]> git.lizzy.rs Git - rust.git/blob - crates/hir_ty/src/infer/expr.rs
Merge #11540
[rust.git] / crates / hir_ty / src / infer / expr.rs
1 //! Type inference for expressions.
2
3 use std::{
4     iter::{repeat, repeat_with},
5     mem,
6     sync::Arc,
7 };
8
9 use chalk_ir::{cast::Cast, fold::Shift, Mutability, TyVariableKind};
10 use hir_def::{
11     expr::{ArithOp, Array, BinaryOp, CmpOp, Expr, ExprId, Literal, Ordering, Statement, UnaryOp},
12     path::{GenericArg, GenericArgs},
13     resolver::resolver_for_expr,
14     FieldId, FunctionId, ItemContainerId, Lookup,
15 };
16 use hir_expand::name::{name, Name};
17 use stdx::always;
18 use syntax::ast::RangeOp;
19
20 use crate::{
21     autoderef::{self, Autoderef},
22     consteval,
23     infer::coerce::CoerceMany,
24     lower::lower_to_chalk_mutability,
25     mapping::from_chalk,
26     method_resolution,
27     primitive::{self, UintTy},
28     static_lifetime, to_chalk_trait_id,
29     traits::FnTrait,
30     utils::{generics, Generics},
31     AdtId, Binders, CallableDefId, FnPointer, FnSig, FnSubst, InEnvironment, Interner,
32     ProjectionTyExt, Rawness, Scalar, Substitution, TraitRef, Ty, TyBuilder, TyExt, TyKind,
33 };
34
35 use super::{
36     find_breakable, BindingMode, BreakableContext, Diverges, Expectation, InferenceContext,
37     InferenceDiagnostic, TypeMismatch,
38 };
39
40 impl<'a> InferenceContext<'a> {
41     pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
42         let ty = self.infer_expr_inner(tgt_expr, expected);
43         if self.resolve_ty_shallow(&ty).is_never() {
44             // Any expression that produces a value of type `!` must have diverged
45             self.diverges = Diverges::Always;
46         }
47         if let Some(expected_ty) = expected.only_has_type(&mut self.table) {
48             let could_unify = self.unify(&ty, &expected_ty);
49             if !could_unify {
50                 self.result.type_mismatches.insert(
51                     tgt_expr.into(),
52                     TypeMismatch { expected: expected_ty, actual: ty.clone() },
53                 );
54             }
55         }
56         ty
57     }
58
59     /// Infer type of expression with possibly implicit coerce to the expected type.
60     /// Return the type after possible coercion.
61     pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
62         let ty = self.infer_expr_inner(expr, expected);
63         if let Some(target) = expected.only_has_type(&mut self.table) {
64             match self.coerce(Some(expr), &ty, &target) {
65                 Ok(res) => res.value,
66                 Err(_) => {
67                     self.result
68                         .type_mismatches
69                         .insert(expr.into(), TypeMismatch { expected: target, actual: ty.clone() });
70                     // Return actual type when type mismatch.
71                     // This is needed for diagnostic when return type mismatch.
72                     ty
73                 }
74             }
75         } else {
76             ty
77         }
78     }
79
80     fn callable_sig_from_fn_trait(&mut self, ty: &Ty, num_args: usize) -> Option<(Vec<Ty>, Ty)> {
81         let krate = self.resolver.krate()?;
82         let fn_once_trait = FnTrait::FnOnce.get_id(self.db, krate)?;
83         let output_assoc_type =
84             self.db.trait_data(fn_once_trait).associated_type_by_name(&name![Output])?;
85
86         let mut arg_tys = vec![];
87         let arg_ty = TyBuilder::tuple(num_args)
88             .fill(repeat_with(|| {
89                 let arg = self.table.new_type_var();
90                 arg_tys.push(arg.clone());
91                 arg
92             }))
93             .build();
94
95         let projection = {
96             let b = TyBuilder::assoc_type_projection(self.db, output_assoc_type);
97             if b.remaining() != 2 {
98                 return None;
99             }
100             b.push(ty.clone()).push(arg_ty).build()
101         };
102
103         let trait_env = self.trait_env.env.clone();
104         let obligation = InEnvironment {
105             goal: projection.trait_ref(self.db).cast(Interner),
106             environment: trait_env,
107         };
108         let canonical = self.canonicalize(obligation.clone());
109         if self.db.trait_solve(krate, canonical.value.cast(Interner)).is_some() {
110             self.push_obligation(obligation.goal);
111             let return_ty = self.table.normalize_projection_ty(projection);
112             Some((arg_tys, return_ty))
113         } else {
114             None
115         }
116     }
117
118     pub(crate) fn callable_sig(&mut self, ty: &Ty, num_args: usize) -> Option<(Vec<Ty>, Ty)> {
119         match ty.callable_sig(self.db) {
120             Some(sig) => Some((sig.params().to_vec(), sig.ret().clone())),
121             None => self.callable_sig_from_fn_trait(ty, num_args),
122         }
123     }
124
125     fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
126         self.db.unwind_if_cancelled();
127
128         let body = Arc::clone(&self.body); // avoid borrow checker problem
129         let ty = match &body[tgt_expr] {
130             Expr::Missing => self.err_ty(),
131             &Expr::If { condition, then_branch, else_branch } => {
132                 // if let is desugared to match, so this is always simple if
133                 self.infer_expr(
134                     condition,
135                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
136                 );
137
138                 let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
139                 let mut both_arms_diverge = Diverges::Always;
140
141                 let result_ty = self.table.new_type_var();
142                 let then_ty = self.infer_expr_inner(then_branch, expected);
143                 both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
144                 let mut coerce = CoerceMany::new(result_ty);
145                 coerce.coerce(self, Some(then_branch), &then_ty);
146                 let else_ty = match else_branch {
147                     Some(else_branch) => self.infer_expr_inner(else_branch, expected),
148                     None => TyBuilder::unit(),
149                 };
150                 both_arms_diverge &= self.diverges;
151                 // FIXME: create a synthetic `else {}` so we have something to refer to here instead of None?
