]> git.lizzy.rs Git - rust.git/blob - docs/dev/guide.md
Auto merge of #11976 - Veykril:rust-lang-test, r=Veykril
[rust.git] / docs / dev / guide.md
1 # Guide to rust-analyzer
2
3 ## About the guide
4
5 This guide describes the current state of rust-analyzer as of 2019-01-20 (git
6 tag [guide-2019-01]). Its purpose is to document various problems and
7 architectural solutions related to the problem of building IDE-first compiler
8 for Rust. There is a video version of this guide as well:
9 https://youtu.be/ANKBNiSWyfc.
10
11 [guide-2019-01]: https://github.com/rust-analyzer/rust-analyzer/tree/guide-2019-01
12
13 ## The big picture
14
15 On the highest possible level, rust-analyzer is a stateful component. A client may
16 apply changes to the analyzer (new contents of `foo.rs` file is "fn main() {}")
17 and it may ask semantic questions about the current state (what is the
18 definition of the identifier with offset 92 in file `bar.rs`?). Two important
19 properties hold:
20
21 * Analyzer does not do any I/O. It starts in an empty state and all input data is
22   provided via `apply_change` API.
23
24 * Only queries about the current state are supported. One can, of course,
25   simulate undo and redo by keeping a log of changes and inverse changes respectively.
26
27 ## IDE API
28
29 To see the bigger picture of how the IDE features work, let's take a look at the [`AnalysisHost`] and
30 [`Analysis`] pair of types. `AnalysisHost` has three methods:
31
32 * `default()` for creating an empty analysis instance
33 * `apply_change(&mut self)` to make changes (this is how you get from an empty
34   state to something interesting)
35 * `analysis(&self)` to get an instance of `Analysis`
36
37 `Analysis` has a ton of methods for IDEs, like `goto_definition`, or
38 `completions`. Both inputs and outputs of `Analysis`' methods are formulated in
39 terms of files and offsets, and **not** in terms of Rust concepts like structs,
40 traits, etc. The "typed" API with Rust specific types is slightly lower in the
41 stack, we'll talk about it later.
42
43 [`AnalysisHost`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/lib.rs#L265-L284
44 [`Analysis`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/lib.rs#L291-L478
45
46 The reason for this separation of `Analysis` and `AnalysisHost` is that we want to apply
47 changes "uniquely", but we might also want to fork an `Analysis` and send it to
48 another thread for background processing. That is, there is only a single
49 `AnalysisHost`, but there may be several (equivalent) `Analysis`.
50
51 Note that all of the `Analysis` API return `Cancellable<T>`. This is required to
52 be responsive in an IDE setting. Sometimes a long-running query is being computed
53 and the user types something in the editor and asks for completion. In this
54 case, we cancel the long-running computation (so it returns `Err(Cancelled)`),
55 apply the change and execute request for completion. We never use stale data to
56 answer requests. Under the cover, `AnalysisHost` "remembers" all outstanding
57 `Analysis` instances. The `AnalysisHost::apply_change` method cancels all
58 `Analysis`es, blocks until all of them are `Dropped` and then applies changes
59 in-place. This may be familiar to Rustaceans who use read-write locks for interior
60 mutability.
61
62 Next, let's talk about what the inputs to the `Analysis` are, precisely.
63
64 ## Inputs
65
66 Rust Analyzer never does any I/O itself, all inputs get passed explicitly via
67 the `AnalysisHost::apply_change` method, which accepts a single argument, a
68 `Change`. [`Change`] is a builder for a single change
69 "transaction", so it suffices to study its methods to understand all of the
70 input data.
71
72 [`Change`]: https://github.com/rust-analyzer/rust-analyzer/blob/master/crates/base_db/src/change.rs#L14-L89
73
74 The `(add|change|remove)_file` methods control the set of the input files, where
75 each file has an integer id (`FileId`, picked by the client), text (`String`)
76 and a filesystem path. Paths are tricky; they'll be explained below, in source roots
77 section, together with the `add_root` method. The `add_library` method allows us to add a
78 group of files which are assumed to rarely change. It's mostly an optimization
79 and does not change the fundamental picture.
