]> git.lizzy.rs Git - zlib.git/blob - deflate.c
Avoid shifts of negative values inflateMark().
[zlib.git] / deflate.c
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49
50 /* @(#) $Id$ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55    " deflate 1.2.8.1 Copyright 1995-2013 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75
76 local void fill_window    OF((deflate_state *s));
77 local block_state deflate_stored OF((deflate_state *s, int flush));
78 local block_state deflate_fast   OF((deflate_state *s, int flush));
79 #ifndef FASTEST
80 local block_state deflate_slow   OF((deflate_state *s, int flush));
81 #endif
82 local block_state deflate_rle    OF((deflate_state *s, int flush));
83 local block_state deflate_huff   OF((deflate_state *s, int flush));
84 local void lm_init        OF((deflate_state *s));
85 local void putShortMSB    OF((deflate_state *s, uInt b));
86 local void flush_pending  OF((z_streamp strm));
87 local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
88 #ifdef ASMV
89       void match_init OF((void)); /* asm code initialization */
90       uInt longest_match  OF((deflate_state *s, IPos cur_match));
91 #else
92 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
93 #endif
94
95 #ifdef ZLIB_DEBUG
96 local  void check_match OF((deflate_state *s, IPos start, IPos match,
97                             int length));
98 #endif
99
100 /* ===========================================================================
101  * Local data
102  */
103
104 #define NIL 0
105 /* Tail of hash chains */
106
107 #ifndef TOO_FAR
108 #  define TOO_FAR 4096
109 #endif
110 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
111
112 /* Values for max_lazy_match, good_match and max_chain_length, depending on
113  * the desired pack level (0..9). The values given below have been tuned to
114  * exclude worst case performance for pathological files. Better values may be
115  * found for specific files.
116  */
117 typedef struct config_s {
118    ush good_length; /* reduce lazy search above this match length */
119    ush max_lazy;    /* do not perform lazy search above this match length */
120    ush nice_length; /* quit search above this match length */
121    ush max_chain;
122    compress_func func;
123 } config;
124
125 #ifdef FASTEST
126 local const config configuration_table[2] = {
127 /*      good lazy nice chain */
128 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
129 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
130 #else
131 local const config configuration_table[10] = {
132 /*      good lazy nice chain */
133 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
134 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
135 /* 2 */ {4,    5, 16,    8, deflate_fast},
136 /* 3 */ {4,    6, 32,   32, deflate_fast},
137
138 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
139 /* 5 */ {8,   16, 32,   32, deflate_slow},
140 /* 6 */ {8,   16, 128, 128, deflate_slow},
141 /* 7 */ {8,   32, 128, 256, deflate_slow},
142 /* 8 */ {32, 128, 258, 1024, deflate_slow},
143 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
144 #endif
145
146 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
147  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
148  * meaning.
149  */
150
151 #define EQUAL 0
152 /* result of memcmp for equal strings */
153
154 #ifndef NO_DUMMY_DECL
155 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
156 #endif
157
158 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
159 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
160
161 /* ===========================================================================
162  * Update a hash value with the given input byte
163  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
164  *    input characters, so that a running hash key can be computed from the
165  *    previous key instead of complete recalculation each time.
166  */
167 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
168
169
170 /* ===========================================================================
171  * Insert string str in the dictionary and set match_head to the previous head
172  * of the hash chain (the most recent string with same hash key). Return
173  * the previous length of the hash chain.
174  * If this file is compiled with -DFASTEST, the compression level is forced
175  * to 1, and no hash chains are maintained.
176  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
177  *    input characters and the first MIN_MATCH bytes of str are valid
178  *    (except for the last MIN_MATCH-1 bytes of the input file).
179  */
180 #ifdef FASTEST
181 #define INSERT_STRING(s, str, match_head) \
182    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
183     match_head = s->head[s->ins_h], \
184     s->head[s->ins_h] = (Pos)(str))
185 #else
186 #define INSERT_STRING(s, str, match_head) \
187    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
188     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
189     s->head[s->ins_h] = (Pos)(str))
190 #endif
191
192 /* ===========================================================================
193  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
194  * prev[] will be initialized on the fly.
195  */
196 #define CLEAR_HASH(s) \
197     s->head[s->hash_size-1] = NIL; \
198     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
199
200 /* ========================================================================= */
201 int ZEXPORT deflateInit_(strm, level, version, stream_size)
202     z_streamp strm;
203     int level;
204     const char *version;
205     int stream_size;
206 {
207     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
208                          Z_DEFAULT_STRATEGY, version, stream_size);
209     /* To do: ignore strm->next_in if we use it as window */
210 }
211
212 /* ========================================================================= */
213 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
214                   version, stream_size)
215     z_streamp strm;
216     int  level;
217     int  method;
218     int  windowBits;
219     int  memLevel;
220     int  strategy;
221     const char *version;
222     int stream_size;
223 {
224     deflate_state *s;
225     int wrap = 1;
226     static const char my_version[] = ZLIB_VERSION;
227
228     ushf *overlay;
229     /* We overlay pending_buf and d_buf+l_buf. This works since the average
230      * output size for (length,distance) codes is <= 24 bits.
231      */
232
233     if (version == Z_NULL || version[0] != my_version[0] ||
234         stream_size != sizeof(z_stream)) {
235         return Z_VERSION_ERROR;
236     }
237     if (strm == Z_NULL) return Z_STREAM_ERROR;
238
239     strm->msg = Z_NULL;
240     if (strm->zalloc == (alloc_func)0) {
241 #ifdef Z_SOLO
242         return Z_STREAM_ERROR;
243 #else
244         strm->zalloc = zcalloc;
245         strm->opaque = (voidpf)0;
246 #endif
247     }
248     if (strm->zfree == (free_func)0)
249 #ifdef Z_SOLO
250         return Z_STREAM_ERROR;
251 #else
252         strm->zfree = zcfree;
253 #endif
254
255 #ifdef FASTEST
256     if (level != 0) level = 1;
257 #else
258     if (level == Z_DEFAULT_COMPRESSION) level = 6;
259 #endif
260
261     if (windowBits < 0) { /* suppress zlib wrapper */
262         wrap = 0;
263         windowBits = -windowBits;
264     }
265 #ifdef GZIP
266     else if (windowBits > 15) {
267         wrap = 2;       /* write gzip wrapper instead */
268         windowBits -= 16;
269     }
270 #endif
271     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
272         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
273         strategy < 0 || strategy > Z_FIXED) {
274         return Z_STREAM_ERROR;
275     }
276     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
277     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
278     if (s == Z_NULL) return Z_MEM_ERROR;
279     strm->state = (struct internal_state FAR *)s;
280     s->strm = strm;
281
282     s->wrap = wrap;
283     s->gzhead = Z_NULL;
284     s->w_bits = windowBits;
285     s->w_size = 1 << s->w_bits;
286     s->w_mask = s->w_size - 1;
287
288     s->hash_bits = memLevel + 7;
289     s->hash_size = 1 << s->hash_bits;
290     s->hash_mask = s->hash_size - 1;
291     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
292
293     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
294     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
295     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
296
297     s->high_water = 0;      /* nothing written to s->window yet */
298
299     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
300
301     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
302     s->pending_buf = (uchf *) overlay;
