]> git.lizzy.rs Git - rust.git/blob - crates/hir_ty/src/infer/expr.rs
Merge #11538
[rust.git] / crates / hir_ty / src / infer / expr.rs
1 //! Type inference for expressions.
2
3 use std::{
4     collections::hash_map::Entry,
5     iter::{repeat, repeat_with},
6     mem,
7     sync::Arc,
8 };
9
10 use chalk_ir::{cast::Cast, fold::Shift, Mutability, TyVariableKind};
11 use hir_def::{
12     expr::{ArithOp, Array, BinaryOp, CmpOp, Expr, ExprId, Literal, Ordering, Statement, UnaryOp},
13     path::{GenericArg, GenericArgs},
14     resolver::resolver_for_expr,
15     FieldId, FunctionId, ItemContainerId, Lookup,
16 };
17 use hir_expand::name::{name, Name};
18 use stdx::always;
19 use syntax::ast::RangeOp;
20
21 use crate::{
22     autoderef::{self, Autoderef},
23     consteval,
24     infer::coerce::CoerceMany,
25     lower::lower_to_chalk_mutability,
26     mapping::from_chalk,
27     method_resolution,
28     primitive::{self, UintTy},
29     static_lifetime, to_chalk_trait_id,
30     utils::{generics, Generics},
31     AdtId, Binders, CallableDefId, FnPointer, FnSig, FnSubst, Interner, Rawness, Scalar,
32     Substitution, TraitRef, Ty, TyBuilder, TyExt, TyKind,
33 };
34
35 use super::{
36     coerce::auto_deref_adjust_steps, find_breakable, BindingMode, BreakableContext, Diverges,
37     Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch,
38 };
39
40 impl<'a> InferenceContext<'a> {
41     pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
42         let ty = self.infer_expr_inner(tgt_expr, expected);
43         if self.resolve_ty_shallow(&ty).is_never() {
44             // Any expression that produces a value of type `!` must have diverged
45             self.diverges = Diverges::Always;
46         }
47         if let Some(expected_ty) = expected.only_has_type(&mut self.table) {
48             let could_unify = self.unify(&ty, &expected_ty);
49             if !could_unify {
50                 self.result.type_mismatches.insert(
51                     tgt_expr.into(),
52                     TypeMismatch { expected: expected_ty, actual: ty.clone() },
53                 );
54             }
55         }
56         ty
57     }
58
59     /// Infer type of expression with possibly implicit coerce to the expected type.
60     /// Return the type after possible coercion.
61     pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
62         let ty = self.infer_expr_inner(expr, expected);
63         if let Some(target) = expected.only_has_type(&mut self.table) {
64             match self.coerce(Some(expr), &ty, &target) {
65                 Ok(res) => res.value,
66                 Err(_) => {
67                     self.result
68                         .type_mismatches
69                         .insert(expr.into(), TypeMismatch { expected: target, actual: ty.clone() });
70                     // Return actual type when type mismatch.
71                     // This is needed for diagnostic when return type mismatch.
72                     ty
73                 }
74             }
75         } else {
76             ty
77         }
78     }
79
80     fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
81         self.db.unwind_if_cancelled();
82
83         let body = Arc::clone(&self.body); // avoid borrow checker problem
84         let ty = match &body[tgt_expr] {
85             Expr::Missing => self.err_ty(),
86             &Expr::If { condition, then_branch, else_branch } => {
87                 // if let is desugared to match, so this is always simple if
88                 self.infer_expr(
89                     condition,
90                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
91                 );
92
93                 let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
94                 let mut both_arms_diverge = Diverges::Always;
95
96                 let result_ty = self.table.new_type_var();
97                 let then_ty = self.infer_expr_inner(then_branch, expected);
98                 both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
99                 let mut coerce = CoerceMany::new(result_ty);
100                 coerce.coerce(self, Some(then_branch), &then_ty);
101                 let else_ty = match else_branch {
102                     Some(else_branch) => self.infer_expr_inner(else_branch, expected),
103                     None => TyBuilder::unit(),
104                 };
105                 both_arms_diverge &= self.diverges;
106                 // FIXME: create a synthetic `else {}` so we have something to refer to here instead of None?
107                 coerce.coerce(self, else_branch, &else_ty);
108
109                 self.diverges = condition_diverges | both_arms_diverge;
110
111                 coerce.complete()
112             }
113             &Expr::Let { pat, expr } => {
114                 let input_ty = self.infer_expr(expr, &Expectation::none());
115                 self.infer_pat(pat, &input_ty, BindingMode::default());
116                 TyKind::Scalar(Scalar::Bool).intern(Interner)
117             }
118             Expr::Block { statements, tail, label, id: _ } => {
119                 let old_resolver = mem::replace(
120                     &mut self.resolver,
121                     resolver_for_expr(self.db.upcast(), self.owner, tgt_expr),
122                 );
123                 let ty = match label {
124                     Some(_) => {
125                         let break_ty = self.table.new_type_var();
126                         self.breakables.push(BreakableContext {
127                             may_break: false,
128                             coerce: CoerceMany::new(break_ty.clone()),
129                             label: label.map(|label| self.body[label].name.clone()),
130                         });
131                         let ty = self.infer_block(
132                             tgt_expr,
133                             statements,
134                             *tail,
135                             &Expectation::has_type(break_ty),
136                         );
137                         let ctxt = self.breakables.pop().expect("breakable stack broken");
138                         if ctxt.may_break {
139                             ctxt.coerce.complete()
140                         } else {
141                             ty
142                         }
143                     }
144                     None => self.infer_block(tgt_expr, statements, *tail, expected),
145                 };
146                 self.resolver = old_resolver;
147                 ty
148             }
149             Expr::Unsafe { body } | Expr::Const { body } => self.infer_expr(*body, expected),
150             Expr::TryBlock { body } => {
151                 let _inner = self.infer_expr(*body, expected);
152                 // FIXME should be std::result::Result<{inner}, _>
153                 self.err_ty()
154             }
155             Expr::Async { body } => {
156                 // Use the first type parameter as the output type of future.
