]> git.lizzy.rs Git - rust.git/blob - crates/ra_hir_ty/src/infer/expr.rs
Handle closure return types
[rust.git] / crates / ra_hir_ty / src / infer / expr.rs
1 //! Type inference for expressions.
2
3 use std::iter::{repeat, repeat_with};
4 use std::sync::Arc;
5
6 use hir_def::{
7     builtin_type::Signedness,
8     expr::{Array, BinaryOp, Expr, ExprId, Literal, Statement, UnaryOp},
9     path::{GenericArg, GenericArgs},
10     resolver::resolver_for_expr,
11     AdtId, AssocContainerId, Lookup, StructFieldId,
12 };
13 use hir_expand::name::{name, Name};
14 use ra_syntax::ast::RangeOp;
15
16 use crate::{
17     autoderef,
18     db::HirDatabase,
19     method_resolution, op,
20     traits::InEnvironment,
21     utils::{generics, variant_data, Generics},
22     ApplicationTy, CallableDef, InferTy, IntTy, Mutability, Obligation, Substs, TraitRef, Ty,
23     TypeCtor, TypeWalk, Uncertain,
24 };
25
26 use super::{BindingMode, Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch};
27
28 impl<'a, D: HirDatabase> InferenceContext<'a, D> {
29     pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
30         let ty = self.infer_expr_inner(tgt_expr, expected);
31         let could_unify = self.unify(&ty, &expected.ty);
32         if !could_unify {
33             self.result.type_mismatches.insert(
34                 tgt_expr,
35                 TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() },
36             );
37         }
38         let ty = self.resolve_ty_as_possible(ty);
39         ty
40     }
41
42     /// Infer type of expression with possibly implicit coerce to the expected type.
43     /// Return the type after possible coercion.
44     fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
45         let ty = self.infer_expr_inner(expr, &expected);
46         let ty = if !self.coerce(&ty, &expected.ty) {
47             self.result
48                 .type_mismatches
49                 .insert(expr, TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() });
50             // Return actual type when type mismatch.
51             // This is needed for diagnostic when return type mismatch.
52             ty
53         } else if expected.ty == Ty::Unknown {
54             ty
55         } else {
56             expected.ty.clone()
57         };
58
59         self.resolve_ty_as_possible(ty)
60     }
61
62     fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
63         let body = Arc::clone(&self.body); // avoid borrow checker problem
64         let ty = match &body[tgt_expr] {
65             Expr::Missing => Ty::Unknown,
66             Expr::If { condition, then_branch, else_branch } => {
67                 // if let is desugared to match, so this is always simple if
68                 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
69
70                 let then_ty = self.infer_expr_inner(*then_branch, &expected);
71                 let else_ty = match else_branch {
72                     Some(else_branch) => self.infer_expr_inner(*else_branch, &expected),
73                     None => Ty::unit(),
74                 };
75
76                 self.coerce_merge_branch(&then_ty, &else_ty)
77             }
78             Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
79             Expr::TryBlock { body } => {
80                 let _inner = self.infer_expr(*body, expected);
81                 // FIXME should be std::result::Result<{inner}, _>
82                 Ty::Unknown
83             }
84             Expr::Loop { body } => {
85                 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
86                 // FIXME handle break with value
87                 Ty::simple(TypeCtor::Never)
88             }
89             Expr::While { condition, body } => {
90                 // while let is desugared to a match loop, so this is always simple while
91                 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
92                 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
93                 Ty::unit()
94             }
95             Expr::For { iterable, body, pat } => {
96                 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
97
98                 let pat_ty =
99                     self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
100
101                 self.infer_pat(*pat, &pat_ty, BindingMode::default());
102                 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
103                 Ty::unit()
104             }
105             Expr::Lambda { body, args, ret_type, arg_types } => {
106                 assert_eq!(args.len(), arg_types.len());
107
108                 let mut sig_tys = Vec::new();
109
110                 for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
111                     let expected = if let Some(type_ref) = arg_type {
112                         self.make_ty(type_ref)
113                     } else {
114                         Ty::Unknown
115                     };
116                     let arg_ty = self.infer_pat(*arg_pat, &expected, BindingMode::default());
117                     sig_tys.push(arg_ty);
118                 }
119
120                 // add return type
121                 let ret_ty = match ret_type {
122                     Some(type_ref) => self.make_ty(type_ref),
123                     None => self.table.new_type_var(),
124                 };
125                 sig_tys.push(ret_ty.clone());
126                 let sig_ty = Ty::apply(
127                     TypeCtor::FnPtr { num_args: sig_tys.len() as u16 - 1 },
128                     Substs(sig_tys.into()),
129                 );
130                 let closure_ty = Ty::apply_one(
131                     TypeCtor::Closure { def: self.owner.into(), expr: tgt_expr },
132                     sig_ty,
133                 );
134
135                 // Eagerly try to relate the closure type with the expected
136                 // type, otherwise we often won't have enough information to
137                 // infer the body.