80
81 The `set_crate_graph` method allows us to control how the input files are partitioned
82 into compilation units -- crates. It also controls (in theory, not implemented
83 yet) `cfg` flags. `CrateGraph` is a directed acyclic graph of crates. Each crate
84 has a root `FileId`, a set of active `cfg` flags and a set of dependencies. Each
85 dependency is a pair of a crate and a name. It is possible to have two crates
86 with the same root `FileId` but different `cfg`-flags/dependencies. This model
87 is lower than Cargo's model of packages: each Cargo package consists of several
88 targets, each of which is a separate crate (or several crates, if you try
89 different feature combinations).
90
91 Procedural macros should become inputs as well, but currently they are not
92 supported. Procedural macro will be a black box `Box<dyn Fn(TokenStream) -> TokenStream>`
93 function, and will be inserted into the crate graph just like dependencies.
94
95 Soon we'll talk how we build an LSP server on top of `Analysis`, but first,
96 let's deal with that paths issue.
97
98 ## Source roots (a.k.a. "Filesystems are horrible")
99
100 This is a non-essential section, feel free to skip.
101
102 The previous section said that the filesystem path is an attribute of a file,
103 but this is not the whole truth. Making it an absolute `PathBuf` will be bad for
104 several reasons. First, filesystems are full of (platform-dependent) edge cases:
105
106 * It's hard (requires a syscall) to decide if two paths are equivalent.
107 * Some filesystems are case-sensitive (e.g. macOS).
108 * Paths are not necessarily UTF-8.
109 * Symlinks can form cycles.
110
111 Second, this might hurt the reproducibility and hermeticity of builds. In theory,
112 moving a project from `/foo/bar/my-project` to `/spam/eggs/my-project` should
113 not change a bit in the output. However, if the absolute path is a part of the
114 input, it is at least in theory observable, and *could* affect the output.
115
116 Yet another problem is that we really *really* want to avoid doing I/O, but with
117 Rust the set of "input" files is not necessarily known up-front. In theory, you
118 can have `#[path="/dev/random"] mod foo;`.
119
120 To solve (or explicitly refuse to solve) these problems rust-analyzer uses the
121 concept of a "source root". Roughly speaking, source roots are the contents of a
122 directory on a file systems, like `/home/matklad/projects/rustraytracer/**.rs`.
123
124 More precisely, all files (`FileId`s) are partitioned into disjoint
125 `SourceRoot`s. Each file has a relative UTF-8 path within the `SourceRoot`.
126 `SourceRoot` has an identity (integer ID). Crucially, the root path of the
127 source root itself is unknown to the analyzer: A client is supposed to maintain a
128 mapping between `SourceRoot` IDs (which are assigned by the client) and actual
129 `PathBuf`s. `SourceRoot`s give a sane tree model of the file system to the
130 analyzer.
131
132 Note that `mod`, `#[path]` and `include!()` can only reference files from the
133 same source root. It is of course possible to explicitly add extra files to
134 the source root, even `/dev/random`.
135
136 ## Language Server Protocol
137
138 Now let's see how the `Analysis` API is exposed via the JSON RPC based language server protocol. The
139 hard part here is managing changes (which can come either from the file system
140 or from the editor) and concurrency (we want to spawn background jobs for things
141 like syntax highlighting). We use the event loop pattern to manage the zoo, and
142 the loop is the [`main_loop_inner`] function. The [`main_loop`] does a one-time
143 initialization and tearing down of the resources.
144
145 [`main_loop`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop.rs#L51-L110
146 [`main_loop_inner`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop.rs#L156-L258
147
148
149 Let's walk through a typical analyzer session!
150
151 First, we need to figure out what to analyze. To do this, we run `cargo
152 metadata` to learn about Cargo packages for current workspace and dependencies,
153 and we run `rustc --print sysroot` and scan the "sysroot" (the directory containing the current Rust toolchain's files) to learn about crates like
154 `std`. Currently we load this configuration once at the start of the server, but
155 it should be possible to dynamically reconfigure it later without restart.
