]> git.lizzy.rs Git - rust.git/blob - crates/hir_ty/src/infer/expr.rs
Merge #11793
[rust.git] / crates / hir_ty / src / infer / expr.rs
1 //! Type inference for expressions.
2
3 use std::{
4     collections::hash_map::Entry,
5     iter::{repeat, repeat_with},
6     mem,
7     sync::Arc,
8 };
9
10 use chalk_ir::{
11     cast::Cast, fold::Shift, DebruijnIndex, GenericArgData, Mutability, TyVariableKind,
12 };
13 use hir_def::{
14     expr::{ArithOp, Array, BinaryOp, CmpOp, Expr, ExprId, Literal, Ordering, Statement, UnaryOp},
15     generics::TypeOrConstParamData,
16     path::{GenericArg, GenericArgs},
17     resolver::resolver_for_expr,
18     ConstParamId, FieldId, FunctionId, ItemContainerId, Lookup,
19 };
20 use hir_expand::name::{name, Name};
21 use stdx::always;
22 use syntax::ast::RangeOp;
23
24 use crate::{
25     autoderef::{self, Autoderef},
26     consteval,
27     infer::coerce::CoerceMany,
28     lower::{
29         const_or_path_to_chalk, generic_arg_to_chalk, lower_to_chalk_mutability, ParamLoweringMode,
30     },
31     mapping::{from_chalk, ToChalk},
32     method_resolution,
33     primitive::{self, UintTy},
34     static_lifetime, to_chalk_trait_id,
35     utils::{generics, Generics},
36     AdtId, Binders, CallableDefId, FnPointer, FnSig, FnSubst, Interner, Rawness, Scalar,
37     Substitution, TraitRef, Ty, TyBuilder, TyExt, TyKind,
38 };
39
40 use super::{
41     coerce::auto_deref_adjust_steps, find_breakable, BindingMode, BreakableContext, Diverges,
42     Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch,
43 };
44
45 impl<'a> InferenceContext<'a> {
46     pub(crate) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
47         let ty = self.infer_expr_inner(tgt_expr, expected);
48         if self.resolve_ty_shallow(&ty).is_never() {
49             // Any expression that produces a value of type `!` must have diverged
50             self.diverges = Diverges::Always;
51         }
52         if let Some(expected_ty) = expected.only_has_type(&mut self.table) {
53             let could_unify = self.unify(&ty, &expected_ty);
54             if !could_unify {
55                 self.result.type_mismatches.insert(
56                     tgt_expr.into(),
57                     TypeMismatch { expected: expected_ty, actual: ty.clone() },
58                 );
59             }
60         }
61         ty
62     }
63
64     /// Infer type of expression with possibly implicit coerce to the expected type.
65     /// Return the type after possible coercion.
66     pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
67         let ty = self.infer_expr_inner(expr, expected);
68         if let Some(target) = expected.only_has_type(&mut self.table) {
69             match self.coerce(Some(expr), &ty, &target) {
70                 Ok(res) => res,
71                 Err(_) => {
72                     self.result
73                         .type_mismatches
74                         .insert(expr.into(), TypeMismatch { expected: target, actual: ty.clone() });
75                     // Return actual type when type mismatch.
76                     // This is needed for diagnostic when return type mismatch.
77                     ty
78                 }
79             }
80         } else {
81             ty
82         }
83     }
84
85     fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
86         self.db.unwind_if_cancelled();
87
88         let body = Arc::clone(&self.body); // avoid borrow checker problem
89         let ty = match &body[tgt_expr] {
90             Expr::Missing => self.err_ty(),
91             &Expr::If { condition, then_branch, else_branch } => {
92                 self.infer_expr(
93                     condition,
94                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
95                 );
96
97                 let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
98                 let mut both_arms_diverge = Diverges::Always;
99
100                 let result_ty = self.table.new_type_var();
101                 let then_ty = self.infer_expr_inner(then_branch, expected);
102                 both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
103                 let mut coerce = CoerceMany::new(result_ty);
104                 coerce.coerce(self, Some(then_branch), &then_ty);
105                 let else_ty = match else_branch {
106                     Some(else_branch) => self.infer_expr_inner(else_branch, expected),
107                     None => TyBuilder::unit(),
108                 };
109                 both_arms_diverge &= self.diverges;
110                 // FIXME: create a synthetic `else {}` so we have something to refer to here instead of None?
111                 coerce.coerce(self, else_branch, &else_ty);
112
113                 self.diverges = condition_diverges | both_arms_diverge;
114
115                 coerce.complete()
116             }
117             &Expr::Let { pat, expr } => {
118                 let input_ty = self.infer_expr(expr, &Expectation::none());
119                 self.infer_pat(pat, &input_ty, BindingMode::default());
120                 TyKind::Scalar(Scalar::Bool).intern(Interner)
121             }
122             Expr::Block { statements, tail, label, id: _ } => {
123                 let old_resolver = mem::replace(
124                     &mut self.resolver,
125                     resolver_for_expr(self.db.upcast(), self.owner, tgt_expr),
126                 );
127                 let ty = match label {
128                     Some(_) => {
129                         let break_ty = self.table.new_type_var();
130                         self.breakables.push(BreakableContext {
131                             may_break: false,
132                             coerce: CoerceMany::new(break_ty.clone()),
133                             label: label.map(|label| self.body[label].name.clone()),
134                         });
135                         let ty = self.infer_block(
136                             tgt_expr,
137                             statements,
138                             *tail,
139                             &Expectation::has_type(break_ty),
140                         );
141                         let ctxt = self.breakables.pop().expect("breakable stack broken");
142                         if ctxt.may_break {
143                             ctxt.coerce.complete()
144                         } else {
145                             ty
146                         }
147                     }
148                     None => self.infer_block(tgt_expr, statements, *tail, expected),
149                 };
150                 self.resolver = old_resolver;
151                 ty
152             }
153             Expr::Unsafe { body } | Expr::Const { body } => self.infer_expr(*body, expected),
154             Expr::TryBlock { body } => {
155                 let _inner = self.infer_expr(*body, expected);
156                 // FIXME should be std::result::Result<{inner}, _>
157                 self.err_ty()
158             }
159             Expr::Async { body } => {
160                 let ret_ty = self.table.new_type_var();
161                 let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
162                 let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
163
164                 let inner_ty = self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
165
166                 self.diverges = prev_diverges;
167                 self.return_ty = prev_ret_ty;
168
169                 // Use the first type parameter as the output type of future.