138                 self.coerce(&closure_ty, &expected.ty);
139
140                 let prev_ret_ty = std::mem::replace(&mut self.return_ty, ret_ty.clone());
141
142                 self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
143
144                 self.return_ty = prev_ret_ty;
145
146                 closure_ty
147             }
148             Expr::Call { callee, args } => {
149                 let callee_ty = self.infer_expr(*callee, &Expectation::none());
150                 let (param_tys, ret_ty) = match callee_ty.callable_sig(self.db) {
151                     Some(sig) => (sig.params().to_vec(), sig.ret().clone()),
152                     None => {
153                         // Not callable
154                         // FIXME: report an error
155                         (Vec::new(), Ty::Unknown)
156                     }
157                 };
158                 self.register_obligations_for_call(&callee_ty);
159                 self.check_call_arguments(args, &param_tys);
160                 let ret_ty = self.normalize_associated_types_in(ret_ty);
161                 ret_ty
162             }
163             Expr::MethodCall { receiver, args, method_name, generic_args } => self
164                 .infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
165             Expr::Match { expr, arms } => {
166                 let input_ty = self.infer_expr(*expr, &Expectation::none());
167
168                 let mut result_ty = self.table.new_maybe_never_type_var();
169
170                 for arm in arms {
171                     for &pat in &arm.pats {
172                         let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
173                     }
174                     if let Some(guard_expr) = arm.guard {
175                         self.infer_expr(
176                             guard_expr,
177                             &Expectation::has_type(Ty::simple(TypeCtor::Bool)),
178                         );
179                     }
180
181                     let arm_ty = self.infer_expr_inner(arm.expr, &expected);
182                     result_ty = self.coerce_merge_branch(&result_ty, &arm_ty);
183                 }
184
185                 result_ty
186             }
187             Expr::Path(p) => {
188                 // FIXME this could be more efficient...
189                 let resolver = resolver_for_expr(self.db, self.owner.into(), tgt_expr);
190                 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown)
191             }
192             Expr::Continue => Ty::simple(TypeCtor::Never),
193             Expr::Break { expr } => {
194                 if let Some(expr) = expr {
195                     // FIXME handle break with value
196                     self.infer_expr(*expr, &Expectation::none());
197                 }
198                 Ty::simple(TypeCtor::Never)
199             }
200             Expr::Return { expr } => {
201                 if let Some(expr) = expr {
202                     self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
203                 } else {
204                     let unit = Ty::unit();
205                     self.coerce(&unit, &self.return_ty.clone());
206                 }
207                 Ty::simple(TypeCtor::Never)
208             }
209             Expr::RecordLit { path, fields, spread } => {
210                 let (ty, def_id) = self.resolve_variant(path.as_ref());
211                 if let Some(variant) = def_id {
212                     self.write_variant_resolution(tgt_expr.into(), variant);
213                 }
214
215                 self.unify(&ty, &expected.ty);
216
217                 let substs = ty.substs().unwrap_or_else(Substs::empty);
218                 let field_types =
219                     def_id.map(|it| self.db.field_types(it.into())).unwrap_or_default();
220                 let variant_data = def_id.map(|it| variant_data(self.db, it));
221                 for (field_idx, field) in fields.iter().enumerate() {
222                     let field_def =
223                         variant_data.as_ref().and_then(|it| match it.field(&field.name) {
224                             Some(local_id) => {
225                                 Some(StructFieldId { parent: def_id.unwrap(), local_id })
226                             }
227                             None => {
228                                 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
229                                     expr: tgt_expr,
230                                     field: field_idx,
231                                 });
232                                 None
233                             }
234                         });
235                     if let Some(field_def) = field_def {
236                         self.result.record_field_resolutions.insert(field.expr, field_def);
237                     }
238                     let field_ty = field_def
239                         .map_or(Ty::Unknown, |it| field_types[it.local_id].clone())
240                         .subst(&substs);
241                     self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
242                 }
243                 if let Some(expr) = spread {
244                     self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
245                 }
246                 ty
247             }
248             Expr::Field { expr, name } => {
249                 let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
250                 let canonicalized = self.canonicalizer().canonicalize_ty(receiver_ty);