156
157 [main_loop.rs#L62-L70](https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop.rs#L62-L70)
158
159 The [`ProjectModel`] we get after this step is very Cargo and sysroot specific,
160 it needs to be lowered to get the input in the form of `Change`. This
161 happens in [`ServerWorldState::new`] method. Specifically
162
163 * Create a `SourceRoot` for each Cargo package and sysroot.
164 * Schedule a filesystem scan of the roots.
165 * Create an analyzer's `Crate` for each Cargo **target** and sysroot crate.
166 * Setup dependencies between the crates.
167
168 [`ProjectModel`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/project_model.rs#L16-L20
169 [`ServerWorldState::new`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/server_world.rs#L38-L160
170
171 The results of the scan (which may take a while) will be processed in the body
172 of the main loop, just like any other change. Here's where we handle:
173
174 * [File system changes](https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop.rs#L194)
175 * [Changes from the editor](https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop.rs#L377)
176
177 After a single loop's turn, we group the changes into one `Change` and
178 [apply] it. This always happens on the main thread and blocks the loop.
179
180 [apply]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/server_world.rs#L216
181
182 To handle requests, like ["goto definition"], we create an instance of the
183 `Analysis` and [`schedule`] the task (which consumes `Analysis`) on the
184 threadpool. [The task] calls the corresponding `Analysis` method, while
185 massaging the types into the LSP representation. Keep in mind that if we are
186 executing "goto definition" on the threadpool and a new change comes in, the
187 task will be canceled as soon as the main loop calls `apply_change` on the
188 `AnalysisHost`.
189
190 ["goto definition"]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/server_world.rs#L216
191 [`schedule`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop.rs#L426-L455
192 [The task]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop/handlers.rs#L205-L223
193
194 This concludes the overview of the analyzer's programing *interface*. Next, let's
195 dig into the implementation!
196
197 ## Salsa
198
199 The most straightforward way to implement an "apply change, get analysis, repeat"
200 API would be to maintain the input state and to compute all possible analysis
201 information from scratch after every change. This works, but scales poorly with
202 the size of the project. To make this fast, we need to take advantage of the
203 fact that most of the changes are small, and that analysis results are unlikely
204 to change significantly between invocations.
205
206 To do this we use [salsa]: a framework for incremental on-demand computation.
207 You can skip the rest of the section if you are familiar with `rustc`'s red-green
208 algorithm (which is used for incremental compilation).
209
210 [salsa]: https://github.com/salsa-rs/salsa
211
212 It's better to refer to salsa's docs to learn about it. Here's a small excerpt:
213
214 The key idea of salsa is that you define your program as a set of queries. Every
215 query is used like a function `K -> V` that maps from some key of type `K` to a value
216 of type `V`. Queries come in two basic varieties:
217
218 * **Inputs**: the base inputs to your system. You can change these whenever you
219   like.
220
221 * **Functions**: pure functions (no side effects) that transform your inputs
222   into other values. The results of queries are memoized to avoid recomputing
223   them a lot. When you make changes to the inputs, we'll figure out (fairly
224   intelligently) when we can re-use these memoized values and when we have to
225   recompute them.
226
227 For further discussion, its important to understand one bit of "fairly
228 intelligently". Suppose we have two functions, `f1` and `f2`, and one input,
229 `z`. We call `f1(X)` which in turn calls `f2(Y)` which inspects `i(Z)`. `i(Z)`
230 returns some value `V1`, `f2` uses that and returns `R1`, `f1` uses that and
231 returns `O`. Now, let's change `i` at `Z` to `V2` from `V1` and try to compute
232 `f1(X)` again. Because `f1(X)` (transitively) depends on `i(Z)`, we can't just
233 reuse its value as is. However, if `f2(Y)` is *still* equal to `R1` (despite
234 `i`'s change), we, in fact, *can* reuse `O` as result of `f1(X)`. And that's how
235 salsa works: it recomputes results in *reverse* order, starting from inputs and
236 progressing towards outputs, stopping as soon as it sees an intermediate value
237 that hasn't changed. If this sounds confusing to you, don't worry: it is
238 confusing. This illustration by @killercup might help:
239
240 <img alt="step 1" src="https://user-images.githubusercontent.com/1711539/51460907-c5484780-1d6d-11e9-9cd2-d6f62bd746e0.png" width="50%">
241
242 <img alt="step 2" src="https://user-images.githubusercontent.com/1711539/51460915-c9746500-1d6d-11e9-9a77-27d33a0c51b5.png" width="50%">
243
244 <img alt="step 3" src="https://user-images.githubusercontent.com/1711539/51460920-cda08280-1d6d-11e9-8d96-a782aa57a4d4.png" width="50%">
245
246 <img alt="step 4" src="https://user-images.githubusercontent.com/1711539/51460927-d1340980-1d6d-11e9-851e-13c149d5c406.png" width="50%">
247
248 ## Salsa Input Queries
249
250 All analyzer information is stored in a salsa database. `Analysis` and
251 `AnalysisHost` types are newtype wrappers for [`RootDatabase`] -- a salsa
252 database.