303     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
304
305     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
306         s->pending_buf == Z_NULL) {
307         s->status = FINISH_STATE;
308         strm->msg = ERR_MSG(Z_MEM_ERROR);
309         deflateEnd (strm);
310         return Z_MEM_ERROR;
311     }
312     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
313     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
314
315     s->level = level;
316     s->strategy = strategy;
317     s->method = (Byte)method;
318
319     return deflateReset(strm);
320 }
321
322 /* ========================================================================= */
323 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
324     z_streamp strm;
325     const Bytef *dictionary;
326     uInt  dictLength;
327 {
328     deflate_state *s;
329     uInt str, n;
330     int wrap;
331     unsigned avail;
332     z_const unsigned char *next;
333
334     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
335         return Z_STREAM_ERROR;
336     s = strm->state;
337     wrap = s->wrap;
338     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
339         return Z_STREAM_ERROR;
340
341     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
342     if (wrap == 1)
343         strm->adler = adler32(strm->adler, dictionary, dictLength);
344     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
345
346     /* if dictionary would fill window, just replace the history */
347     if (dictLength >= s->w_size) {
348         if (wrap == 0) {            /* already empty otherwise */
349             CLEAR_HASH(s);
350             s->strstart = 0;
351             s->block_start = 0L;
352             s->insert = 0;
353         }
354         dictionary += dictLength - s->w_size;  /* use the tail */
355         dictLength = s->w_size;
356     }
357
358     /* insert dictionary into window and hash */
359     avail = strm->avail_in;
360     next = strm->next_in;
361     strm->avail_in = dictLength;
362     strm->next_in = (z_const Bytef *)dictionary;
363     fill_window(s);
364     while (s->lookahead >= MIN_MATCH) {
365         str = s->strstart;
366         n = s->lookahead - (MIN_MATCH-1);
367         do {
368             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
369 #ifndef FASTEST
370             s->prev[str & s->w_mask] = s->head[s->ins_h];
371 #endif
372             s->head[s->ins_h] = (Pos)str;
373             str++;
374         } while (--n);
375         s->strstart = str;
376         s->lookahead = MIN_MATCH-1;
377         fill_window(s);
378     }
379     s->strstart += s->lookahead;
380     s->block_start = (long)s->strstart;
381     s->insert = s->lookahead;
382     s->lookahead = 0;
383     s->match_length = s->prev_length = MIN_MATCH-1;
384     s->match_available = 0;
385     strm->next_in = next;
386     strm->avail_in = avail;
387     s->wrap = wrap;
388     return Z_OK;
389 }
390
391 /* ========================================================================= */
392 int ZEXPORT deflateResetKeep (strm)
393     z_streamp strm;
394 {
395     deflate_state *s;
396
397     if (strm == Z_NULL || strm->state == Z_NULL ||
398         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
399         return Z_STREAM_ERROR;
400     }
401
402     strm->total_in = strm->total_out = 0;
403     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
404     strm->data_type = Z_UNKNOWN;
405
406     s = (deflate_state *)strm->state;
407     s->pending = 0;
408     s->pending_out = s->pending_buf;
409
410     if (s->wrap < 0) {
411         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
412     }
413     s->status = s->wrap ? INIT_STATE : BUSY_STATE;
414     strm->adler =
415 #ifdef GZIP
416         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
417 #endif
418         adler32(0L, Z_NULL, 0);
419     s->last_flush = Z_NO_FLUSH;
420
421     _tr_init(s);
422
423     return Z_OK;
424 }
425
426 /* ========================================================================= */
427 int ZEXPORT deflateReset (strm)
428     z_streamp strm;
429 {
430     int ret;
431
432     ret = deflateResetKeep(strm);
433     if (ret == Z_OK)
434         lm_init(strm->state);
435     return ret;
436 }
437
438 /* ========================================================================= */
439 int ZEXPORT deflateSetHeader (strm, head)
440     z_streamp strm;
441     gz_headerp head;
442 {
443     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
444     if (strm->state->wrap != 2) return Z_STREAM_ERROR;
445     strm->state->gzhead = head;
446     return Z_OK;
447 }
448
449 /* ========================================================================= */
450 int ZEXPORT deflatePending (strm, pending, bits)
451     unsigned *pending;
452     int *bits;
453     z_streamp strm;
454 {
455     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
456     if (pending != Z_NULL)
457         *pending = strm->state->pending;
458     if (bits != Z_NULL)
459         *bits = strm->state->bi_valid;
460     return Z_OK;
461 }
462
463 /* ========================================================================= */
464 int ZEXPORT deflatePrime (strm, bits, value)
465     z_streamp strm;
466     int bits;
467     int value;
468 {
469     deflate_state *s;
470     int put;
471
472     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
473     s = strm->state;
474     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
475         return Z_BUF_ERROR;
476     do {
477         put = Buf_size - s->bi_valid;
478         if (put > bits)
479             put = bits;
480         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
481         s->bi_valid += put;
482         _tr_flush_bits(s);
483         value >>= put;
484         bits -= put;
485     } while (bits);
486     return Z_OK;
487 }
488
489 /* ========================================================================= */
490 int ZEXPORT deflateParams(strm, level, strategy)
491     z_streamp strm;
492     int level;
493     int strategy;
494 {
495     deflate_state *s;
496     compress_func func;
497     int err = Z_OK;
498
499     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
500     s = strm->state;
501
502 #ifdef FASTEST
503     if (level != 0) level = 1;
504 #else
505     if (level == Z_DEFAULT_COMPRESSION) level = 6;
506 #endif
507     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
508         return Z_STREAM_ERROR;
509     }
510     func = configuration_table[s->level].func;
511
512     if ((strategy != s->strategy || func != configuration_table[level].func)) {
513         /* Flush the last buffer: */
514         err = deflate(strm, Z_BLOCK);
515         if (err == Z_BUF_ERROR && s->pending == 0)
516             err = Z_OK;
517     }
518     if (s->level != level) {
519         s->level = level;
520         s->max_lazy_match   = configuration_table[level].max_lazy;
521         s->good_match       = configuration_table[level].good_length;
522         s->nice_match       = configuration_table[level].nice_length;
523         s->max_chain_length = configuration_table[level].max_chain;
524     }
525     s->strategy = strategy;
526     return err;
527 }
528
529 /* ========================================================================= */
530 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
531     z_streamp strm;
532     int good_length;
533     int max_lazy;
534     int nice_length;
535     int max_chain;
536 {
537     deflate_state *s;
538
539     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
540     s = strm->state;
541     s->good_match = good_length;
542     s->max_lazy_match = max_lazy;
543     s->nice_match = nice_length;
544     s->max_chain_length = max_chain;
545     return Z_OK;
546 }
547
548 /* =========================================================================
549  * For the default windowBits of 15 and memLevel of 8, this function returns
550  * a close to exact, as well as small, upper bound on the compressed size.
551  * They are coded as constants here for a reason--if the #define's are
552  * changed, then this function needs to be changed as well.  The return
553  * value for 15 and 8 only works for those exact settings.
554  *
555  * For any setting other than those defaults for windowBits and memLevel,
556  * the value returned is a conservative worst case for the maximum expansion
557  * resulting from using fixed blocks instead of stored blocks, which deflate
558  * can emit on compressed data for some combinations of the parameters.
559  *
560  * This function could be more sophisticated to provide closer upper bounds for
561  * every combination of windowBits and memLevel.  But even the conservative
562  * upper bound of about 14% expansion does not seem onerous for output buffer
563  * allocation.
