]> git.lizzy.rs Git - rust.git/blob - crates/hir_ty/src/infer/expr.rs
Merge #11788
[rust.git] / crates / hir_ty / src / infer / expr.rs
1 //! Type inference for expressions.
2
3 use std::{
4     collections::hash_map::Entry,
5     iter::{repeat, repeat_with},
6     mem,
7     sync::Arc,
8 };
9
10 use chalk_ir::{
11     cast::Cast, fold::Shift, DebruijnIndex, GenericArgData, Mutability, TyVariableKind,
12 };
13 use hir_def::{
14     expr::{ArithOp, Array, BinaryOp, CmpOp, Expr, ExprId, Literal, Ordering, Statement, UnaryOp},
15     generics::TypeOrConstParamData,
16     path::{GenericArg, GenericArgs},
17     resolver::resolver_for_expr,
18     ConstParamId, FieldId, FunctionId, ItemContainerId, Lookup,
19 };
20 use hir_expand::name::{name, Name};
21 use stdx::always;
22 use syntax::ast::RangeOp;
23
24 use crate::{
25     autoderef::{self, Autoderef},
26     consteval,
27     infer::coerce::CoerceMany,
28     lower::{
29         const_or_path_to_chalk, generic_arg_to_chalk, lower_to_chalk_mutability, ParamLoweringMode,
30     },
31     mapping::{from_chalk, ToChalk},
32     method_resolution,
33     primitive::{self, UintTy},
34     static_lifetime, to_chalk_trait_id,
35     utils::{generics, Generics},
36     AdtId, Binders, CallableDefId, FnPointer, FnSig, FnSubst, Interner, Rawness, Scalar,
37     Substitution, TraitRef, Ty, TyBuilder, TyExt, TyKind,
38 };
39
40 use super::{
41     coerce::auto_deref_adjust_steps, find_breakable, BindingMode, BreakableContext, Diverges,
42     Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch,
43 };
44
45 impl<'a> InferenceContext<'a> {
46     pub(crate) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
47         let ty = self.infer_expr_inner(tgt_expr, expected);
48         if self.resolve_ty_shallow(&ty).is_never() {
49             // Any expression that produces a value of type `!` must have diverged
50             self.diverges = Diverges::Always;
51         }
52         if let Some(expected_ty) = expected.only_has_type(&mut self.table) {
53             let could_unify = self.unify(&ty, &expected_ty);
54             if !could_unify {
55                 self.result.type_mismatches.insert(
56                     tgt_expr.into(),
57                     TypeMismatch { expected: expected_ty, actual: ty.clone() },
58                 );
59             }
60         }
61         ty
62     }
63
64     /// Infer type of expression with possibly implicit coerce to the expected type.
65     /// Return the type after possible coercion.
66     pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
67         let ty = self.infer_expr_inner(expr, expected);
68         if let Some(target) = expected.only_has_type(&mut self.table) {
69             match self.coerce(Some(expr), &ty, &target) {
70                 Ok(res) => res,
71                 Err(_) => {
72                     self.result
73                         .type_mismatches
74                         .insert(expr.into(), TypeMismatch { expected: target, actual: ty.clone() });
75                     // Return actual type when type mismatch.
76                     // This is needed for diagnostic when return type mismatch.
77                     ty
78                 }
79             }
80         } else {
81             ty
82         }
83     }
84
85     fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
86         self.db.unwind_if_cancelled();
87
88         let body = Arc::clone(&self.body); // avoid borrow checker problem
89         let ty = match &body[tgt_expr] {
90             Expr::Missing => self.err_ty(),
91             &Expr::If { condition, then_branch, else_branch } => {
92                 self.infer_expr(
93                     condition,
94                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
95                 );
96
97                 let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
98                 let mut both_arms_diverge = Diverges::Always;
99
100                 let result_ty = self.table.new_type_var();
101                 let then_ty = self.infer_expr_inner(then_branch, expected);
102                 both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
103                 let mut coerce = CoerceMany::new(result_ty);
104                 coerce.coerce(self, Some(then_branch), &then_ty);
105                 let else_ty = match else_branch {
106                     Some(else_branch) => self.infer_expr_inner(else_branch, expected),
107                     None => TyBuilder::unit(),
108                 };
109                 both_arms_diverge &= self.diverges;
110                 // FIXME: create a synthetic `else {}` so we have something to refer to here instead of None?
111                 coerce.coerce(self, else_branch, &else_ty);
112
113                 self.diverges = condition_diverges | both_arms_diverge;
114
115                 coerce.complete()
116             }
117             &Expr::Let { pat, expr } => {
118                 let input_ty = self.infer_expr(expr, &Expectation::none());
119                 self.infer_pat(pat, &input_ty, BindingMode::default());
120                 TyKind::Scalar(Scalar::Bool).intern(Interner)
121             }
122             Expr::Block { statements, tail, label, id: _ } => {
123                 let old_resolver = mem::replace(
124                     &mut self.resolver,
125                     resolver_for_expr(self.db.upcast(), self.owner, tgt_expr),
126                 );
127                 let ty = match label {
128                     Some(_) => {
129                         let break_ty = self.table.new_type_var();
130                         self.breakables.push(BreakableContext {
131                             may_break: false,
132                             coerce: CoerceMany::new(break_ty.clone()),
133                             label: label.map(|label| self.body[label].name.clone()),
134                         });
135                         let ty = self.infer_block(
136                             tgt_expr,
137                             statements,
138                             *tail,
139                             &Expectation::has_type(break_ty),
140                         );
141                         let ctxt = self.breakables.pop().expect("breakable stack broken");
142                         if ctxt.may_break {
143                             ctxt.coerce.complete()
144                         } else {
145                             ty
146                         }
147                     }
148                     None => self.infer_block(tgt_expr, statements, *tail, expected),
149                 };
150                 self.resolver = old_resolver;
151                 ty
152             }
153             Expr::Unsafe { body } | Expr::Const { body } => self.infer_expr(*body, expected),
154             Expr::TryBlock { body } => {
155                 let _inner = self.infer_expr(*body, expected);
156                 // FIXME should be std::result::Result<{inner}, _>
157                 self.err_ty()
158             }
159             Expr::Async { body } => {
160                 // Use the first type parameter as the output type of future.