170                 // existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
171                 let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
172                 let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
173                 TyKind::OpaqueType(opaque_ty_id, Substitution::from1(Interner, inner_ty))
174                     .intern(Interner)
175             }
176             Expr::Loop { body, label } => {
177                 self.breakables.push(BreakableContext {
178                     may_break: false,
179                     coerce: CoerceMany::new(self.table.new_type_var()),
180                     label: label.map(|label| self.body[label].name.clone()),
181                 });
182                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
183
184                 let ctxt = self.breakables.pop().expect("breakable stack broken");
185
186                 if ctxt.may_break {
187                     self.diverges = Diverges::Maybe;
188                     ctxt.coerce.complete()
189                 } else {
190                     TyKind::Never.intern(Interner)
191                 }
192             }
193             Expr::While { condition, body, label } => {
194                 self.breakables.push(BreakableContext {
195                     may_break: false,
196                     coerce: CoerceMany::new(self.err_ty()),
197                     label: label.map(|label| self.body[label].name.clone()),
198                 });
199                 self.infer_expr(
200                     *condition,
201                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
202                 );
203                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
204                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
205                 // the body may not run, so it diverging doesn't mean we diverge
206                 self.diverges = Diverges::Maybe;
207                 TyBuilder::unit()
208             }
209             Expr::For { iterable, body, pat, label } => {
210                 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
211
212                 self.breakables.push(BreakableContext {
213                     may_break: false,
214                     coerce: CoerceMany::new(self.err_ty()),
215                     label: label.map(|label| self.body[label].name.clone()),
216                 });
217                 let pat_ty =
218                     self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
219
220                 self.infer_pat(*pat, &pat_ty, BindingMode::default());
221
222                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
223                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
224                 // the body may not run, so it diverging doesn't mean we diverge
225                 self.diverges = Diverges::Maybe;
226                 TyBuilder::unit()
227             }
228             Expr::Lambda { body, args, ret_type, arg_types } => {
229                 assert_eq!(args.len(), arg_types.len());
230
231                 let mut sig_tys = Vec::new();
232
233                 // collect explicitly written argument types
234                 for arg_type in arg_types.iter() {
235                     let arg_ty = match arg_type {
236                         Some(type_ref) => self.make_ty(type_ref),
237                         None => self.table.new_type_var(),
238                     };
239                     sig_tys.push(arg_ty);
240                 }
241
242                 // add return type
243                 let ret_ty = match ret_type {
244                     Some(type_ref) => self.make_ty(type_ref),
245                     None => self.table.new_type_var(),
246                 };
247                 sig_tys.push(ret_ty.clone());
248                 let sig_ty = TyKind::Function(FnPointer {
249                     num_binders: 0,
250                     sig: FnSig { abi: (), safety: chalk_ir::Safety::Safe, variadic: false },
251                     substitution: FnSubst(
252                         Substitution::from_iter(Interner, sig_tys.clone()).shifted_in(Interner),
253                     ),
254                 })
255                 .intern(Interner);
256                 let closure_id = self.db.intern_closure((self.owner, tgt_expr)).into();
257                 let closure_ty =
258                     TyKind::Closure(closure_id, Substitution::from1(Interner, sig_ty.clone()))
259                         .intern(Interner);
260
261                 // Eagerly try to relate the closure type with the expected
262                 // type, otherwise we often won't have enough information to
263                 // infer the body.
264                 self.deduce_closure_type_from_expectations(
265                     tgt_expr,
266                     &closure_ty,
267                     &sig_ty,
268                     expected,
269                 );
270
271                 // Now go through the argument patterns
272                 for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
273                     self.infer_pat(*arg_pat, &arg_ty, BindingMode::default());
274                 }
275
276                 let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
277                 let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
278
279                 self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
280
281                 self.diverges = prev_diverges;
282                 self.return_ty = prev_ret_ty;
283
284                 closure_ty
285             }
286             Expr::Call { callee, args } => {
287                 let callee_ty = self.infer_expr(*callee, &Expectation::none());
288                 let mut derefs = Autoderef::new(&mut self.table, callee_ty.clone());
289                 let mut res = None;
290                 let mut derefed_callee = callee_ty.clone();
291                 // manual loop to be able to access `derefs.table`
292                 while let Some((callee_deref_ty, _)) = derefs.next() {
293                     res = derefs.table.callable_sig(&callee_deref_ty, args.len());
294                     if res.is_some() {
295                         derefed_callee = callee_deref_ty;
296                         break;
297                     }
298                 }
299                 let (param_tys, ret_ty) = match res {
300                     Some(res) => {
301                         let adjustments = auto_deref_adjust_steps(&derefs);
302                         self.write_expr_adj(*callee, adjustments);
303                         res
304                     }
305                     None => (Vec::new(), self.err_ty()),
306                 };
307                 let indices_to_skip = self.check_legacy_const_generics(derefed_callee, args);
308                 self.register_obligations_for_call(&callee_ty);
309
310                 let expected_inputs = self.expected_inputs_for_expected_output(
311                     expected,
312                     ret_ty.clone(),
313                     param_tys.clone(),
314                 );
315
316                 self.check_call_arguments(args, &expected_inputs, &param_tys, &indices_to_skip);
317                 self.normalize_associated_types_in(ret_ty)
318             }
319             Expr::MethodCall { receiver, args, method_name, generic_args } => self
320                 .infer_method_call(
321                     tgt_expr,
322                     *receiver,
323                     args,
324                     method_name,
325                     generic_args.as_deref(),
326                     expected,
327                 ),
328             Expr::Match { expr, arms } => {
329                 let input_ty = self.infer_expr(*expr, &Expectation::none());
330
331                 let expected = expected.adjust_for_branches(&mut self.table);
332
333                 let result_ty = if arms.is_empty() {
334                     TyKind::Never.intern(Interner)
335                 } else {
336                     match &expected {
337                         Expectation::HasType(ty) => ty.clone(),
338                         _ => self.table.new_type_var(),
339                     }
340                 };
341                 let mut coerce = CoerceMany::new(result_ty);
342
343                 let matchee_diverges = self.diverges;
344                 let mut all_arms_diverge = Diverges::Always;
345
346                 for arm in arms.iter() {
347                     self.diverges = Diverges::Maybe;
348                     let _pat_ty = self.infer_pat(arm.pat, &input_ty, BindingMode::default());
349                     if let Some(guard_expr) = arm.guard {
350                         self.infer_expr(
351                             guard_expr,
352                             &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
353                         );
354                     }
355
356                     let arm_ty = self.infer_expr_inner(arm.expr, &expected);
357                     all_arms_diverge &= self.diverges;
358                     coerce.coerce(self, Some(arm.expr), &arm_ty);
359                 }
360
361                 self.diverges = matchee_diverges | all_arms_diverge;
362
363                 coerce.complete()
364             }
365             Expr::Path(p) => {
366                 // FIXME this could be more efficient...