564  */
565 uLong ZEXPORT deflateBound(strm, sourceLen)
566     z_streamp strm;
567     uLong sourceLen;
568 {
569     deflate_state *s;
570     uLong complen, wraplen;
571     Bytef *str;
572
573     /* conservative upper bound for compressed data */
574     complen = sourceLen +
575               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
576
577     /* if can't get parameters, return conservative bound plus zlib wrapper */
578     if (strm == Z_NULL || strm->state == Z_NULL)
579         return complen + 6;
580
581     /* compute wrapper length */
582     s = strm->state;
583     switch (s->wrap) {
584     case 0:                                 /* raw deflate */
585         wraplen = 0;
586         break;
587     case 1:                                 /* zlib wrapper */
588         wraplen = 6 + (s->strstart ? 4 : 0);
589         break;
590     case 2:                                 /* gzip wrapper */
591         wraplen = 18;
592         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
593             if (s->gzhead->extra != Z_NULL)
594                 wraplen += 2 + s->gzhead->extra_len;
595             str = s->gzhead->name;
596             if (str != Z_NULL)
597                 do {
598                     wraplen++;
599                 } while (*str++);
600             str = s->gzhead->comment;
601             if (str != Z_NULL)
602                 do {
603                     wraplen++;
604                 } while (*str++);
605             if (s->gzhead->hcrc)
606                 wraplen += 2;
607         }
608         break;
609     default:                                /* for compiler happiness */
610         wraplen = 6;
611     }
612
613     /* if not default parameters, return conservative bound */
614     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
615         return complen + wraplen;
616
617     /* default settings: return tight bound for that case */
618     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
619            (sourceLen >> 25) + 13 - 6 + wraplen;
620 }
621
622 /* =========================================================================
623  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
624  * IN assertion: the stream state is correct and there is enough room in
625  * pending_buf.
626  */
627 local void putShortMSB (s, b)
628     deflate_state *s;
629     uInt b;
630 {
631     put_byte(s, (Byte)(b >> 8));
632     put_byte(s, (Byte)(b & 0xff));
633 }
634
635 /* =========================================================================
636  * Flush as much pending output as possible. All deflate() output goes
637  * through this function so some applications may wish to modify it
638  * to avoid allocating a large strm->next_out buffer and copying into it.
639  * (See also read_buf()).
640  */
641 local void flush_pending(strm)
642     z_streamp strm;
643 {
644     unsigned len;
645     deflate_state *s = strm->state;
646
647     _tr_flush_bits(s);
648     len = s->pending;
649     if (len > strm->avail_out) len = strm->avail_out;
650     if (len == 0) return;
651
652     zmemcpy(strm->next_out, s->pending_out, len);
653     strm->next_out  += len;
654     s->pending_out  += len;
655     strm->total_out += len;
656     strm->avail_out  -= len;
657     s->pending -= len;
658     if (s->pending == 0) {
659         s->pending_out = s->pending_buf;
660     }
661 }
662
663 /* ========================================================================= */
664 int ZEXPORT deflate (strm, flush)
665     z_streamp strm;
666     int flush;
667 {
668     int old_flush; /* value of flush param for previous deflate call */
669     deflate_state *s;
670
671     if (strm == Z_NULL || strm->state == Z_NULL ||
672         flush > Z_BLOCK || flush < 0) {
673         return Z_STREAM_ERROR;
674     }
675     s = strm->state;
676
677     if (strm->next_out == Z_NULL ||
678         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
679         (s->status == FINISH_STATE && flush != Z_FINISH)) {
680         ERR_RETURN(strm, Z_STREAM_ERROR);
681     }
682     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
683
684     s->strm = strm; /* just in case */
685     old_flush = s->last_flush;
686     s->last_flush = flush;
687
688     /* Write the header */
689     if (s->status == INIT_STATE) {
690 #ifdef GZIP
691         if (s->wrap == 2) {
692             strm->adler = crc32(0L, Z_NULL, 0);
693             put_byte(s, 31);
694             put_byte(s, 139);
695             put_byte(s, 8);
696             if (s->gzhead == Z_NULL) {
697                 put_byte(s, 0);
698                 put_byte(s, 0);
699                 put_byte(s, 0);
700                 put_byte(s, 0);
701                 put_byte(s, 0);
702                 put_byte(s, s->level == 9 ? 2 :
703                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
704                              4 : 0));
705                 put_byte(s, OS_CODE);
706                 s->status = BUSY_STATE;
707             }
708             else {
709                 put_byte(s, (s->gzhead->text ? 1 : 0) +
710                             (s->gzhead->hcrc ? 2 : 0) +
711                             (s->gzhead->extra == Z_NULL ? 0 : 4) +
712                             (s->gzhead->name == Z_NULL ? 0 : 8) +
713                             (s->gzhead->comment == Z_NULL ? 0 : 16)
714                         );
715                 put_byte(s, (Byte)(s->gzhead->time & 0xff));
716                 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
717                 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
718                 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
719                 put_byte(s, s->level == 9 ? 2 :
720                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
721                              4 : 0));
722                 put_byte(s, s->gzhead->os & 0xff);
723                 if (s->gzhead->extra != Z_NULL) {
724                     put_byte(s, s->gzhead->extra_len & 0xff);
725                     put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
726                 }
727                 if (s->gzhead->hcrc)
728                     strm->adler = crc32(strm->adler, s->pending_buf,
729                                         s->pending);
730                 s->gzindex = 0;
731                 s->status = EXTRA_STATE;
732             }
733         }
734         else
735 #endif
736         {
737             uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
738             uInt level_flags;
739
740             if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
741                 level_flags = 0;
742             else if (s->level < 6)
743                 level_flags = 1;
744             else if (s->level == 6)
745                 level_flags = 2;
746             else
747                 level_flags = 3;
748             header |= (level_flags << 6);
749             if (s->strstart != 0) header |= PRESET_DICT;
750             header += 31 - (header % 31);
751
752             s->status = BUSY_STATE;
753             putShortMSB(s, header);
754
755             /* Save the adler32 of the preset dictionary: */
756             if (s->strstart != 0) {
757                 putShortMSB(s, (uInt)(strm->adler >> 16));
758                 putShortMSB(s, (uInt)(strm->adler & 0xffff));
759             }
760             strm->adler = adler32(0L, Z_NULL, 0);
761         }
762     }
763 #ifdef GZIP
764     if (s->status == EXTRA_STATE) {
765         if (s->gzhead->extra != Z_NULL) {
766             uInt beg = s->pending;  /* start of bytes to update crc */
767
768             while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
769                 if (s->pending == s->pending_buf_size) {
770                     if (s->gzhead->hcrc && s->pending > beg)
771                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
772                                             s->pending - beg);
773                     flush_pending(strm);
774                     beg = s->pending;
775                     if (s->pending == s->pending_buf_size)
776                         break;
777                 }
778                 put_byte(s, s->gzhead->extra[s->gzindex]);
779                 s->gzindex++;
780             }
781             if (s->gzhead->hcrc && s->pending > beg)
782                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
783                                     s->pending - beg);
784             if (s->gzindex == s->gzhead->extra_len) {
785                 s->gzindex = 0;
786                 s->status = NAME_STATE;
787             }
788         }
789         else
790             s->status = NAME_STATE;
791     }
792     if (s->status == NAME_STATE) {
793         if (s->gzhead->name != Z_NULL) {
794             uInt beg = s->pending;  /* start of bytes to update crc */
795             int val;
796
797             do {
798                 if (s->pending == s->pending_buf_size) {
799                     if (s->gzhead->hcrc && s->pending > beg)
800                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
801                                             s->pending - beg);
802                     flush_pending(strm);
803                     beg = s->pending;
804                     if (s->pending == s->pending_buf_size) {
805                         val = 1;
806                         break;
807                     }
808                 }
809                 val = s->gzhead->name[s->gzindex++];
810                 put_byte(s, val);
811             } while (val != 0);
812             if (s->gzhead->hcrc && s->pending > beg)
813                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
814                                     s->pending - beg);
815             if (val == 0) {
816                 s->gzindex = 0;
817                 s->status = COMMENT_STATE;
818             }
819         }
820         else
821             s->status = COMMENT_STATE;
822     }
823     if (s->status == COMMENT_STATE) {
824         if (s->gzhead->comment != Z_NULL) {
825             uInt beg = s->pending;  /* start of bytes to update crc */
826             int val;
827
828             do {
829                 if (s->pending == s->pending_buf_size) {
830                     if (s->gzhead->hcrc && s->pending > beg)
831                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
832                                             s->pending - beg);
833                     flush_pending(strm);
834                     beg = s->pending;
835                     if (s->pending == s->pending_buf_size) {
836                         val = 1;
837                         break;
838                     }
839                 }
840                 val = s->gzhead->comment[s->gzindex++];
841                 put_byte(s, val);
842             } while (val != 0);
843             if (s->gzhead->hcrc && s->pending > beg)
844                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
845                                     s->pending - beg);
846             if (val == 0)
847                 s->status = HCRC_STATE;
848         }
849         else
850             s->status = HCRC_STATE;
851     }
852     if (s->status == HCRC_STATE) {
853         if (s->gzhead->hcrc) {
854             if (s->pending + 2 > s->pending_buf_size)
855                 flush_pending(strm);
856             if (s->pending + 2 <= s->pending_buf_size) {
857                 put_byte(s, (Byte)(strm->adler & 0xff));
858                 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
859                 strm->adler = crc32(0L, Z_NULL, 0);
860                 s->status = BUSY_STATE;
861             }
862         }
863         else
864             s->status = BUSY_STATE;
865     }
866 #endif
867
868     /* Flush as much pending output as possible */
869     if (s->pending != 0) {
870         flush_pending(strm);
871         if (strm->avail_out == 0) {
872             /* Since avail_out is 0, deflate will be called again with
873              * more output space, but possibly with both pending and
874              * avail_in equal to zero. There won't be anything to do,
875              * but this is not an error situation so make sure we
876              * return OK instead of BUF_ERROR at next call of deflate:
877              */
878             s->last_flush = -1;
879             return Z_OK;
880         }
881
882     /* Make sure there is something to do and avoid duplicate consecutive
883      * flushes. For repeated and useless calls with Z_FINISH, we keep
884      * returning Z_STREAM_END instead of Z_BUF_ERROR.