161                 // existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
162                 let inner_ty = self.infer_expr(*body, &Expectation::none());
163                 let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
164                 let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
165                 TyKind::OpaqueType(opaque_ty_id, Substitution::from1(Interner, inner_ty))
166                     .intern(Interner)
167             }
168             Expr::Loop { body, label } => {
169                 self.breakables.push(BreakableContext {
170                     may_break: false,
171                     coerce: CoerceMany::new(self.table.new_type_var()),
172                     label: label.map(|label| self.body[label].name.clone()),
173                 });
174                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
175
176                 let ctxt = self.breakables.pop().expect("breakable stack broken");
177
178                 if ctxt.may_break {
179                     self.diverges = Diverges::Maybe;
180                     ctxt.coerce.complete()
181                 } else {
182                     TyKind::Never.intern(Interner)
183                 }
184             }
185             Expr::While { condition, body, label } => {
186                 self.breakables.push(BreakableContext {
187                     may_break: false,
188                     coerce: CoerceMany::new(self.err_ty()),
189                     label: label.map(|label| self.body[label].name.clone()),
190                 });
191                 self.infer_expr(
192                     *condition,
193                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
194                 );
195                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
196                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
197                 // the body may not run, so it diverging doesn't mean we diverge
198                 self.diverges = Diverges::Maybe;
199                 TyBuilder::unit()
200             }
201             Expr::For { iterable, body, pat, label } => {
202                 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
203
204                 self.breakables.push(BreakableContext {
205                     may_break: false,
206                     coerce: CoerceMany::new(self.err_ty()),
207                     label: label.map(|label| self.body[label].name.clone()),
208                 });
209                 let pat_ty =
210                     self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
211
212                 self.infer_pat(*pat, &pat_ty, BindingMode::default());
213
214                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
215                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
216                 // the body may not run, so it diverging doesn't mean we diverge
217                 self.diverges = Diverges::Maybe;
218                 TyBuilder::unit()
219             }
220             Expr::Lambda { body, args, ret_type, arg_types } => {
221                 assert_eq!(args.len(), arg_types.len());
222
223                 let mut sig_tys = Vec::new();
224
225                 // collect explicitly written argument types
226                 for arg_type in arg_types.iter() {
227                     let arg_ty = match arg_type {
228                         Some(type_ref) => self.make_ty(type_ref),
229                         None => self.table.new_type_var(),
230                     };
231                     sig_tys.push(arg_ty);
232                 }
233
234                 // add return type
235                 let ret_ty = match ret_type {
236                     Some(type_ref) => self.make_ty(type_ref),
237                     None => self.table.new_type_var(),
238                 };
239                 sig_tys.push(ret_ty.clone());
240                 let sig_ty = TyKind::Function(FnPointer {
241                     num_binders: 0,
242                     sig: FnSig { abi: (), safety: chalk_ir::Safety::Safe, variadic: false },
243                     substitution: FnSubst(
244                         Substitution::from_iter(Interner, sig_tys.clone()).shifted_in(Interner),
245                     ),
246                 })
247                 .intern(Interner);
248                 let closure_id = self.db.intern_closure((self.owner, tgt_expr)).into();
249                 let closure_ty =
250                     TyKind::Closure(closure_id, Substitution::from1(Interner, sig_ty.clone()))
251                         .intern(Interner);
252
253                 // Eagerly try to relate the closure type with the expected
254                 // type, otherwise we often won't have enough information to
255                 // infer the body.
256                 self.deduce_closure_type_from_expectations(
257                     tgt_expr,
258                     &closure_ty,
259                     &sig_ty,
260                     expected,
261                 );
262
263                 // Now go through the argument patterns
264                 for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
265                     self.infer_pat(*arg_pat, &arg_ty, BindingMode::default());
266                 }
267
268                 let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
269                 let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
270
271                 self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
272
273                 self.diverges = prev_diverges;
274                 self.return_ty = prev_ret_ty;
275
276                 closure_ty
277             }
278             Expr::Call { callee, args } => {
279                 let callee_ty = self.infer_expr(*callee, &Expectation::none());
280                 let mut derefs = Autoderef::new(&mut self.table, callee_ty.clone());
281                 let mut res = None;
282                 let mut derefed_callee = callee_ty.clone();
283                 // manual loop to be able to access `derefs.table`
284                 while let Some((callee_deref_ty, _)) = derefs.next() {
285                     res = derefs.table.callable_sig(&callee_deref_ty, args.len());
286                     if res.is_some() {
287                         derefed_callee = callee_deref_ty;
288                         break;
289                     }
290                 }
291                 let (param_tys, ret_ty) = match res {
292                     Some(res) => {
293                         let adjustments = auto_deref_adjust_steps(&derefs);
294                         self.write_expr_adj(*callee, adjustments);
295                         res
296                     }
297                     None => (Vec::new(), self.err_ty()),
298                 };
299                 let indices_to_skip = self.check_legacy_const_generics(derefed_callee, args);
300                 self.register_obligations_for_call(&callee_ty);
301
302                 let expected_inputs = self.expected_inputs_for_expected_output(
303                     expected,
304                     ret_ty.clone(),
305                     param_tys.clone(),
306                 );
307
308                 self.check_call_arguments(args, &expected_inputs, &param_tys, &indices_to_skip);
309                 self.normalize_associated_types_in(ret_ty)
310             }
311             Expr::MethodCall { receiver, args, method_name, generic_args } => self
312                 .infer_method_call(
313                     tgt_expr,
314                     *receiver,
315                     args,
316                     method_name,
317                     generic_args.as_deref(),
318                     expected,
319                 ),
320             Expr::Match { expr, arms } => {
321                 let input_ty = self.infer_expr(*expr, &Expectation::none());
322
323                 let expected = expected.adjust_for_branches(&mut self.table);
324
325                 let result_ty = if arms.is_empty() {
326                     TyKind::Never.intern(Interner)
327                 } else {
328                     match &expected {
329                         Expectation::HasType(ty) => ty.clone(),
330                         _ => self.table.new_type_var(),
331                     }
332                 };
333                 let mut coerce = CoerceMany::new(result_ty);
334
335                 let matchee_diverges = self.diverges;
336                 let mut all_arms_diverge = Diverges::Always;
337
338                 for arm in arms.iter() {
339                     self.diverges = Diverges::Maybe;
340                     let _pat_ty = self.infer_pat(arm.pat, &input_ty, BindingMode::default());
341                     if let Some(guard_expr) = arm.guard {
342                         self.infer_expr(
343                             guard_expr,
344                             &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
345                         );
346                     }
347
348                     let arm_ty = self.infer_expr_inner(arm.expr, &expected);
349                     all_arms_diverge &= self.diverges;
350                     coerce.coerce(self, Some(arm.expr), &arm_ty);
351                 }
352
353                 self.diverges = matchee_diverges | all_arms_diverge;
354
355                 coerce.complete()
356             }
357             Expr::Path(p) => {
358                 // FIXME this could be more efficient...
