
645 /// [`MaybeUninit<T>`]: MaybeUninit
646 /// [uninit]: MaybeUninit::uninit
647 /// [assume_init]: MaybeUninit::assume_init
648 /// [inv]: MaybeUninit#initialization-invariant
649 #[inline(always)]
650 #[rustc_deprecated(since = "1.39.0", reason = "use `mem::MaybeUninit` instead")]
651 #[stable(feature = "rust1", since = "1.0.0")]
652 #[allow(deprecated_in_future)]
653 #[allow(deprecated)]
654 #[rustc_diagnostic_item = "mem_uninitialized"]
655 pub unsafe fn uninitialized<T>() -> T {
656     // SAFETY: the caller must guarantee that an unitialized value is valid for `T`.
657     unsafe {
658         intrinsics::assert_uninit_valid::<T>();
659         MaybeUninit::uninit().assume_init()
660     }
661 }
662
663 /// Swaps the values at two mutable locations, without deinitializing either one.
664 ///
665 /// * If you want to swap with a default or dummy value, see [`take`].
666 /// * If you want to swap with a passed value, returning the old value, see [`replace`].
667 ///
668 /// # Examples
669 ///
670 /// ```
671 /// use std::mem;
672 ///
673 /// let mut x = 5;
674 /// let mut y = 42;
675 ///
676 /// mem::swap(&mut x, &mut y);
677 ///
678 /// assert_eq!(42, x);
679 /// assert_eq!(5, y);
680 /// ```
681 #[inline]
682 #[stable(feature = "rust1", since = "1.0.0")]
683 pub fn swap<T>(x: &mut T, y: &mut T) {
684     // SAFETY: the raw pointers have been created from safe mutable references satisfying all the
685     // constraints on `ptr::swap_nonoverlapping_one`
686     unsafe {
687         ptr::swap_nonoverlapping_one(x, y);
688     }
689 }
690
691 /// Replaces `dest` with the default value of `T`, returning the previous `dest` value.
692 ///
693 /// * If you want to replace the values of two variables, see [`swap`].
694 /// * If you want to replace with a passed value instead of the default value, see [`replace`].
695 ///
696 /// # Examples
697 ///
698 /// A simple example:
699 ///
700 /// ```
701 /// use std::mem;
702 ///
703 /// let mut v: Vec<i32> = vec![1, 2];
704 ///
705 /// let old_v = mem::take(&mut v);
706 /// assert_eq!(vec![1, 2], old_v);
707 /// assert!(v.is_empty());
708 /// ```
709 ///
710 /// `take` allows taking ownership of a struct field by replacing it with an "empty" value.
711 /// Without `take` you can run into issues like these:
712 ///
713 /// ```compile_fail,E0507
714 /// struct Buffer<T> { buf: Vec<T> }
715 ///
716 /// impl<T> Buffer<T> {
717 ///     fn get_and_reset(&mut self) -> Vec<T> {
718 ///         // error: cannot move out of dereference of `&mut`-pointer
719 ///         let buf = self.buf;
720 ///         self.buf = Vec::new();
721 ///         buf
722 ///     }
723 /// }
724 /// ```
725 ///
726 /// Note that `T` does not necessarily implement [`Clone`], so it can't even clone and reset
727 /// `self.buf`. But `take` can be used to disassociate the original value of `self.buf` from
728 /// `self`, allowing it to be returned:
729 ///
730 /// ```
731 /// use std::mem;
732 ///
733 /// # struct Buffer<T> { buf: Vec<T> }
734 /// impl<T> Buffer<T> {
735 ///     fn get_and_reset(&mut self) -> Vec<T> {
736 ///         mem::take(&mut self.buf)
737 ///     }
738 /// }
739 ///
740 /// let mut buffer = Buffer { buf: vec![0, 1] };
741 /// assert_eq!(buffer.buf.len(), 2);
742 ///
743 /// assert_eq!(buffer.get_and_reset(), vec![0, 1]);
744 /// assert_eq!(buffer.buf.len(), 0);
745 /// ```
746 #[inline]
747 #[stable(feature = "mem_take", since = "1.40.0")]
748 pub fn take<T: Default>(dest: &mut T) -> T {
749     replace(dest, T::default())
750 }
751
752 /// Moves `src` into the referenced `dest`, returning the previous `dest` value.
