]> git.lizzy.rs Git - zlib.git/blob - deflate.c
Fix a bug that can crash deflate on some input when using Z_FIXED.
[zlib.git] / deflate.c
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49
50 /* @(#) $Id$ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55    " deflate 1.2.11.1 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75
76 local int deflateStateCheck      OF((z_streamp strm));
77 local void slide_hash     OF((deflate_state *s));
78 local void fill_window    OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast   OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow   OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle    OF((deflate_state *s, int flush));
85 local block_state deflate_huff   OF((deflate_state *s, int flush));
86 local void lm_init        OF((deflate_state *s));
87 local void putShortMSB    OF((deflate_state *s, uInt b));
88 local void flush_pending  OF((z_streamp strm));
89 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90 #ifdef ASMV
91 #  pragma message("Assembler code may have bugs -- use at your own risk")
92       void match_init OF((void)); /* asm code initialization */
93       uInt longest_match  OF((deflate_state *s, IPos cur_match));
94 #else
95 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96 #endif
97
98 #ifdef ZLIB_DEBUG
99 local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                             int length));
101 #endif
102
103 /* ===========================================================================
104  * Local data
105  */
106
107 #define NIL 0
108 /* Tail of hash chains */
109
110 #ifndef TOO_FAR
111 #  define TOO_FAR 4096
112 #endif
113 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115 /* Values for max_lazy_match, good_match and max_chain_length, depending on
116  * the desired pack level (0..9). The values given below have been tuned to
117  * exclude worst case performance for pathological files. Better values may be
118  * found for specific files.
119  */
120 typedef struct config_s {
121    ush good_length; /* reduce lazy search above this match length */
122    ush max_lazy;    /* do not perform lazy search above this match length */
123    ush nice_length; /* quit search above this match length */
124    ush max_chain;
125    compress_func func;
126 } config;
127
128 #ifdef FASTEST
129 local const config configuration_table[2] = {
130 /*      good lazy nice chain */
131 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133 #else
134 local const config configuration_table[10] = {
135 /*      good lazy nice chain */
136 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138 /* 2 */ {4,    5, 16,    8, deflate_fast},
139 /* 3 */ {4,    6, 32,   32, deflate_fast},
140
141 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142 /* 5 */ {8,   16, 32,   32, deflate_slow},
143 /* 6 */ {8,   16, 128, 128, deflate_slow},
144 /* 7 */ {8,   32, 128, 256, deflate_slow},
145 /* 8 */ {32, 128, 258, 1024, deflate_slow},
146 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147 #endif
148
149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151  * meaning.
152  */
153
154 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157 /* ===========================================================================
158  * Update a hash value with the given input byte
159  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160  *    characters, so that a running hash key can be computed from the previous
161  *    key instead of complete recalculation each time.
162  */
163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166 /* ===========================================================================
167  * Insert string str in the dictionary and set match_head to the previous head
168  * of the hash chain (the most recent string with same hash key). Return
169  * the previous length of the hash chain.
170  * If this file is compiled with -DFASTEST, the compression level is forced
171  * to 1, and no hash chains are maintained.
172  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173  *    characters and the first MIN_MATCH bytes of str are valid (except for
174  *    the last MIN_MATCH-1 bytes of the input file).
175  */
176 #ifdef FASTEST
177 #define INSERT_STRING(s, str, match_head) \
178    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179     match_head = s->head[s->ins_h], \
180     s->head[s->ins_h] = (Pos)(str))
181 #else
182 #define INSERT_STRING(s, str, match_head) \
183    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185     s->head[s->ins_h] = (Pos)(str))
186 #endif
187
188 /* ===========================================================================
189  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190  * prev[] will be initialized on the fly.
191  */
192 #define CLEAR_HASH(s) \
193     do { \
194         s->head[s->hash_size-1] = NIL; \
195         zmemzero((Bytef *)s->head, \
196                  (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
197     } while (0)
198
199 /* ===========================================================================
200  * Slide the hash table when sliding the window down (could be avoided with 32
201  * bit values at the expense of memory usage). We slide even when level == 0 to
202  * keep the hash table consistent if we switch back to level > 0 later.
203  */
204 local void slide_hash(s)
205     deflate_state *s;
206 {
207     unsigned n, m;
208     Posf *p;
209     uInt wsize = s->w_size;
210
211     n = s->hash_size;
212     p = &s->head[n];
213     do {
214         m = *--p;
215         *p = (Pos)(m >= wsize ? m - wsize : NIL);
216     } while (--n);
217     n = wsize;
218 #ifndef FASTEST
219     p = &s->prev[n];
220     do {
221         m = *--p;
222         *p = (Pos)(m >= wsize ? m - wsize : NIL);
223         /* If n is not on any hash chain, prev[n] is garbage but
224          * its value will never be used.
225          */
226     } while (--n);
227 #endif
228 }
229
230 /* ========================================================================= */
231 int ZEXPORT deflateInit_(strm, level, version, stream_size)
232     z_streamp strm;
233     int level;
234     const char *version;
235     int stream_size;
236 {
237     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
238                          Z_DEFAULT_STRATEGY, version, stream_size);
239     /* To do: ignore strm->next_in if we use it as window */
240 }
241
242 /* ========================================================================= */
243 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
244                   version, stream_size)
245     z_streamp strm;
246     int  level;
247     int  method;
248     int  windowBits;
249     int  memLevel;
250     int  strategy;
251     const char *version;
252     int stream_size;
253 {
254     deflate_state *s;
255     int wrap = 1;
256     static const char my_version[] = ZLIB_VERSION;
257
258     if (version == Z_NULL || version[0] != my_version[0] ||
259         stream_size != sizeof(z_stream)) {
260         return Z_VERSION_ERROR;
261     }
262     if (strm == Z_NULL) return Z_STREAM_ERROR;
263
264     strm->msg = Z_NULL;
265     if (strm->zalloc == (alloc_func)0) {
266 #ifdef Z_SOLO
267         return Z_STREAM_ERROR;
268 #else
269         strm->zalloc = zcalloc;
270         strm->opaque = (voidpf)0;
271 #endif
272     }
273     if (strm->zfree == (free_func)0)
274 #ifdef Z_SOLO
275         return Z_STREAM_ERROR;
276 #else
277         strm->zfree = zcfree;
278 #endif
279
280 #ifdef FASTEST
281     if (level != 0) level = 1;
282 #else
283     if (level == Z_DEFAULT_COMPRESSION) level = 6;
284 #endif
285
286     if (windowBits < 0) { /* suppress zlib wrapper */
287         wrap = 0;
288         windowBits = -windowBits;
289     }
290 #ifdef GZIP
291     else if (windowBits > 15) {
292         wrap = 2;       /* write gzip wrapper instead */
293         windowBits -= 16;
294     }
295 #endif
296     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
297         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
298         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
299         return Z_STREAM_ERROR;
300     }
301     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
302     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
303     if (s == Z_NULL) return Z_MEM_ERROR;
304     strm->state = (struct internal_state FAR *)s;
305     s->strm = strm;
306     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
307
308     s->wrap = wrap;
309     s->gzhead = Z_NULL;
310     s->w_bits = (uInt)windowBits;
311     s->w_size = 1 << s->w_bits;
312     s->w_mask = s->w_size - 1;
313
314     s->hash_bits = (uInt)memLevel + 7;
315     s->hash_size = 1 << s->hash_bits;
316     s->hash_mask = s->hash_size - 1;
317     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
318
319     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
320     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
321     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
322
323     s->high_water = 0;      /* nothing written to s->window yet */
324
325     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
326
327     /* We overlay pending_buf and sym_buf. This works since the average size
328      * for length/distance pairs over any compressed block is assured to be 31
329      * bits or less.
330      *
331      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
332      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
333      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
334      * possible fixed-codes length/distance pair is then 31 bits total.
335      *
336      * sym_buf starts one-fourth of the way into pending_buf. So there are
337      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
338      * in sym_buf is three bytes -- two for the distance and one for the
339      * literal/length. As each symbol is consumed, the pointer to the next
340      * sym_buf value to read moves forward three bytes. From that symbol, up to
341      * 31 bits are written to pending_buf. The closest the written pending_buf
342      * bits gets to the next sym_buf symbol to read is just before the last
343      * code is written. At that time, 31*(n-2) bits have been written, just
344      * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
345      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
346      * symbols are written.) The closest the writing gets to what is unread is
347      * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
348      * can range from 128 to 32768.
349      *
350      * Therefore, at a minimum, there are 142 bits of space between what is
351      * written and what is read in the overlain buffers, so the symbols cannot
352      * be overwritten by the compressed data. That space is actually 139 bits,
353      * due to the three-bit fixed-code block header.