359                 let resolver = resolver_for_expr(self.db.upcast(), self.owner, tgt_expr);
360                 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or_else(|| self.err_ty())
361             }
362             Expr::Continue { .. } => TyKind::Never.intern(Interner),
363             Expr::Break { expr, label } => {
364                 let mut coerce = match find_breakable(&mut self.breakables, label.as_ref()) {
365                     Some(ctxt) => {
366                         // avoiding the borrowck
367                         mem::replace(
368                             &mut ctxt.coerce,
369                             CoerceMany::new(self.result.standard_types.unknown.clone()),
370                         )
371                     }
372                     None => CoerceMany::new(self.result.standard_types.unknown.clone()),
373                 };
374
375                 let val_ty = if let Some(expr) = *expr {
376                     self.infer_expr(expr, &Expectation::none())
377                 } else {
378                     TyBuilder::unit()
379                 };
380
381                 // FIXME: create a synthetic `()` during lowering so we have something to refer to here?
382                 coerce.coerce(self, *expr, &val_ty);
383
384                 if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
385                     ctxt.coerce = coerce;
386                     ctxt.may_break = true;
387                 } else {
388                     self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
389                         expr: tgt_expr,
390                     });
391                 };
392
393                 TyKind::Never.intern(Interner)
394             }
395             Expr::Return { expr } => {
396                 if let Some(expr) = expr {
397                     self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
398                 } else {
399                     let unit = TyBuilder::unit();
400                     let _ = self.coerce(Some(tgt_expr), &unit, &self.return_ty.clone());
401                 }
402                 TyKind::Never.intern(Interner)
403             }
404             Expr::Yield { expr } => {
405                 // FIXME: track yield type for coercion
406                 if let Some(expr) = expr {
407                     self.infer_expr(*expr, &Expectation::none());
408                 }
409                 TyKind::Never.intern(Interner)
410             }
411             Expr::RecordLit { path, fields, spread } => {
412                 let (ty, def_id) = self.resolve_variant(path.as_deref(), false);
413                 if let Some(variant) = def_id {
414                     self.write_variant_resolution(tgt_expr.into(), variant);
415                 }
416
417                 if let Some(t) = expected.only_has_type(&mut self.table) {
418                     self.unify(&ty, &t);
419                 }
420
421                 let substs = ty
422                     .as_adt()
423                     .map(|(_, s)| s.clone())
424                     .unwrap_or_else(|| Substitution::empty(Interner));
425                 let field_types = def_id.map(|it| self.db.field_types(it)).unwrap_or_default();
426                 let variant_data = def_id.map(|it| it.variant_data(self.db.upcast()));
427                 for field in fields.iter() {
428                     let field_def =
429                         variant_data.as_ref().and_then(|it| match it.field(&field.name) {
430                             Some(local_id) => Some(FieldId { parent: def_id.unwrap(), local_id }),
431                             None => {
432                                 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
433                                     expr: field.expr,
434                                 });
435                                 None
436                             }
437                         });
438                     let field_ty = field_def.map_or(self.err_ty(), |it| {
439                         field_types[it.local_id].clone().substitute(Interner, &substs)
440                     });
441                     self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
442                 }
443                 if let Some(expr) = spread {
444                     self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
445                 }
446                 ty
447             }
448             Expr::Field { expr, name } => {
449                 let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
450
451                 let mut autoderef = Autoderef::new(&mut self.table, receiver_ty);
452                 let ty = autoderef.by_ref().find_map(|(derefed_ty, _)| {
453                     let (field_id, parameters) = match derefed_ty.kind(Interner) {
454                         TyKind::Tuple(_, substs) => {
455                             return name.as_tuple_index().and_then(|idx| {
456                                 substs
457                                     .as_slice(Interner)
458                                     .get(idx)
459                                     .map(|a| a.assert_ty_ref(Interner))
460                                     .cloned()
461                             });
462                         }
463                         TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => {
464                             let local_id = self.db.struct_data(*s).variant_data.field(name)?;
465                             let field = FieldId { parent: (*s).into(), local_id };
466                             (field, parameters.clone())
467                         }
468                         TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => {
469                             let local_id = self.db.union_data(*u).variant_data.field(name)?;
470                             let field = FieldId { parent: (*u).into(), local_id };
471                             (field, parameters.clone())
472                         }
473                         _ => return None,
474                     };
475                     let module = self.resolver.module();
476                     let is_visible = module
477                         .map(|mod_id| {
478                             self.db.field_visibilities(field_id.parent)[field_id.local_id]
479                                 .is_visible_from(self.db.upcast(), mod_id)
480                         })
481                         .unwrap_or(true);
482                     if !is_visible {
483                         // Write down the first field resolution even if it is not visible
484                         // This aids IDE features for private fields like goto def and in
485                         // case of autoderef finding an applicable field, this will be
486                         // overwritten in a following cycle
487                         if let Entry::Vacant(entry) = self.result.field_resolutions.entry(tgt_expr)
488                         {
489                             entry.insert(field_id);
490                         }
491                         return None;
492                     }
493                     // can't have `write_field_resolution` here because `self.table` is borrowed :(
494                     self.result.field_resolutions.insert(tgt_expr, field_id);
495                     let ty = self.db.field_types(field_id.parent)[field_id.local_id]
496                         .clone()
497                         .substitute(Interner, &parameters);
498                     Some(ty)
499                 });
500                 let ty = match ty {
501                     Some(ty) => {
502                         let adjustments = auto_deref_adjust_steps(&autoderef);
503                         self.write_expr_adj(*expr, adjustments);
504                         let ty = self.insert_type_vars(ty);
505                         let ty = self.normalize_associated_types_in(ty);
506                         ty
507                     }
508                     _ => self.err_ty(),
509                 };
510                 ty
511             }
512             Expr::Await { expr } => {
513                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
514                 self.resolve_associated_type(inner_ty, self.resolve_future_future_output())
515             }
516             Expr::Try { expr } => {
517                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
518                 self.resolve_associated_type(inner_ty, self.resolve_ops_try_ok())
519             }
520             Expr::Cast { expr, type_ref } => {
521                 // FIXME: propagate the "castable to" expectation (and find a test case that shows this is necessary)
522                 let _inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
523                 let cast_ty = self.make_ty(type_ref);
524                 // FIXME check the cast...