885      */
886     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
887                flush != Z_FINISH) {
888         ERR_RETURN(strm, Z_BUF_ERROR);
889     }
890
891     /* User must not provide more input after the first FINISH: */
892     if (s->status == FINISH_STATE && strm->avail_in != 0) {
893         ERR_RETURN(strm, Z_BUF_ERROR);
894     }
895
896     /* Start a new block or continue the current one.
897      */
898     if (strm->avail_in != 0 || s->lookahead != 0 ||
899         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
900         block_state bstate;
901
902         bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
903                     (s->strategy == Z_RLE ? deflate_rle(s, flush) :
904                         (*(configuration_table[s->level].func))(s, flush));
905
906         if (bstate == finish_started || bstate == finish_done) {
907             s->status = FINISH_STATE;
908         }
909         if (bstate == need_more || bstate == finish_started) {
910             if (strm->avail_out == 0) {
911                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
912             }
913             return Z_OK;
914             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
915              * of deflate should use the same flush parameter to make sure
916              * that the flush is complete. So we don't have to output an
917              * empty block here, this will be done at next call. This also
918              * ensures that for a very small output buffer, we emit at most
919              * one empty block.
920              */
921         }
922         if (bstate == block_done) {
923             if (flush == Z_PARTIAL_FLUSH) {
924                 _tr_align(s);
925             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
926                 _tr_stored_block(s, (char*)0, 0L, 0);
927                 /* For a full flush, this empty block will be recognized
928                  * as a special marker by inflate_sync().
929                  */
930                 if (flush == Z_FULL_FLUSH) {
931                     CLEAR_HASH(s);             /* forget history */
932                     if (s->lookahead == 0) {
933                         s->strstart = 0;
934                         s->block_start = 0L;
935                         s->insert = 0;
936                     }
937                 }
938             }
939             flush_pending(strm);
940             if (strm->avail_out == 0) {
941               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
942               return Z_OK;
943             }
944         }
945     }
946     Assert(strm->avail_out > 0, "bug2");
947
948     if (flush != Z_FINISH) return Z_OK;
949     if (s->wrap <= 0) return Z_STREAM_END;
950
951     /* Write the trailer */
952 #ifdef GZIP
953     if (s->wrap == 2) {
954         put_byte(s, (Byte)(strm->adler & 0xff));
955         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
956         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
957         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
958         put_byte(s, (Byte)(strm->total_in & 0xff));
959         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
960         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
961         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
962     }
963     else
964 #endif
965     {
966         putShortMSB(s, (uInt)(strm->adler >> 16));
967         putShortMSB(s, (uInt)(strm->adler & 0xffff));
968     }
969     flush_pending(strm);
970     /* If avail_out is zero, the application will call deflate again
971      * to flush the rest.
972      */
973     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
974     return s->pending != 0 ? Z_OK : Z_STREAM_END;
975 }
976
977 /* ========================================================================= */
978 int ZEXPORT deflateEnd (strm)
979     z_streamp strm;
980 {
981     int status;
982
983     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
984
985     status = strm->state->status;
986     if (status != INIT_STATE &&
987         status != EXTRA_STATE &&
988         status != NAME_STATE &&
989         status != COMMENT_STATE &&
990         status != HCRC_STATE &&
991         status != BUSY_STATE &&
992         status != FINISH_STATE) {
993       return Z_STREAM_ERROR;
994     }
995
996     /* Deallocate in reverse order of allocations: */
997     TRY_FREE(strm, strm->state->pending_buf);
998     TRY_FREE(strm, strm->state->head);
999     TRY_FREE(strm, strm->state->prev);
1000     TRY_FREE(strm, strm->state->window);
1001
1002     ZFREE(strm, strm->state);
1003     strm->state = Z_NULL;
1004
1005     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1006 }
1007
1008 /* =========================================================================
1009  * Copy the source state to the destination state.
1010  * To simplify the source, this is not supported for 16-bit MSDOS (which
1011  * doesn't have enough memory anyway to duplicate compression states).
1012  */
1013 int ZEXPORT deflateCopy (dest, source)
1014     z_streamp dest;
1015     z_streamp source;
1016 {
1017 #ifdef MAXSEG_64K
1018     return Z_STREAM_ERROR;
1019 #else
1020     deflate_state *ds;
1021     deflate_state *ss;
1022     ushf *overlay;
1023
1024
1025     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
1026         return Z_STREAM_ERROR;
1027     }
1028
1029     ss = source->state;
1030
1031     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1032
1033     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1034     if (ds == Z_NULL) return Z_MEM_ERROR;
1035     dest->state = (struct internal_state FAR *) ds;
1036     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1037     ds->strm = dest;
1038
1039     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1040     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1041     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1042     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1043     ds->pending_buf = (uchf *) overlay;
1044
1045     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1046         ds->pending_buf == Z_NULL) {
1047         deflateEnd (dest);
1048         return Z_MEM_ERROR;
1049     }
1050     /* following zmemcpy do not work for 16-bit MSDOS */
1051     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1052     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1053     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1054     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1055
1056     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1057     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1058     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1059
1060     ds->l_desc.dyn_tree = ds->dyn_ltree;
1061     ds->d_desc.dyn_tree = ds->dyn_dtree;
1062     ds->bl_desc.dyn_tree = ds->bl_tree;
1063
1064     return Z_OK;
1065 #endif /* MAXSEG_64K */
1066 }
1067
1068 /* ===========================================================================
1069  * Read a new buffer from the current input stream, update the adler32
1070  * and total number of bytes read.  All deflate() input goes through
1071  * this function so some applications may wish to modify it to avoid
1072  * allocating a large strm->next_in buffer and copying from it.