157                 // existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
158                 let inner_ty = self.infer_expr(*body, &Expectation::none());
159                 let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
160                 let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
161                 TyKind::OpaqueType(opaque_ty_id, Substitution::from1(Interner, inner_ty))
162                     .intern(Interner)
163             }
164             Expr::Loop { body, label } => {
165                 self.breakables.push(BreakableContext {
166                     may_break: false,
167                     coerce: CoerceMany::new(self.table.new_type_var()),
168                     label: label.map(|label| self.body[label].name.clone()),
169                 });
170                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
171
172                 let ctxt = self.breakables.pop().expect("breakable stack broken");
173
174                 if ctxt.may_break {
175                     self.diverges = Diverges::Maybe;
176                     ctxt.coerce.complete()
177                 } else {
178                     TyKind::Never.intern(Interner)
179                 }
180             }
181             Expr::While { condition, body, label } => {
182                 self.breakables.push(BreakableContext {
183                     may_break: false,
184                     coerce: CoerceMany::new(self.err_ty()),
185                     label: label.map(|label| self.body[label].name.clone()),
186                 });
187                 // while let is desugared to a match loop, so this is always simple while
188                 self.infer_expr(
189                     *condition,
190                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
191                 );
192                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
193                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
194                 // the body may not run, so it diverging doesn't mean we diverge
195                 self.diverges = Diverges::Maybe;
196                 TyBuilder::unit()
197             }
198             Expr::For { iterable, body, pat, label } => {
199                 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
200
201                 self.breakables.push(BreakableContext {
202                     may_break: false,
203                     coerce: CoerceMany::new(self.err_ty()),
204                     label: label.map(|label| self.body[label].name.clone()),
205                 });
206                 let pat_ty =
207                     self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
208
209                 self.infer_pat(*pat, &pat_ty, BindingMode::default());
210
211                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
212                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
213                 // the body may not run, so it diverging doesn't mean we diverge
214                 self.diverges = Diverges::Maybe;
215                 TyBuilder::unit()
216             }
217             Expr::Lambda { body, args, ret_type, arg_types } => {
218                 assert_eq!(args.len(), arg_types.len());
219
220                 let mut sig_tys = Vec::new();
221
222                 // collect explicitly written argument types
223                 for arg_type in arg_types.iter() {
224                     let arg_ty = match arg_type {
225                         Some(type_ref) => self.make_ty(type_ref),
226                         None => self.table.new_type_var(),
227                     };
228                     sig_tys.push(arg_ty);
229                 }
230
231                 // add return type
232                 let ret_ty = match ret_type {
233                     Some(type_ref) => self.make_ty(type_ref),
234                     None => self.table.new_type_var(),
235                 };
236                 sig_tys.push(ret_ty.clone());
237                 let sig_ty = TyKind::Function(FnPointer {
238                     num_binders: 0,
239                     sig: FnSig { abi: (), safety: chalk_ir::Safety::Safe, variadic: false },
240                     substitution: FnSubst(
241                         Substitution::from_iter(Interner, sig_tys.clone()).shifted_in(Interner),
242                     ),
243                 })
244                 .intern(Interner);
245                 let closure_id = self.db.intern_closure((self.owner, tgt_expr)).into();
246                 let closure_ty =
247                     TyKind::Closure(closure_id, Substitution::from1(Interner, sig_ty.clone()))
248                         .intern(Interner);
249
250                 // Eagerly try to relate the closure type with the expected
251                 // type, otherwise we often won't have enough information to
252                 // infer the body.
253                 self.deduce_closure_type_from_expectations(
254                     tgt_expr,
255                     &closure_ty,
256                     &sig_ty,
257                     expected,
258                 );
259
260                 // Now go through the argument patterns
261                 for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
262                     self.infer_pat(*arg_pat, &arg_ty, BindingMode::default());
263                 }
264
265                 let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
266                 let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
267
268                 self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
269
270                 self.diverges = prev_diverges;
271                 self.return_ty = prev_ret_ty;
272
273                 closure_ty
274             }
275             Expr::Call { callee, args } => {
276                 let callee_ty = self.infer_expr(*callee, &Expectation::none());
277                 let mut derefs = Autoderef::new(&mut self.table, callee_ty.clone());
278                 let mut res = None;
279                 // manual loop to be able to access `derefs.table`
280                 while let Some((callee_deref_ty, _)) = derefs.next() {
281                     res = derefs.table.callable_sig(&callee_deref_ty, args.len());
282                     if res.is_some() {
283                         break;
284                     }
285                 }
286                 let (param_tys, ret_ty): (Vec<Ty>, Ty) = match res {
287                     Some(res) => {
288                         let adjustments = auto_deref_adjust_steps(&derefs);
289                         self.write_expr_adj(*callee, adjustments);
290                         res
291                     }
292                     None => (Vec::new(), self.err_ty()),
293                 };
294                 self.register_obligations_for_call(&callee_ty);
295
296                 let expected_inputs = self.expected_inputs_for_expected_output(
297                     expected,
298                     ret_ty.clone(),
299                     param_tys.clone(),
300                 );
301
302                 self.check_call_arguments(args, &expected_inputs, &param_tys);
303                 self.normalize_associated_types_in(ret_ty)
304             }
305             Expr::MethodCall { receiver, args, method_name, generic_args } => self
306                 .infer_method_call(
307                     tgt_expr,
308                     *receiver,
309                     args,
310                     method_name,
311                     generic_args.as_deref(),
312                     expected,
313                 ),
314             Expr::Match { expr, arms } => {
315                 let input_ty = self.infer_expr(*expr, &Expectation::none());
316
317                 let expected = expected.adjust_for_branches(&mut self.table);
318
319                 let result_ty = if arms.is_empty() {
320                     TyKind::Never.intern(Interner)
321                 } else {
322                     match &expected {
323                         Expectation::HasType(ty) => ty.clone(),
324                         _ => self.table.new_type_var(),
325                     }
326                 };
327                 let mut coerce = CoerceMany::new(result_ty);
328
329                 let matchee_diverges = self.diverges;
330                 let mut all_arms_diverge = Diverges::Always;
331
332                 for arm in arms.iter() {
333                     self.diverges = Diverges::Maybe;
334                     let _pat_ty = self.infer_pat(arm.pat, &input_ty, BindingMode::default());
335                     if let Some(guard_expr) = arm.guard {
336                         self.infer_expr(
337                             guard_expr,
338                             &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
339                         );
340                     }
341
342                     let arm_ty = self.infer_expr_inner(arm.expr, &expected);
343                     all_arms_diverge &= self.diverges;
344                     coerce.coerce(self, Some(arm.expr), &arm_ty);
345                 }
346
347                 self.diverges = matchee_diverges | all_arms_diverge;
348
349                 coerce.complete()
350             }
351             Expr::Path(p) => {
352                 // FIXME this could be more efficient...