753 ///
754 /// Neither value is dropped.
755 ///
756 /// * If you want to replace the values of two variables, see [`swap`].
757 /// * If you want to replace with a default value, see [`take`].
758 ///
759 /// # Examples
760 ///
761 /// A simple example:
762 ///
763 /// ```
764 /// use std::mem;
765 ///
766 /// let mut v: Vec<i32> = vec![1, 2];
767 ///
768 /// let old_v = mem::replace(&mut v, vec![3, 4, 5]);
769 /// assert_eq!(vec![1, 2], old_v);
770 /// assert_eq!(vec![3, 4, 5], v);
771 /// ```
772 ///
773 /// `replace` allows consumption of a struct field by replacing it with another value.
774 /// Without `replace` you can run into issues like these:
775 ///
776 /// ```compile_fail,E0507
777 /// struct Buffer<T> { buf: Vec<T> }
778 ///
779 /// impl<T> Buffer<T> {
780 ///     fn replace_index(&mut self, i: usize, v: T) -> T {
781 ///         // error: cannot move out of dereference of `&mut`-pointer
782 ///         let t = self.buf[i];
783 ///         self.buf[i] = v;
784 ///         t
785 ///     }
786 /// }
787 /// ```
788 ///
789 /// Note that `T` does not necessarily implement [`Clone`], so we can't even clone `self.buf[i]` to
790 /// avoid the move. But `replace` can be used to disassociate the original value at that index from
791 /// `self`, allowing it to be returned:
792 ///
793 /// ```
794 /// # #![allow(dead_code)]
795 /// use std::mem;
796 ///
797 /// # struct Buffer<T> { buf: Vec<T> }
798 /// impl<T> Buffer<T> {
799 ///     fn replace_index(&mut self, i: usize, v: T) -> T {
800 ///         mem::replace(&mut self.buf[i], v)
801 ///     }
802 /// }
803 ///
804 /// let mut buffer = Buffer { buf: vec![0, 1] };
805 /// assert_eq!(buffer.buf[0], 0);
806 ///
807 /// assert_eq!(buffer.replace_index(0, 2), 0);
808 /// assert_eq!(buffer.buf[0], 2);
809 /// ```
810 #[inline]
811 #[stable(feature = "rust1", since = "1.0.0")]
812 #[must_use = "if you don't need the old value, you can just assign the new value directly"]
813 pub fn replace<T>(dest: &mut T, mut src: T) -> T {
814     swap(dest, &mut src);
815     src
816 }
817
818 /// Disposes of a value.
819 ///
820 /// This does so by calling the argument's implementation of [`Drop`][drop].
821 ///
822 /// This effectively does nothing for types which implement `Copy`, e.g.
823 /// integers. Such values are copied and _then_ moved into the function, so the
824 /// value persists after this function call.
825 ///
826 /// This function is not magic; it is literally defined as
827 ///
828 /// ```
829 /// pub fn drop<T>(_x: T) { }
830 /// ```
831 ///
832 /// Because `_x` is moved into the function, it is automatically dropped before
833 /// the function returns.
834 ///
835 /// [drop]: Drop
836 ///
837 /// # Examples
838 ///
839 /// Basic usage:
840 ///
841 /// ```
842 /// let v = vec![1, 2, 3];
843 ///
844 /// drop(v); // explicitly drop the vector
845 /// ```
846 ///
847 /// Since [`RefCell`] enforces the borrow rules at runtime, `drop` can
848 /// release a [`RefCell`] borrow:
849 ///
850 /// ```
851 /// use std::cell::RefCell;
852 ///
853 /// let x = RefCell::new(1);
854 ///
855 /// let mut mutable_borrow = x.borrow_mut();
856 /// *mutable_borrow = 1;
857 ///
858 /// drop(mutable_borrow); // relinquish the mutable borrow on this slot
859 ///
860 /// let borrow = x.borrow();
861 /// println!("{}", *borrow);
862 /// ```
863 ///
864 /// Integers and other types implementing [`Copy`] are unaffected by `drop`.