1073  * (See also flush_pending()).
1074  */
1075 local int read_buf(strm, buf, size)
1076     z_streamp strm;
1077     Bytef *buf;
1078     unsigned size;
1079 {
1080     unsigned len = strm->avail_in;
1081
1082     if (len > size) len = size;
1083     if (len == 0) return 0;
1084
1085     strm->avail_in  -= len;
1086
1087     zmemcpy(buf, strm->next_in, len);
1088     if (strm->state->wrap == 1) {
1089         strm->adler = adler32(strm->adler, buf, len);
1090     }
1091 #ifdef GZIP
1092     else if (strm->state->wrap == 2) {
1093         strm->adler = crc32(strm->adler, buf, len);
1094     }
1095 #endif
1096     strm->next_in  += len;
1097     strm->total_in += len;
1098
1099     return (int)len;
1100 }
1101
1102 /* ===========================================================================
1103  * Initialize the "longest match" routines for a new zlib stream
1104  */
1105 local void lm_init (s)
1106     deflate_state *s;
1107 {
1108     s->window_size = (ulg)2L*s->w_size;
1109
1110     CLEAR_HASH(s);
1111
1112     /* Set the default configuration parameters:
1113      */
1114     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1115     s->good_match       = configuration_table[s->level].good_length;
1116     s->nice_match       = configuration_table[s->level].nice_length;
1117     s->max_chain_length = configuration_table[s->level].max_chain;
1118
1119     s->strstart = 0;
1120     s->block_start = 0L;
1121     s->lookahead = 0;
1122     s->insert = 0;
1123     s->match_length = s->prev_length = MIN_MATCH-1;
1124     s->match_available = 0;
1125     s->ins_h = 0;
1126 #ifndef FASTEST
1127 #ifdef ASMV
1128     match_init(); /* initialize the asm code */
1129 #endif
1130 #endif
1131 }
1132
1133 #ifndef FASTEST
1134 /* ===========================================================================
1135  * Set match_start to the longest match starting at the given string and
1136  * return its length. Matches shorter or equal to prev_length are discarded,
1137  * in which case the result is equal to prev_length and match_start is
1138  * garbage.
1139  * IN assertions: cur_match is the head of the hash chain for the current
1140  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1141  * OUT assertion: the match length is not greater than s->lookahead.
1142  */
1143 #ifndef ASMV
1144 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1145  * match.S. The code will be functionally equivalent.
1146  */
1147 local uInt longest_match(s, cur_match)
1148     deflate_state *s;
1149     IPos cur_match;                             /* current match */
1150 {
1151     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1152     register Bytef *scan = s->window + s->strstart; /* current string */
1153     register Bytef *match;                      /* matched string */
1154     register int len;                           /* length of current match */
1155     int best_len = s->prev_length;              /* best match length so far */
1156     int nice_match = s->nice_match;             /* stop if match long enough */
1157     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1158         s->strstart - (IPos)MAX_DIST(s) : NIL;
1159     /* Stop when cur_match becomes <= limit. To simplify the code,
1160      * we prevent matches with the string of window index 0.
1161      */
1162     Posf *prev = s->prev;
1163     uInt wmask = s->w_mask;
1164
1165 #ifdef UNALIGNED_OK
1166     /* Compare two bytes at a time. Note: this is not always beneficial.
1167      * Try with and without -DUNALIGNED_OK to check.
1168      */
1169     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1170     register ush scan_start = *(ushf*)scan;
1171     register ush scan_end   = *(ushf*)(scan+best_len-1);
1172 #else
1173     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1174     register Byte scan_end1  = scan[best_len-1];
1175     register Byte scan_end   = scan[best_len];
1176 #endif
1177
1178     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1179      * It is easy to get rid of this optimization if necessary.
1180      */
1181     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1182
1183     /* Do not waste too much time if we already have a good match: */
1184     if (s->prev_length >= s->good_match) {
1185         chain_length >>= 2;
1186     }
1187     /* Do not look for matches beyond the end of the input. This is necessary
1188      * to make deflate deterministic.
1189      */
1190     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1191
1192     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1193
1194     do {
1195         Assert(cur_match < s->strstart, "no future");
1196         match = s->window + cur_match;
1197
1198         /* Skip to next match if the match length cannot increase
1199          * or if the match length is less than 2.  Note that the checks below
1200          * for insufficient lookahead only occur occasionally for performance
1201          * reasons.  Therefore uninitialized memory will be accessed, and
1202          * conditional jumps will be made that depend on those values.
1203          * However the length of the match is limited to the lookahead, so
1204          * the output of deflate is not affected by the uninitialized values.
1205          */
1206 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1207         /* This code assumes sizeof(unsigned short) == 2. Do not use
1208          * UNALIGNED_OK if your compiler uses a different size.
1209          */
1210         if (*(ushf*)(match+best_len-1) != scan_end ||
1211             *(ushf*)match != scan_start) continue;
1212
1213         /* It is not necessary to compare scan[2] and match[2] since they are
1214          * always equal when the other bytes match, given that the hash keys
1215          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1216          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1217          * lookahead only every 4th comparison; the 128th check will be made
1218          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1219          * necessary to put more guard bytes at the end of the window, or
1220          * to check more often for insufficient lookahead.
1221          */
1222         Assert(scan[2] == match[2], "scan[2]?");
1223         scan++, match++;
1224         do {
1225         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1226                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1227                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1228                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1229                  scan < strend);
1230         /* The funny "do {}" generates better code on most compilers */
1231
1232         /* Here, scan <= window+strstart+257 */
1233         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1234         if (*scan == *match) scan++;
1235
1236         len = (MAX_MATCH - 1) - (int)(strend-scan);
1237         scan = strend - (MAX_MATCH-1);
1238
1239 #else /* UNALIGNED_OK */
1240
1241         if (match[best_len]   != scan_end  ||
1242             match[best_len-1] != scan_end1 ||
1243             *match            != *scan     ||
1244             *++match          != scan[1])      continue;
1245
1246         /* The check at best_len-1 can be removed because it will be made
1247          * again later. (This heuristic is not always a win.)
1248          * It is not necessary to compare scan[2] and match[2] since they
1249          * are always equal when the other bytes match, given that
1250          * the hash keys are equal and that HASH_BITS >= 8.
1251          */
1252         scan += 2, match++;
1253         Assert(*scan == *match, "match[2]?");
1254
1255         /* We check for insufficient lookahead only every 8th comparison;
1256          * the 256th check will be made at strstart+258.
1257          */
1258         do {
1259         } while (*++scan == *++match && *++scan == *++match &&
1260                  *++scan == *++match && *++scan == *++match &&
1261                  *++scan == *++match && *++scan == *++match &&
1262                  *++scan == *++match && *++scan == *++match &&
1263                  scan < strend);
1264
1265         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1266
1267         len = MAX_MATCH - (int)(strend - scan);
1268         scan = strend - MAX_MATCH;
1269
1270 #endif /* UNALIGNED_OK */
1271
1272         if (len > best_len) {
1273             s->match_start = cur_match;
1274             best_len = len;
1275             if (len >= nice_match) break;
1276 #ifdef UNALIGNED_OK
1277             scan_end = *(ushf*)(scan+best_len-1);
1278 #else
1279             scan_end1  = scan[best_len-1];
1280             scan_end   = scan[best_len];
1281 #endif
1282         }
1283     } while ((cur_match = prev[cur_match & wmask]) > limit
1284              && --chain_length != 0);
1285
1286     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1287     return s->lookahead;
1288 }
1289 #endif /* ASMV */
1290
1291 #else /* FASTEST */
1292
1293 /* ---------------------------------------------------------------------------
1294  * Optimized version for FASTEST only
1295  */
1296 local uInt longest_match(s, cur_match)
1297     deflate_state *s;
1298     IPos cur_match;                             /* current match */
1299 {
1300     register Bytef *scan = s->window + s->strstart; /* current string */
1301     register Bytef *match;                       /* matched string */
1302     register int len;                           /* length of current match */
1303     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1304
1305     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1306      * It is easy to get rid of this optimization if necessary.