525                 cast_ty
526             }
527             Expr::Ref { expr, rawness, mutability } => {
528                 let mutability = lower_to_chalk_mutability(*mutability);
529                 let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected
530                     .only_has_type(&mut self.table)
531                     .as_ref()
532                     .and_then(|t| t.as_reference_or_ptr())
533                 {
534                     if exp_mutability == Mutability::Mut && mutability == Mutability::Not {
535                         // FIXME: record type error - expected mut reference but found shared ref,
536                         // which cannot be coerced
537                     }
538                     if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
539                         // FIXME: record type error - expected reference but found ptr,
540                         // which cannot be coerced
541                     }
542                     Expectation::rvalue_hint(&mut self.table, Ty::clone(exp_inner))
543                 } else {
544                     Expectation::none()
545                 };
546                 let inner_ty = self.infer_expr_inner(*expr, &expectation);
547                 match rawness {
548                     Rawness::RawPtr => TyKind::Raw(mutability, inner_ty),
549                     Rawness::Ref => TyKind::Ref(mutability, static_lifetime(), inner_ty),
550                 }
551                 .intern(Interner)
552             }
553             Expr::Box { expr } => {
554                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
555                 if let Some(box_) = self.resolve_boxed_box() {
556                     TyBuilder::adt(self.db, box_)
557                         .push(inner_ty)
558                         .fill_with_defaults(self.db, || self.table.new_type_var())
559                         .build()
560                 } else {
561                     self.err_ty()
562                 }
563             }
564             Expr::UnaryOp { expr, op } => {
565                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
566                 let inner_ty = self.resolve_ty_shallow(&inner_ty);
567                 match op {
568                     UnaryOp::Deref => {
569                         autoderef::deref(&mut self.table, inner_ty).unwrap_or_else(|| self.err_ty())
570                     }
571                     UnaryOp::Neg => {
572                         match inner_ty.kind(Interner) {
573                             // Fast path for builtins
574                             TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_))
575                             | TyKind::InferenceVar(
576                                 _,
577                                 TyVariableKind::Integer | TyVariableKind::Float,
578                             ) => inner_ty,
579                             // Otherwise we resolve via the std::ops::Neg trait
580                             _ => self
581                                 .resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
582                         }
583                     }
584                     UnaryOp::Not => {
585                         match inner_ty.kind(Interner) {
586                             // Fast path for builtins
587                             TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_))
588                             | TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty,
589                             // Otherwise we resolve via the std::ops::Not trait
590                             _ => self
591                                 .resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
592                         }
593                     }
594                 }
595             }
596             Expr::BinaryOp { lhs, rhs, op } => match op {
597                 Some(BinaryOp::Assignment { op: None }) => {
598                     let lhs_ty = self.infer_expr(*lhs, &Expectation::none());
599                     self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty));
600                     self.result.standard_types.unit.clone()
601                 }
602                 Some(BinaryOp::LogicOp(_)) => {
603                     let bool_ty = self.result.standard_types.bool_.clone();
604                     self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone()));
605                     let lhs_diverges = self.diverges;
606                     self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone()));
607                     // Depending on the LHS' value, the RHS can never execute.
608                     self.diverges = lhs_diverges;
609                     bool_ty
610                 }
611                 Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr),
612                 _ => self.err_ty(),
613             },
614             Expr::Range { lhs, rhs, range_type } => {
615                 let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
616                 let rhs_expect = lhs_ty
617                     .as_ref()
618                     .map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
619                 let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
620                 match (range_type, lhs_ty, rhs_ty) {
621                     (RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
622                         Some(adt) => TyBuilder::adt(self.db, adt).build(),
623                         None => self.err_ty(),
624                     },
625                     (RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
626                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
627                         None => self.err_ty(),
628                     },
629                     (RangeOp::Inclusive, None, Some(ty)) => {
630                         match self.resolve_range_to_inclusive() {
631                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
632                             None => self.err_ty(),
633                         }
634                     }
635                     (RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
636                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
637                         None => self.err_ty(),
638                     },
639                     (RangeOp::Inclusive, Some(_), Some(ty)) => {
640                         match self.resolve_range_inclusive() {
641                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
642                             None => self.err_ty(),
643                         }
644                     }
645                     (RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
646                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
647                         None => self.err_ty(),
648                     },
649                     (RangeOp::Inclusive, _, None) => self.err_ty(),
650                 }
651             }
652             Expr::Index { base, index } => {
653                 let base_ty = self.infer_expr_inner(*base, &Expectation::none());
654                 let index_ty = self.infer_expr(*index, &Expectation::none());
655
656                 if let Some(index_trait) = self.resolve_ops_index() {
657                     let canonicalized = self.canonicalize(base_ty.clone());
658                     let receiver_adjustments = method_resolution::resolve_indexing_op(
659                         self.db,
660                         self.trait_env.clone(),
661                         canonicalized.value,
662                         index_trait,
663                     );
664                     let (self_ty, adj) = receiver_adjustments
665                         .map_or((self.err_ty(), Vec::new()), |adj| {
666                             adj.apply(&mut self.table, base_ty)
667                         });
668                     self.write_expr_adj(*base, adj);
669                     self.resolve_associated_type_with_params(
670                         self_ty,
671                         self.resolve_ops_index_output(),
672                         &[GenericArgData::Ty(index_ty).intern(Interner)],
673                     )
674                 } else {
675                     self.err_ty()
676                 }
677             }
678             Expr::Tuple { exprs } => {
679                 let mut tys = match expected
680                     .only_has_type(&mut self.table)
681                     .as_ref()
682                     .map(|t| t.kind(Interner))
683                 {
684                     Some(TyKind::Tuple(_, substs)) => substs
685                         .iter(Interner)
686                         .map(|a| a.assert_ty_ref(Interner).clone())
687                         .chain(repeat_with(|| self.table.new_type_var()))
688                         .take(exprs.len())
689                         .collect::<Vec<_>>(),
690                     _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