865 ///
866 /// ```
867 /// #[derive(Copy, Clone)]
868 /// struct Foo(u8);
869 ///
870 /// let x = 1;
871 /// let y = Foo(2);
872 /// drop(x); // a copy of `x` is moved and dropped
873 /// drop(y); // a copy of `y` is moved and dropped
874 ///
875 /// println!("x: {}, y: {}", x, y.0); // still available
876 /// ```
877 ///
878 /// [`RefCell`]: crate::cell::RefCell
879 #[inline]
880 #[stable(feature = "rust1", since = "1.0.0")]
881 pub fn drop<T>(_x: T) {}
882
883 /// Interprets `src` as having type `&U`, and then reads `src` without moving
884 /// the contained value.
885 ///
886 /// This function will unsafely assume the pointer `src` is valid for
887 /// [`size_of::<U>`][size_of] bytes by transmuting `&T` to `&U` and then reading
888 /// the `&U`. It will also unsafely create a copy of the contained value instead of
889 /// moving out of `src`.
890 ///
891 /// It is not a compile-time error if `T` and `U` have different sizes, but it
892 /// is highly encouraged to only invoke this function where `T` and `U` have the
893 /// same size. This function triggers [undefined behavior][ub] if `U` is larger than
894 /// `T`.
895 ///
896 /// [ub]: ../../reference/behavior-considered-undefined.html
897 ///
898 /// # Examples
899 ///
900 /// ```
901 /// use std::mem;
902 ///
903 /// #[repr(packed)]
904 /// struct Foo {
905 ///     bar: u8,
906 /// }
907 ///
908 /// let foo_array = [10u8];
909 ///
910 /// unsafe {
911 ///     // Copy the data from 'foo_array' and treat it as a 'Foo'
912 ///     let mut foo_struct: Foo = mem::transmute_copy(&foo_array);
913 ///     assert_eq!(foo_struct.bar, 10);
914 ///
915 ///     // Modify the copied data
916 ///     foo_struct.bar = 20;
917 ///     assert_eq!(foo_struct.bar, 20);
918 /// }
919 ///
920 /// // The contents of 'foo_array' should not have changed
921 /// assert_eq!(foo_array, [10]);
922 /// ```
923 #[inline]
924 #[stable(feature = "rust1", since = "1.0.0")]
925 pub unsafe fn transmute_copy<T, U>(src: &T) -> U {
926     // If U has a higher alignment requirement, src may not be suitably aligned.
927     if align_of::<U>() > align_of::<T>() {
928         // SAFETY: `src` is a reference which is guaranteed to be valid for reads.
929         // The caller must guarantee that the actual transmutation is safe.
930         unsafe { ptr::read_unaligned(src as *const T as *const U) }
931     } else {
932         // SAFETY: `src` is a reference which is guaranteed to be valid for reads.
933         // We just checked that `src as *const U` was properly aligned.
934         // The caller must guarantee that the actual transmutation is safe.
935         unsafe { ptr::read(src as *const T as *const U) }
936     }
937 }
938
939 /// Opaque type representing the discriminant of an enum.
940 ///
941 /// See the [`discriminant`] function in this module for more information.
942 #[stable(feature = "discriminant_value", since = "1.21.0")]
943 pub struct Discriminant<T>(<T as DiscriminantKind>::Discriminant);
944
945 // N.B. These trait implementations cannot be derived because we don't want any bounds on T.