354      *
355      * That covers the case where either Z_FIXED is specified, forcing fixed
356      * codes, or when the use of fixed codes is chosen, because that choice
357      * results in a smaller compressed block than dynamic codes. That latter
358      * condition then assures that the above analysis also covers all dynamic
359      * blocks. A dynamic-code block will only be chosen to be emitted if it has
360      * fewer bits than a fixed-code block would for the same set of symbols.
361      * Therefore its average symbol length is assured to be less than 31. So
362      * the compressed data for a dynamic block also cannot overwrite the
363      * symbols from which it is being constructed.
364      */
365
366     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
367     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
368
369     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
370         s->pending_buf == Z_NULL) {
371         s->status = FINISH_STATE;
372         strm->msg = ERR_MSG(Z_MEM_ERROR);
373         deflateEnd (strm);
374         return Z_MEM_ERROR;
375     }
376     s->sym_buf = s->pending_buf + s->lit_bufsize;
377     s->sym_end = (s->lit_bufsize - 1) * 3;
378     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
379      * on 16 bit machines and because stored blocks are restricted to
380      * 64K-1 bytes.
381      */
382
383     s->level = level;
384     s->strategy = strategy;
385     s->method = (Byte)method;
386
387     return deflateReset(strm);
388 }
389
390 /* =========================================================================
391  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
392  */
393 local int deflateStateCheck (strm)
394     z_streamp strm;
395 {
396     deflate_state *s;
397     if (strm == Z_NULL ||
398         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
399         return 1;
400     s = strm->state;
401     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
402 #ifdef GZIP
403                                            s->status != GZIP_STATE &&
404 #endif
405                                            s->status != EXTRA_STATE &&
406                                            s->status != NAME_STATE &&
407                                            s->status != COMMENT_STATE &&
408                                            s->status != HCRC_STATE &&
409                                            s->status != BUSY_STATE &&
410                                            s->status != FINISH_STATE))
411         return 1;
412     return 0;
413 }
414
415 /* ========================================================================= */
416 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
417     z_streamp strm;
418     const Bytef *dictionary;
419     uInt  dictLength;
420 {
421     deflate_state *s;
422     uInt str, n;
423     int wrap;
424     unsigned avail;
425     z_const unsigned char *next;
426
427     if (deflateStateCheck(strm) || dictionary == Z_NULL)
428         return Z_STREAM_ERROR;
429     s = strm->state;
430     wrap = s->wrap;
431     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
432         return Z_STREAM_ERROR;
433
434     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
435     if (wrap == 1)
436         strm->adler = adler32(strm->adler, dictionary, dictLength);
437     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
438
439     /* if dictionary would fill window, just replace the history */
440     if (dictLength >= s->w_size) {
441         if (wrap == 0) {            /* already empty otherwise */
442             CLEAR_HASH(s);
443             s->strstart = 0;
444             s->block_start = 0L;
445             s->insert = 0;
446         }
447         dictionary += dictLength - s->w_size;  /* use the tail */
448         dictLength = s->w_size;
449     }
450
451     /* insert dictionary into window and hash */
452     avail = strm->avail_in;
453     next = strm->next_in;
454     strm->avail_in = dictLength;
455     strm->next_in = (z_const Bytef *)dictionary;
456     fill_window(s);
457     while (s->lookahead >= MIN_MATCH) {
458         str = s->strstart;
459         n = s->lookahead - (MIN_MATCH-1);
460         do {
461             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
462 #ifndef FASTEST
463             s->prev[str & s->w_mask] = s->head[s->ins_h];
464 #endif
465             s->head[s->ins_h] = (Pos)str;
466             str++;
467         } while (--n);
468         s->strstart = str;
469         s->lookahead = MIN_MATCH-1;
470         fill_window(s);
471     }
472     s->strstart += s->lookahead;
473     s->block_start = (long)s->strstart;
474     s->insert = s->lookahead;
475     s->lookahead = 0;
476     s->match_length = s->prev_length = MIN_MATCH-1;
477     s->match_available = 0;
478     strm->next_in = next;
479     strm->avail_in = avail;
480     s->wrap = wrap;
481     return Z_OK;
482 }
483
484 /* ========================================================================= */
485 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
486     z_streamp strm;
487     Bytef *dictionary;
488     uInt  *dictLength;
489 {
490     deflate_state *s;
491     uInt len;
492
493     if (deflateStateCheck(strm))
494         return Z_STREAM_ERROR;
495     s = strm->state;
496     len = s->strstart + s->lookahead;
497     if (len > s->w_size)
498         len = s->w_size;
499     if (dictionary != Z_NULL && len)
500         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
501     if (dictLength != Z_NULL)
502         *dictLength = len;
503     return Z_OK;
504 }
505
506 /* ========================================================================= */
507 int ZEXPORT deflateResetKeep (strm)
508     z_streamp strm;
509 {
510     deflate_state *s;
511
512     if (deflateStateCheck(strm)) {
513         return Z_STREAM_ERROR;
514     }
515
516     strm->total_in = strm->total_out = 0;
517     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
518     strm->data_type = Z_UNKNOWN;
519
520     s = (deflate_state *)strm->state;
521     s->pending = 0;
522     s->pending_out = s->pending_buf;
523
524     if (s->wrap < 0) {
525         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
526     }
527     s->status =
528 #ifdef GZIP
529         s->wrap == 2 ? GZIP_STATE :
530 #endif
531         INIT_STATE;
532     strm->adler =
533 #ifdef GZIP
534         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
535 #endif
536         adler32(0L, Z_NULL, 0);
537     s->last_flush = -2;
538
539     _tr_init(s);
540
541     return Z_OK;
542 }
543
544 /* ========================================================================= */
545 int ZEXPORT deflateReset (strm)
546     z_streamp strm;
547 {
548     int ret;
549
550     ret = deflateResetKeep(strm);
551     if (ret == Z_OK)
552         lm_init(strm->state);
553     return ret;
554 }
555
556 /* ========================================================================= */
557 int ZEXPORT deflateSetHeader (strm, head)
558     z_streamp strm;
559     gz_headerp head;
560 {
561     if (deflateStateCheck(strm) || strm->state->wrap != 2)
562         return Z_STREAM_ERROR;
563     strm->state->gzhead = head;
564     return Z_OK;
565 }
566
567 /* ========================================================================= */
568 int ZEXPORT deflatePending (strm, pending, bits)
569     unsigned *pending;
570     int *bits;
571     z_streamp strm;
572 {
573     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
574     if (pending != Z_NULL)
575         *pending = strm->state->pending;
576     if (bits != Z_NULL)
577         *bits = strm->state->bi_valid;
578     return Z_OK;
579 }
580
581 /* ========================================================================= */
582 int ZEXPORT deflatePrime (strm, bits, value)
583     z_streamp strm;
584     int bits;
585     int value;
586 {
587     deflate_state *s;
588     int put;
589
590     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
591     s = strm->state;
592     if (s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
593         return Z_BUF_ERROR;
594     do {
595         put = Buf_size - s->bi_valid;
596         if (put > bits)
597             put = bits;
598         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
599         s->bi_valid += put;
600         _tr_flush_bits(s);
601         value >>= put;
602         bits -= put;
603     } while (bits);
604     return Z_OK;
605 }
606
607 /* ========================================================================= */
608 int ZEXPORT deflateParams(strm, level, strategy)
609     z_streamp strm;
610     int level;
611     int strategy;
612 {
613     deflate_state *s;
614     compress_func func;
615
616     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
617     s = strm->state;
618
619 #ifdef FASTEST
620     if (level != 0) level = 1;
621 #else
622     if (level == Z_DEFAULT_COMPRESSION) level = 6;
623 #endif
624     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
625         return Z_STREAM_ERROR;
626     }
627     func = configuration_table[s->level].func;
628
629     if ((strategy != s->strategy || func != configuration_table[level].func) &&
630         s->last_flush != -2) {
631         /* Flush the last buffer: */
632         int err = deflate(strm, Z_BLOCK);
633         if (err == Z_STREAM_ERROR)
634             return err;
635         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
636             return Z_BUF_ERROR;
637     }
638     if (s->level != level) {
639         if (s->level == 0 && s->matches != 0) {
640             if (s->matches == 1)
641                 slide_hash(s);
642             else
643                 CLEAR_HASH(s);
644             s->matches = 0;
645         }
646         s->level = level;
647         s->max_lazy_match   = configuration_table[level].max_lazy;
648         s->good_match       = configuration_table[level].good_length;
649         s->nice_match       = configuration_table[level].nice_length;
650         s->max_chain_length = configuration_table[level].max_chain;
651     }
652     s->strategy = strategy;
653     return Z_OK;
654 }
655
656 /* ========================================================================= */
657 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
658     z_streamp strm;
659     int good_length;
660     int max_lazy;
661     int nice_length;
662     int max_chain;
663 {
664     deflate_state *s;
665
666     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
667     s = strm->state;
668     s->good_match = (uInt)good_length;
669     s->max_lazy_match = (uInt)max_lazy;
670     s->nice_match = nice_length;
671     s->max_chain_length = (uInt)max_chain;
672     return Z_OK;
673 }
674
675 /* =========================================================================
676  * For the default windowBits of 15 and memLevel of 8, this function returns
677  * a close to exact, as well as small, upper bound on the compressed size.