251                 let ty = autoderef::autoderef(
252                     self.db,
253                     self.resolver.krate(),
254                     InEnvironment {
255                         value: canonicalized.value.clone(),
256                         environment: self.trait_env.clone(),
257                     },
258                 )
259                 .find_map(|derefed_ty| match canonicalized.decanonicalize_ty(derefed_ty.value) {
260                     Ty::Apply(a_ty) => match a_ty.ctor {
261                         TypeCtor::Tuple { .. } => name
262                             .as_tuple_index()
263                             .and_then(|idx| a_ty.parameters.0.get(idx).cloned()),
264                         TypeCtor::Adt(AdtId::StructId(s)) => {
265                             self.db.struct_data(s).variant_data.field(name).map(|local_id| {
266                                 let field = StructFieldId { parent: s.into(), local_id }.into();
267                                 self.write_field_resolution(tgt_expr, field);
268                                 self.db.field_types(s.into())[field.local_id]
269                                     .clone()
270                                     .subst(&a_ty.parameters)
271                             })
272                         }
273                         // FIXME:
274                         TypeCtor::Adt(AdtId::UnionId(_)) => None,
275                         _ => None,
276                     },
277                     _ => None,
278                 })
279                 .unwrap_or(Ty::Unknown);
280                 let ty = self.insert_type_vars(ty);
281                 self.normalize_associated_types_in(ty)
282             }
283             Expr::Await { expr } => {
284                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
285                 let ty =
286                     self.resolve_associated_type(inner_ty, self.resolve_future_future_output());
287                 ty
288             }
289             Expr::Try { expr } => {
290                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
291                 let ty = self.resolve_associated_type(inner_ty, self.resolve_ops_try_ok());
292                 ty
293             }
294             Expr::Cast { expr, type_ref } => {
295                 let _inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
296                 let cast_ty = self.make_ty(type_ref);
297                 // FIXME check the cast...
298                 cast_ty
299             }
300             Expr::Ref { expr, mutability } => {
301                 let expectation =
302                     if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() {
303                         if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared {
304                             // FIXME: throw type error - expected mut reference but found shared ref,
305                             // which cannot be coerced
306                         }
307                         Expectation::has_type(Ty::clone(exp_inner))
308                     } else {
309                         Expectation::none()
310                     };
311                 let inner_ty = self.infer_expr_inner(*expr, &expectation);
312                 Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
313             }
314             Expr::Box { expr } => {
315                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
316                 if let Some(box_) = self.resolve_boxed_box() {
317                     Ty::apply_one(TypeCtor::Adt(box_), inner_ty)
318                 } else {
319                     Ty::Unknown
320                 }
321             }
322             Expr::UnaryOp { expr, op } => {
323                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
324                 match op {
325                     UnaryOp::Deref => match self.resolver.krate() {
326                         Some(krate) => {
327                             let canonicalized = self.canonicalizer().canonicalize_ty(inner_ty);
328                             match autoderef::deref(
329                                 self.db,
330                                 krate,
331                                 InEnvironment {
332                                     value: &canonicalized.value,
333                                     environment: self.trait_env.clone(),
334                                 },
335                             ) {
336                                 Some(derefed_ty) => {
337                                     canonicalized.decanonicalize_ty(derefed_ty.value)
338                                 }
339                                 None => Ty::Unknown,
340                             }
341                         }
342                         None => Ty::Unknown,
343                     },
344                     UnaryOp::Neg => {
345                         match &inner_ty {
346                             // Fast path for builtins
347                             Ty::Apply(ApplicationTy {
348                                 ctor:
349                                     TypeCtor::Int(Uncertain::Known(IntTy {
350                                         signedness: Signedness::Signed,
351                                         ..
352                                     })),
353                                 ..
354                             })
355                             | Ty::Apply(ApplicationTy {
356                                 ctor: TypeCtor::Int(Uncertain::Unknown),
357                                 ..