367                 let resolver = resolver_for_expr(self.db.upcast(), self.owner, tgt_expr);
368                 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or_else(|| self.err_ty())
369             }
370             Expr::Continue { .. } => TyKind::Never.intern(Interner),
371             Expr::Break { expr, label } => {
372                 let mut coerce = match find_breakable(&mut self.breakables, label.as_ref()) {
373                     Some(ctxt) => {
374                         // avoiding the borrowck
375                         mem::replace(
376                             &mut ctxt.coerce,
377                             CoerceMany::new(self.result.standard_types.unknown.clone()),
378                         )
379                     }
380                     None => CoerceMany::new(self.result.standard_types.unknown.clone()),
381                 };
382
383                 let val_ty = if let Some(expr) = *expr {
384                     self.infer_expr(expr, &Expectation::none())
385                 } else {
386                     TyBuilder::unit()
387                 };
388
389                 // FIXME: create a synthetic `()` during lowering so we have something to refer to here?
390                 coerce.coerce(self, *expr, &val_ty);
391
392                 if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
393                     ctxt.coerce = coerce;
394                     ctxt.may_break = true;
395                 } else {
396                     self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
397                         expr: tgt_expr,
398                     });
399                 };
400
401                 TyKind::Never.intern(Interner)
402             }
403             Expr::Return { expr } => {
404                 if let Some(expr) = expr {
405                     self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
406                 } else {
407                     let unit = TyBuilder::unit();
408                     let _ = self.coerce(Some(tgt_expr), &unit, &self.return_ty.clone());
409                 }
410                 TyKind::Never.intern(Interner)
411             }
412             Expr::Yield { expr } => {
413                 // FIXME: track yield type for coercion
414                 if let Some(expr) = expr {
415                     self.infer_expr(*expr, &Expectation::none());
416                 }
417                 TyKind::Never.intern(Interner)
418             }
419             Expr::RecordLit { path, fields, spread } => {
420                 let (ty, def_id) = self.resolve_variant(path.as_deref(), false);
421                 if let Some(variant) = def_id {
422                     self.write_variant_resolution(tgt_expr.into(), variant);
423                 }
424
425                 if let Some(t) = expected.only_has_type(&mut self.table) {
426                     self.unify(&ty, &t);
427                 }
428
429                 let substs = ty
430                     .as_adt()
431                     .map(|(_, s)| s.clone())
432                     .unwrap_or_else(|| Substitution::empty(Interner));
433                 let field_types = def_id.map(|it| self.db.field_types(it)).unwrap_or_default();
434                 let variant_data = def_id.map(|it| it.variant_data(self.db.upcast()));
435                 for field in fields.iter() {
436                     let field_def =
437                         variant_data.as_ref().and_then(|it| match it.field(&field.name) {
438                             Some(local_id) => Some(FieldId { parent: def_id.unwrap(), local_id }),
439                             None => {
440                                 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
441                                     expr: field.expr,
442                                 });
443                                 None
444                             }
445                         });
446                     let field_ty = field_def.map_or(self.err_ty(), |it| {
447                         field_types[it.local_id].clone().substitute(Interner, &substs)
448                     });
449                     self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
450                 }
451                 if let Some(expr) = spread {
452                     self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
453                 }
454                 ty
455             }
456             Expr::Field { expr, name } => {
457                 let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
458
459                 let mut autoderef = Autoderef::new(&mut self.table, receiver_ty);
460                 let ty = autoderef.by_ref().find_map(|(derefed_ty, _)| {
461                     let (field_id, parameters) = match derefed_ty.kind(Interner) {
462                         TyKind::Tuple(_, substs) => {
463                             return name.as_tuple_index().and_then(|idx| {
464                                 substs
465                                     .as_slice(Interner)
466                                     .get(idx)
467                                     .map(|a| a.assert_ty_ref(Interner))
468                                     .cloned()
469                             });
470                         }
471                         TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => {
472                             let local_id = self.db.struct_data(*s).variant_data.field(name)?;
473                             let field = FieldId { parent: (*s).into(), local_id };
474                             (field, parameters.clone())
475                         }
476                         TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => {
477                             let local_id = self.db.union_data(*u).variant_data.field(name)?;
478                             let field = FieldId { parent: (*u).into(), local_id };
479                             (field, parameters.clone())
480                         }
481                         _ => return None,
482                     };
483                     let module = self.resolver.module();
484                     let is_visible = module
485                         .map(|mod_id| {
486                             self.db.field_visibilities(field_id.parent)[field_id.local_id]
487                                 .is_visible_from(self.db.upcast(), mod_id)
488                         })
489                         .unwrap_or(true);
490                     if !is_visible {
491                         // Write down the first field resolution even if it is not visible
492                         // This aids IDE features for private fields like goto def and in
493                         // case of autoderef finding an applicable field, this will be
494                         // overwritten in a following cycle
495                         if let Entry::Vacant(entry) = self.result.field_resolutions.entry(tgt_expr)
496                         {
497                             entry.insert(field_id);
498                         }
499                         return None;
500                     }
501                     // can't have `write_field_resolution` here because `self.table` is borrowed :(
502                     self.result.field_resolutions.insert(tgt_expr, field_id);
503                     let ty = self.db.field_types(field_id.parent)[field_id.local_id]
504                         .clone()
505                         .substitute(Interner, &parameters);
506                     Some(ty)
507                 });
508                 let ty = match ty {
509                     Some(ty) => {
510                         let adjustments = auto_deref_adjust_steps(&autoderef);
511                         self.write_expr_adj(*expr, adjustments);
512                         let ty = self.insert_type_vars(ty);
513                         let ty = self.normalize_associated_types_in(ty);
514                         ty
515                     }
516                     _ => self.err_ty(),
517                 };
518                 ty
519             }
520             Expr::Await { expr } => {
521                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
522                 self.resolve_associated_type(inner_ty, self.resolve_future_future_output())
523             }
524             Expr::Try { expr } => {
525                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
526                 self.resolve_associated_type(inner_ty, self.resolve_ops_try_ok())
527             }
528             Expr::Cast { expr, type_ref } => {
529                 // FIXME: propagate the "castable to" expectation (and find a test case that shows this is necessary)
530                 let _inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
531                 let cast_ty = self.make_ty(type_ref);
532                 // FIXME check the cast...