353                 let resolver = resolver_for_expr(self.db.upcast(), self.owner, tgt_expr);
354                 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or_else(|| self.err_ty())
355             }
356             Expr::Continue { .. } => TyKind::Never.intern(Interner),
357             Expr::Break { expr, label } => {
358                 let mut coerce = match find_breakable(&mut self.breakables, label.as_ref()) {
359                     Some(ctxt) => {
360                         // avoiding the borrowck
361                         mem::replace(
362                             &mut ctxt.coerce,
363                             CoerceMany::new(self.result.standard_types.unknown.clone()),
364                         )
365                     }
366                     None => CoerceMany::new(self.result.standard_types.unknown.clone()),
367                 };
368
369                 let val_ty = if let Some(expr) = *expr {
370                     self.infer_expr(expr, &Expectation::none())
371                 } else {
372                     TyBuilder::unit()
373                 };
374
375                 // FIXME: create a synthetic `()` during lowering so we have something to refer to here?
376                 coerce.coerce(self, *expr, &val_ty);
377
378                 if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
379                     ctxt.coerce = coerce;
380                     ctxt.may_break = true;
381                 } else {
382                     self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
383                         expr: tgt_expr,
384                     });
385                 };
386
387                 TyKind::Never.intern(Interner)
388             }
389             Expr::Return { expr } => {
390                 if let Some(expr) = expr {
391                     self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
392                 } else {
393                     let unit = TyBuilder::unit();
394                     let _ = self.coerce(Some(tgt_expr), &unit, &self.return_ty.clone());
395                 }
396                 TyKind::Never.intern(Interner)
397             }
398             Expr::Yield { expr } => {
399                 // FIXME: track yield type for coercion
400                 if let Some(expr) = expr {
401                     self.infer_expr(*expr, &Expectation::none());
402                 }
403                 TyKind::Never.intern(Interner)
404             }
405             Expr::RecordLit { path, fields, spread } => {
406                 let (ty, def_id) = self.resolve_variant(path.as_deref(), false);
407                 if let Some(variant) = def_id {
408                     self.write_variant_resolution(tgt_expr.into(), variant);
409                 }
410
411                 if let Some(t) = expected.only_has_type(&mut self.table) {
412                     self.unify(&ty, &t);
413                 }
414
415                 let substs = ty
416                     .as_adt()
417                     .map(|(_, s)| s.clone())
418                     .unwrap_or_else(|| Substitution::empty(Interner));
419                 let field_types = def_id.map(|it| self.db.field_types(it)).unwrap_or_default();
420                 let variant_data = def_id.map(|it| it.variant_data(self.db.upcast()));
421                 for field in fields.iter() {
422                     let field_def =
423                         variant_data.as_ref().and_then(|it| match it.field(&field.name) {
424                             Some(local_id) => Some(FieldId { parent: def_id.unwrap(), local_id }),
425                             None => {
426                                 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
427                                     expr: field.expr,
428                                 });
429                                 None
430                             }
431                         });
432                     let field_ty = field_def.map_or(self.err_ty(), |it| {
433                         field_types[it.local_id].clone().substitute(Interner, &substs)
434                     });
435                     self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
436                 }
437                 if let Some(expr) = spread {
438                     self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
439                 }
440                 ty
441             }
442             Expr::Field { expr, name } => {
443                 let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
444
445                 let mut autoderef = Autoderef::new(&mut self.table, receiver_ty);
446                 let ty = autoderef.by_ref().find_map(|(derefed_ty, _)| {
447                     let (field_id, parameters) = match derefed_ty.kind(Interner) {
448                         TyKind::Tuple(_, substs) => {
449                             return name.as_tuple_index().and_then(|idx| {
450                                 substs
451                                     .as_slice(Interner)
452                                     .get(idx)
453                                     .map(|a| a.assert_ty_ref(Interner))
454                                     .cloned()
455                             });
456                         }
457                         TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => {
458                             let local_id = self.db.struct_data(*s).variant_data.field(name)?;
459                             let field = FieldId { parent: (*s).into(), local_id };
460                             (field, parameters.clone())
461                         }
462                         TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => {
463                             let local_id = self.db.union_data(*u).variant_data.field(name)?;
464                             let field = FieldId { parent: (*u).into(), local_id };
465                             (field, parameters.clone())
466                         }
467                         _ => return None,
468                     };
469                     let module = self.resolver.module();
470                     let is_visible = module
471                         .map(|mod_id| {
472                             self.db.field_visibilities(field_id.parent)[field_id.local_id]
473                                 .is_visible_from(self.db.upcast(), mod_id)
474                         })
475                         .unwrap_or(true);
476                     if !is_visible {
477                         // Write down the first field resolution even if it is not visible
478                         // This aids IDE features for private fields like goto def and in
479                         // case of autoderef finding an applicable field, this will be