358                             })
359                             | Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(_), .. })
360                             | Ty::Infer(InferTy::IntVar(..))
361                             | Ty::Infer(InferTy::FloatVar(..)) => inner_ty,
362                             // Otherwise we resolve via the std::ops::Neg trait
363                             _ => self
364                                 .resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
365                         }
366                     }
367                     UnaryOp::Not => {
368                         match &inner_ty {
369                             // Fast path for builtins
370                             Ty::Apply(ApplicationTy { ctor: TypeCtor::Bool, .. })
371                             | Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(_), .. })
372                             | Ty::Infer(InferTy::IntVar(..)) => inner_ty,
373                             // Otherwise we resolve via the std::ops::Not trait
374                             _ => self
375                                 .resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
376                         }
377                     }
378                 }
379             }
380             Expr::BinaryOp { lhs, rhs, op } => match op {
381                 Some(op) => {
382                     let lhs_expectation = match op {
383                         BinaryOp::LogicOp(..) => Expectation::has_type(Ty::simple(TypeCtor::Bool)),
384                         _ => Expectation::none(),
385                     };
386                     let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
387                     // FIXME: find implementation of trait corresponding to operation
388                     // symbol and resolve associated `Output` type
389                     let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
390                     let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
391
392                     // FIXME: similar as above, return ty is often associated trait type
393                     op::binary_op_return_ty(*op, rhs_ty)
394                 }
395                 _ => Ty::Unknown,
396             },
397             Expr::Range { lhs, rhs, range_type } => {
398                 let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
399                 let rhs_expect = lhs_ty
400                     .as_ref()
401                     .map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
402                 let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
403                 match (range_type, lhs_ty, rhs_ty) {
404                     (RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
405                         Some(adt) => Ty::simple(TypeCtor::Adt(adt)),
406                         None => Ty::Unknown,
407                     },
408                     (RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
409                         Some(adt) => Ty::apply_one(TypeCtor::Adt(adt), ty),
410                         None => Ty::Unknown,
411                     },
412                     (RangeOp::Inclusive, None, Some(ty)) => {
413                         match self.resolve_range_to_inclusive() {
414                             Some(adt) => Ty::apply_one(TypeCtor::Adt(adt), ty),
415                             None => Ty::Unknown,
416                         }
417                     }
418                     (RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
419                         Some(adt) => Ty::apply_one(TypeCtor::Adt(adt), ty),
420                         None => Ty::Unknown,
421                     },
422                     (RangeOp::Inclusive, Some(_), Some(ty)) => {
423                         match self.resolve_range_inclusive() {
424                             Some(adt) => Ty::apply_one(TypeCtor::Adt(adt), ty),
425                             None => Ty::Unknown,
426                         }
427                     }
428                     (RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
429                         Some(adt) => Ty::apply_one(TypeCtor::Adt(adt), ty),
430                         None => Ty::Unknown,
431                     },
432                     (RangeOp::Inclusive, _, None) => Ty::Unknown,
433                 }
434             }
435             Expr::Index { base, index } => {
436                 let base_ty = self.infer_expr_inner(*base, &Expectation::none());
437                 let index_ty = self.infer_expr(*index, &Expectation::none());
438
439                 self.resolve_associated_type_with_params(
440                     base_ty,
441                     self.resolve_ops_index_output(),
442                     &[index_ty],
443                 )
444             }
445             Expr::Tuple { exprs } => {
446                 let mut tys = match &expected.ty {
447                     ty_app!(TypeCtor::Tuple { .. }, st) => st
448                         .iter()
449                         .cloned()
450                         .chain(repeat_with(|| self.table.new_type_var()))
451                         .take(exprs.len())
452                         .collect::<Vec<_>>(),
453                     _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
454                 };
455
456                 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
457                     self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
458                 }
459
460                 Ty::apply(TypeCtor::Tuple { cardinality: tys.len() as u16 }, Substs(tys.into()))
461             }
462             Expr::Array(array) => {
463                 let elem_ty = match &expected.ty {
464                     ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => {
465                         st.as_single().clone()
466                     }
467                     _ => self.table.new_type_var(),
468                 };
469
470                 match array {
471                     Array::ElementList(items) => {
472                         for expr in items.iter() {
473                             self.infer_expr_coerce(*expr, &Expectation::has_type(elem_ty.clone()));
474                         }
475                     }
476                     Array::Repeat { initializer, repeat } => {
477                         self.infer_expr_coerce(