533                 cast_ty
534             }
535             Expr::Ref { expr, rawness, mutability } => {
536                 let mutability = lower_to_chalk_mutability(*mutability);
537                 let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected
538                     .only_has_type(&mut self.table)
539                     .as_ref()
540                     .and_then(|t| t.as_reference_or_ptr())
541                 {
542                     if exp_mutability == Mutability::Mut && mutability == Mutability::Not {
543                         // FIXME: record type error - expected mut reference but found shared ref,
544                         // which cannot be coerced
545                     }
546                     if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
547                         // FIXME: record type error - expected reference but found ptr,
548                         // which cannot be coerced
549                     }
550                     Expectation::rvalue_hint(&mut self.table, Ty::clone(exp_inner))
551                 } else {
552                     Expectation::none()
553                 };
554                 let inner_ty = self.infer_expr_inner(*expr, &expectation);
555                 match rawness {
556                     Rawness::RawPtr => TyKind::Raw(mutability, inner_ty),
557                     Rawness::Ref => TyKind::Ref(mutability, static_lifetime(), inner_ty),
558                 }
559                 .intern(Interner)
560             }
561             Expr::Box { expr } => {
562                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
563                 if let Some(box_) = self.resolve_boxed_box() {
564                     TyBuilder::adt(self.db, box_)
565                         .push(inner_ty)
566                         .fill_with_defaults(self.db, || self.table.new_type_var())
567                         .build()
568                 } else {
569                     self.err_ty()
570                 }
571             }
572             Expr::UnaryOp { expr, op } => {
573                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
574                 let inner_ty = self.resolve_ty_shallow(&inner_ty);
575                 match op {
576                     UnaryOp::Deref => {
577                         autoderef::deref(&mut self.table, inner_ty).unwrap_or_else(|| self.err_ty())
578                     }
579                     UnaryOp::Neg => {
580                         match inner_ty.kind(Interner) {
581                             // Fast path for builtins
582                             TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_))
583                             | TyKind::InferenceVar(
584                                 _,
585                                 TyVariableKind::Integer | TyVariableKind::Float,
586                             ) => inner_ty,
587                             // Otherwise we resolve via the std::ops::Neg trait
588                             _ => self
589                                 .resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
590                         }
591                     }
592                     UnaryOp::Not => {
593                         match inner_ty.kind(Interner) {
594                             // Fast path for builtins
595                             TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_))
596                             | TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty,
597                             // Otherwise we resolve via the std::ops::Not trait
598                             _ => self
599                                 .resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
600                         }
601                     }
602                 }
603             }
604             Expr::BinaryOp { lhs, rhs, op } => match op {
605                 Some(BinaryOp::Assignment { op: None }) => {
606                     let lhs_ty = self.infer_expr(*lhs, &Expectation::none());
607                     self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty));
608                     self.result.standard_types.unit.clone()
609                 }
610                 Some(BinaryOp::LogicOp(_)) => {
611                     let bool_ty = self.result.standard_types.bool_.clone();
612                     self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone()));
613                     let lhs_diverges = self.diverges;
614                     self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone()));
615                     // Depending on the LHS' value, the RHS can never execute.
616                     self.diverges = lhs_diverges;
617                     bool_ty
618                 }
619                 Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr),
620                 _ => self.err_ty(),
621             },
622             Expr::Range { lhs, rhs, range_type } => {
623                 let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
624                 let rhs_expect = lhs_ty
625                     .as_ref()
626                     .map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
627                 let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
628                 match (range_type, lhs_ty, rhs_ty) {
629                     (RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
630                         Some(adt) => TyBuilder::adt(self.db, adt).build(),
631                         None => self.err_ty(),
632                     },
633                     (RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
634                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
635                         None => self.err_ty(),
636                     },
637                     (RangeOp::Inclusive, None, Some(ty)) => {
638                         match self.resolve_range_to_inclusive() {
639                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
640                             None => self.err_ty(),
641                         }
642                     }
643                     (RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
644                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
645                         None => self.err_ty(),
646                     },
647                     (RangeOp::Inclusive, Some(_), Some(ty)) => {
648                         match self.resolve_range_inclusive() {
649                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
650                             None => self.err_ty(),
651                         }
652                     }
653                     (RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
654                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
655                         None => self.err_ty(),
656                     },
657                     (RangeOp::Inclusive, _, None) => self.err_ty(),
658                 }
659             }
660             Expr::Index { base, index } => {
661                 let base_ty = self.infer_expr_inner(*base, &Expectation::none());
662                 let index_ty = self.infer_expr(*index, &Expectation::none());
663
664                 if let Some(index_trait) = self.resolve_ops_index() {
665                     let canonicalized = self.canonicalize(base_ty.clone());
666                     let receiver_adjustments = method_resolution::resolve_indexing_op(
667                         self.db,
668                         self.trait_env.clone(),
669                         canonicalized.value,
670                         index_trait,
671                     );
672                     let (self_ty, adj) = receiver_adjustments
673                         .map_or((self.err_ty(), Vec::new()), |adj| {
674                             adj.apply(&mut self.table, base_ty)
675                         });
676                     self.write_expr_adj(*base, adj);
677                     self.resolve_associated_type_with_params(
678                         self_ty,
679                         self.resolve_ops_index_output(),
680                         &[GenericArgData::Ty(index_ty).intern(Interner)],
681                     )
682                 } else {
683                     self.err_ty()
684                 }
685             }
686             Expr::Tuple { exprs } => {
687                 let mut tys = match expected
688                     .only_has_type(&mut self.table)
689                     .as_ref()
690                     .map(|t| t.kind(Interner))
691                 {
692                     Some(TyKind::Tuple(_, substs)) => substs
693                         .iter(Interner)
694                         .map(|a| a.assert_ty_ref(Interner).clone())
695                         .chain(repeat_with(|| self.table.new_type_var()))
696                         .take(exprs.len())
697                         .collect::<Vec<_>>(),
698                     _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