253
254 [`RootDatabase`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/db.rs#L88-L134
255
256 Salsa input queries are defined in [`FilesDatabase`] (which is a part of
257 `RootDatabase`). They closely mirror the familiar `Change` structure:
258 indeed, what `apply_change` does is it sets the values of input queries.
259
260 [`FilesDatabase`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/base_db/src/input.rs#L150-L174
261
262 ## From text to semantic model
263
264 The bulk of the rust-analyzer is transforming input text into a semantic model of
265 Rust code: a web of entities like modules, structs, functions and traits.
266
267 An important fact to realize is that (unlike most other languages like C# or
268 Java) there is not a one-to-one mapping between the source code and the semantic model. A
269 single function definition in the source code might result in several semantic
270 functions: for example, the same source file might get included as a module in
271 several crates or a single crate might be present in the compilation DAG
272 several times, with different sets of `cfg`s enabled. The IDE-specific task of
273 mapping source code into a semantic model is inherently imprecise for
274 this reason and gets handled by the [`source_binder`].
275
276 [`source_binder`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/source_binder.rs
277
278 The semantic interface is declared in the [`code_model_api`] module. Each entity is
279 identified by an integer ID and has a bunch of methods which take a salsa database
280 as an argument and returns other entities (which are also IDs). Internally, these
281 methods invoke various queries on the database to build the model on demand.
282 Here's [the list of queries].
283
284 [`code_model_api`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/code_model_api.rs
285 [the list of queries]: https://github.com/rust-analyzer/rust-analyzer/blob/7e84440e25e19529e4ff8a66e521d1b06349c6ec/crates/hir/src/db.rs#L20-L106
286
287 The first step of building the model is parsing the source code.
288
289 ## Syntax trees
290
291 An important property of the Rust language is that each file can be parsed in
292 isolation. Unlike, say, `C++`, an `include` can't change the meaning of the
293 syntax. For this reason, rust-analyzer can build a syntax tree for each "source
294 file", which could then be reused by several semantic models if this file
295 happens to be a part of several crates.
296
297 The representation of syntax trees that rust-analyzer uses is similar to that of `Roslyn`
298 and Swift's new [libsyntax]. Swift's docs give an excellent overview of the
299 approach, so I skip this part here and instead outline the main characteristics
300 of the syntax trees:
301
302 * Syntax trees are fully lossless. Converting **any** text to a syntax tree and
303   back is a total identity function. All whitespace and comments are explicitly
304   represented in the tree.
305
306 * Syntax nodes have generic `(next|previous)_sibling`, `parent`,
307   `(first|last)_child` functions. You can get from any one node to any other
308   node in the file using only these functions.
309
310 * Syntax nodes know their range (start offset and length) in the file.
311
312 * Syntax nodes share the ownership of their syntax tree: if you keep a reference
313   to a single function, the whole enclosing file is alive.
314
315 * Syntax trees are immutable and the cost of replacing the subtree is
316   proportional to the depth of the subtree. Read Swift's docs to learn how
317   immutable + parent pointers + cheap modification is possible.