678  * They are coded as constants here for a reason--if the #define's are
679  * changed, then this function needs to be changed as well.  The return
680  * value for 15 and 8 only works for those exact settings.
681  *
682  * For any setting other than those defaults for windowBits and memLevel,
683  * the value returned is a conservative worst case for the maximum expansion
684  * resulting from using fixed blocks instead of stored blocks, which deflate
685  * can emit on compressed data for some combinations of the parameters.
686  *
687  * This function could be more sophisticated to provide closer upper bounds for
688  * every combination of windowBits and memLevel.  But even the conservative
689  * upper bound of about 14% expansion does not seem onerous for output buffer
690  * allocation.
691  */
692 uLong ZEXPORT deflateBound(strm, sourceLen)
693     z_streamp strm;
694     uLong sourceLen;
695 {
696     deflate_state *s;
697     uLong complen, wraplen;
698
699     /* conservative upper bound for compressed data */
700     complen = sourceLen +
701               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
702
703     /* if can't get parameters, return conservative bound plus zlib wrapper */
704     if (deflateStateCheck(strm))
705         return complen + 6;
706
707     /* compute wrapper length */
708     s = strm->state;
709     switch (s->wrap) {
710     case 0:                                 /* raw deflate */
711         wraplen = 0;
712         break;
713     case 1:                                 /* zlib wrapper */
714         wraplen = 6 + (s->strstart ? 4 : 0);
715         break;
716 #ifdef GZIP
717     case 2:                                 /* gzip wrapper */
718         wraplen = 18;
719         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
720             Bytef *str;
721             if (s->gzhead->extra != Z_NULL)
722                 wraplen += 2 + s->gzhead->extra_len;
723             str = s->gzhead->name;
724             if (str != Z_NULL)
725                 do {
726                     wraplen++;
727                 } while (*str++);
728             str = s->gzhead->comment;
729             if (str != Z_NULL)
730                 do {
731                     wraplen++;
732                 } while (*str++);
733             if (s->gzhead->hcrc)
734                 wraplen += 2;
735         }
736         break;
737 #endif
738     default:                                /* for compiler happiness */
739         wraplen = 6;
740     }
741
742     /* if not default parameters, return conservative bound */
743     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
744         return complen + wraplen;
745
746     /* default settings: return tight bound for that case */
747     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
748            (sourceLen >> 25) + 13 - 6 + wraplen;
749 }
750
751 /* =========================================================================
752  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
753  * IN assertion: the stream state is correct and there is enough room in
754  * pending_buf.
755  */
756 local void putShortMSB (s, b)
757     deflate_state *s;
758     uInt b;
759 {
760     put_byte(s, (Byte)(b >> 8));
761     put_byte(s, (Byte)(b & 0xff));
762 }
763
764 /* =========================================================================
765  * Flush as much pending output as possible. All deflate() output, except for
766  * some deflate_stored() output, goes through this function so some
767  * applications may wish to modify it to avoid allocating a large
768  * strm->next_out buffer and copying into it. (See also read_buf()).
769  */
770 local void flush_pending(strm)
771     z_streamp strm;
772 {
773     unsigned len;
774     deflate_state *s = strm->state;
775
776     _tr_flush_bits(s);
777     len = s->pending;
778     if (len > strm->avail_out) len = strm->avail_out;
779     if (len == 0) return;
780
781     zmemcpy(strm->next_out, s->pending_out, len);
782     strm->next_out  += len;
783     s->pending_out  += len;
784     strm->total_out += len;
785     strm->avail_out -= len;
786     s->pending      -= len;
787     if (s->pending == 0) {
788         s->pending_out = s->pending_buf;
789     }
790 }
791
792 /* ===========================================================================
793  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
794  */
795 #define HCRC_UPDATE(beg) \
796     do { \
797         if (s->gzhead->hcrc && s->pending > (beg)) \
798             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
799                                 s->pending - (beg)); \
800     } while (0)
801
802 /* ========================================================================= */
803 int ZEXPORT deflate (strm, flush)
804     z_streamp strm;
805     int flush;
806 {
807     int old_flush; /* value of flush param for previous deflate call */
808     deflate_state *s;
809
810     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
811         return Z_STREAM_ERROR;
812     }
813     s = strm->state;
814
815     if (strm->next_out == Z_NULL ||
816         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
817         (s->status == FINISH_STATE && flush != Z_FINISH)) {
818         ERR_RETURN(strm, Z_STREAM_ERROR);
819     }
820     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
821
822     old_flush = s->last_flush;
823     s->last_flush = flush;
824
825     /* Flush as much pending output as possible */
826     if (s->pending != 0) {
827         flush_pending(strm);
828         if (strm->avail_out == 0) {
829             /* Since avail_out is 0, deflate will be called again with
830              * more output space, but possibly with both pending and
831              * avail_in equal to zero. There won't be anything to do,
832              * but this is not an error situation so make sure we
833              * return OK instead of BUF_ERROR at next call of deflate:
834              */
835             s->last_flush = -1;
836             return Z_OK;
837         }
838
839     /* Make sure there is something to do and avoid duplicate consecutive
840      * flushes. For repeated and useless calls with Z_FINISH, we keep
841      * returning Z_STREAM_END instead of Z_BUF_ERROR.
842      */
843     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
844                flush != Z_FINISH) {
845         ERR_RETURN(strm, Z_BUF_ERROR);
846     }
847
848     /* User must not provide more input after the first FINISH: */
849     if (s->status == FINISH_STATE && strm->avail_in != 0) {
850         ERR_RETURN(strm, Z_BUF_ERROR);
851     }
852
853     /* Write the header */
854     if (s->status == INIT_STATE && s->wrap == 0)
855         s->status = BUSY_STATE;
856     if (s->status == INIT_STATE) {
857         /* zlib header */
858         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
859         uInt level_flags;
860
861         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
862             level_flags = 0;
863         else if (s->level < 6)
864             level_flags = 1;
865         else if (s->level == 6)
866             level_flags = 2;
867         else
868             level_flags = 3;
869         header |= (level_flags << 6);
870         if (s->strstart != 0) header |= PRESET_DICT;
871         header += 31 - (header % 31);
872
873         putShortMSB(s, header);
874
875         /* Save the adler32 of the preset dictionary: */
876         if (s->strstart != 0) {
877             putShortMSB(s, (uInt)(strm->adler >> 16));
878             putShortMSB(s, (uInt)(strm->adler & 0xffff));
879         }
880         strm->adler = adler32(0L, Z_NULL, 0);
881         s->status = BUSY_STATE;
882
883         /* Compression must start with an empty pending buffer */
884         flush_pending(strm);
885         if (s->pending != 0) {
886             s->last_flush = -1;
887             return Z_OK;
888         }
889     }
890 #ifdef GZIP
891     if (s->status == GZIP_STATE) {
892         /* gzip header */
893         strm->adler = crc32(0L, Z_NULL, 0);
894         put_byte(s, 31);
895         put_byte(s, 139);
896         put_byte(s, 8);
897         if (s->gzhead == Z_NULL) {
898             put_byte(s, 0);
899             put_byte(s, 0);
900             put_byte(s, 0);
901             put_byte(s, 0);
902             put_byte(s, 0);
903             put_byte(s, s->level == 9 ? 2 :
904                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
905                       4 : 0));
906             put_byte(s, OS_CODE);
907             s->status = BUSY_STATE;
908
909             /* Compression must start with an empty pending buffer */
910             flush_pending(strm);
911             if (s->pending != 0) {
912                 s->last_flush = -1;
913                 return Z_OK;
914             }
915         }
916         else {
917             put_byte(s, (s->gzhead->text ? 1 : 0) +
918                      (s->gzhead->hcrc ? 2 : 0) +
919                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
920                      (s->gzhead->name == Z_NULL ? 0 : 8) +
921                      (s->gzhead->comment == Z_NULL ? 0 : 16)
922                      );
923             put_byte(s, (Byte)(s->gzhead->time & 0xff));
924             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
925             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
926             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
927             put_byte(s, s->level == 9 ? 2 :
928                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
929                       4 : 0));
930             put_byte(s, s->gzhead->os & 0xff);
931             if (s->gzhead->extra != Z_NULL) {
932                 put_byte(s, s->gzhead->extra_len & 0xff);
933                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
934             }
935             if (s->gzhead->hcrc)
936                 strm->adler = crc32(strm->adler, s->pending_buf,
937                                     s->pending);
938             s->gzindex = 0;
939             s->status = EXTRA_STATE;
940         }
941     }
942     if (s->status == EXTRA_STATE) {
943         if (s->gzhead->extra != Z_NULL) {