480                         // overwritten in a following cycle
481                         if let Entry::Vacant(entry) = self.result.field_resolutions.entry(tgt_expr)
482                         {
483                             entry.insert(field_id);
484                         }
485                         return None;
486                     }
487                     // can't have `write_field_resolution` here because `self.table` is borrowed :(
488                     self.result.field_resolutions.insert(tgt_expr, field_id);
489                     let ty = self.db.field_types(field_id.parent)[field_id.local_id]
490                         .clone()
491                         .substitute(Interner, &parameters);
492                     Some(ty)
493                 });
494                 let ty = match ty {
495                     Some(ty) => {
496                         let adjustments = auto_deref_adjust_steps(&autoderef);
497                         self.write_expr_adj(*expr, adjustments);
498                         let ty = self.insert_type_vars(ty);
499                         let ty = self.normalize_associated_types_in(ty);
500                         ty
501                     }
502                     _ => self.err_ty(),
503                 };
504                 ty
505             }
506             Expr::Await { expr } => {
507                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
508                 self.resolve_associated_type(inner_ty, self.resolve_future_future_output())
509             }
510             Expr::Try { expr } => {
511                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
512                 self.resolve_associated_type(inner_ty, self.resolve_ops_try_ok())
513             }
514             Expr::Cast { expr, type_ref } => {
515                 // FIXME: propagate the "castable to" expectation (and find a test case that shows this is necessary)
516                 let _inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
517                 let cast_ty = self.make_ty(type_ref);
518                 // FIXME check the cast...
519                 cast_ty
520             }
521             Expr::Ref { expr, rawness, mutability } => {
522                 let mutability = lower_to_chalk_mutability(*mutability);
523                 let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected
524                     .only_has_type(&mut self.table)
525                     .as_ref()
526                     .and_then(|t| t.as_reference_or_ptr())
527                 {
528                     if exp_mutability == Mutability::Mut && mutability == Mutability::Not {
529                         // FIXME: record type error - expected mut reference but found shared ref,
530                         // which cannot be coerced
531                     }
532                     if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
533                         // FIXME: record type error - expected reference but found ptr,
534                         // which cannot be coerced
535                     }
536                     Expectation::rvalue_hint(&mut self.table, Ty::clone(exp_inner))
537                 } else {
538                     Expectation::none()
539                 };
540                 let inner_ty = self.infer_expr_inner(*expr, &expectation);
541                 match rawness {
542                     Rawness::RawPtr => TyKind::Raw(mutability, inner_ty),
543                     Rawness::Ref => TyKind::Ref(mutability, static_lifetime(), inner_ty),
544                 }
545                 .intern(Interner)
546             }
547             Expr::Box { expr } => {
548                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
549                 if let Some(box_) = self.resolve_boxed_box() {
550                     TyBuilder::adt(self.db, box_)
551                         .push(inner_ty)
552                         .fill_with_defaults(self.db, || self.table.new_type_var())
553                         .build()
554                 } else {
555                     self.err_ty()
556                 }
557             }
558             Expr::UnaryOp { expr, op } => {
559                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
560                 let inner_ty = self.resolve_ty_shallow(&inner_ty);
561                 match op {
562                     UnaryOp::Deref => {
563                         autoderef::deref(&mut self.table, inner_ty).unwrap_or_else(|| self.err_ty())
564                     }
565                     UnaryOp::Neg => {
566                         match inner_ty.kind(Interner) {
567                             // Fast path for builtins
568                             TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_))
569                             | TyKind::InferenceVar(
570                                 _,
571                                 TyVariableKind::Integer | TyVariableKind::Float,
572                             ) => inner_ty,
573                             // Otherwise we resolve via the std::ops::Neg trait
574                             _ => self
575                                 .resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
576                         }
577                     }
578                     UnaryOp::Not => {
579                         match inner_ty.kind(Interner) {
580                             // Fast path for builtins
581                             TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_))
582                             | TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty,
583                             // Otherwise we resolve via the std::ops::Not trait
584                             _ => self
585                                 .resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
586                         }
587                     }
588                 }
589             }
590             Expr::BinaryOp { lhs, rhs, op } => match op {
591                 Some(BinaryOp::Assignment { op: None }) => {
592                     let lhs_ty = self.infer_expr(*lhs, &Expectation::none());
593                     self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty));
594                     self.result.standard_types.unit.clone()
595                 }
596                 Some(BinaryOp::LogicOp(_)) => {
597                     let bool_ty = self.result.standard_types.bool_.clone();
598                     self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone()));
599                     let lhs_diverges = self.diverges;
600                     self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone()));
601                     // Depending on the LHS' value, the RHS can never execute.