478                             *initializer,
479                             &Expectation::has_type(elem_ty.clone()),
480                         );
481                         self.infer_expr(
482                             *repeat,
483                             &Expectation::has_type(Ty::simple(TypeCtor::Int(Uncertain::Known(
484                                 IntTy::usize(),
485                             )))),
486                         );
487                     }
488                 }
489
490                 Ty::apply_one(TypeCtor::Array, elem_ty)
491             }
492             Expr::Literal(lit) => match lit {
493                 Literal::Bool(..) => Ty::simple(TypeCtor::Bool),
494                 Literal::String(..) => {
495                     Ty::apply_one(TypeCtor::Ref(Mutability::Shared), Ty::simple(TypeCtor::Str))
496                 }
497                 Literal::ByteString(..) => {
498                     let byte_type = Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::u8())));
499                     let slice_type = Ty::apply_one(TypeCtor::Slice, byte_type);
500                     Ty::apply_one(TypeCtor::Ref(Mutability::Shared), slice_type)
501                 }
502                 Literal::Char(..) => Ty::simple(TypeCtor::Char),
503                 Literal::Int(_v, ty) => Ty::simple(TypeCtor::Int((*ty).into())),
504                 Literal::Float(_v, ty) => Ty::simple(TypeCtor::Float((*ty).into())),
505             },
506         };
507         // use a new type variable if we got Ty::Unknown here
508         let ty = self.insert_type_vars_shallow(ty);
509         let ty = self.resolve_ty_as_possible(ty);
510         self.write_expr_ty(tgt_expr, ty.clone());
511         ty
512     }
513
514     fn infer_block(
515         &mut self,
516         statements: &[Statement],
517         tail: Option<ExprId>,
518         expected: &Expectation,
519     ) -> Ty {
520         let mut diverges = false;
521         for stmt in statements {
522             match stmt {
523                 Statement::Let { pat, type_ref, initializer } => {
524                     let decl_ty =
525                         type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
526
527                     // Always use the declared type when specified
528                     let mut ty = decl_ty.clone();
529
530                     if let Some(expr) = initializer {
531                         let actual_ty =
532                             self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
533                         if decl_ty == Ty::Unknown {
534                             ty = actual_ty;
535                         }
536                     }
537
538                     let ty = self.resolve_ty_as_possible(ty);
539                     self.infer_pat(*pat, &ty, BindingMode::default());
540                 }
541                 Statement::Expr(expr) => {
542                     if let ty_app!(TypeCtor::Never) = self.infer_expr(*expr, &Expectation::none()) {
543                         diverges = true;
544                     }
545                 }
546             }
547         }
548
549         let ty = if let Some(expr) = tail {
550             self.infer_expr_coerce(expr, expected)
551         } else {
552             self.coerce(&Ty::unit(), &expected.ty);
553             Ty::unit()
554         };
555         if diverges {
556             Ty::simple(TypeCtor::Never)
557         } else {
558             ty
559         }
560     }
561
562     fn infer_method_call(
563         &mut self,
564         tgt_expr: ExprId,
565         receiver: ExprId,
566         args: &[ExprId],
567         method_name: &Name,
568         generic_args: Option<&GenericArgs>,
569     ) -> Ty {
570         let receiver_ty = self.infer_expr(receiver, &Expectation::none());
571         let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
572         let resolved = method_resolution::lookup_method(
573             &canonicalized_receiver.value,
574             self.db,
575             method_name,
576             &self.resolver,
577         );
578         let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
579             Some((ty, func)) => {
580                 let ty = canonicalized_receiver.decanonicalize_ty(ty);
581                 self.write_method_resolution(tgt_expr, func);
582                 (ty, self.db.value_ty(func.into()), Some(generics(self.db, func.into())))
583             }
584             None => (receiver_ty, Ty::Unknown, None),
585         };
586         let substs = self.substs_for_method_call(def_generics, generic_args, &derefed_receiver_ty);
587         let method_ty = method_ty.apply_substs(substs);
588         let method_ty = self.insert_type_vars(method_ty);
589         self.register_obligations_for_call(&method_ty);
590         let (expected_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
591             Some(sig) => {
592                 if !sig.params().is_empty() {
593                     (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
594                 } else {
595                     (Ty::Unknown, Vec::new(), sig.ret().clone())
596                 }
597             }
598             None => (Ty::Unknown, Vec::new(), Ty::Unknown),
599         };
600         // Apply autoref so the below unification works correctly
601         // FIXME: return correct autorefs from lookup_method
602         let actual_receiver_ty = match expected_receiver_ty.as_reference() {
603             Some((_, mutability)) => Ty::apply_one(TypeCtor::Ref(mutability), derefed_receiver_ty),
604             _ => derefed_receiver_ty,
605         };
606         self.unify(&expected_receiver_ty, &actual_receiver_ty);
607
608         self.check_call_arguments(args, &param_tys);
609         let ret_ty = self.normalize_associated_types_in(ret_ty);
610         ret_ty
611     }
612
613     fn check_call_arguments(&mut self, args: &[ExprId], param_tys: &[Ty]) {
614         // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
615         // We do this in a pretty awful way: first we type-check any arguments
616         // that are not closures, then we type-check the closures. This is so
617         // that we have more information about the types of arguments when we
618         // type-check the functions. This isn't really the right way to do this.