691                 };
692
693                 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
694                     self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
695                 }
696
697                 TyKind::Tuple(tys.len(), Substitution::from_iter(Interner, tys)).intern(Interner)
698             }
699             Expr::Array(array) => {
700                 let elem_ty =
701                     match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(Interner)) {
702                         Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
703                         _ => self.table.new_type_var(),
704                     };
705                 let mut coerce = CoerceMany::new(elem_ty.clone());
706
707                 let expected = Expectation::has_type(elem_ty.clone());
708                 let len = match array {
709                     Array::ElementList(items) => {
710                         for &expr in items.iter() {
711                             let cur_elem_ty = self.infer_expr_inner(expr, &expected);
712                             coerce.coerce(self, Some(expr), &cur_elem_ty);
713                         }
714                         consteval::usize_const(Some(items.len() as u64))
715                     }
716                     &Array::Repeat { initializer, repeat } => {
717                         self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty));
718                         self.infer_expr(
719                             repeat,
720                             &Expectation::has_type(
721                                 TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner),
722                             ),
723                         );
724
725                         if let Some(g_def) = self.owner.as_generic_def_id() {
726                             let generics = generics(self.db.upcast(), g_def);
727                             consteval::eval_to_const(
728                                 repeat,
729                                 ParamLoweringMode::Placeholder,
730                                 self,
731                                 || generics,
732                                 DebruijnIndex::INNERMOST,
733                             )
734                         } else {
735                             consteval::usize_const(None)
736                         }
737                     }
738                 };
739
740                 TyKind::Array(coerce.complete(), len).intern(Interner)
741             }
742             Expr::Literal(lit) => match lit {
743                 Literal::Bool(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
744                 Literal::String(..) => {
745                     TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(Interner))
746                         .intern(Interner)
747                 }
748                 Literal::ByteString(bs) => {
749                     let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner);
750
751                     let len = consteval::usize_const(Some(bs.len() as u64));
752
753                     let array_type = TyKind::Array(byte_type, len).intern(Interner);
754                     TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(Interner)
755                 }
756                 Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(Interner),
757                 Literal::Int(_v, ty) => match ty {
758                     Some(int_ty) => {
759                         TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty)))
760                             .intern(Interner)
761                     }
762                     None => self.table.new_integer_var(),
763                 },
764                 Literal::Uint(_v, ty) => match ty {
765                     Some(int_ty) => {
766                         TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty)))
767                             .intern(Interner)
768                     }
769                     None => self.table.new_integer_var(),
770                 },
771                 Literal::Float(_v, ty) => match ty {
772                     Some(float_ty) => {
773                         TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty)))
774                             .intern(Interner)
775                     }
776                     None => self.table.new_float_var(),
777                 },
778             },
779             Expr::MacroStmts { tail } => self.infer_expr_inner(*tail, expected),
780         };
781         // use a new type variable if we got unknown here
782         let ty = self.insert_type_vars_shallow(ty);
783         self.write_expr_ty(tgt_expr, ty.clone());
784         ty
785     }
786
787     fn infer_overloadable_binop(
788         &mut self,
789         lhs: ExprId,
790         op: BinaryOp,
791         rhs: ExprId,
792         tgt_expr: ExprId,
793     ) -> Ty {
794         let lhs_expectation = Expectation::none();
795         let lhs_ty = self.infer_expr(lhs, &lhs_expectation);
796         let rhs_ty = self.table.new_type_var();
797
798         let func = self.resolve_binop_method(op);
799         let func = match func {
800             Some(func) => func,
801             None => {
802                 let rhs_ty = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone());
803                 let rhs_ty = self.infer_expr_coerce(rhs, &Expectation::from_option(rhs_ty));
804                 return self
805                     .builtin_binary_op_return_ty(op, lhs_ty, rhs_ty)
806                     .unwrap_or_else(|| self.err_ty());
807             }
808         };
809
810         let subst = TyBuilder::subst_for_def(self.db, func)
811             .push(lhs_ty.clone())
812             .push(rhs_ty.clone())
813             .build();
814         self.write_method_resolution(tgt_expr, func, subst.clone());
815
816         let method_ty = self.db.value_ty(func.into()).substitute(Interner, &subst);
817         self.register_obligations_for_call(&method_ty);
818
819         self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone()));
820
821         let ret_ty = match method_ty.callable_sig(self.db) {
822             Some(sig) => sig.ret().clone(),
823             None => self.err_ty(),
824         };
825
826         let ret_ty = self.normalize_associated_types_in(ret_ty);
827
828         // FIXME: record autoref adjustments
829
830         // use knowledge of built-in binary ops, which can sometimes help inference
831         if let Some(builtin_rhs) = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone()) {
832             self.unify(&builtin_rhs, &rhs_ty);
833         }
834         if let Some(builtin_ret) = self.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty) {
835             self.unify(&builtin_ret, &ret_ty);
836         }
837
838         ret_ty
839     }
840
841     fn infer_block(
842         &mut self,
843         expr: ExprId,
844         statements: &[Statement],
845         tail: Option<ExprId>,
846         expected: &Expectation,
847     ) -> Ty {
848         for stmt in statements {
849             match stmt {
850                 Statement::Let { pat, type_ref, initializer, else_branch } => {
851                     let decl_ty = type_ref
852                         .as_ref()
853                         .map(|tr| self.make_ty(tr))
854                         .unwrap_or_else(|| self.err_ty());
855
856                     // Always use the declared type when specified
857                     let mut ty = decl_ty.clone();
858
859                     if let Some(expr) = initializer {
860                         let actual_ty =
861                             self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
862                         if decl_ty.is_unknown() {
863                             ty = actual_ty;
864                         }
865                     }
866
867                     if let Some(expr) = else_branch {
868                         self.infer_expr_coerce(
869                             *expr,
870                             &Expectation::has_type(Ty::new(Interner, TyKind::Never)),
871                         );
872                     }
873
874                     self.infer_pat(*pat, &ty, BindingMode::default());
875                 }
876                 Statement::Expr { expr, .. } => {
877                     self.infer_expr(*expr, &Expectation::none());
878                 }
879             }
880         }
881
882         if let Some(expr) = tail {
883             self.infer_expr_coerce(expr, expected)
884         } else {
885             // Citing rustc: if there is no explicit tail expression,
886             // that is typically equivalent to a tail expression
887             // of `()` -- except if the block diverges. In that
888             // case, there is no value supplied from the tail
889             // expression (assuming there are no other breaks,
890             // this implies that the type of the block will be
891             // `!`).