699                 };
700
701                 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
702                     self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
703                 }
704
705                 TyKind::Tuple(tys.len(), Substitution::from_iter(Interner, tys)).intern(Interner)
706             }
707             Expr::Array(array) => {
708                 let elem_ty =
709                     match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(Interner)) {
710                         Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
711                         _ => self.table.new_type_var(),
712                     };
713                 let mut coerce = CoerceMany::new(elem_ty.clone());
714
715                 let expected = Expectation::has_type(elem_ty.clone());
716                 let len = match array {
717                     Array::ElementList(items) => {
718                         for &expr in items.iter() {
719                             let cur_elem_ty = self.infer_expr_inner(expr, &expected);
720                             coerce.coerce(self, Some(expr), &cur_elem_ty);
721                         }
722                         consteval::usize_const(Some(items.len() as u64))
723                     }
724                     &Array::Repeat { initializer, repeat } => {
725                         self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty));
726                         self.infer_expr(
727                             repeat,
728                             &Expectation::has_type(
729                                 TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner),
730                             ),
731                         );
732
733                         if let Some(g_def) = self.owner.as_generic_def_id() {
734                             let generics = generics(self.db.upcast(), g_def);
735                             consteval::eval_to_const(
736                                 repeat,
737                                 ParamLoweringMode::Placeholder,
738                                 self,
739                                 || generics,
740                                 DebruijnIndex::INNERMOST,
741                             )
742                         } else {
743                             consteval::usize_const(None)
744                         }
745                     }
746                 };
747
748                 TyKind::Array(coerce.complete(), len).intern(Interner)
749             }
750             Expr::Literal(lit) => match lit {
751                 Literal::Bool(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
752                 Literal::String(..) => {
753                     TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(Interner))
754                         .intern(Interner)
755                 }
756                 Literal::ByteString(bs) => {
757                     let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner);
758
759                     let len = consteval::usize_const(Some(bs.len() as u64));
760
761                     let array_type = TyKind::Array(byte_type, len).intern(Interner);
762                     TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(Interner)
763                 }
764                 Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(Interner),
765                 Literal::Int(_v, ty) => match ty {
766                     Some(int_ty) => {
767                         TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty)))
768                             .intern(Interner)
769                     }
770                     None => self.table.new_integer_var(),
771                 },
772                 Literal::Uint(_v, ty) => match ty {
773                     Some(int_ty) => {
774                         TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty)))
775                             .intern(Interner)
776                     }
777                     None => self.table.new_integer_var(),
778                 },
779                 Literal::Float(_v, ty) => match ty {
780                     Some(float_ty) => {
781                         TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty)))
782                             .intern(Interner)
783                     }
784                     None => self.table.new_float_var(),
785                 },
786             },
787             Expr::MacroStmts { tail } => self.infer_expr_inner(*tail, expected),
788         };
789         // use a new type variable if we got unknown here
790         let ty = self.insert_type_vars_shallow(ty);
791         self.write_expr_ty(tgt_expr, ty.clone());
792         ty
793     }
794
795     fn infer_overloadable_binop(
796         &mut self,
797         lhs: ExprId,
798         op: BinaryOp,
799         rhs: ExprId,
800         tgt_expr: ExprId,
801     ) -> Ty {
802         let lhs_expectation = Expectation::none();
803         let lhs_ty = self.infer_expr(lhs, &lhs_expectation);
804         let rhs_ty = self.table.new_type_var();
805
806         let func = self.resolve_binop_method(op);
807         let func = match func {
808             Some(func) => func,
809             None => {
810                 let rhs_ty = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone());
811                 let rhs_ty = self.infer_expr_coerce(rhs, &Expectation::from_option(rhs_ty));
812                 return self
813                     .builtin_binary_op_return_ty(op, lhs_ty, rhs_ty)
814                     .unwrap_or_else(|| self.err_ty());
815             }
816         };
817
818         let subst = TyBuilder::subst_for_def(self.db, func)
819             .push(lhs_ty.clone())
820             .push(rhs_ty.clone())
821             .build();
822         self.write_method_resolution(tgt_expr, func, subst.clone());
823
824         let method_ty = self.db.value_ty(func.into()).substitute(Interner, &subst);
825         self.register_obligations_for_call(&method_ty);
826
827         self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone()));
828
829         let ret_ty = match method_ty.callable_sig(self.db) {
830             Some(sig) => sig.ret().clone(),
831             None => self.err_ty(),
832         };
833
834         let ret_ty = self.normalize_associated_types_in(ret_ty);
835
836         // FIXME: record autoref adjustments
837
838         // use knowledge of built-in binary ops, which can sometimes help inference
839         if let Some(builtin_rhs) = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone()) {
840             self.unify(&builtin_rhs, &rhs_ty);
841         }
842         if let Some(builtin_ret) = self.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty) {
843             self.unify(&builtin_ret, &ret_ty);
844         }
845
846         ret_ty
847     }
848
849     fn infer_block(
850         &mut self,
851         expr: ExprId,
852         statements: &[Statement],
853         tail: Option<ExprId>,
854         expected: &Expectation,
855     ) -> Ty {
856         for stmt in statements {
857             match stmt {
858                 Statement::Let { pat, type_ref, initializer, else_branch } => {
859                     let decl_ty = type_ref
860                         .as_ref()
861                         .map(|tr| self.make_ty(tr))
862                         .unwrap_or_else(|| self.err_ty());
863
864                     // Always use the declared type when specified
865                     let mut ty = decl_ty.clone();
866
867                     if let Some(expr) = initializer {
868                         let actual_ty =
869                             self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
870                         if decl_ty.is_unknown() {
871                             ty = actual_ty;
872                         }
873                     }
874
875                     if let Some(expr) = else_branch {
876                         self.infer_expr_coerce(
877                             *expr,
878                             &Expectation::has_type(Ty::new(Interner, TyKind::Never)),
879                         );
880                     }
881
882                     self.infer_pat(*pat, &ty, BindingMode::default());
883                 }
884                 Statement::Expr { expr, .. } => {
885                     self.infer_expr(*expr, &Expectation::none());
886                 }
887             }
888         }
889
890         if let Some(expr) = tail {
891             self.infer_expr_coerce(expr, expected)
892         } else {
893             // Citing rustc: if there is no explicit tail expression,
894             // that is typically equivalent to a tail expression
895             // of `()` -- except if the block diverges. In that
896             // case, there is no value supplied from the tail
897             // expression (assuming there are no other breaks,
898             // this implies that the type of the block will be
899             // `!`).