619         for &check_closures in &[false, true] {
620             let param_iter = param_tys.iter().cloned().chain(repeat(Ty::Unknown));
621             for (&arg, param_ty) in args.iter().zip(param_iter) {
622                 let is_closure = match &self.body[arg] {
623                     Expr::Lambda { .. } => true,
624                     _ => false,
625                 };
626
627                 if is_closure != check_closures {
628                     continue;
629                 }
630
631                 let param_ty = self.insert_vars_for_impl_trait(param_ty);
632                 let param_ty = self.normalize_associated_types_in(param_ty);
633                 self.infer_expr_coerce(arg, &Expectation::has_type(param_ty.clone()));
634             }
635         }
636     }
637
638     fn substs_for_method_call(
639         &mut self,
640         def_generics: Option<Generics>,
641         generic_args: Option<&GenericArgs>,
642         receiver_ty: &Ty,
643     ) -> Substs {
644         let (total_len, _parent_len, child_len) =
645             def_generics.as_ref().map_or((0, 0, 0), |g| g.len_split());
646         let mut substs = Vec::with_capacity(total_len);
647         // Parent arguments are unknown, except for the receiver type
648         if let Some(parent_generics) = def_generics.as_ref().map(|p| p.iter_parent()) {
649             for (_id, param) in parent_generics {
650                 if param.name == name![Self] {
651                     substs.push(receiver_ty.clone());
652                 } else {
653                     substs.push(Ty::Unknown);
654                 }
655             }
656         }
657         // handle provided type arguments
658         if let Some(generic_args) = generic_args {
659             // if args are provided, it should be all of them, but we can't rely on that
660             for arg in generic_args.args.iter().take(child_len) {
661                 match arg {
662                     GenericArg::Type(type_ref) => {
663                         let ty = self.make_ty(type_ref);
664                         substs.push(ty);
665                     }
666                 }
667             }
668         };
669         let supplied_params = substs.len();
670         for _ in supplied_params..total_len {
671             substs.push(Ty::Unknown);
672         }
673         assert_eq!(substs.len(), total_len);
674         Substs(substs.into())
675     }
676
677     fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
678         if let Ty::Apply(a_ty) = callable_ty {
679             if let TypeCtor::FnDef(def) = a_ty.ctor {
680                 let generic_predicates = self.db.generic_predicates(def.into());
681                 for predicate in generic_predicates.iter() {
682                     let predicate = predicate.clone().subst(&a_ty.parameters);
683                     if let Some(obligation) = Obligation::from_predicate(predicate) {
684                         self.obligations.push(obligation);
685                     }
686                 }
687                 // add obligation for trait implementation, if this is a trait method
688                 match def {
689                     CallableDef::FunctionId(f) => {
690                         if let AssocContainerId::TraitId(trait_) = f.lookup(self.db).container {
691                             // construct a TraitDef
692                             let substs =
693                                 a_ty.parameters.prefix(generics(self.db, trait_.into()).len());
694                             self.obligations.push(Obligation::Trait(TraitRef {
695                                 trait_: trait_.into(),
696                                 substs,
697                             }));
698                         }
699                     }
700                     CallableDef::StructId(_) | CallableDef::EnumVariantId(_) => {}
701                 }
702             }
703         }
704     }
705 }