602                     self.diverges = lhs_diverges;
603                     bool_ty
604                 }
605                 Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr),
606                 _ => self.err_ty(),
607             },
608             Expr::Range { lhs, rhs, range_type } => {
609                 let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
610                 let rhs_expect = lhs_ty
611                     .as_ref()
612                     .map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
613                 let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
614                 match (range_type, lhs_ty, rhs_ty) {
615                     (RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
616                         Some(adt) => TyBuilder::adt(self.db, adt).build(),
617                         None => self.err_ty(),
618                     },
619                     (RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
620                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
621                         None => self.err_ty(),
622                     },
623                     (RangeOp::Inclusive, None, Some(ty)) => {
624                         match self.resolve_range_to_inclusive() {
625                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
626                             None => self.err_ty(),
627                         }
628                     }
629                     (RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
630                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
631                         None => self.err_ty(),
632                     },
633                     (RangeOp::Inclusive, Some(_), Some(ty)) => {
634                         match self.resolve_range_inclusive() {
635                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
636                             None => self.err_ty(),
637                         }
638                     }
639                     (RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
640                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
641                         None => self.err_ty(),
642                     },
643                     (RangeOp::Inclusive, _, None) => self.err_ty(),
644                 }
645             }
646             Expr::Index { base, index } => {
647                 let base_ty = self.infer_expr_inner(*base, &Expectation::none());
648                 let index_ty = self.infer_expr(*index, &Expectation::none());
649
650                 if let Some(index_trait) = self.resolve_ops_index() {
651                     let canonicalized = self.canonicalize(base_ty.clone());
652                     let receiver_adjustments = method_resolution::resolve_indexing_op(
653                         self.db,
654                         self.trait_env.clone(),
655                         canonicalized.value,
656                         index_trait,
657                     );
658                     let (self_ty, adj) = receiver_adjustments
659                         .map_or((self.err_ty(), Vec::new()), |adj| {
660                             adj.apply(&mut self.table, base_ty)
661                         });
662                     self.write_expr_adj(*base, adj);
663                     self.resolve_associated_type_with_params(
664                         self_ty,
665                         self.resolve_ops_index_output(),
666                         &[index_ty],
667                     )
668                 } else {
669                     self.err_ty()
670                 }
671             }
672             Expr::Tuple { exprs } => {
673                 let mut tys = match expected
674                     .only_has_type(&mut self.table)
675                     .as_ref()
676                     .map(|t| t.kind(Interner))
677                 {
678                     Some(TyKind::Tuple(_, substs)) => substs
679                         .iter(Interner)
680                         .map(|a| a.assert_ty_ref(Interner).clone())
681                         .chain(repeat_with(|| self.table.new_type_var()))
682                         .take(exprs.len())
683                         .collect::<Vec<_>>(),
684                     _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
685                 };
686
687                 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
688                     self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
689                 }
690
691                 TyKind::Tuple(tys.len(), Substitution::from_iter(Interner, tys)).intern(Interner)
692             }
693             Expr::Array(array) => {
694                 let elem_ty =
695                     match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(Interner)) {
696                         Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
697                         _ => self.table.new_type_var(),
698                     };
699                 let mut coerce = CoerceMany::new(elem_ty.clone());
700
701                 let expected = Expectation::has_type(elem_ty.clone());
702                 let len = match array {
703                     Array::ElementList(items) => {
704                         for &expr in items.iter() {
705                             let cur_elem_ty = self.infer_expr_inner(expr, &expected);
706                             coerce.coerce(self, Some(expr), &cur_elem_ty);
707                         }
708                         Some(items.len() as u64)
709                     }
710                     &Array::Repeat { initializer, repeat } => {
711                         self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty));
712                         self.infer_expr(
713                             repeat,
714                             &Expectation::has_type(
715                                 TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner),
716                             ),
717                         );
718
719                         consteval::eval_usize(
720                             repeat,
721                             consteval::ConstEvalCtx {
722                                 exprs: &body.exprs,
723                                 pats: &body.pats,
724                                 local_data: Default::default(),
725                                 infer: &mut |x| self.infer_expr(x, &expected),
726                             },
727                         )
728                     }
729                 };
730
731                 TyKind::Array(coerce.complete(), consteval::usize_const(len)).intern(Interner)
732             }
733             Expr::Literal(lit) => match lit {
734                 Literal::Bool(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
735                 Literal::String(..) => {
736                     TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(Interner))
737                         .intern(Interner)
738                 }
739                 Literal::ByteString(bs) => {
740                     let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner);
741
742                     let len = consteval::usize_const(Some(bs.len() as u64));
743
744                     let array_type = TyKind::Array(byte_type, len).intern(Interner);
745                     TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(Interner)
746                 }
747                 Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(Interner),
748                 Literal::Int(_v, ty) => match ty {
749                     Some(int_ty) => {
750                         TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty)))
751                             .intern(Interner)
752                     }
753                     None => self.table.new_integer_var(),
754                 },
755                 Literal::Uint(_v, ty) => match ty {
756                     Some(int_ty) => {
757                         TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty)))
758                             .intern(Interner)
759                     }
760                     None => self.table.new_integer_var(),
761                 },
762                 Literal::Float(_v, ty) => match ty {
763                     Some(float_ty) => {
764                         TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty)))
765                             .intern(Interner)
766                     }
767                     None => self.table.new_float_var(),
768                 },
769             },
770             Expr::MacroStmts { tail } => self.infer_expr_inner(*tail, expected),
771         };
772         // use a new type variable if we got unknown here
773         let ty = self.insert_type_vars_shallow(ty);
774         self.write_expr_ty(tgt_expr, ty.clone());
775         ty
776     }