892             if self.diverges.is_always() {
893                 // we don't even make an attempt at coercion
894                 self.table.new_maybe_never_var()
895             } else {
896                 if let Some(t) = expected.only_has_type(&mut self.table) {
897                     let _ = self.coerce(Some(expr), &TyBuilder::unit(), &t);
898                 }
899                 TyBuilder::unit()
900             }
901         }
902     }
903
904     fn infer_method_call(
905         &mut self,
906         tgt_expr: ExprId,
907         receiver: ExprId,
908         args: &[ExprId],
909         method_name: &Name,
910         generic_args: Option<&GenericArgs>,
911         expected: &Expectation,
912     ) -> Ty {
913         let receiver_ty = self.infer_expr(receiver, &Expectation::none());
914         let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
915
916         let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
917
918         let resolved = method_resolution::lookup_method(
919             &canonicalized_receiver.value,
920             self.db,
921             self.trait_env.clone(),
922             &traits_in_scope,
923             self.resolver.module().into(),
924             method_name,
925         );
926         let (receiver_ty, method_ty, substs) = match resolved {
927             Some((adjust, func)) => {
928                 let (ty, adjustments) = adjust.apply(&mut self.table, receiver_ty);
929                 let generics = generics(self.db.upcast(), func.into());
930                 let substs = self.substs_for_method_call(generics, generic_args);
931                 self.write_expr_adj(receiver, adjustments);
932                 self.write_method_resolution(tgt_expr, func, substs.clone());
933                 (ty, self.db.value_ty(func.into()), substs)
934             }
935             None => (
936                 receiver_ty,
937                 Binders::empty(Interner, self.err_ty()),
938                 Substitution::empty(Interner),
939             ),
940         };
941         let method_ty = method_ty.substitute(Interner, &substs);
942         self.register_obligations_for_call(&method_ty);
943         let (formal_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
944             Some(sig) => {
945                 if !sig.params().is_empty() {
946                     (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
947                 } else {
948                     (self.err_ty(), Vec::new(), sig.ret().clone())
949                 }
950             }
951             None => (self.err_ty(), Vec::new(), self.err_ty()),
952         };
953         self.unify(&formal_receiver_ty, &receiver_ty);
954
955         let expected_inputs =
956             self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone());
957
958         self.check_call_arguments(args, &expected_inputs, &param_tys, &[]);
959         self.normalize_associated_types_in(ret_ty)
960     }
961
962     fn expected_inputs_for_expected_output(
963         &mut self,
964         expected_output: &Expectation,
965         output: Ty,
966         inputs: Vec<Ty>,
967     ) -> Vec<Ty> {
968         if let Some(expected_ty) = expected_output.to_option(&mut self.table) {
969             self.table.fudge_inference(|table| {
970                 if table.try_unify(&expected_ty, &output).is_ok() {
971                     table.resolve_with_fallback(inputs, &|var, kind, _, _| match kind {
972                         chalk_ir::VariableKind::Ty(tk) => var.to_ty(Interner, tk).cast(Interner),
973                         chalk_ir::VariableKind::Lifetime => {
974                             var.to_lifetime(Interner).cast(Interner)
975                         }
976                         chalk_ir::VariableKind::Const(ty) => {
977                             var.to_const(Interner, ty).cast(Interner)
978                         }
979                     })
980                 } else {
981                     Vec::new()
982                 }
983             })
984         } else {
985             Vec::new()
986         }
987     }
988
989     fn check_call_arguments(
990         &mut self,
991         args: &[ExprId],
992         expected_inputs: &[Ty],
993         param_tys: &[Ty],
994         skip_indices: &[u32],
995     ) {
996         // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
997         // We do this in a pretty awful way: first we type-check any arguments
998         // that are not closures, then we type-check the closures. This is so
999         // that we have more information about the types of arguments when we
1000         // type-check the functions. This isn't really the right way to do this.
1001         for &check_closures in &[false, true] {
1002             let mut skip_indices = skip_indices.into_iter().copied().fuse().peekable();
1003             let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty()));
1004             let expected_iter = expected_inputs
1005                 .iter()
1006                 .cloned()
1007                 .chain(param_iter.clone().skip(expected_inputs.len()));
1008             for (idx, ((&arg, param_ty), expected_ty)) in
1009                 args.iter().zip(param_iter).zip(expected_iter).enumerate()
1010             {
1011                 let is_closure = matches!(&self.body[arg], Expr::Lambda { .. });
1012                 if is_closure != check_closures {
1013                     continue;
1014                 }
1015
1016                 while skip_indices.peek().map_or(false, |i| *i < idx as u32) {
1017                     skip_indices.next();
1018                 }
1019                 if skip_indices.peek().copied() == Some(idx as u32) {
1020                     continue;
1021                 }
1022
1023                 // the difference between param_ty and expected here is that
1024                 // expected is the parameter when the expected *return* type is
1025                 // taken into account. So in `let _: &[i32] = identity(&[1, 2])`
1026                 // the expected type is already `&[i32]`, whereas param_ty is
1027                 // still an unbound type variable. We don't always want to force
1028                 // the parameter to coerce to the expected type (for example in
1029                 // `coerce_unsize_expected_type_4`).
1030                 let param_ty = self.normalize_associated_types_in(param_ty);
1031                 let expected = Expectation::rvalue_hint(&mut self.table, expected_ty);
1032                 // infer with the expected type we have...