900             if self.diverges.is_always() {
901                 // we don't even make an attempt at coercion
902                 self.table.new_maybe_never_var()
903             } else {
904                 if let Some(t) = expected.only_has_type(&mut self.table) {
905                     let _ = self.coerce(Some(expr), &TyBuilder::unit(), &t);
906                 }
907                 TyBuilder::unit()
908             }
909         }
910     }
911
912     fn infer_method_call(
913         &mut self,
914         tgt_expr: ExprId,
915         receiver: ExprId,
916         args: &[ExprId],
917         method_name: &Name,
918         generic_args: Option<&GenericArgs>,
919         expected: &Expectation,
920     ) -> Ty {
921         let receiver_ty = self.infer_expr(receiver, &Expectation::none());
922         let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
923
924         let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
925
926         let resolved = method_resolution::lookup_method(
927             &canonicalized_receiver.value,
928             self.db,
929             self.trait_env.clone(),
930             &traits_in_scope,
931             self.resolver.module().into(),
932             method_name,
933         );
934         let (receiver_ty, method_ty, substs) = match resolved {
935             Some((adjust, func)) => {
936                 let (ty, adjustments) = adjust.apply(&mut self.table, receiver_ty);
937                 let generics = generics(self.db.upcast(), func.into());
938                 let substs = self.substs_for_method_call(generics, generic_args);
939                 self.write_expr_adj(receiver, adjustments);
940                 self.write_method_resolution(tgt_expr, func, substs.clone());
941                 (ty, self.db.value_ty(func.into()), substs)
942             }
943             None => (
944                 receiver_ty,
945                 Binders::empty(Interner, self.err_ty()),
946                 Substitution::empty(Interner),
947             ),
948         };
949         let method_ty = method_ty.substitute(Interner, &substs);
950         self.register_obligations_for_call(&method_ty);
951         let (formal_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
952             Some(sig) => {
953                 if !sig.params().is_empty() {
954                     (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
955                 } else {
956                     (self.err_ty(), Vec::new(), sig.ret().clone())
957                 }
958             }
959             None => (self.err_ty(), Vec::new(), self.err_ty()),
960         };
961         self.unify(&formal_receiver_ty, &receiver_ty);
962
963         let expected_inputs =
964             self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone());
965
966         self.check_call_arguments(args, &expected_inputs, &param_tys, &[]);
967         self.normalize_associated_types_in(ret_ty)
968     }
969
970     fn expected_inputs_for_expected_output(
971         &mut self,
972         expected_output: &Expectation,
973         output: Ty,
974         inputs: Vec<Ty>,
975     ) -> Vec<Ty> {
976         if let Some(expected_ty) = expected_output.to_option(&mut self.table) {
977             self.table.fudge_inference(|table| {
978                 if table.try_unify(&expected_ty, &output).is_ok() {
979                     table.resolve_with_fallback(inputs, &|var, kind, _, _| match kind {
980                         chalk_ir::VariableKind::Ty(tk) => var.to_ty(Interner, tk).cast(Interner),
981                         chalk_ir::VariableKind::Lifetime => {
982                             var.to_lifetime(Interner).cast(Interner)
983                         }
984                         chalk_ir::VariableKind::Const(ty) => {
985                             var.to_const(Interner, ty).cast(Interner)
986                         }
987                     })
988                 } else {
989                     Vec::new()
990                 }
991             })
992         } else {
993             Vec::new()
994         }
995     }
996
997     fn check_call_arguments(
998         &mut self,
999         args: &[ExprId],
1000         expected_inputs: &[Ty],
1001         param_tys: &[Ty],
1002         skip_indices: &[u32],
1003     ) {
1004         // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
1005         // We do this in a pretty awful way: first we type-check any arguments
1006         // that are not closures, then we type-check the closures. This is so
1007         // that we have more information about the types of arguments when we
1008         // type-check the functions. This isn't really the right way to do this.
1009         for &check_closures in &[false, true] {
1010             let mut skip_indices = skip_indices.into_iter().copied().fuse().peekable();
1011             let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty()));
1012             let expected_iter = expected_inputs
1013                 .iter()
1014                 .cloned()
1015                 .chain(param_iter.clone().skip(expected_inputs.len()));
1016             for (idx, ((&arg, param_ty), expected_ty)) in
1017                 args.iter().zip(param_iter).zip(expected_iter).enumerate()
1018             {
1019                 let is_closure = matches!(&self.body[arg], Expr::Lambda { .. });
1020                 if is_closure != check_closures {
1021                     continue;
1022                 }
1023
1024                 while skip_indices.peek().map_or(false, |i| *i < idx as u32) {
1025                     skip_indices.next();
1026                 }
1027                 if skip_indices.peek().copied() == Some(idx as u32) {
1028                     continue;
1029                 }
1030
1031                 // the difference between param_ty and expected here is that
1032                 // expected is the parameter when the expected *return* type is
1033                 // taken into account. So in `let _: &[i32] = identity(&[1, 2])`
1034                 // the expected type is already `&[i32]`, whereas param_ty is
1035                 // still an unbound type variable. We don't always want to force
1036                 // the parameter to coerce to the expected type (for example in
1037                 // `coerce_unsize_expected_type_4`).
1038                 let param_ty = self.normalize_associated_types_in(param_ty);
1039                 let expected = Expectation::rvalue_hint(&mut self.table, expected_ty);
1040                 // infer with the expected type we have...