777
778     fn infer_overloadable_binop(
779         &mut self,
780         lhs: ExprId,
781         op: BinaryOp,
782         rhs: ExprId,
783         tgt_expr: ExprId,
784     ) -> Ty {
785         let lhs_expectation = Expectation::none();
786         let lhs_ty = self.infer_expr(lhs, &lhs_expectation);
787         let rhs_ty = self.table.new_type_var();
788
789         let func = self.resolve_binop_method(op);
790         let func = match func {
791             Some(func) => func,
792             None => {
793                 let rhs_ty = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone());
794                 let rhs_ty = self.infer_expr_coerce(rhs, &Expectation::from_option(rhs_ty));
795                 return self
796                     .builtin_binary_op_return_ty(op, lhs_ty, rhs_ty)
797                     .unwrap_or_else(|| self.err_ty());
798             }
799         };
800
801         let subst = TyBuilder::subst_for_def(self.db, func)
802             .push(lhs_ty.clone())
803             .push(rhs_ty.clone())
804             .build();
805         self.write_method_resolution(tgt_expr, func, subst.clone());
806
807         let method_ty = self.db.value_ty(func.into()).substitute(Interner, &subst);
808         self.register_obligations_for_call(&method_ty);
809
810         self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone()));
811
812         let ret_ty = match method_ty.callable_sig(self.db) {
813             Some(sig) => sig.ret().clone(),
814             None => self.err_ty(),
815         };
816
817         let ret_ty = self.normalize_associated_types_in(ret_ty);
818
819         // FIXME: record autoref adjustments
820
821         // use knowledge of built-in binary ops, which can sometimes help inference
822         if let Some(builtin_rhs) = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone()) {
823             self.unify(&builtin_rhs, &rhs_ty);
824         }
825         if let Some(builtin_ret) = self.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty) {
826             self.unify(&builtin_ret, &ret_ty);
827         }
828
829         ret_ty
830     }
831
832     fn infer_block(
833         &mut self,
834         expr: ExprId,
835         statements: &[Statement],
836         tail: Option<ExprId>,
837         expected: &Expectation,
838     ) -> Ty {
839         for stmt in statements {
840             match stmt {
841                 Statement::Let { pat, type_ref, initializer, else_branch } => {
842                     let decl_ty = type_ref
843                         .as_ref()
844                         .map(|tr| self.make_ty(tr))
845                         .unwrap_or_else(|| self.err_ty());
846
847                     // Always use the declared type when specified
848                     let mut ty = decl_ty.clone();
849
850                     if let Some(expr) = initializer {
851                         let actual_ty =
852                             self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
853                         if decl_ty.is_unknown() {
854                             ty = actual_ty;
855                         }
856                     }
857
858                     if let Some(expr) = else_branch {
859                         self.infer_expr_coerce(
860                             *expr,
861                             &Expectation::has_type(Ty::new(Interner, TyKind::Never)),
862                         );
863                     }
864
865                     self.infer_pat(*pat, &ty, BindingMode::default());
866                 }
867                 Statement::Expr { expr, .. } => {
868                     self.infer_expr(*expr, &Expectation::none());
869                 }
870             }
871         }
872
873         if let Some(expr) = tail {
874             self.infer_expr_coerce(expr, expected)
875         } else {
876             // Citing rustc: if there is no explicit tail expression,
877             // that is typically equivalent to a tail expression
878             // of `()` -- except if the block diverges. In that
879             // case, there is no value supplied from the tail
880             // expression (assuming there are no other breaks,
881             // this implies that the type of the block will be
882             // `!`).
883             if self.diverges.is_always() {
884                 // we don't even make an attempt at coercion
885                 self.table.new_maybe_never_var()
886             } else {
887                 if let Some(t) = expected.only_has_type(&mut self.table) {
888                     let _ = self.coerce(Some(expr), &TyBuilder::unit(), &t);
889                 }
890                 TyBuilder::unit()
891             }
892         }
893     }
894
895     fn infer_method_call(
896         &mut self,
897         tgt_expr: ExprId,
898         receiver: ExprId,
899         args: &[ExprId],
900         method_name: &Name,
901         generic_args: Option<&GenericArgs>,
902         expected: &Expectation,
903     ) -> Ty {
904         let receiver_ty = self.infer_expr(receiver, &Expectation::none());
905         let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
906
907         let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
908
909         let resolved = method_resolution::lookup_method(
910             &canonicalized_receiver.value,
911             self.db,
912             self.trait_env.clone(),
913             &traits_in_scope,
914             self.resolver.module().into(),
915             method_name,
916         );
917         let (receiver_ty, method_ty, substs) = match resolved {
918             Some((adjust, func)) => {
919                 let (ty, adjustments) = adjust.apply(&mut self.table, receiver_ty);
920                 let generics = generics(self.db.upcast(), func.into());
921                 let substs = self.substs_for_method_call(generics, generic_args);
922                 self.write_expr_adj(receiver, adjustments);
923                 self.write_method_resolution(tgt_expr, func, substs.clone());
924                 (ty, self.db.value_ty(func.into()), substs)
925             }
926             None => (
927                 receiver_ty,
928                 Binders::empty(Interner, self.err_ty()),
929                 Substitution::empty(Interner),
930             ),
931         };
932         let method_ty = method_ty.substitute(Interner, &substs);
933         self.register_obligations_for_call(&method_ty);
934         let (formal_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
935             Some(sig) => {
936                 if !sig.params().is_empty() {
937                     (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
938                 } else {
939                     (self.err_ty(), Vec::new(), sig.ret().clone())
940                 }
941             }
942             None => (self.err_ty(), Vec::new(), self.err_ty()),
943         };
944         self.unify(&formal_receiver_ty, &receiver_ty);
945
946         let expected_inputs =
947             self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone());
948
949         self.check_call_arguments(args, &expected_inputs, &param_tys);
950         self.normalize_associated_types_in(ret_ty)
951     }
952
953     fn expected_inputs_for_expected_output(
954         &mut self,
955         expected_output: &Expectation,
956         output: Ty,
957         inputs: Vec<Ty>,
958     ) -> Vec<Ty> {
959         if let Some(expected_ty) = expected_output.to_option(&mut self.table) {
960             self.table.fudge_inference(|table| {
961                 if table.try_unify(&expected_ty, &output).is_ok() {
962                     table.resolve_with_fallback(inputs, &|var, kind, _, _| match kind {
963                         chalk_ir::VariableKind::Ty(tk) => var.to_ty(Interner, tk).cast(Interner),
964                         chalk_ir::VariableKind::Lifetime => {
965                             var.to_lifetime(Interner).cast(Interner)
966                         }
967                         chalk_ir::VariableKind::Const(ty) => {
968                             var.to_const(Interner, ty).cast(Interner)
969                         }
970                     })
971                 } else {
972                     Vec::new()
973                 }
974             })
975         } else {
976             Vec::new()
977         }
978     }
979
980     fn check_call_arguments(&mut self, args: &[ExprId], expected_inputs: &[Ty], param_tys: &[Ty]) {
981         // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
982         // We do this in a pretty awful way: first we type-check any arguments
983         // that are not closures, then we type-check the closures. This is so
984         // that we have more information about the types of arguments when we
985         // type-check the functions. This isn't really the right way to do this.