1307      */
1308     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1309
1310     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1311
1312     Assert(cur_match < s->strstart, "no future");
1313
1314     match = s->window + cur_match;
1315
1316     /* Return failure if the match length is less than 2:
1317      */
1318     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1319
1320     /* The check at best_len-1 can be removed because it will be made
1321      * again later. (This heuristic is not always a win.)
1322      * It is not necessary to compare scan[2] and match[2] since they
1323      * are always equal when the other bytes match, given that
1324      * the hash keys are equal and that HASH_BITS >= 8.
1325      */
1326     scan += 2, match += 2;
1327     Assert(*scan == *match, "match[2]?");
1328
1329     /* We check for insufficient lookahead only every 8th comparison;
1330      * the 256th check will be made at strstart+258.
1331      */
1332     do {
1333     } while (*++scan == *++match && *++scan == *++match &&
1334              *++scan == *++match && *++scan == *++match &&
1335              *++scan == *++match && *++scan == *++match &&
1336              *++scan == *++match && *++scan == *++match &&
1337              scan < strend);
1338
1339     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1340
1341     len = MAX_MATCH - (int)(strend - scan);
1342
1343     if (len < MIN_MATCH) return MIN_MATCH - 1;
1344
1345     s->match_start = cur_match;
1346     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1347 }
1348
1349 #endif /* FASTEST */
1350
1351 #ifdef ZLIB_DEBUG
1352 /* ===========================================================================
1353  * Check that the match at match_start is indeed a match.
1354  */
1355 local void check_match(s, start, match, length)
1356     deflate_state *s;
1357     IPos start, match;
1358     int length;
1359 {
1360     /* check that the match is indeed a match */
1361     if (zmemcmp(s->window + match,
1362                 s->window + start, length) != EQUAL) {
1363         fprintf(stderr, " start %u, match %u, length %d\n",
1364                 start, match, length);
1365         do {
1366             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1367         } while (--length != 0);
1368         z_error("invalid match");
1369     }
1370     if (z_verbose > 1) {
1371         fprintf(stderr,"\\[%d,%d]", start-match, length);
1372         do { putc(s->window[start++], stderr); } while (--length != 0);
1373     }
1374 }
1375 #else
1376 #  define check_match(s, start, match, length)
1377 #endif /* ZLIB_DEBUG */
1378
1379 /* ===========================================================================
1380  * Fill the window when the lookahead becomes insufficient.
1381  * Updates strstart and lookahead.
1382  *
1383  * IN assertion: lookahead < MIN_LOOKAHEAD
1384  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1385  *    At least one byte has been read, or avail_in == 0; reads are
1386  *    performed for at least two bytes (required for the zip translate_eol
1387  *    option -- not supported here).
1388  */
1389 local void fill_window(s)
1390     deflate_state *s;
1391 {
1392     register unsigned n, m;
1393     register Posf *p;
1394     unsigned more;    /* Amount of free space at the end of the window. */
1395     uInt wsize = s->w_size;
1396
1397     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1398
1399     do {
1400         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1401
1402         /* Deal with !@#$% 64K limit: */
1403         if (sizeof(int) <= 2) {
1404             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1405                 more = wsize;
1406
1407             } else if (more == (unsigned)(-1)) {
1408                 /* Very unlikely, but possible on 16 bit machine if
1409                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1410                  */
1411                 more--;
1412             }
1413         }
1414
1415         /* If the window is almost full and there is insufficient lookahead,
1416          * move the upper half to the lower one to make room in the upper half.
1417          */
1418         if (s->strstart >= wsize+MAX_DIST(s)) {
1419
1420             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1421             s->match_start -= wsize;
1422             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1423             s->block_start -= (long) wsize;
1424
1425             /* Slide the hash table (could be avoided with 32 bit values
1426                at the expense of memory usage). We slide even when level == 0
1427                to keep the hash table consistent if we switch back to level > 0
1428                later. (Using level 0 permanently is not an optimal usage of
1429                zlib, so we don't care about this pathological case.)
1430              */
1431             n = s->hash_size;
1432             p = &s->head[n];
1433             do {
1434                 m = *--p;
1435                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1436             } while (--n);
1437
1438             n = wsize;
1439 #ifndef FASTEST
1440             p = &s->prev[n];
1441             do {
1442                 m = *--p;
1443                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1444                 /* If n is not on any hash chain, prev[n] is garbage but
1445                  * its value will never be used.
1446                  */
1447             } while (--n);
1448 #endif
1449             more += wsize;
1450         }
1451         if (s->strm->avail_in == 0) break;
1452
1453         /* If there was no sliding:
1454          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1455          *    more == window_size - lookahead - strstart
1456          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1457          * => more >= window_size - 2*WSIZE + 2
1458          * In the BIG_MEM or MMAP case (not yet supported),
1459          *   window_size == input_size + MIN_LOOKAHEAD  &&
1460          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1461          * Otherwise, window_size == 2*WSIZE so more >= 2.
1462          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1463          */
1464         Assert(more >= 2, "more < 2");
1465
1466         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1467         s->lookahead += n;
1468
1469         /* Initialize the hash value now that we have some input: */
1470         if (s->lookahead + s->insert >= MIN_MATCH) {
1471             uInt str = s->strstart - s->insert;
1472             s->ins_h = s->window[str];
1473             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1474 #if MIN_MATCH != 3
1475             Call UPDATE_HASH() MIN_MATCH-3 more times
1476 #endif
1477             while (s->insert) {
1478                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1479 #ifndef FASTEST
1480                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1481 #endif
1482                 s->head[s->ins_h] = (Pos)str;
1483                 str++;
1484                 s->insert--;
1485                 if (s->lookahead + s->insert < MIN_MATCH)
1486                     break;
1487             }
1488         }
1489         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1490          * but this is not important since only literal bytes will be emitted.
1491          */
1492
1493     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1494
1495     /* If the WIN_INIT bytes after the end of the current data have never been
1496      * written, then zero those bytes in order to avoid memory check reports of
1497      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1498      * the longest match routines.  Update the high water mark for the next
1499      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1500      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1501      */
1502     if (s->high_water < s->window_size) {
1503         ulg curr = s->strstart + (ulg)(s->lookahead);
1504         ulg init;
1505
1506         if (s->high_water < curr) {
1507             /* Previous high water mark below current data -- zero WIN_INIT
1508              * bytes or up to end of window, whichever is less.
1509              */
1510             init = s->window_size - curr;
1511             if (init > WIN_INIT)
1512                 init = WIN_INIT;
1513             zmemzero(s->window + curr, (unsigned)init);
1514             s->high_water = curr + init;
1515         }
1516         else if (s->high_water < (ulg)curr + WIN_INIT) {
1517             /* High water mark at or above current data, but below current data
1518              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1519              * to end of window, whichever is less.