1033                 let ty = self.infer_expr_inner(arg, &expected);
1034
1035                 // then coerce to either the expected type or just the formal parameter type
1036                 let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) {
1037                     // if we are coercing to the expectation, unify with the
1038                     // formal parameter type to connect everything
1039                     self.unify(&ty, &param_ty);
1040                     ty
1041                 } else {
1042                     param_ty
1043                 };
1044                 if !coercion_target.is_unknown() {
1045                     if self.coerce(Some(arg), &ty, &coercion_target).is_err() {
1046                         self.result.type_mismatches.insert(
1047                             arg.into(),
1048                             TypeMismatch { expected: coercion_target, actual: ty.clone() },
1049                         );
1050                     }
1051                 }
1052             }
1053         }
1054     }
1055
1056     fn substs_for_method_call(
1057         &mut self,
1058         def_generics: Generics,
1059         generic_args: Option<&GenericArgs>,
1060     ) -> Substitution {
1061         let (parent_params, self_params, type_params, const_params, impl_trait_params) =
1062             def_generics.provenance_split();
1063         assert_eq!(self_params, 0); // method shouldn't have another Self param
1064         let total_len = parent_params + type_params + const_params + impl_trait_params;
1065         let mut substs = Vec::with_capacity(total_len);
1066         // Parent arguments are unknown
1067         for (id, param) in def_generics.iter_parent() {
1068             match param {
1069                 TypeOrConstParamData::TypeParamData(_) => {
1070                     substs.push(GenericArgData::Ty(self.table.new_type_var()).intern(Interner));
1071                 }
1072                 TypeOrConstParamData::ConstParamData(_) => {
1073                     let ty = self.db.const_param_ty(ConstParamId::from_unchecked(id));
1074                     substs
1075                         .push(GenericArgData::Const(self.table.new_const_var(ty)).intern(Interner));
1076                 }
1077             }
1078         }
1079         // handle provided arguments
1080         if let Some(generic_args) = generic_args {
1081             // if args are provided, it should be all of them, but we can't rely on that
1082             for (arg, kind_id) in generic_args
1083                 .args
1084                 .iter()
1085                 .filter(|arg| !matches!(arg, GenericArg::Lifetime(_)))
1086                 .take(type_params + const_params)
1087                 .zip(def_generics.iter_id().skip(parent_params))
1088             {
1089                 if let Some(g) = generic_arg_to_chalk(
1090                     self.db,
1091                     kind_id,
1092                     arg,
1093                     self,
1094                     |this, type_ref| this.make_ty(type_ref),
1095                     |this, c| {
1096                         const_or_path_to_chalk(
1097                             this.db,
1098                             &this.resolver,
1099                             c,
1100                             ParamLoweringMode::Placeholder,
1101                             || generics(this.db.upcast(), (&this.resolver).generic_def().unwrap()),
1102                             DebruijnIndex::INNERMOST,
1103                         )
1104                     },
1105                 ) {
1106                     substs.push(g);
1107                 }
1108             }
1109         };
1110         for (id, data) in def_generics.iter().skip(substs.len()) {
1111             match data {
1112                 TypeOrConstParamData::TypeParamData(_) => {
1113                     substs.push(GenericArgData::Ty(self.table.new_type_var()).intern(Interner))
1114                 }
1115                 TypeOrConstParamData::ConstParamData(_) => {
1116                     substs.push(
1117                         GenericArgData::Const(self.table.new_const_var(
1118                             self.db.const_param_ty(ConstParamId::from_unchecked(id)),
1119                         ))
1120                         .intern(Interner),
1121                     )
1122                 }
1123             }
1124         }
1125         assert_eq!(substs.len(), total_len);
1126         Substitution::from_iter(Interner, substs)
1127     }
1128
1129     fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
1130         let callable_ty = self.resolve_ty_shallow(callable_ty);
1131         if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(Interner) {
1132             let def: CallableDefId = from_chalk(self.db, *fn_def);
1133             let generic_predicates = self.db.generic_predicates(def.into());
1134             for predicate in generic_predicates.iter() {
1135                 let (predicate, binders) = predicate
1136                     .clone()
1137                     .substitute(Interner, parameters)
1138                     .into_value_and_skipped_binders();
1139                 always!(binders.len(Interner) == 0); // quantified where clauses not yet handled
1140                 self.push_obligation(predicate.cast(Interner));
1141             }
1142             // add obligation for trait implementation, if this is a trait method
1143             match def {
1144                 CallableDefId::FunctionId(f) => {
1145                     if let ItemContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container {
1146                         // construct a TraitRef
1147                         let substs = crate::subst_prefix(
1148                             &*parameters,
1149                             generics(self.db.upcast(), trait_.into()).len(),
1150                         );
1151                         self.push_obligation(
1152                             TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs }
1153                                 .cast(Interner),
1154                         );
1155                     }
1156                 }
1157                 CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {}
1158             }
1159         }
1160     }
1161
1162     /// Returns the argument indices to skip.
1163     fn check_legacy_const_generics(&mut self, callee: Ty, args: &[ExprId]) -> Vec<u32> {
1164         let (func, subst) = match callee.kind(Interner) {
1165             TyKind::FnDef(fn_id, subst) => {
1166                 let callable = CallableDefId::from_chalk(self.db, *fn_id);
1167                 let func = match callable {
1168                     CallableDefId::FunctionId(f) => f,
1169                     _ => return Vec::new(),
1170                 };
1171                 (func, subst)
1172             }
1173             _ => return Vec::new(),
1174         };
1175
1176         let data = self.db.function_data(func);
1177         if data.legacy_const_generics_indices.is_empty() {
1178             return Vec::new();
1179         }
1180
1181         // only use legacy const generics if the param count matches with them
1182         if data.params.len() + data.legacy_const_generics_indices.len() != args.len() {
1183             return Vec::new();
1184         }
1185
1186         // check legacy const parameters
1187         for (subst_idx, arg_idx) in data.legacy_const_generics_indices.iter().copied().enumerate() {
1188             let arg = match subst.at(Interner, subst_idx).constant(Interner) {