986         for &check_closures in &[false, true] {
987             let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty()));
988             let expected_iter = expected_inputs
989                 .iter()
990                 .cloned()
991                 .chain(param_iter.clone().skip(expected_inputs.len()));
992             for ((&arg, param_ty), expected_ty) in args.iter().zip(param_iter).zip(expected_iter) {
993                 let is_closure = matches!(&self.body[arg], Expr::Lambda { .. });
994                 if is_closure != check_closures {
995                     continue;
996                 }
997
998                 // the difference between param_ty and expected here is that
999                 // expected is the parameter when the expected *return* type is
1000                 // taken into account. So in `let _: &[i32] = identity(&[1, 2])`
1001                 // the expected type is already `&[i32]`, whereas param_ty is
1002                 // still an unbound type variable. We don't always want to force
1003                 // the parameter to coerce to the expected type (for example in
1004                 // `coerce_unsize_expected_type_4`).
1005                 let param_ty = self.normalize_associated_types_in(param_ty);
1006                 let expected = Expectation::rvalue_hint(&mut self.table, expected_ty);
1007                 // infer with the expected type we have...
1008                 let ty = self.infer_expr_inner(arg, &expected);
1009
1010                 // then coerce to either the expected type or just the formal parameter type
1011                 let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) {
1012                     // if we are coercing to the expectation, unify with the
1013                     // formal parameter type to connect everything
1014                     self.unify(&ty, &param_ty);
1015                     ty
1016                 } else {
1017                     param_ty
1018                 };
1019                 if !coercion_target.is_unknown() {
1020                     if self.coerce(Some(arg), &ty, &coercion_target).is_err() {
1021                         self.result.type_mismatches.insert(
1022                             arg.into(),
1023                             TypeMismatch { expected: coercion_target, actual: ty.clone() },
1024                         );
1025                     }
1026                 }
1027             }
1028         }
1029     }
1030
1031     fn substs_for_method_call(
1032         &mut self,
1033         def_generics: Generics,
1034         generic_args: Option<&GenericArgs>,
1035     ) -> Substitution {
1036         let (parent_params, self_params, type_params, impl_trait_params) =
1037             def_generics.provenance_split();
1038         assert_eq!(self_params, 0); // method shouldn't have another Self param
1039         let total_len = parent_params + type_params + impl_trait_params;
1040         let mut substs = Vec::with_capacity(total_len);
1041         // Parent arguments are unknown
1042         for _ in def_generics.iter_parent() {
1043             substs.push(self.table.new_type_var());
1044         }
1045         // handle provided type arguments
1046         if let Some(generic_args) = generic_args {
1047             // if args are provided, it should be all of them, but we can't rely on that
1048             for arg in generic_args
1049                 .args
1050                 .iter()
1051                 .filter(|arg| matches!(arg, GenericArg::Type(_)))
1052                 .take(type_params)
1053             {
1054                 match arg {
1055                     GenericArg::Type(type_ref) => {
1056                         let ty = self.make_ty(type_ref);
1057                         substs.push(ty);
1058                     }
1059                     GenericArg::Lifetime(_) => {}
1060                 }
1061             }
1062         };
1063         let supplied_params = substs.len();
1064         for _ in supplied_params..total_len {
1065             substs.push(self.table.new_type_var());
1066         }
1067         assert_eq!(substs.len(), total_len);
1068         Substitution::from_iter(Interner, substs)
1069     }
1070
1071     fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
1072         let callable_ty = self.resolve_ty_shallow(callable_ty);
1073         if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(Interner) {
1074             let def: CallableDefId = from_chalk(self.db, *fn_def);
1075             let generic_predicates = self.db.generic_predicates(def.into());
1076             for predicate in generic_predicates.iter() {
1077                 let (predicate, binders) = predicate
1078                     .clone()
1079                     .substitute(Interner, parameters)
1080                     .into_value_and_skipped_binders();
1081                 always!(binders.len(Interner) == 0); // quantified where clauses not yet handled
1082                 self.push_obligation(predicate.cast(Interner));
1083             }
1084             // add obligation for trait implementation, if this is a trait method
1085             match def {
1086                 CallableDefId::FunctionId(f) => {
1087                     if let ItemContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container {
1088                         // construct a TraitRef
1089                         let substs = crate::subst_prefix(
1090                             &*parameters,
1091                             generics(self.db.upcast(), trait_.into()).len(),
1092                         );
1093                         self.push_obligation(
1094                             TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs }
1095                                 .cast(Interner),
1096                         );
1097                     }
1098                 }
1099                 CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {}
1100             }
1101         }
1102     }
1103
1104     fn builtin_binary_op_return_ty(&mut self, op: BinaryOp, lhs_ty: Ty, rhs_ty: Ty) -> Option<Ty> {
1105         let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
1106         let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
1107         match op {
1108             BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => {
1109                 Some(TyKind::Scalar(Scalar::Bool).intern(Interner))
1110             }
1111             BinaryOp::Assignment { .. } => Some(TyBuilder::unit()),
1112             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
1113                 // all integer combinations are valid here
1114                 if matches!(