1041                 let ty = self.infer_expr_inner(arg, &expected);
1042
1043                 // then coerce to either the expected type or just the formal parameter type
1044                 let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) {
1045                     // if we are coercing to the expectation, unify with the
1046                     // formal parameter type to connect everything
1047                     self.unify(&ty, &param_ty);
1048                     ty
1049                 } else {
1050                     param_ty
1051                 };
1052                 if !coercion_target.is_unknown() {
1053                     if self.coerce(Some(arg), &ty, &coercion_target).is_err() {
1054                         self.result.type_mismatches.insert(
1055                             arg.into(),
1056                             TypeMismatch { expected: coercion_target, actual: ty.clone() },
1057                         );
1058                     }
1059                 }
1060             }
1061         }
1062     }
1063
1064     fn substs_for_method_call(
1065         &mut self,
1066         def_generics: Generics,
1067         generic_args: Option<&GenericArgs>,
1068     ) -> Substitution {
1069         let (parent_params, self_params, type_params, const_params, impl_trait_params) =
1070             def_generics.provenance_split();
1071         assert_eq!(self_params, 0); // method shouldn't have another Self param
1072         let total_len = parent_params + type_params + const_params + impl_trait_params;
1073         let mut substs = Vec::with_capacity(total_len);
1074         // Parent arguments are unknown
1075         for (id, param) in def_generics.iter_parent() {
1076             match param {
1077                 TypeOrConstParamData::TypeParamData(_) => {
1078                     substs.push(GenericArgData::Ty(self.table.new_type_var()).intern(Interner));
1079                 }
1080                 TypeOrConstParamData::ConstParamData(_) => {
1081                     let ty = self.db.const_param_ty(ConstParamId::from_unchecked(id));
1082                     substs
1083                         .push(GenericArgData::Const(self.table.new_const_var(ty)).intern(Interner));
1084                 }
1085             }
1086         }
1087         // handle provided arguments
1088         if let Some(generic_args) = generic_args {
1089             // if args are provided, it should be all of them, but we can't rely on that
1090             for (arg, kind_id) in generic_args
1091                 .args
1092                 .iter()
1093                 .filter(|arg| !matches!(arg, GenericArg::Lifetime(_)))
1094                 .take(type_params + const_params)
1095                 .zip(def_generics.iter_id().skip(parent_params))
1096             {
1097                 if let Some(g) = generic_arg_to_chalk(
1098                     self.db,
1099                     kind_id,
1100                     arg,
1101                     self,
1102                     |this, type_ref| this.make_ty(type_ref),
1103                     |this, c| {
1104                         const_or_path_to_chalk(
1105                             this.db,
1106                             &this.resolver,
1107                             c,
1108                             ParamLoweringMode::Placeholder,
1109                             || generics(this.db.upcast(), (&this.resolver).generic_def().unwrap()),
1110                             DebruijnIndex::INNERMOST,
1111                         )
1112                     },
1113                 ) {
1114                     substs.push(g);
1115                 }
1116             }
1117         };
1118         for (id, data) in def_generics.iter().skip(substs.len()) {
1119             match data {
1120                 TypeOrConstParamData::TypeParamData(_) => {
1121                     substs.push(GenericArgData::Ty(self.table.new_type_var()).intern(Interner))
1122                 }
1123                 TypeOrConstParamData::ConstParamData(_) => {
1124                     substs.push(
1125                         GenericArgData::Const(self.table.new_const_var(
1126                             self.db.const_param_ty(ConstParamId::from_unchecked(id)),
1127                         ))
1128                         .intern(Interner),
1129                     )
1130                 }
1131             }
1132         }
1133         assert_eq!(substs.len(), total_len);
1134         Substitution::from_iter(Interner, substs)
1135     }
1136
1137     fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
1138         let callable_ty = self.resolve_ty_shallow(callable_ty);
1139         if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(Interner) {
1140             let def: CallableDefId = from_chalk(self.db, *fn_def);
1141             let generic_predicates = self.db.generic_predicates(def.into());
1142             for predicate in generic_predicates.iter() {
1143                 let (predicate, binders) = predicate
1144                     .clone()
1145                     .substitute(Interner, parameters)
1146                     .into_value_and_skipped_binders();
1147                 always!(binders.len(Interner) == 0); // quantified where clauses not yet handled
1148                 self.push_obligation(predicate.cast(Interner));
1149             }
1150             // add obligation for trait implementation, if this is a trait method
1151             match def {
1152                 CallableDefId::FunctionId(f) => {
1153                     if let ItemContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container {
1154                         // construct a TraitRef
1155                         let substs = crate::subst_prefix(
1156                             &*parameters,
1157                             generics(self.db.upcast(), trait_.into()).len(),
1158                         );
1159                         self.push_obligation(
1160                             TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs }
1161                                 .cast(Interner),
1162                         );
1163                     }
1164                 }
1165                 CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {}
1166             }
1167         }
1168     }
1169
1170     /// Returns the argument indices to skip.
1171     fn check_legacy_const_generics(&mut self, callee: Ty, args: &[ExprId]) -> Vec<u32> {
1172         let (func, subst) = match callee.kind(Interner) {
1173             TyKind::FnDef(fn_id, subst) => {
1174                 let callable = CallableDefId::from_chalk(self.db, *fn_id);
1175                 let func = match callable {
1176                     CallableDefId::FunctionId(f) => f,
1177                     _ => return Vec::new(),
1178                 };
1179                 (func, subst)
1180             }
1181             _ => return Vec::new(),
1182         };
1183
1184         let data = self.db.function_data(func);
1185         if data.legacy_const_generics_indices.is_empty() {
1186             return Vec::new();
1187         }
1188
1189         // only use legacy const generics if the param count matches with them
1190         if data.params.len() + data.legacy_const_generics_indices.len() != args.len() {
1191             return Vec::new();
1192         }
1193
1194         // check legacy const parameters
1195         for (subst_idx, arg_idx) in data.legacy_const_generics_indices.iter().copied().enumerate() {
1196             let arg = match subst.at(Interner, subst_idx).constant(Interner) {