318
319 * Syntax trees are build on best-effort basis. All accessor methods return
320   `Option`s. The tree for `fn foo` will contain a function declaration with
321   `None` for parameter list and body.
322
323 * Syntax trees do not know the file they are built from, they only know about
324   the text.
325
326 The implementation is based on the generic [rowan] crate on top of which a
327 [rust-specific] AST is generated.
328
329 [libsyntax]: https://github.com/apple/swift/tree/5e2c815edfd758f9b1309ce07bfc01c4bc20ec23/lib/Syntax
330 [rowan]: https://github.com/rust-analyzer/rowan/tree/100a36dc820eb393b74abe0d20ddf99077b61f88
331 [rust-specific]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_syntax/src/ast/generated.rs
332
333 The next step in constructing the semantic model is ...
334
335 ## Building a Module Tree
336
337 The algorithm for building a tree of modules is to start with a crate root
338 (remember, each `Crate` from a `CrateGraph` has a `FileId`), collect all `mod`
339 declarations and recursively process child modules. This is handled by the
340 [`module_tree_query`], with two slight variations.
341
342 [`module_tree_query`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/module_tree.rs#L116-L123
343
344 First, rust-analyzer builds a module tree for all crates in a source root
345 simultaneously. The main reason for this is historical (`module_tree` predates
346 `CrateGraph`), but this approach also enables accounting for files which are not
347 part of any crate. That is, if you create a file but do not include it as a
348 submodule anywhere, you still get semantic completion, and you get a warning
349 about a free-floating module (the actual warning is not implemented yet).
350
351 The second difference is that `module_tree_query` does not *directly* depend on
352 the "parse" query (which is confusingly called `source_file`). Why would calling
353 the parse directly be bad? Suppose the user changes the file slightly, by adding
354 an insignificant whitespace. Adding whitespace changes the parse tree (because
355 it includes whitespace), and that means recomputing the whole module tree.
356
357 We deal with this problem by introducing an intermediate [`submodules_query`].
358 This query processes the syntax tree and extracts a set of declared submodule
359 names. Now, changing the whitespace results in `submodules_query` being
360 re-executed for a *single* module, but because the result of this query stays
361 the same, we don't have to re-execute [`module_tree_query`]. In fact, we only
362 need to re-execute it when we add/remove new files or when we change mod
363 declarations.
364
365 [`submodules_query`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/module_tree.rs#L41
366
367 We store the resulting modules in a `Vec`-based indexed arena. The indices in
368 the arena becomes module IDs. And this brings us to the next topic:
369 assigning IDs in the general case.
370
371 ## Location Interner pattern
372
373 One way to assign IDs is how we've dealt with modules: Collect all items into a
374 single array in some specific order and use the index in the array as an ID. The
375 main drawback of this approach is that these IDs are not stable: Adding a new item can
376 shift the IDs of all other items. This works for modules, because adding a module is
377 a comparatively rare operation, but would be less convenient for, for example,
378 functions.
379
380 Another solution here is positional IDs: We can identify a function as "the
381 function with name `foo` in a ModuleId(92) module". Such locations are stable:
382 adding a new function to the module (unless it is also named `foo`) does not
383 change the location. However, such "ID" types ceases to be a `Copy`able integer and in
384 general can become pretty large if we account for nesting (for example: "third parameter of
385 the `foo` function of the `bar` `impl` in the `baz` module").
386
387 [`LocationInterner`] allows us to combine the benefits of positional and numeric
388 IDs. It is a bidirectional append-only map between locations and consecutive
389 integers which can "intern" a location and return an integer ID back. The salsa
390 database we use includes a couple of [interners]. How to "garbage collect"
391 unused locations is an open question.
392
393 [`LocationInterner`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/base_db/src/loc2id.rs#L65-L71
394 [interners]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/db.rs#L22-L23
395
396 For example, we use `LocationInterner` to assign IDs to definitions of functions,
397 structs, enums, etc. The location, [`DefLoc`] contains two bits of information:
398
399 * the ID of the module which contains the definition,
400 * the ID of the specific item in the modules source code.