1520              */
1521             init = (ulg)curr + WIN_INIT - s->high_water;
1522             if (init > s->window_size - s->high_water)
1523                 init = s->window_size - s->high_water;
1524             zmemzero(s->window + s->high_water, (unsigned)init);
1525             s->high_water += init;
1526         }
1527     }
1528
1529     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1530            "not enough room for search");
1531 }
1532
1533 /* ===========================================================================
1534  * Flush the current block, with given end-of-file flag.
1535  * IN assertion: strstart is set to the end of the current match.
1536  */
1537 #define FLUSH_BLOCK_ONLY(s, last) { \
1538    _tr_flush_block(s, (s->block_start >= 0L ? \
1539                    (charf *)&s->window[(unsigned)s->block_start] : \
1540                    (charf *)Z_NULL), \
1541                 (ulg)((long)s->strstart - s->block_start), \
1542                 (last)); \
1543    s->block_start = s->strstart; \
1544    flush_pending(s->strm); \
1545    Tracev((stderr,"[FLUSH]")); \
1546 }
1547
1548 /* Same but force premature exit if necessary. */
1549 #define FLUSH_BLOCK(s, last) { \
1550    FLUSH_BLOCK_ONLY(s, last); \
1551    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1552 }
1553
1554 /* ===========================================================================
1555  * Copy without compression as much as possible from the input stream, return
1556  * the current block state.
1557  * This function does not insert new strings in the dictionary since
1558  * uncompressible data is probably not useful. This function is used
1559  * only for the level=0 compression option.
1560  * NOTE: this function should be optimized to avoid extra copying from
1561  * window to pending_buf.
1562  */
1563 local block_state deflate_stored(s, flush)
1564     deflate_state *s;
1565     int flush;
1566 {
1567     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1568      * to pending_buf_size, and each stored block has a 5 byte header:
1569      */
1570     ulg max_block_size = 0xffff;
1571     ulg max_start;
1572
1573     if (max_block_size > s->pending_buf_size - 5) {
1574         max_block_size = s->pending_buf_size - 5;
1575     }
1576
1577     /* Copy as much as possible from input to output: */
1578     for (;;) {
1579         /* Fill the window as much as possible: */
1580         if (s->lookahead <= 1) {
1581
1582             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1583                    s->block_start >= (long)s->w_size, "slide too late");
1584
1585             fill_window(s);
1586             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1587
1588             if (s->lookahead == 0) break; /* flush the current block */
1589         }
1590         Assert(s->block_start >= 0L, "block gone");
1591
1592         s->strstart += s->lookahead;
1593         s->lookahead = 0;
1594
1595         /* Emit a stored block if pending_buf will be full: */
1596         max_start = s->block_start + max_block_size;
1597         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1598             /* strstart == 0 is possible when wraparound on 16-bit machine */
1599             s->lookahead = (uInt)(s->strstart - max_start);
1600             s->strstart = (uInt)max_start;
1601             FLUSH_BLOCK(s, 0);
1602         }
1603         /* Flush if we may have to slide, otherwise block_start may become
1604          * negative and the data will be gone:
1605          */
1606         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1607             FLUSH_BLOCK(s, 0);
1608         }
1609     }
1610     s->insert = 0;
1611     if (flush == Z_FINISH) {
1612         FLUSH_BLOCK(s, 1);
1613         return finish_done;
1614     }
1615     if ((long)s->strstart > s->block_start)
1616         FLUSH_BLOCK(s, 0);
1617     return block_done;
1618 }
1619
1620 /* ===========================================================================
1621  * Compress as much as possible from the input stream, return the current
1622  * block state.
1623  * This function does not perform lazy evaluation of matches and inserts
1624  * new strings in the dictionary only for unmatched strings or for short
1625  * matches. It is used only for the fast compression options.
1626  */
1627 local block_state deflate_fast(s, flush)
1628     deflate_state *s;
1629     int flush;
1630 {
1631     IPos hash_head;       /* head of the hash chain */
1632     int bflush;           /* set if current block must be flushed */
1633
1634     for (;;) {
1635         /* Make sure that we always have enough lookahead, except
1636          * at the end of the input file. We need MAX_MATCH bytes
1637          * for the next match, plus MIN_MATCH bytes to insert the
1638          * string following the next match.
1639          */
1640         if (s->lookahead < MIN_LOOKAHEAD) {
1641             fill_window(s);
1642             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1643                 return need_more;
1644             }
1645             if (s->lookahead == 0) break; /* flush the current block */
1646         }
1647
1648         /* Insert the string window[strstart .. strstart+2] in the
1649          * dictionary, and set hash_head to the head of the hash chain:
1650          */
1651         hash_head = NIL;
1652         if (s->lookahead >= MIN_MATCH) {
1653             INSERT_STRING(s, s->strstart, hash_head);
1654         }
1655
1656         /* Find the longest match, discarding those <= prev_length.
1657          * At this point we have always match_length < MIN_MATCH
1658          */
1659         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1660             /* To simplify the code, we prevent matches with the string
1661              * of window index 0 (in particular we have to avoid a match
1662              * of the string with itself at the start of the input file).
1663              */
1664             s->match_length = longest_match (s, hash_head);
1665             /* longest_match() sets match_start */
1666         }
1667         if (s->match_length >= MIN_MATCH) {
1668             check_match(s, s->strstart, s->match_start, s->match_length);
1669
1670             _tr_tally_dist(s, s->strstart - s->match_start,
1671                            s->match_length - MIN_MATCH, bflush);
1672
1673             s->lookahead -= s->match_length;
1674
1675             /* Insert new strings in the hash table only if the match length
1676              * is not too large. This saves time but degrades compression.
1677              */
1678 #ifndef FASTEST
1679             if (s->match_length <= s->max_insert_length &&
1680                 s->lookahead >= MIN_MATCH) {
1681                 s->match_length--; /* string at strstart already in table */
1682                 do {
1683                     s->strstart++;
1684                     INSERT_STRING(s, s->strstart, hash_head);
1685                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1686                      * always MIN_MATCH bytes ahead.
1687                      */
1688                 } while (--s->match_length != 0);
1689                 s->strstart++;
1690             } else
1691 #endif
1692             {
1693                 s->strstart += s->match_length;
1694                 s->match_length = 0;
1695                 s->ins_h = s->window[s->strstart];
1696                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1697 #if MIN_MATCH != 3
1698                 Call UPDATE_HASH() MIN_MATCH-3 more times
1699 #endif
1700                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1701                  * matter since it will be recomputed at next deflate call.
1702                  */
1703             }
1704         } else {
1705             /* No match, output a literal byte */
1706             Tracevv((stderr,"%c", s->window[s->strstart]));
1707             _tr_tally_lit (s, s->window[s->strstart], bflush);
1708             s->lookahead--;
1709             s->strstart++;
1710         }
1711         if (bflush) FLUSH_BLOCK(s, 0);
1712     }
1713     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1714     if (flush == Z_FINISH) {
1715         FLUSH_BLOCK(s, 1);
1716         return finish_done;
1717     }
1718     if (s->last_lit)
1719         FLUSH_BLOCK(s, 0);
1720     return block_done;
1721 }
1722
1723 #ifndef FASTEST
1724 /* ===========================================================================
1725  * Same as above, but achieves better compression. We use a lazy
1726  * evaluation for matches: a match is finally adopted only if there is
1727  * no better match at the next window position.
1728  */
1729 local block_state deflate_slow(s, flush)
1730     deflate_state *s;
1731     int flush;
1732 {
1733     IPos hash_head;          /* head of hash chain */
1734     int bflush;              /* set if current block must be flushed */
1735
1736     /* Process the input block. */
1737     for (;;) {
1738         /* Make sure that we always have enough lookahead, except
1739          * at the end of the input file. We need MAX_MATCH bytes
1740          * for the next match, plus MIN_MATCH bytes to insert the
1741          * string following the next match.