944             ulg beg = s->pending;   /* start of bytes to update crc */
945             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
946             while (s->pending + left > s->pending_buf_size) {
947                 uInt copy = s->pending_buf_size - s->pending;
948                 zmemcpy(s->pending_buf + s->pending,
949                         s->gzhead->extra + s->gzindex, copy);
950                 s->pending = s->pending_buf_size;
951                 HCRC_UPDATE(beg);
952                 s->gzindex += copy;
953                 flush_pending(strm);
954                 if (s->pending != 0) {
955                     s->last_flush = -1;
956                     return Z_OK;
957                 }
958                 beg = 0;
959                 left -= copy;
960             }
961             zmemcpy(s->pending_buf + s->pending,
962                     s->gzhead->extra + s->gzindex, left);
963             s->pending += left;
964             HCRC_UPDATE(beg);
965             s->gzindex = 0;
966         }
967         s->status = NAME_STATE;
968     }
969     if (s->status == NAME_STATE) {
970         if (s->gzhead->name != Z_NULL) {
971             ulg beg = s->pending;   /* start of bytes to update crc */
972             int val;
973             do {
974                 if (s->pending == s->pending_buf_size) {
975                     HCRC_UPDATE(beg);
976                     flush_pending(strm);
977                     if (s->pending != 0) {
978                         s->last_flush = -1;
979                         return Z_OK;
980                     }
981                     beg = 0;
982                 }
983                 val = s->gzhead->name[s->gzindex++];
984                 put_byte(s, val);
985             } while (val != 0);
986             HCRC_UPDATE(beg);
987             s->gzindex = 0;
988         }
989         s->status = COMMENT_STATE;
990     }
991     if (s->status == COMMENT_STATE) {
992         if (s->gzhead->comment != Z_NULL) {
993             ulg beg = s->pending;   /* start of bytes to update crc */
994             int val;
995             do {
996                 if (s->pending == s->pending_buf_size) {
997                     HCRC_UPDATE(beg);
998                     flush_pending(strm);
999                     if (s->pending != 0) {
1000                         s->last_flush = -1;
1001                         return Z_OK;
1002                     }
1003                     beg = 0;
1004                 }
1005                 val = s->gzhead->comment[s->gzindex++];
1006                 put_byte(s, val);
1007             } while (val != 0);
1008             HCRC_UPDATE(beg);
1009         }
1010         s->status = HCRC_STATE;
1011     }
1012     if (s->status == HCRC_STATE) {
1013         if (s->gzhead->hcrc) {
1014             if (s->pending + 2 > s->pending_buf_size) {
1015                 flush_pending(strm);
1016                 if (s->pending != 0) {
1017                     s->last_flush = -1;
1018                     return Z_OK;
1019                 }
1020             }
1021             put_byte(s, (Byte)(strm->adler & 0xff));
1022             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1023             strm->adler = crc32(0L, Z_NULL, 0);
1024         }
1025         s->status = BUSY_STATE;
1026
1027         /* Compression must start with an empty pending buffer */
1028         flush_pending(strm);
1029         if (s->pending != 0) {
1030             s->last_flush = -1;
1031             return Z_OK;
1032         }
1033     }
1034 #endif
1035
1036     /* Start a new block or continue the current one.
1037      */
1038     if (strm->avail_in != 0 || s->lookahead != 0 ||
1039         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1040         block_state bstate;
1041
1042         bstate = s->level == 0 ? deflate_stored(s, flush) :
1043                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1044                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1045                  (*(configuration_table[s->level].func))(s, flush);
1046
1047         if (bstate == finish_started || bstate == finish_done) {
1048             s->status = FINISH_STATE;
1049         }
1050         if (bstate == need_more || bstate == finish_started) {
1051             if (strm->avail_out == 0) {
1052                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1053             }
1054             return Z_OK;
1055             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1056              * of deflate should use the same flush parameter to make sure
1057              * that the flush is complete. So we don't have to output an
1058              * empty block here, this will be done at next call. This also
1059              * ensures that for a very small output buffer, we emit at most
1060              * one empty block.
1061              */
1062         }
1063         if (bstate == block_done) {
1064             if (flush == Z_PARTIAL_FLUSH) {
1065                 _tr_align(s);
1066             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1067                 _tr_stored_block(s, (char*)0, 0L, 0);
1068                 /* For a full flush, this empty block will be recognized
1069                  * as a special marker by inflate_sync().
1070                  */
1071                 if (flush == Z_FULL_FLUSH) {
1072                     CLEAR_HASH(s);             /* forget history */
1073                     if (s->lookahead == 0) {
1074                         s->strstart = 0;
1075                         s->block_start = 0L;
1076                         s->insert = 0;
1077                     }
1078                 }
1079             }
1080             flush_pending(strm);
1081             if (strm->avail_out == 0) {
1082               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1083               return Z_OK;
1084             }
1085         }
1086     }
1087
1088     if (flush != Z_FINISH) return Z_OK;
1089     if (s->wrap <= 0) return Z_STREAM_END;
1090
1091     /* Write the trailer */
1092 #ifdef GZIP
1093     if (s->wrap == 2) {
1094         put_byte(s, (Byte)(strm->adler & 0xff));
1095         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1096         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1097         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1098         put_byte(s, (Byte)(strm->total_in & 0xff));
1099         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1100         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1101         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1102     }
1103     else
1104 #endif
1105     {
1106         putShortMSB(s, (uInt)(strm->adler >> 16));
1107         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1108     }
1109     flush_pending(strm);
1110     /* If avail_out is zero, the application will call deflate again
1111      * to flush the rest.
1112      */
1113     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1114     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1115 }
1116
1117 /* ========================================================================= */
1118 int ZEXPORT deflateEnd (strm)
1119     z_streamp strm;
1120 {
1121     int status;
1122
1123     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1124
1125     status = strm->state->status;
1126
1127     /* Deallocate in reverse order of allocations: */
1128     TRY_FREE(strm, strm->state->pending_buf);
1129     TRY_FREE(strm, strm->state->head);
1130     TRY_FREE(strm, strm->state->prev);
1131     TRY_FREE(strm, strm->state->window);
1132
1133     ZFREE(strm, strm->state);
1134     strm->state = Z_NULL;
1135
1136     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1137 }
1138
1139 /* =========================================================================
1140  * Copy the source state to the destination state.
1141  * To simplify the source, this is not supported for 16-bit MSDOS (which
1142  * doesn't have enough memory anyway to duplicate compression states).
1143  */
1144 int ZEXPORT deflateCopy (dest, source)
1145     z_streamp dest;
1146     z_streamp source;
1147 {
1148 #ifdef MAXSEG_64K
1149     return Z_STREAM_ERROR;
1150 #else
1151     deflate_state *ds;
1152     deflate_state *ss;
1153
1154
1155     if (deflateStateCheck(source) || dest == Z_NULL) {
1156         return Z_STREAM_ERROR;
1157     }
1158
1159     ss = source->state;
1160
1161     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1162
1163     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1164     if (ds == Z_NULL) return Z_MEM_ERROR;
1165     dest->state = (struct internal_state FAR *) ds;
1166     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1167     ds->strm = dest;
1168
1169     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1170     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1171     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1172     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1173
1174     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1175         ds->pending_buf == Z_NULL) {
1176         deflateEnd (dest);
1177         return Z_MEM_ERROR;
1178     }
1179     /* following zmemcpy do not work for 16-bit MSDOS */
1180     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1181     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1182     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1183     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1184
1185     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1186     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1187
1188     ds->l_desc.dyn_tree = ds->dyn_ltree;
1189     ds->d_desc.dyn_tree = ds->dyn_dtree;
1190     ds->bl_desc.dyn_tree = ds->bl_tree;
1191
1192     return Z_OK;
1193 #endif /* MAXSEG_64K */
1194 }
1195
1196 /* ===========================================================================
1197  * Read a new buffer from the current input stream, update the adler32
1198  * and total number of bytes read.  All deflate() input goes through
1199  * this function so some applications may wish to modify it to avoid
1200  * allocating a large strm->next_in buffer and copying from it.