1197                 Some(c) => c,
1198                 None => continue, // not a const parameter?
1199             };
1200             if arg_idx >= args.len() as u32 {
1201                 continue;
1202             }
1203             let _ty = arg.data(Interner).ty.clone();
1204             let expected = Expectation::none(); // FIXME use actual const ty, when that is lowered correctly
1205             self.infer_expr(args[arg_idx as usize], &expected);
1206             // FIXME: evaluate and unify with the const
1207         }
1208         let mut indices = data.legacy_const_generics_indices.clone();
1209         indices.sort();
1210         indices
1211     }
1212
1213     fn builtin_binary_op_return_ty(&mut self, op: BinaryOp, lhs_ty: Ty, rhs_ty: Ty) -> Option<Ty> {
1214         let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
1215         let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
1216         match op {
1217             BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => {
1218                 Some(TyKind::Scalar(Scalar::Bool).intern(Interner))
1219             }
1220             BinaryOp::Assignment { .. } => Some(TyBuilder::unit()),
1221             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
1222                 // all integer combinations are valid here
1223                 if matches!(
1224                     lhs_ty.kind(Interner),
1225                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1226                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1227                 ) && matches!(
1228                     rhs_ty.kind(Interner),
1229                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1230                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1231                 ) {
1232                     Some(lhs_ty)
1233                 } else {
1234                     None
1235                 }
1236             }
1237             BinaryOp::ArithOp(_) => match (lhs_ty.kind(Interner), rhs_ty.kind(Interner)) {
1238                 // (int, int) | (uint, uint) | (float, float)
1239                 (TyKind::Scalar(Scalar::Int(_)), TyKind::Scalar(Scalar::Int(_)))
1240                 | (TyKind::Scalar(Scalar::Uint(_)), TyKind::Scalar(Scalar::Uint(_)))
1241                 | (TyKind::Scalar(Scalar::Float(_)), TyKind::Scalar(Scalar::Float(_))) => {
1242                     Some(rhs_ty)
1243                 }
1244                 // ({int}, int) | ({int}, uint)
1245                 (
1246                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1247                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1248                 ) => Some(rhs_ty),
1249                 // (int, {int}) | (uint, {int})
1250                 (
1251                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1252                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1253                 ) => Some(lhs_ty),
1254                 // ({float} | float)
1255                 (
1256                     TyKind::InferenceVar(_, TyVariableKind::Float),
1257                     TyKind::Scalar(Scalar::Float(_)),
1258                 ) => Some(rhs_ty),
1259                 // (float, {float})
1260                 (
1261                     TyKind::Scalar(Scalar::Float(_)),
1262                     TyKind::InferenceVar(_, TyVariableKind::Float),
1263                 ) => Some(lhs_ty),
1264                 // ({int}, {int}) | ({float}, {float})
1265                 (
1266                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1267                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1268                 )
1269                 | (
1270                     TyKind::InferenceVar(_, TyVariableKind::Float),
1271                     TyKind::InferenceVar(_, TyVariableKind::Float),
1272                 ) => Some(rhs_ty),
1273                 _ => None,
1274             },
1275         }
1276     }
1277
1278     fn builtin_binary_op_rhs_expectation(&mut self, op: BinaryOp, lhs_ty: Ty) -> Option<Ty> {
1279         Some(match op {
1280             BinaryOp::LogicOp(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
1281             BinaryOp::Assignment { op: None } => lhs_ty,
1282             BinaryOp::CmpOp(CmpOp::Eq { .. }) => match self
1283                 .resolve_ty_shallow(&lhs_ty)
1284                 .kind(Interner)
1285             {
1286                 TyKind::Scalar(_) | TyKind::Str => lhs_ty,
1287                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1288                 _ => return None,
1289             },
1290             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => return None,
1291             BinaryOp::CmpOp(CmpOp::Ord { .. })
1292             | BinaryOp::Assignment { op: Some(_) }
1293             | BinaryOp::ArithOp(_) => match self.resolve_ty_shallow(&lhs_ty).kind(Interner) {
1294                 TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) => lhs_ty,
1295                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1296                 _ => return None,
1297             },
1298         })
1299     }
1300
1301     fn resolve_binop_method(&self, op: BinaryOp) -> Option<FunctionId> {
1302         let (name, lang_item) = match op {
1303             BinaryOp::LogicOp(_) => return None,
1304             BinaryOp::ArithOp(aop) => match aop {
1305                 ArithOp::Add => (name!(add), name!(add)),
1306                 ArithOp::Mul => (name!(mul), name!(mul)),
1307                 ArithOp::Sub => (name!(sub), name!(sub)),
1308                 ArithOp::Div => (name!(div), name!(div)),
1309                 ArithOp::Rem => (name!(rem), name!(rem)),
1310                 ArithOp::Shl => (name!(shl), name!(shl)),
1311                 ArithOp::Shr => (name!(shr), name!(shr)),
1312                 ArithOp::BitXor => (name!(bitxor), name!(bitxor)),
1313                 ArithOp::BitOr => (name!(bitor), name!(bitor)),
1314                 ArithOp::BitAnd => (name!(bitand), name!(bitand)),
1315             },
1316             BinaryOp::Assignment { op: Some(aop) } => match aop {
1317                 ArithOp::Add => (name!(add_assign), name!(add_assign)),
1318                 ArithOp::Mul => (name!(mul_assign), name!(mul_assign)),
1319                 ArithOp::Sub => (name!(sub_assign), name!(sub_assign)),
1320                 ArithOp::Div => (name!(div_assign), name!(div_assign)),
1321                 ArithOp::Rem => (name!(rem_assign), name!(rem_assign)),
1322                 ArithOp::Shl => (name!(shl_assign), name!(shl_assign)),
1323                 ArithOp::Shr => (name!(shr_assign), name!(shr_assign)),
1324                 ArithOp::BitXor => (name!(bitxor_assign), name!(bitxor_assign)),
1325                 ArithOp::BitOr => (name!(bitor_assign), name!(bitor_assign)),
1326                 ArithOp::BitAnd => (name!(bitand_assign), name!(bitand_assign)),
1327             },
1328             BinaryOp::CmpOp(cop) => match cop {
1329                 CmpOp::Eq { negated: false } => (name!(eq), name!(eq)),
1330                 CmpOp::Eq { negated: true } => (name!(ne), name!(eq)),
1331                 CmpOp::Ord { ordering: Ordering::Less, strict: false } => {
1332                     (name!(le), name!(partial_ord))
1333                 }
1334                 CmpOp::Ord { ordering: Ordering::Less, strict: true } => {
1335                     (name!(lt), name!(partial_ord))
1336                 }
1337                 CmpOp::Ord { ordering: Ordering::Greater, strict: false } => {
1338                     (name!(ge), name!(partial_ord))
1339                 }
1340                 CmpOp::Ord { ordering: Ordering::Greater, strict: true } => {
1341                     (name!(gt), name!(partial_ord))
1342                 }
1343             },
1344             BinaryOp::Assignment { op: None } => return None,
1345         };
1346
1347         let trait_ = self.resolve_lang_item(lang_item)?.as_trait()?;
1348
1349         self.db.trait_data(trait_).method_by_name(&name)
1350     }
1351 }