1742          */
1743         if (s->lookahead < MIN_LOOKAHEAD) {
1744             fill_window(s);
1745             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1746                 return need_more;
1747             }
1748             if (s->lookahead == 0) break; /* flush the current block */
1749         }
1750
1751         /* Insert the string window[strstart .. strstart+2] in the
1752          * dictionary, and set hash_head to the head of the hash chain:
1753          */
1754         hash_head = NIL;
1755         if (s->lookahead >= MIN_MATCH) {
1756             INSERT_STRING(s, s->strstart, hash_head);
1757         }
1758
1759         /* Find the longest match, discarding those <= prev_length.
1760          */
1761         s->prev_length = s->match_length, s->prev_match = s->match_start;
1762         s->match_length = MIN_MATCH-1;
1763
1764         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1765             s->strstart - hash_head <= MAX_DIST(s)) {
1766             /* To simplify the code, we prevent matches with the string
1767              * of window index 0 (in particular we have to avoid a match
1768              * of the string with itself at the start of the input file).
1769              */
1770             s->match_length = longest_match (s, hash_head);
1771             /* longest_match() sets match_start */
1772
1773             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1774 #if TOO_FAR <= 32767
1775                 || (s->match_length == MIN_MATCH &&
1776                     s->strstart - s->match_start > TOO_FAR)
1777 #endif
1778                 )) {
1779
1780                 /* If prev_match is also MIN_MATCH, match_start is garbage
1781                  * but we will ignore the current match anyway.
1782                  */
1783                 s->match_length = MIN_MATCH-1;
1784             }
1785         }
1786         /* If there was a match at the previous step and the current
1787          * match is not better, output the previous match:
1788          */
1789         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1790             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1791             /* Do not insert strings in hash table beyond this. */
1792
1793             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1794
1795             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1796                            s->prev_length - MIN_MATCH, bflush);
1797
1798             /* Insert in hash table all strings up to the end of the match.
1799              * strstart-1 and strstart are already inserted. If there is not
1800              * enough lookahead, the last two strings are not inserted in
1801              * the hash table.
1802              */
1803             s->lookahead -= s->prev_length-1;
1804             s->prev_length -= 2;
1805             do {
1806                 if (++s->strstart <= max_insert) {
1807                     INSERT_STRING(s, s->strstart, hash_head);
1808                 }
1809             } while (--s->prev_length != 0);
1810             s->match_available = 0;
1811             s->match_length = MIN_MATCH-1;
1812             s->strstart++;
1813
1814             if (bflush) FLUSH_BLOCK(s, 0);
1815
1816         } else if (s->match_available) {
1817             /* If there was no match at the previous position, output a
1818              * single literal. If there was a match but the current match
1819              * is longer, truncate the previous match to a single literal.
1820              */
1821             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1822             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1823             if (bflush) {
1824                 FLUSH_BLOCK_ONLY(s, 0);
1825             }
1826             s->strstart++;
1827             s->lookahead--;
1828             if (s->strm->avail_out == 0) return need_more;
1829         } else {
1830             /* There is no previous match to compare with, wait for
1831              * the next step to decide.
1832              */
1833             s->match_available = 1;
1834             s->strstart++;
1835             s->lookahead--;
1836         }
1837     }
1838     Assert (flush != Z_NO_FLUSH, "no flush?");
1839     if (s->match_available) {
1840         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1841         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1842         s->match_available = 0;
1843     }
1844     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1845     if (flush == Z_FINISH) {
1846         FLUSH_BLOCK(s, 1);
1847         return finish_done;
1848     }
1849     if (s->last_lit)
1850         FLUSH_BLOCK(s, 0);
1851     return block_done;
1852 }
1853 #endif /* FASTEST */
1854
1855 /* ===========================================================================
1856  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1857  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
1858  * deflate switches away from Z_RLE.)
1859  */
1860 local block_state deflate_rle(s, flush)
1861     deflate_state *s;
1862     int flush;
1863 {
1864     int bflush;             /* set if current block must be flushed */
1865     uInt prev;              /* byte at distance one to match */
1866     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
1867
1868     for (;;) {
1869         /* Make sure that we always have enough lookahead, except
1870          * at the end of the input file. We need MAX_MATCH bytes
1871          * for the longest run, plus one for the unrolled loop.
1872          */
1873         if (s->lookahead <= MAX_MATCH) {
1874             fill_window(s);
1875             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
1876                 return need_more;
1877             }
1878             if (s->lookahead == 0) break; /* flush the current block */
1879         }
1880
1881         /* See how many times the previous byte repeats */
1882         s->match_length = 0;
1883         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
1884             scan = s->window + s->strstart - 1;
1885             prev = *scan;
1886             if (prev == *++scan && prev == *++scan && prev == *++scan) {
1887                 strend = s->window + s->strstart + MAX_MATCH;
1888                 do {
1889                 } while (prev == *++scan && prev == *++scan &&
1890                          prev == *++scan && prev == *++scan &&
1891                          prev == *++scan && prev == *++scan &&
1892                          prev == *++scan && prev == *++scan &&
1893                          scan < strend);
1894                 s->match_length = MAX_MATCH - (int)(strend - scan);
1895                 if (s->match_length > s->lookahead)
1896                     s->match_length = s->lookahead;
1897             }
1898             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
1899         }
1900
1901         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1902         if (s->match_length >= MIN_MATCH) {
1903             check_match(s, s->strstart, s->strstart - 1, s->match_length);
1904
1905             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
1906
1907             s->lookahead -= s->match_length;
1908             s->strstart += s->match_length;
1909             s->match_length = 0;
1910         } else {
1911             /* No match, output a literal byte */
1912             Tracevv((stderr,"%c", s->window[s->strstart]));
1913             _tr_tally_lit (s, s->window[s->strstart], bflush);
1914             s->lookahead--;
1915             s->strstart++;
1916         }
1917         if (bflush) FLUSH_BLOCK(s, 0);
1918     }
1919     s->insert = 0;
1920     if (flush == Z_FINISH) {
1921         FLUSH_BLOCK(s, 1);
1922         return finish_done;
1923     }
1924     if (s->last_lit)
1925         FLUSH_BLOCK(s, 0);
1926     return block_done;
1927 }
1928
1929 /* ===========================================================================
1930  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
1931  * (It will be regenerated if this run of deflate switches away from Huffman.)
1932  */
1933 local block_state deflate_huff(s, flush)
1934     deflate_state *s;
1935     int flush;
1936 {
1937     int bflush;             /* set if current block must be flushed */
1938
1939     for (;;) {
1940         /* Make sure that we have a literal to write. */
1941         if (s->lookahead == 0) {
1942             fill_window(s);
1943             if (s->lookahead == 0) {
1944                 if (flush == Z_NO_FLUSH)
1945                     return need_more;
1946                 break;      /* flush the current block */
1947             }
1948         }
1949
1950         /* Output a literal byte */
1951         s->match_length = 0;
1952         Tracevv((stderr,"%c", s->window[s->strstart]));
1953         _tr_tally_lit (s, s->window[s->strstart], bflush);
1954         s->lookahead--;
1955         s->strstart++;
1956         if (bflush) FLUSH_BLOCK(s, 0);
1957     }
1958     s->insert = 0;
1959     if (flush == Z_FINISH) {
1960         FLUSH_BLOCK(s, 1);
1961         return finish_done;
1962     }
1963     if (s->last_lit)
1964         FLUSH_BLOCK(s, 0);
1965     return block_done;
1966 }