1201  * (See also flush_pending()).
1202  */
1203 local unsigned read_buf(strm, buf, size)
1204     z_streamp strm;
1205     Bytef *buf;
1206     unsigned size;
1207 {
1208     unsigned len = strm->avail_in;
1209
1210     if (len > size) len = size;
1211     if (len == 0) return 0;
1212
1213     strm->avail_in  -= len;
1214
1215     zmemcpy(buf, strm->next_in, len);
1216     if (strm->state->wrap == 1) {
1217         strm->adler = adler32(strm->adler, buf, len);
1218     }
1219 #ifdef GZIP
1220     else if (strm->state->wrap == 2) {
1221         strm->adler = crc32(strm->adler, buf, len);
1222     }
1223 #endif
1224     strm->next_in  += len;
1225     strm->total_in += len;
1226
1227     return len;
1228 }
1229
1230 /* ===========================================================================
1231  * Initialize the "longest match" routines for a new zlib stream
1232  */
1233 local void lm_init (s)
1234     deflate_state *s;
1235 {
1236     s->window_size = (ulg)2L*s->w_size;
1237
1238     CLEAR_HASH(s);
1239
1240     /* Set the default configuration parameters:
1241      */
1242     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1243     s->good_match       = configuration_table[s->level].good_length;
1244     s->nice_match       = configuration_table[s->level].nice_length;
1245     s->max_chain_length = configuration_table[s->level].max_chain;
1246
1247     s->strstart = 0;
1248     s->block_start = 0L;
1249     s->lookahead = 0;
1250     s->insert = 0;
1251     s->match_length = s->prev_length = MIN_MATCH-1;
1252     s->match_available = 0;
1253     s->ins_h = 0;
1254 #ifndef FASTEST
1255 #ifdef ASMV
1256     match_init(); /* initialize the asm code */
1257 #endif
1258 #endif
1259 }
1260
1261 #ifndef FASTEST
1262 /* ===========================================================================
1263  * Set match_start to the longest match starting at the given string and
1264  * return its length. Matches shorter or equal to prev_length are discarded,
1265  * in which case the result is equal to prev_length and match_start is
1266  * garbage.
1267  * IN assertions: cur_match is the head of the hash chain for the current
1268  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1269  * OUT assertion: the match length is not greater than s->lookahead.
1270  */
1271 #ifndef ASMV
1272 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1273  * match.S. The code will be functionally equivalent.
1274  */
1275 local uInt longest_match(s, cur_match)
1276     deflate_state *s;
1277     IPos cur_match;                             /* current match */
1278 {
1279     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1280     register Bytef *scan = s->window + s->strstart; /* current string */
1281     register Bytef *match;                      /* matched string */
1282     register int len;                           /* length of current match */
1283     int best_len = (int)s->prev_length;         /* best match length so far */
1284     int nice_match = s->nice_match;             /* stop if match long enough */
1285     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1286         s->strstart - (IPos)MAX_DIST(s) : NIL;
1287     /* Stop when cur_match becomes <= limit. To simplify the code,
1288      * we prevent matches with the string of window index 0.
1289      */
1290     Posf *prev = s->prev;
1291     uInt wmask = s->w_mask;
1292
1293 #ifdef UNALIGNED_OK
1294     /* Compare two bytes at a time. Note: this is not always beneficial.
1295      * Try with and without -DUNALIGNED_OK to check.
1296      */
1297     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1298     register ush scan_start = *(ushf*)scan;
1299     register ush scan_end   = *(ushf*)(scan+best_len-1);
1300 #else
1301     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1302     register Byte scan_end1  = scan[best_len-1];
1303     register Byte scan_end   = scan[best_len];
1304 #endif
1305
1306     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1307      * It is easy to get rid of this optimization if necessary.
1308      */
1309     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1310
1311     /* Do not waste too much time if we already have a good match: */
1312     if (s->prev_length >= s->good_match) {
1313         chain_length >>= 2;
1314     }
1315     /* Do not look for matches beyond the end of the input. This is necessary
1316      * to make deflate deterministic.
1317      */
1318     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1319
1320     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1321
1322     do {
1323         Assert(cur_match < s->strstart, "no future");
1324         match = s->window + cur_match;
1325
1326         /* Skip to next match if the match length cannot increase
1327          * or if the match length is less than 2.  Note that the checks below
1328          * for insufficient lookahead only occur occasionally for performance
1329          * reasons.  Therefore uninitialized memory will be accessed, and
1330          * conditional jumps will be made that depend on those values.
1331          * However the length of the match is limited to the lookahead, so
1332          * the output of deflate is not affected by the uninitialized values.
1333          */
1334 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1335         /* This code assumes sizeof(unsigned short) == 2. Do not use
1336          * UNALIGNED_OK if your compiler uses a different size.
1337          */
1338         if (*(ushf*)(match+best_len-1) != scan_end ||
1339             *(ushf*)match != scan_start) continue;
1340
1341         /* It is not necessary to compare scan[2] and match[2] since they are
1342          * always equal when the other bytes match, given that the hash keys
1343          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1344          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1345          * lookahead only every 4th comparison; the 128th check will be made
1346          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1347          * necessary to put more guard bytes at the end of the window, or
1348          * to check more often for insufficient lookahead.
1349          */
1350         Assert(scan[2] == match[2], "scan[2]?");
1351         scan++, match++;
1352         do {
1353         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1354                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1355                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1356                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1357                  scan < strend);
1358         /* The funny "do {}" generates better code on most compilers */
1359
1360         /* Here, scan <= window+strstart+257 */
1361         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1362         if (*scan == *match) scan++;
1363
1364         len = (MAX_MATCH - 1) - (int)(strend-scan);
1365         scan = strend - (MAX_MATCH-1);
1366
1367 #else /* UNALIGNED_OK */
1368
1369         if (match[best_len]   != scan_end  ||
1370             match[best_len-1] != scan_end1 ||
1371             *match            != *scan     ||
1372             *++match          != scan[1])      continue;
1373
1374         /* The check at best_len-1 can be removed because it will be made
1375          * again later. (This heuristic is not always a win.)
1376          * It is not necessary to compare scan[2] and match[2] since they
1377          * are always equal when the other bytes match, given that
1378          * the hash keys are equal and that HASH_BITS >= 8.
1379          */
1380         scan += 2, match++;
1381         Assert(*scan == *match, "match[2]?");
1382
1383         /* We check for insufficient lookahead only every 8th comparison;
1384          * the 256th check will be made at strstart+258.
1385          */
1386         do {
1387         } while (*++scan == *++match && *++scan == *++match &&
1388                  *++scan == *++match && *++scan == *++match &&
1389                  *++scan == *++match && *++scan == *++match &&
1390                  *++scan == *++match && *++scan == *++match &&
1391                  scan < strend);
1392
1393         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1394
1395         len = MAX_MATCH - (int)(strend - scan);
1396         scan = strend - MAX_MATCH;
1397
1398 #endif /* UNALIGNED_OK */
1399
1400         if (len > best_len) {
1401             s->match_start = cur_match;
1402             best_len = len;
1403             if (len >= nice_match) break;
1404 #ifdef UNALIGNED_OK
1405             scan_end = *(ushf*)(scan+best_len-1);
1406 #else
1407             scan_end1  = scan[best_len-1];
1408             scan_end   = scan[best_len];
1409 #endif
1410         }
1411     } while ((cur_match = prev[cur_match & wmask]) > limit
1412              && --chain_length != 0);
1413
1414     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1415     return s->lookahead;
1416 }
1417 #endif /* ASMV */
1418
1419 #else /* FASTEST */
1420
1421 /* ---------------------------------------------------------------------------
1422  * Optimized version for FASTEST only
1423  */
1424 local uInt longest_match(s, cur_match)
1425     deflate_state *s;
1426     IPos cur_match;                             /* current match */
1427 {
1428     register Bytef *scan = s->window + s->strstart; /* current string */
1429     register Bytef *match;                       /* matched string */
1430     register int len;                           /* length of current match */
1431     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1432
1433     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1434      * It is easy to get rid of this optimization if necessary.
1435      */
1436     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1437
1438     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1439
1440     Assert(cur_match < s->strstart, "no future");
1441
1442     match = s->window + cur_match;
1443
1444     /* Return failure if the match length is less than 2:
1445      */
1446     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1447
1448     /* The check at best_len-1 can be removed because it will be made
1449      * again later. (This heuristic is not always a win.)
1450      * It is not necessary to compare scan[2] and match[2] since they
1451      * are always equal when the other bytes match, given that
1452      * the hash keys are equal and that HASH_BITS >= 8.