1115                     lhs_ty.kind(Interner),
1116                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1117                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1118                 ) && matches!(
1119                     rhs_ty.kind(Interner),
1120                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1121                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1122                 ) {
1123                     Some(lhs_ty)
1124                 } else {
1125                     None
1126                 }
1127             }
1128             BinaryOp::ArithOp(_) => match (lhs_ty.kind(Interner), rhs_ty.kind(Interner)) {
1129                 // (int, int) | (uint, uint) | (float, float)
1130                 (TyKind::Scalar(Scalar::Int(_)), TyKind::Scalar(Scalar::Int(_)))
1131                 | (TyKind::Scalar(Scalar::Uint(_)), TyKind::Scalar(Scalar::Uint(_)))
1132                 | (TyKind::Scalar(Scalar::Float(_)), TyKind::Scalar(Scalar::Float(_))) => {
1133                     Some(rhs_ty)
1134                 }
1135                 // ({int}, int) | ({int}, uint)
1136                 (
1137                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1138                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1139                 ) => Some(rhs_ty),
1140                 // (int, {int}) | (uint, {int})
1141                 (
1142                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1143                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1144                 ) => Some(lhs_ty),
1145                 // ({float} | float)
1146                 (
1147                     TyKind::InferenceVar(_, TyVariableKind::Float),
1148                     TyKind::Scalar(Scalar::Float(_)),
1149                 ) => Some(rhs_ty),
1150                 // (float, {float})
1151                 (
1152                     TyKind::Scalar(Scalar::Float(_)),
1153                     TyKind::InferenceVar(_, TyVariableKind::Float),
1154                 ) => Some(lhs_ty),
1155                 // ({int}, {int}) | ({float}, {float})
1156                 (
1157                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1158                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1159                 )
1160                 | (
1161                     TyKind::InferenceVar(_, TyVariableKind::Float),
1162                     TyKind::InferenceVar(_, TyVariableKind::Float),
1163                 ) => Some(rhs_ty),
1164                 _ => None,
1165             },
1166         }
1167     }
1168
1169     fn builtin_binary_op_rhs_expectation(&mut self, op: BinaryOp, lhs_ty: Ty) -> Option<Ty> {
1170         Some(match op {
1171             BinaryOp::LogicOp(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
1172             BinaryOp::Assignment { op: None } => lhs_ty,
1173             BinaryOp::CmpOp(CmpOp::Eq { .. }) => match self
1174                 .resolve_ty_shallow(&lhs_ty)
1175                 .kind(Interner)
1176             {
1177                 TyKind::Scalar(_) | TyKind::Str => lhs_ty,
1178                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1179                 _ => return None,
1180             },
1181             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => return None,
1182             BinaryOp::CmpOp(CmpOp::Ord { .. })
1183             | BinaryOp::Assignment { op: Some(_) }
1184             | BinaryOp::ArithOp(_) => match self.resolve_ty_shallow(&lhs_ty).kind(Interner) {
1185                 TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) => lhs_ty,
1186                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1187                 _ => return None,
1188             },
1189         })
1190     }
1191
1192     fn resolve_binop_method(&self, op: BinaryOp) -> Option<FunctionId> {
1193         let (name, lang_item) = match op {
1194             BinaryOp::LogicOp(_) => return None,
1195             BinaryOp::ArithOp(aop) => match aop {
1196                 ArithOp::Add => (name!(add), name!(add)),
1197                 ArithOp::Mul => (name!(mul), name!(mul)),
1198                 ArithOp::Sub => (name!(sub), name!(sub)),
1199                 ArithOp::Div => (name!(div), name!(div)),
1200                 ArithOp::Rem => (name!(rem), name!(rem)),
1201                 ArithOp::Shl => (name!(shl), name!(shl)),
1202                 ArithOp::Shr => (name!(shr), name!(shr)),
1203                 ArithOp::BitXor => (name!(bitxor), name!(bitxor)),
1204                 ArithOp::BitOr => (name!(bitor), name!(bitor)),
1205                 ArithOp::BitAnd => (name!(bitand), name!(bitand)),
1206             },
1207             BinaryOp::Assignment { op: Some(aop) } => match aop {
1208                 ArithOp::Add => (name!(add_assign), name!(add_assign)),
1209                 ArithOp::Mul => (name!(mul_assign), name!(mul_assign)),
1210                 ArithOp::Sub => (name!(sub_assign), name!(sub_assign)),
1211                 ArithOp::Div => (name!(div_assign), name!(div_assign)),
1212                 ArithOp::Rem => (name!(rem_assign), name!(rem_assign)),
1213                 ArithOp::Shl => (name!(shl_assign), name!(shl_assign)),
1214                 ArithOp::Shr => (name!(shr_assign), name!(shr_assign)),
1215                 ArithOp::BitXor => (name!(bitxor_assign), name!(bitxor_assign)),
1216                 ArithOp::BitOr => (name!(bitor_assign), name!(bitor_assign)),
1217                 ArithOp::BitAnd => (name!(bitand_assign), name!(bitand_assign)),
1218             },
1219             BinaryOp::CmpOp(cop) => match cop {
1220                 CmpOp::Eq { negated: false } => (name!(eq), name!(eq)),
1221                 CmpOp::Eq { negated: true } => (name!(ne), name!(eq)),
1222                 CmpOp::Ord { ordering: Ordering::Less, strict: false } => {
1223                     (name!(le), name!(partial_ord))
1224                 }
1225                 CmpOp::Ord { ordering: Ordering::Less, strict: true } => {
1226                     (name!(lt), name!(partial_ord))
1227                 }
1228                 CmpOp::Ord { ordering: Ordering::Greater, strict: false } => {
1229                     (name!(ge), name!(partial_ord))
1230                 }
1231                 CmpOp::Ord { ordering: Ordering::Greater, strict: true } => {
1232                     (name!(gt), name!(partial_ord))
1233                 }
1234             },
1235             BinaryOp::Assignment { op: None } => return None,
1236         };
1237
1238         let trait_ = self.resolve_lang_item(lang_item)?.as_trait()?;
1239
1240         self.db.trait_data(trait_).method_by_name(&name)
1241     }
1242 }