401
402 We "could" use a text offset for the location of a particular item, but that would play
403 badly with salsa: offsets change after edits. So, as a rule of thumb, we avoid
404 using offsets, text ranges or syntax trees as keys and values for queries. What
405 we do instead is we store "index" of the item among all of the items of a file
406 (so, a positional based ID, but localized to a single file).
407
408 [`DefLoc`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/ids.rs#L127-L139
409
410 One thing we've glossed over for the time being is support for macros. We have
411 only proof of concept handling of macros at the moment, but they are extremely
412 interesting from an "assigning IDs" perspective.
413
414 ## Macros and recursive locations
415
416 The tricky bit about macros is that they effectively create new source files.
417 While we can use `FileId`s to refer to original files, we can't just assign them
418 willy-nilly to the pseudo files of macro expansion. Instead, we use a special
419 ID, [`HirFileId`] to refer to either a usual file or a macro-generated file:
420
421 ```rust
422 enum HirFileId {
423     FileId(FileId),
424     Macro(MacroCallId),
425 }
426 ```
427
428 `MacroCallId` is an interned ID that specifies a particular macro invocation.
429 Its `MacroCallLoc` contains:
430
431 * `ModuleId` of the containing module
432 * `HirFileId` of the containing file or pseudo file
433 * an index of this particular macro invocation in this file (positional id
434   again).
435
436 Note how `HirFileId` is defined in terms of `MacroCallLoc` which is defined in
437 terms of `HirFileId`! This does not recur infinitely though: any chain of
438 `HirFileId`s bottoms out in `HirFileId::FileId`, that is, some source file
439 actually written by the user.
440
441 [`HirFileId`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/ids.rs#L18-L125
442
443 Now that we understand how to identify a definition, in a source or in a
444 macro-generated file, we can discuss name resolution a bit.
445
446 ## Name resolution
447
448 Name resolution faces the same problem as the module tree: if we look at the
449 syntax tree directly, we'll have to recompute name resolution after every
450 modification. The solution to the problem is the same: We [lower] the source code of
451 each module into a position-independent representation which does not change if
452 we modify bodies of the items. After that we [loop] resolving all imports until
453 we've reached a fixed point.
454
455 [lower]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/nameres/lower.rs#L113-L117
456 [loop]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/nameres.rs#L186-L196
457
458 And, given all our preparation with IDs and a position-independent representation,
459 it is satisfying to [test] that typing inside function body does not invalidate
460 name resolution results.
461
462 [test]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/nameres/tests.rs#L376
463
464 An interesting fact about name resolution is that it "erases" all of the
465 intermediate paths from the imports: in the end, we know which items are defined
466 and which items are imported in each module, but, if the import was `use
467 foo::bar::baz`, we deliberately forget what modules `foo` and `bar` resolve to.
468
469 To serve "goto definition" requests on intermediate segments we need this info
470 in the IDE, however. Luckily, we need it only for a tiny fraction of imports, so we just ask
471 the module explicitly, "What does the path `foo::bar` resolve to?". This is a
472 general pattern: we try to compute the minimal possible amount of information
473 during analysis while allowing IDE to ask for additional specific bits.
474
475 Name resolution is also a good place to introduce another salsa pattern used
476 throughout the analyzer:
477
478 ## Source Map pattern
479
480 Due to an obscure edge case in completion, IDE needs to know the syntax node of
481 a use statement which imported the given completion candidate. We can't just
482 store the syntax node as a part of name resolution: this will break
483 incrementality, due to the fact that syntax changes after every file
484 modification.
485
486 We solve this problem during the lowering step of name resolution. The lowering
487 query actually produces a *pair* of outputs: `LoweredModule` and [`SourceMap`].
488 The `LoweredModule` module contains [imports], but in a position-independent form.
489 The `SourceMap` contains a mapping from position-independent imports to
490 (position-dependent) syntax nodes.
491
492 The result of this basic lowering query changes after every modification. But
493 there's an intermediate [projection query] which returns only the first
494 position-independent part of the lowering. The result of this query is stable.