1453      */
1454     scan += 2, match += 2;
1455     Assert(*scan == *match, "match[2]?");
1456
1457     /* We check for insufficient lookahead only every 8th comparison;
1458      * the 256th check will be made at strstart+258.
1459      */
1460     do {
1461     } while (*++scan == *++match && *++scan == *++match &&
1462              *++scan == *++match && *++scan == *++match &&
1463              *++scan == *++match && *++scan == *++match &&
1464              *++scan == *++match && *++scan == *++match &&
1465              scan < strend);
1466
1467     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1468
1469     len = MAX_MATCH - (int)(strend - scan);
1470
1471     if (len < MIN_MATCH) return MIN_MATCH - 1;
1472
1473     s->match_start = cur_match;
1474     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1475 }
1476
1477 #endif /* FASTEST */
1478
1479 #ifdef ZLIB_DEBUG
1480
1481 #define EQUAL 0
1482 /* result of memcmp for equal strings */
1483
1484 /* ===========================================================================
1485  * Check that the match at match_start is indeed a match.
1486  */
1487 local void check_match(s, start, match, length)
1488     deflate_state *s;
1489     IPos start, match;
1490     int length;
1491 {
1492     /* check that the match is indeed a match */
1493     if (zmemcmp(s->window + match,
1494                 s->window + start, length) != EQUAL) {
1495         fprintf(stderr, " start %u, match %u, length %d\n",
1496                 start, match, length);
1497         do {
1498             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1499         } while (--length != 0);
1500         z_error("invalid match");
1501     }
1502     if (z_verbose > 1) {
1503         fprintf(stderr,"\\[%d,%d]", start-match, length);
1504         do { putc(s->window[start++], stderr); } while (--length != 0);
1505     }
1506 }
1507 #else
1508 #  define check_match(s, start, match, length)
1509 #endif /* ZLIB_DEBUG */
1510
1511 /* ===========================================================================
1512  * Fill the window when the lookahead becomes insufficient.
1513  * Updates strstart and lookahead.
1514  *
1515  * IN assertion: lookahead < MIN_LOOKAHEAD
1516  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1517  *    At least one byte has been read, or avail_in == 0; reads are
1518  *    performed for at least two bytes (required for the zip translate_eol
1519  *    option -- not supported here).
1520  */
1521 local void fill_window(s)
1522     deflate_state *s;
1523 {
1524     unsigned n;
1525     unsigned more;    /* Amount of free space at the end of the window. */
1526     uInt wsize = s->w_size;
1527
1528     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1529
1530     do {
1531         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1532
1533         /* Deal with !@#$% 64K limit: */
1534         if (sizeof(int) <= 2) {
1535             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1536                 more = wsize;
1537
1538             } else if (more == (unsigned)(-1)) {
1539                 /* Very unlikely, but possible on 16 bit machine if
1540                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1541                  */
1542                 more--;
1543             }
1544         }
1545
1546         /* If the window is almost full and there is insufficient lookahead,
1547          * move the upper half to the lower one to make room in the upper half.
1548          */
1549         if (s->strstart >= wsize+MAX_DIST(s)) {
1550
1551             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1552             s->match_start -= wsize;
1553             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1554             s->block_start -= (long) wsize;
1555             if (s->insert > s->strstart)
1556                 s->insert = s->strstart;
1557             slide_hash(s);
1558             more += wsize;
1559         }
1560         if (s->strm->avail_in == 0) break;
1561
1562         /* If there was no sliding:
1563          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1564          *    more == window_size - lookahead - strstart
1565          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1566          * => more >= window_size - 2*WSIZE + 2
1567          * In the BIG_MEM or MMAP case (not yet supported),
1568          *   window_size == input_size + MIN_LOOKAHEAD  &&
1569          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1570          * Otherwise, window_size == 2*WSIZE so more >= 2.
1571          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1572          */
1573         Assert(more >= 2, "more < 2");
1574
1575         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1576         s->lookahead += n;
1577
1578         /* Initialize the hash value now that we have some input: */
1579         if (s->lookahead + s->insert >= MIN_MATCH) {
1580             uInt str = s->strstart - s->insert;
1581             s->ins_h = s->window[str];
1582             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1583 #if MIN_MATCH != 3
1584             Call UPDATE_HASH() MIN_MATCH-3 more times
1585 #endif
1586             while (s->insert) {
1587                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1588 #ifndef FASTEST
1589                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1590 #endif
1591                 s->head[s->ins_h] = (Pos)str;
1592                 str++;
1593                 s->insert--;
1594                 if (s->lookahead + s->insert < MIN_MATCH)
1595                     break;
1596             }
1597         }
1598         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1599          * but this is not important since only literal bytes will be emitted.
1600          */
1601
1602     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1603
1604     /* If the WIN_INIT bytes after the end of the current data have never been
1605      * written, then zero those bytes in order to avoid memory check reports of
1606      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1607      * the longest match routines.  Update the high water mark for the next
1608      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1609      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1610      */
1611     if (s->high_water < s->window_size) {
1612         ulg curr = s->strstart + (ulg)(s->lookahead);
1613         ulg init;
1614
1615         if (s->high_water < curr) {
1616             /* Previous high water mark below current data -- zero WIN_INIT
1617              * bytes or up to end of window, whichever is less.
1618              */
1619             init = s->window_size - curr;
1620             if (init > WIN_INIT)
1621                 init = WIN_INIT;
1622             zmemzero(s->window + curr, (unsigned)init);
1623             s->high_water = curr + init;
1624         }
1625         else if (s->high_water < (ulg)curr + WIN_INIT) {
1626             /* High water mark at or above current data, but below current data
1627              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1628              * to end of window, whichever is less.
1629              */
1630             init = (ulg)curr + WIN_INIT - s->high_water;
1631             if (init > s->window_size - s->high_water)
1632                 init = s->window_size - s->high_water;
1633             zmemzero(s->window + s->high_water, (unsigned)init);
1634             s->high_water += init;
1635         }
1636     }
1637
1638     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1639            "not enough room for search");
1640 }
1641
1642 /* ===========================================================================
1643  * Flush the current block, with given end-of-file flag.
1644  * IN assertion: strstart is set to the end of the current match.
1645  */
1646 #define FLUSH_BLOCK_ONLY(s, last) { \
1647    _tr_flush_block(s, (s->block_start >= 0L ? \
1648                    (charf *)&s->window[(unsigned)s->block_start] : \
1649                    (charf *)Z_NULL), \
1650                 (ulg)((long)s->strstart - s->block_start), \
1651                 (last)); \
1652    s->block_start = s->strstart; \
1653    flush_pending(s->strm); \
1654    Tracev((stderr,"[FLUSH]")); \
1655 }
1656
1657 /* Same but force premature exit if necessary. */
1658 #define FLUSH_BLOCK(s, last) { \
1659    FLUSH_BLOCK_ONLY(s, last); \
1660    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1661 }
1662
1663 /* Maximum stored block length in deflate format (not including header). */
1664 #define MAX_STORED 65535
1665
1666 /* Minimum of a and b. */
1667 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1668
1669 /* ===========================================================================
1670  * Copy without compression as much as possible from the input stream, return
1671  * the current block state.
1672  *
1673  * In case deflateParams() is used to later switch to a non-zero compression
1674  * level, s->matches (otherwise unused when storing) keeps track of the number
1675  * of hash table slides to perform. If s->matches is 1, then one hash table
1676  * slide will be done when switching. If s->matches is 2, the maximum value
1677  * allowed here, then the hash table will be cleared, since two or more slides
1678  * is the same as a clear.
1679  *
1680  * deflate_stored() is written to minimize the number of times an input byte is
1681  * copied. It is most efficient with large input and output buffers, which
1682  * maximizes the opportunites to have a single copy from next_in to next_out.
1683  */
1684 local block_state deflate_stored(s, flush)
1685     deflate_state *s;
1686     int flush;
1687 {
1688     /* Smallest worthy block size when not flushing or finishing. By default
1689      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1690      * large input and output buffers, the stored block size will be larger.
1691      */
1692     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1693
1694     /* Copy as many min_block or larger stored blocks directly to next_out as
1695      * possible. If flushing, copy the remaining available input to next_out as
1696      * stored blocks, if there is enough space.
1697      */
1698     unsigned len, left, have, last = 0;
1699     unsigned used = s->strm->avail_in;
1700     do {
1701         /* Set len to the maximum size block that we can copy directly with the
1702          * available input data and output space. Set left to how much of that
1703          * would be copied from what's left in the window.