946
947 #[stable(feature = "discriminant_value", since = "1.21.0")]
948 impl<T> Copy for Discriminant<T> {}
949
950 #[stable(feature = "discriminant_value", since = "1.21.0")]
951 impl<T> clone::Clone for Discriminant<T> {
952     fn clone(&self) -> Self {
953         *self
954     }
955 }
956
957 #[stable(feature = "discriminant_value", since = "1.21.0")]
958 impl<T> cmp::PartialEq for Discriminant<T> {
959     fn eq(&self, rhs: &Self) -> bool {
960         self.0 == rhs.0
961     }
962 }
963
964 #[stable(feature = "discriminant_value", since = "1.21.0")]
965 impl<T> cmp::Eq for Discriminant<T> {}
966
967 #[stable(feature = "discriminant_value", since = "1.21.0")]
968 impl<T> hash::Hash for Discriminant<T> {
969     fn hash<H: hash::Hasher>(&self, state: &mut H) {
970         self.0.hash(state);
971     }
972 }
973
974 #[stable(feature = "discriminant_value", since = "1.21.0")]
975 impl<T> fmt::Debug for Discriminant<T> {
976     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
977         fmt.debug_tuple("Discriminant").field(&self.0).finish()
978     }
979 }
980
981 /// Returns a value uniquely identifying the enum variant in `v`.
982 ///
983 /// If `T` is not an enum, calling this function will not result in undefined behavior, but the
984 /// return value is unspecified.
985 ///
986 /// # Stability
987 ///
988 /// The discriminant of an enum variant may change if the enum definition changes. A discriminant
989 /// of some variant will not change between compilations with the same compiler.
990 ///
991 /// # Examples
992 ///
993 /// This can be used to compare enums that carry data, while disregarding
994 /// the actual data:
995 ///
996 /// ```
997 /// use std::mem;
998 ///
999 /// enum Foo { A(&'static str), B(i32), C(i32) }
1000 ///
1001 /// assert_eq!(mem::discriminant(&Foo::A("bar")), mem::discriminant(&Foo::A("baz")));
1002 /// assert_eq!(mem::discriminant(&Foo::B(1)), mem::discriminant(&Foo::B(2)));
1003 /// assert_ne!(mem::discriminant(&Foo::B(3)), mem::discriminant(&Foo::C(3)));
1004 /// ```
1005 #[stable(feature = "discriminant_value", since = "1.21.0")]
1006 #[rustc_const_unstable(feature = "const_discriminant", issue = "69821")]
1007 pub const fn discriminant<T>(v: &T) -> Discriminant<T> {
1008     Discriminant(intrinsics::discriminant_value(v))
1009 }
1010
1011 /// Returns the number of variants in the enum type `T`.
1012 ///
1013 /// If `T` is not an enum, calling this function will not result in undefined behavior, but the
1014 /// return value is unspecified. Equally, if `T` is an enum with more variants than `usize::MAX`
1015 /// the return value is unspecified. Uninhabited variants will be counted.
1016 ///
1017 /// # Examples
1018 ///
1019 /// ```
1020 /// # #![feature(never_type)]
1021 /// # #![feature(variant_count)]
1022 ///
1023 /// use std::mem;
1024 ///
1025 /// enum Void {}
1026 /// enum Foo { A(&'static str), B(i32), C(i32) }
1027 ///
1028 /// assert_eq!(mem::variant_count::<Void>(), 0);
1029 /// assert_eq!(mem::variant_count::<Foo>(), 3);
1030 ///
1031 /// assert_eq!(mem::variant_count::<Option<!>>(), 2);
1032 /// assert_eq!(mem::variant_count::<Result<!, !>>(), 2);
1033 /// ```
1034 #[inline(always)]
1035 #[unstable(feature = "variant_count", issue = "73662")]
1036 #[rustc_const_unstable(feature = "variant_count", issue = "73662")]
1037 pub const fn variant_count<T>() -> usize {
1038     intrinsics::variant_count::<T>()
1039 }