1189                 Some(c) => c,
1190                 None => continue, // not a const parameter?
1191             };
1192             if arg_idx >= args.len() as u32 {
1193                 continue;
1194             }
1195             let _ty = arg.data(Interner).ty.clone();
1196             let expected = Expectation::none(); // FIXME use actual const ty, when that is lowered correctly
1197             self.infer_expr(args[arg_idx as usize], &expected);
1198             // FIXME: evaluate and unify with the const
1199         }
1200         let mut indices = data.legacy_const_generics_indices.clone();
1201         indices.sort();
1202         indices
1203     }
1204
1205     fn builtin_binary_op_return_ty(&mut self, op: BinaryOp, lhs_ty: Ty, rhs_ty: Ty) -> Option<Ty> {
1206         let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
1207         let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
1208         match op {
1209             BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => {
1210                 Some(TyKind::Scalar(Scalar::Bool).intern(Interner))
1211             }
1212             BinaryOp::Assignment { .. } => Some(TyBuilder::unit()),
1213             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
1214                 // all integer combinations are valid here
1215                 if matches!(
1216                     lhs_ty.kind(Interner),
1217                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1218                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1219                 ) && matches!(
1220                     rhs_ty.kind(Interner),
1221                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1222                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1223                 ) {
1224                     Some(lhs_ty)
1225                 } else {
1226                     None
1227                 }
1228             }
1229             BinaryOp::ArithOp(_) => match (lhs_ty.kind(Interner), rhs_ty.kind(Interner)) {
1230                 // (int, int) | (uint, uint) | (float, float)
1231                 (TyKind::Scalar(Scalar::Int(_)), TyKind::Scalar(Scalar::Int(_)))
1232                 | (TyKind::Scalar(Scalar::Uint(_)), TyKind::Scalar(Scalar::Uint(_)))
1233                 | (TyKind::Scalar(Scalar::Float(_)), TyKind::Scalar(Scalar::Float(_))) => {
1234                     Some(rhs_ty)
1235                 }
1236                 // ({int}, int) | ({int}, uint)
1237                 (
1238                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1239                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1240                 ) => Some(rhs_ty),
1241                 // (int, {int}) | (uint, {int})
1242                 (
1243                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1244                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1245                 ) => Some(lhs_ty),
1246                 // ({float} | float)
1247                 (
1248                     TyKind::InferenceVar(_, TyVariableKind::Float),
1249                     TyKind::Scalar(Scalar::Float(_)),
1250                 ) => Some(rhs_ty),
1251                 // (float, {float})
1252                 (
1253                     TyKind::Scalar(Scalar::Float(_)),
1254                     TyKind::InferenceVar(_, TyVariableKind::Float),
1255                 ) => Some(lhs_ty),
1256                 // ({int}, {int}) | ({float}, {float})
1257                 (
1258                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1259                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1260                 )
1261                 | (
1262                     TyKind::InferenceVar(_, TyVariableKind::Float),
1263                     TyKind::InferenceVar(_, TyVariableKind::Float),
1264                 ) => Some(rhs_ty),
1265                 _ => None,
1266             },
1267         }
1268     }
1269
1270     fn builtin_binary_op_rhs_expectation(&mut self, op: BinaryOp, lhs_ty: Ty) -> Option<Ty> {
1271         Some(match op {
1272             BinaryOp::LogicOp(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
1273             BinaryOp::Assignment { op: None } => lhs_ty,
1274             BinaryOp::CmpOp(CmpOp::Eq { .. }) => match self
1275                 .resolve_ty_shallow(&lhs_ty)
1276                 .kind(Interner)
1277             {
1278                 TyKind::Scalar(_) | TyKind::Str => lhs_ty,
1279                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1280                 _ => return None,
1281             },
1282             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => return None,
1283             BinaryOp::CmpOp(CmpOp::Ord { .. })
1284             | BinaryOp::Assignment { op: Some(_) }
1285             | BinaryOp::ArithOp(_) => match self.resolve_ty_shallow(&lhs_ty).kind(Interner) {
1286                 TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) => lhs_ty,
1287                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1288                 _ => return None,
1289             },
1290         })
1291     }
1292
1293     fn resolve_binop_method(&self, op: BinaryOp) -> Option<FunctionId> {
1294         let (name, lang_item) = match op {
1295             BinaryOp::LogicOp(_) => return None,
1296             BinaryOp::ArithOp(aop) => match aop {
1297                 ArithOp::Add => (name!(add), name!(add)),
1298                 ArithOp::Mul => (name!(mul), name!(mul)),
1299                 ArithOp::Sub => (name!(sub), name!(sub)),
1300                 ArithOp::Div => (name!(div), name!(div)),
1301                 ArithOp::Rem => (name!(rem), name!(rem)),
1302                 ArithOp::Shl => (name!(shl), name!(shl)),
1303                 ArithOp::Shr => (name!(shr), name!(shr)),
1304                 ArithOp::BitXor => (name!(bitxor), name!(bitxor)),
1305                 ArithOp::BitOr => (name!(bitor), name!(bitor)),
1306                 ArithOp::BitAnd => (name!(bitand), name!(bitand)),
1307             },
1308             BinaryOp::Assignment { op: Some(aop) } => match aop {
1309                 ArithOp::Add => (name!(add_assign), name!(add_assign)),
1310                 ArithOp::Mul => (name!(mul_assign), name!(mul_assign)),
1311                 ArithOp::Sub => (name!(sub_assign), name!(sub_assign)),
1312                 ArithOp::Div => (name!(div_assign), name!(div_assign)),
1313                 ArithOp::Rem => (name!(rem_assign), name!(rem_assign)),
1314                 ArithOp::Shl => (name!(shl_assign), name!(shl_assign)),
1315                 ArithOp::Shr => (name!(shr_assign), name!(shr_assign)),
1316                 ArithOp::BitXor => (name!(bitxor_assign), name!(bitxor_assign)),
1317                 ArithOp::BitOr => (name!(bitor_assign), name!(bitor_assign)),
1318                 ArithOp::BitAnd => (name!(bitand_assign), name!(bitand_assign)),
1319             },
1320             BinaryOp::CmpOp(cop) => match cop {
1321                 CmpOp::Eq { negated: false } => (name!(eq), name!(eq)),
1322                 CmpOp::Eq { negated: true } => (name!(ne), name!(eq)),
1323                 CmpOp::Ord { ordering: Ordering::Less, strict: false } => {
1324                     (name!(le), name!(partial_ord))
1325                 }
1326                 CmpOp::Ord { ordering: Ordering::Less, strict: true } => {
1327                     (name!(lt), name!(partial_ord))
1328                 }
1329                 CmpOp::Ord { ordering: Ordering::Greater, strict: false } => {
1330                     (name!(ge), name!(partial_ord))
1331                 }
1332                 CmpOp::Ord { ordering: Ordering::Greater, strict: true } => {
1333                     (name!(gt), name!(partial_ord))
1334                 }
1335             },
1336             BinaryOp::Assignment { op: None } => return None,
1337         };
1338
1339         let trait_ = self.resolve_lang_item(lang_item)?.as_trait()?;
1340
1341         self.db.trait_data(trait_).method_by_name(&name)
1342     }
1343 }