1704          */
1705         len = MAX_STORED;       /* maximum deflate stored block length */
1706         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1707         if (s->strm->avail_out < have)          /* need room for header */
1708             break;
1709             /* maximum stored block length that will fit in avail_out: */
1710         have = s->strm->avail_out - have;
1711         left = s->strstart - s->block_start;    /* bytes left in window */
1712         if (len > (ulg)left + s->strm->avail_in)
1713             len = left + s->strm->avail_in;     /* limit len to the input */
1714         if (len > have)
1715             len = have;                         /* limit len to the output */
1716
1717         /* If the stored block would be less than min_block in length, or if
1718          * unable to copy all of the available input when flushing, then try
1719          * copying to the window and the pending buffer instead. Also don't
1720          * write an empty block when flushing -- deflate() does that.
1721          */
1722         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1723                                 flush == Z_NO_FLUSH ||
1724                                 len != left + s->strm->avail_in))
1725             break;
1726
1727         /* Make a dummy stored block in pending to get the header bytes,
1728          * including any pending bits. This also updates the debugging counts.
1729          */
1730         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1731         _tr_stored_block(s, (char *)0, 0L, last);
1732
1733         /* Replace the lengths in the dummy stored block with len. */
1734         s->pending_buf[s->pending - 4] = len;
1735         s->pending_buf[s->pending - 3] = len >> 8;
1736         s->pending_buf[s->pending - 2] = ~len;
1737         s->pending_buf[s->pending - 1] = ~len >> 8;
1738
1739         /* Write the stored block header bytes. */
1740         flush_pending(s->strm);
1741
1742 #ifdef ZLIB_DEBUG
1743         /* Update debugging counts for the data about to be copied. */
1744         s->compressed_len += len << 3;
1745         s->bits_sent += len << 3;
1746 #endif
1747
1748         /* Copy uncompressed bytes from the window to next_out. */
1749         if (left) {
1750             if (left > len)
1751                 left = len;
1752             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1753             s->strm->next_out += left;
1754             s->strm->avail_out -= left;
1755             s->strm->total_out += left;
1756             s->block_start += left;
1757             len -= left;
1758         }
1759
1760         /* Copy uncompressed bytes directly from next_in to next_out, updating
1761          * the check value.
1762          */
1763         if (len) {
1764             read_buf(s->strm, s->strm->next_out, len);
1765             s->strm->next_out += len;
1766             s->strm->avail_out -= len;
1767             s->strm->total_out += len;
1768         }
1769     } while (last == 0);
1770
1771     /* Update the sliding window with the last s->w_size bytes of the copied
1772      * data, or append all of the copied data to the existing window if less
1773      * than s->w_size bytes were copied. Also update the number of bytes to
1774      * insert in the hash tables, in the event that deflateParams() switches to
1775      * a non-zero compression level.
1776      */
1777     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1778     if (used) {
1779         /* If any input was used, then no unused input remains in the window,
1780          * therefore s->block_start == s->strstart.
1781          */
1782         if (used >= s->w_size) {    /* supplant the previous history */
1783             s->matches = 2;         /* clear hash */
1784             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1785             s->strstart = s->w_size;
1786             s->insert = s->strstart;
1787         }
1788         else {
1789             if (s->window_size - s->strstart <= used) {
1790                 /* Slide the window down. */
1791                 s->strstart -= s->w_size;
1792                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1793                 if (s->matches < 2)
1794                     s->matches++;   /* add a pending slide_hash() */
1795                 if (s->insert > s->strstart)
1796                     s->insert = s->strstart;
1797             }
1798             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1799             s->strstart += used;
1800             s->insert += MIN(used, s->w_size - s->insert);
1801         }
1802         s->block_start = s->strstart;
1803     }
1804     if (s->high_water < s->strstart)
1805         s->high_water = s->strstart;
1806
1807     /* If the last block was written to next_out, then done. */
1808     if (last)
1809         return finish_done;
1810
1811     /* If flushing and all input has been consumed, then done. */
1812     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1813         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1814         return block_done;
1815
1816     /* Fill the window with any remaining input. */
1817     have = s->window_size - s->strstart;
1818     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1819         /* Slide the window down. */
1820         s->block_start -= s->w_size;
1821         s->strstart -= s->w_size;
1822         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1823         if (s->matches < 2)
1824             s->matches++;           /* add a pending slide_hash() */
1825         have += s->w_size;          /* more space now */
1826         if (s->insert > s->strstart)
1827             s->insert = s->strstart;
1828     }
1829     if (have > s->strm->avail_in)
1830         have = s->strm->avail_in;
1831     if (have) {
1832         read_buf(s->strm, s->window + s->strstart, have);
1833         s->strstart += have;
1834         s->insert += MIN(have, s->w_size - s->insert);
1835     }
1836     if (s->high_water < s->strstart)
1837         s->high_water = s->strstart;
1838
1839     /* There was not enough avail_out to write a complete worthy or flushed
1840      * stored block to next_out. Write a stored block to pending instead, if we
1841      * have enough input for a worthy block, or if flushing and there is enough
1842      * room for the remaining input as a stored block in the pending buffer.
1843      */
1844     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1845         /* maximum stored block length that will fit in pending: */
1846     have = MIN(s->pending_buf_size - have, MAX_STORED);
1847     min_block = MIN(have, s->w_size);
1848     left = s->strstart - s->block_start;
1849     if (left >= min_block ||
1850         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1851          s->strm->avail_in == 0 && left <= have)) {
1852         len = MIN(left, have);
1853         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1854                len == left ? 1 : 0;
1855         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1856         s->block_start += len;
1857         flush_pending(s->strm);
1858     }
1859
1860     /* We've done all we can with the available input and output. */
1861     return last ? finish_started : need_more;
1862 }
1863
1864 /* ===========================================================================
1865  * Compress as much as possible from the input stream, return the current
1866  * block state.
1867  * This function does not perform lazy evaluation of matches and inserts
1868  * new strings in the dictionary only for unmatched strings or for short
1869  * matches. It is used only for the fast compression options.
1870  */
1871 local block_state deflate_fast(s, flush)
1872     deflate_state *s;
1873     int flush;
1874 {
1875     IPos hash_head;       /* head of the hash chain */
1876     int bflush;           /* set if current block must be flushed */
1877
1878     for (;;) {
1879         /* Make sure that we always have enough lookahead, except
1880          * at the end of the input file. We need MAX_MATCH bytes
1881          * for the next match, plus MIN_MATCH bytes to insert the
1882          * string following the next match.
1883          */
1884         if (s->lookahead < MIN_LOOKAHEAD) {
1885             fill_window(s);
1886             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1887                 return need_more;
1888             }
1889             if (s->lookahead == 0) break; /* flush the current block */
1890         }
1891
1892         /* Insert the string window[strstart .. strstart+2] in the
1893          * dictionary, and set hash_head to the head of the hash chain:
1894          */
1895         hash_head = NIL;
1896         if (s->lookahead >= MIN_MATCH) {
1897             INSERT_STRING(s, s->strstart, hash_head);
1898         }
1899
1900         /* Find the longest match, discarding those <= prev_length.
1901          * At this point we have always match_length < MIN_MATCH
1902          */
1903         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1904             /* To simplify the code, we prevent matches with the string
1905              * of window index 0 (in particular we have to avoid a match
1906              * of the string with itself at the start of the input file).
1907              */
1908             s->match_length = longest_match (s, hash_head);
1909             /* longest_match() sets match_start */
1910         }
1911         if (s->match_length >= MIN_MATCH) {
1912             check_match(s, s->strstart, s->match_start, s->match_length);
1913
1914             _tr_tally_dist(s, s->strstart - s->match_start,
1915                            s->match_length - MIN_MATCH, bflush);
1916
1917             s->lookahead -= s->match_length;
1918
1919             /* Insert new strings in the hash table only if the match length
1920              * is not too large. This saves time but degrades compression.
1921              */
1922 #ifndef FASTEST
1923             if (s->match_length <= s->max_insert_length &&
1924                 s->lookahead >= MIN_MATCH) {
1925                 s->match_length--; /* string at strstart already in table */
1926                 do {
1927                     s->strstart++;
1928                     INSERT_STRING(s, s->strstart, hash_head);
1929                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1930                      * always MIN_MATCH bytes ahead.
1931                      */
1932                 } while (--s->match_length != 0);
1933                 s->strstart++;
1934             } else
1935 #endif
1936             {
1937                 s->strstart += s->match_length;
1938                 s->match_length = 0;
1939                 s->ins_h = s->window[s->strstart];
1940                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1941 #if MIN_MATCH != 3
1942                 Call UPDATE_HASH() MIN_MATCH-3 more times
1943 #endif
1944                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1945                  * matter since it will be recomputed at next deflate call.