495 Naturally, name resolution [uses] this stable projection query.
496
497 [imports]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/nameres/lower.rs#L52-L59
498 [`SourceMap`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/nameres/lower.rs#L52-L59
499 [projection query]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/nameres/lower.rs#L97-L103
500 [uses]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/query_definitions.rs#L49
501
502 ## Type inference
503
504 First of all, implementation of type inference in rust-analyzer was spearheaded
505 by [@flodiebold]. [#327] was an awesome Christmas present, thank you, Florian!
506
507 Type inference runs on per-function granularity and uses the patterns we've
508 discussed previously.
509
510 First, we [lower the AST] of a function body into a position-independent
511 representation. In this representation, each expression is assigned a
512 [positional ID]. Alongside the lowered expression, [a source map] is produced,
513 which maps between expression ids and original syntax. This lowering step also
514 deals with "incomplete" source trees by replacing missing expressions by an
515 explicit `Missing` expression.
516
517 Given the lowered body of the function, we can now run [type inference] and
518 construct a mapping from `ExprId`s to types.
519
520 [@flodiebold]: https://github.com/flodiebold
521 [#327]: https://github.com/rust-analyzer/rust-analyzer/pull/327
522 [lower the AST]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/expr.rs
523 [positional ID]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/expr.rs#L13-L15
524 [a source map]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/expr.rs#L41-L44
525 [type inference]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/hir/src/ty.rs#L1208-L1223
526
527 ## Tying it all together: completion
528
529 To conclude the overview of the rust-analyzer, let's trace the request for
530 (type-inference powered!) code completion!
531
532 We start by [receiving a message] from the language client. We decode the
533 message as a request for completion and [schedule it on the threadpool]. This is
534 the place where we [catch] canceled errors if, immediately after completion, the
535 client sends some modification.
536
537 In [the handler], we deserialize LSP requests into rust-analyzer specific data
538 types (by converting a file url into a numeric `FileId`), [ask analysis for
539 completion] and serialize results into the LSP.
540
541 The [completion implementation] is finally the place where we start doing the actual
542 work. The first step is to collect the `CompletionContext` -- a struct which
543 describes the cursor position in terms of Rust syntax and semantics. For
544 example, `function_syntax: Option<&'a ast::FnDef>` stores a reference to
545 the enclosing function *syntax*, while `function: Option<hir::Function>` is the
546 `Def` for this function.
547
548 To construct the context, we first do an ["IntelliJ Trick"]: we insert a dummy
549 identifier at the cursor's position and parse this modified file, to get a
550 reasonably looking syntax tree. Then we do a bunch of "classification" routines
551 to figure out the context. For example, we [find an ancestor `fn` node] and we get a
552 [semantic model] for it (using the lossy `source_binder` infrastructure).
553
554 The second step is to run a [series of independent completion routines]. Let's
555 take a closer look at [`complete_dot`], which completes fields and methods in
556 `foo.bar|`. First we extract a semantic function and a syntactic receiver
557 expression out of the `Context`. Then we run type-inference for this single
558 function and map our syntactic expression to `ExprId`. Using the ID, we figure
559 out the type of the receiver expression. Then we add all fields & methods from
560 the type to completion.
561
562 [receiving a message]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop.rs#L203
563 [schedule it on the threadpool]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop.rs#L428
564 [catch]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ra_lsp_server/src/main_loop.rs#L436-L442
565 [the handler]: https://salsa.zulipchat.com/#narrow/stream/181542-rfcs.2Fsalsa-query-group/topic/design.20next.20steps
566 [ask analysis for completion]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/lib.rs#L439-L444
567 [completion implementation]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/completion.rs#L46-L62
568 [`CompletionContext`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/completion/completion_context.rs#L14-L37
569 ["IntelliJ Trick"]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/completion/completion_context.rs#L72-L75
570 [find an ancestor `fn` node]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/completion/completion_context.rs#L116-L120
571 [semantic model]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/completion/completion_context.rs#L123
572 [series of independent completion routines]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/completion.rs#L52-L59
573 [`complete_dot`]: https://github.com/rust-analyzer/rust-analyzer/blob/guide-2019-01/crates/ide_api/src/completion/complete_dot.rs#L6-L22