1946                  */
1947             }
1948         } else {
1949             /* No match, output a literal byte */
1950             Tracevv((stderr,"%c", s->window[s->strstart]));
1951             _tr_tally_lit (s, s->window[s->strstart], bflush);
1952             s->lookahead--;
1953             s->strstart++;
1954         }
1955         if (bflush) FLUSH_BLOCK(s, 0);
1956     }
1957     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1958     if (flush == Z_FINISH) {
1959         FLUSH_BLOCK(s, 1);
1960         return finish_done;
1961     }
1962     if (s->sym_next)
1963         FLUSH_BLOCK(s, 0);
1964     return block_done;
1965 }
1966
1967 #ifndef FASTEST
1968 /* ===========================================================================
1969  * Same as above, but achieves better compression. We use a lazy
1970  * evaluation for matches: a match is finally adopted only if there is
1971  * no better match at the next window position.
1972  */
1973 local block_state deflate_slow(s, flush)
1974     deflate_state *s;
1975     int flush;
1976 {
1977     IPos hash_head;          /* head of hash chain */
1978     int bflush;              /* set if current block must be flushed */
1979
1980     /* Process the input block. */
1981     for (;;) {
1982         /* Make sure that we always have enough lookahead, except
1983          * at the end of the input file. We need MAX_MATCH bytes
1984          * for the next match, plus MIN_MATCH bytes to insert the
1985          * string following the next match.
1986          */
1987         if (s->lookahead < MIN_LOOKAHEAD) {
1988             fill_window(s);
1989             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1990                 return need_more;
1991             }
1992             if (s->lookahead == 0) break; /* flush the current block */
1993         }
1994
1995         /* Insert the string window[strstart .. strstart+2] in the
1996          * dictionary, and set hash_head to the head of the hash chain:
1997          */
1998         hash_head = NIL;
1999         if (s->lookahead >= MIN_MATCH) {
2000             INSERT_STRING(s, s->strstart, hash_head);
2001         }
2002
2003         /* Find the longest match, discarding those <= prev_length.
2004          */
2005         s->prev_length = s->match_length, s->prev_match = s->match_start;
2006         s->match_length = MIN_MATCH-1;
2007
2008         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2009             s->strstart - hash_head <= MAX_DIST(s)) {
2010             /* To simplify the code, we prevent matches with the string
2011              * of window index 0 (in particular we have to avoid a match
2012              * of the string with itself at the start of the input file).
2013              */
2014             s->match_length = longest_match (s, hash_head);
2015             /* longest_match() sets match_start */
2016
2017             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2018 #if TOO_FAR <= 32767
2019                 || (s->match_length == MIN_MATCH &&
2020                     s->strstart - s->match_start > TOO_FAR)
2021 #endif
2022                 )) {
2023
2024                 /* If prev_match is also MIN_MATCH, match_start is garbage
2025                  * but we will ignore the current match anyway.
2026                  */
2027                 s->match_length = MIN_MATCH-1;
2028             }
2029         }
2030         /* If there was a match at the previous step and the current
2031          * match is not better, output the previous match:
2032          */
2033         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2034             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2035             /* Do not insert strings in hash table beyond this. */
2036
2037             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2038
2039             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2040                            s->prev_length - MIN_MATCH, bflush);
2041
2042             /* Insert in hash table all strings up to the end of the match.
2043              * strstart-1 and strstart are already inserted. If there is not
2044              * enough lookahead, the last two strings are not inserted in
2045              * the hash table.
2046              */
2047             s->lookahead -= s->prev_length-1;
2048             s->prev_length -= 2;
2049             do {
2050                 if (++s->strstart <= max_insert) {
2051                     INSERT_STRING(s, s->strstart, hash_head);
2052                 }
2053             } while (--s->prev_length != 0);
2054             s->match_available = 0;
2055             s->match_length = MIN_MATCH-1;
2056             s->strstart++;
2057
2058             if (bflush) FLUSH_BLOCK(s, 0);
2059
2060         } else if (s->match_available) {
2061             /* If there was no match at the previous position, output a
2062              * single literal. If there was a match but the current match
2063              * is longer, truncate the previous match to a single literal.
2064              */
2065             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2066             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2067             if (bflush) {
2068                 FLUSH_BLOCK_ONLY(s, 0);
2069             }
2070             s->strstart++;
2071             s->lookahead--;
2072             if (s->strm->avail_out == 0) return need_more;
2073         } else {
2074             /* There is no previous match to compare with, wait for
2075              * the next step to decide.
2076              */
2077             s->match_available = 1;
2078             s->strstart++;
2079             s->lookahead--;
2080         }
2081     }
2082     Assert (flush != Z_NO_FLUSH, "no flush?");
2083     if (s->match_available) {
2084         Tracevv((stderr,"%c", s->window[s->strstart-1]));
2085         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2086         s->match_available = 0;
2087     }
2088     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2089     if (flush == Z_FINISH) {
2090         FLUSH_BLOCK(s, 1);
2091         return finish_done;
2092     }
2093     if (s->sym_next)
2094         FLUSH_BLOCK(s, 0);
2095     return block_done;
2096 }
2097 #endif /* FASTEST */
2098
2099 /* ===========================================================================
2100  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2101  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2102  * deflate switches away from Z_RLE.)
2103  */
2104 local block_state deflate_rle(s, flush)
2105     deflate_state *s;
2106     int flush;
2107 {
2108     int bflush;             /* set if current block must be flushed */
2109     uInt prev;              /* byte at distance one to match */
2110     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2111
2112     for (;;) {
2113         /* Make sure that we always have enough lookahead, except
2114          * at the end of the input file. We need MAX_MATCH bytes
2115          * for the longest run, plus one for the unrolled loop.
2116          */
2117         if (s->lookahead <= MAX_MATCH) {
2118             fill_window(s);
2119             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2120                 return need_more;
2121             }
2122             if (s->lookahead == 0) break; /* flush the current block */
2123         }
2124
2125         /* See how many times the previous byte repeats */
2126         s->match_length = 0;
2127         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2128             scan = s->window + s->strstart - 1;
2129             prev = *scan;
2130             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2131                 strend = s->window + s->strstart + MAX_MATCH;
2132                 do {
2133                 } while (prev == *++scan && prev == *++scan &&
2134                          prev == *++scan && prev == *++scan &&
2135                          prev == *++scan && prev == *++scan &&
2136                          prev == *++scan && prev == *++scan &&
2137                          scan < strend);
2138                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2139                 if (s->match_length > s->lookahead)
2140                     s->match_length = s->lookahead;
2141             }
2142             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2143         }
2144
2145         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2146         if (s->match_length >= MIN_MATCH) {
2147             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2148
2149             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2150
2151             s->lookahead -= s->match_length;
2152             s->strstart += s->match_length;
2153             s->match_length = 0;
2154         } else {
2155             /* No match, output a literal byte */
2156             Tracevv((stderr,"%c", s->window[s->strstart]));
2157             _tr_tally_lit (s, s->window[s->strstart], bflush);
2158             s->lookahead--;
2159             s->strstart++;
2160         }
2161         if (bflush) FLUSH_BLOCK(s, 0);
2162     }
2163     s->insert = 0;
2164     if (flush == Z_FINISH) {
2165         FLUSH_BLOCK(s, 1);
2166         return finish_done;
2167     }
2168     if (s->sym_next)
2169         FLUSH_BLOCK(s, 0);
2170     return block_done;
2171 }
2172
2173 /* ===========================================================================
2174  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2175  * (It will be regenerated if this run of deflate switches away from Huffman.)
2176  */
2177 local block_state deflate_huff(s, flush)
2178     deflate_state *s;
2179     int flush;
2180 {
2181     int bflush;             /* set if current block must be flushed */
2182
2183     for (;;) {
2184         /* Make sure that we have a literal to write. */
2185         if (s->lookahead == 0) {
2186             fill_window(s);
2187             if (s->lookahead == 0) {
2188                 if (flush == Z_NO_FLUSH)
2189                     return need_more;
2190                 break;      /* flush the current block */
2191             }
2192         }
2193
2194         /* Output a literal byte */
2195         s->match_length = 0;
2196         Tracevv((stderr,"%c", s->window[s->strstart]));
2197         _tr_tally_lit (s, s->window[s->strstart], bflush);
2198         s->lookahead--;
2199         s->strstart++;
2200         if (bflush) FLUSH_BLOCK(s, 0);
2201     }
2202     s->insert = 0;
2203     if (flush == Z_FINISH) {
2204         FLUSH_BLOCK(s, 1);
2205         return finish_done;
2206     }
2207     if (s->sym_next)
2208         FLUSH_BLOCK(s, 0);
2209     return block_done;
2210 }