152                 coerce.coerce(self, else_branch, &else_ty);
153
154                 self.diverges = condition_diverges | both_arms_diverge;
155
156                 coerce.complete()
157             }
158             &Expr::Let { pat, expr } => {
159                 let input_ty = self.infer_expr(expr, &Expectation::none());
160                 self.infer_pat(pat, &input_ty, BindingMode::default());
161                 TyKind::Scalar(Scalar::Bool).intern(Interner)
162             }
163             Expr::Block { statements, tail, label, id: _ } => {
164                 let old_resolver = mem::replace(
165                     &mut self.resolver,
166                     resolver_for_expr(self.db.upcast(), self.owner, tgt_expr),
167                 );
168                 let ty = match label {
169                     Some(_) => {
170                         let break_ty = self.table.new_type_var();
171                         self.breakables.push(BreakableContext {
172                             may_break: false,
173                             coerce: CoerceMany::new(break_ty.clone()),
174                             label: label.map(|label| self.body[label].name.clone()),
175                         });
176                         let ty = self.infer_block(
177                             tgt_expr,
178                             statements,
179                             *tail,
180                             &Expectation::has_type(break_ty),
181                         );
182                         let ctxt = self.breakables.pop().expect("breakable stack broken");
183                         if ctxt.may_break {
184                             ctxt.coerce.complete()
185                         } else {
186                             ty
187                         }
188                     }
189                     None => self.infer_block(tgt_expr, statements, *tail, expected),
190                 };
191                 self.resolver = old_resolver;
192                 ty
193             }
194             Expr::Unsafe { body } | Expr::Const { body } => self.infer_expr(*body, expected),
195             Expr::TryBlock { body } => {
196                 let _inner = self.infer_expr(*body, expected);
197                 // FIXME should be std::result::Result<{inner}, _>
198                 self.err_ty()
199             }
200             Expr::Async { body } => {
201                 // Use the first type parameter as the output type of future.
202                 // existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
203                 let inner_ty = self.infer_expr(*body, &Expectation::none());
204                 let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
205                 let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
206                 TyKind::OpaqueType(opaque_ty_id, Substitution::from1(Interner, inner_ty))
207                     .intern(Interner)
208             }
209             Expr::Loop { body, label } => {
210                 self.breakables.push(BreakableContext {
211                     may_break: false,
212                     coerce: CoerceMany::new(self.table.new_type_var()),
213                     label: label.map(|label| self.body[label].name.clone()),
214                 });
215                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
216
217                 let ctxt = self.breakables.pop().expect("breakable stack broken");
218
219                 if ctxt.may_break {
220                     self.diverges = Diverges::Maybe;
221                     ctxt.coerce.complete()
222                 } else {
223                     TyKind::Never.intern(Interner)
224                 }
225             }
226             Expr::While { condition, body, label } => {
227                 self.breakables.push(BreakableContext {
228                     may_break: false,
229                     coerce: CoerceMany::new(self.err_ty()),
230                     label: label.map(|label| self.body[label].name.clone()),
231                 });
232                 // while let is desugared to a match loop, so this is always simple while
233                 self.infer_expr(
234                     *condition,
235                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
236                 );
237                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
238                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
239                 // the body may not run, so it diverging doesn't mean we diverge
240                 self.diverges = Diverges::Maybe;
241                 TyBuilder::unit()
242             }
243             Expr::For { iterable, body, pat, label } => {
244                 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
245
246                 self.breakables.push(BreakableContext {
247                     may_break: false,
248                     coerce: CoerceMany::new(self.err_ty()),
249                     label: label.map(|label| self.body[label].name.clone()),
250                 });
251                 let pat_ty =
252                     self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
253
254                 self.infer_pat(*pat, &pat_ty, BindingMode::default());
255
256                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
257                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
258                 // the body may not run, so it diverging doesn't mean we diverge
259                 self.diverges = Diverges::Maybe;
260                 TyBuilder::unit()
261             }
262             Expr::Lambda { body, args, ret_type, arg_types } => {
263                 assert_eq!(args.len(), arg_types.len());
264
265                 let mut sig_tys = Vec::new();
266
267                 // collect explicitly written argument types
268                 for arg_type in arg_types.iter() {
269                     let arg_ty = match arg_type {
270                         Some(type_ref) => self.make_ty(type_ref),
271                         None => self.table.new_type_var(),
272                     };
273                     sig_tys.push(arg_ty);
274                 }
275
276                 // add return type
277                 let ret_ty = match ret_type {
278                     Some(type_ref) => self.make_ty(type_ref),
279                     None => self.table.new_type_var(),
280                 };
281                 sig_tys.push(ret_ty.clone());
282                 let sig_ty = TyKind::Function(FnPointer {
283                     num_binders: 0,
284                     sig: FnSig { abi: (), safety: chalk_ir::Safety::Safe, variadic: false },
285                     substitution: FnSubst(
286                         Substitution::from_iter(Interner, sig_tys.clone()).shifted_in(Interner),
287                     ),
288                 })
289                 .intern(Interner);
290                 let closure_id = self.db.intern_closure((self.owner, tgt_expr)).into();
291                 let closure_ty =
292                     TyKind::Closure(closure_id, Substitution::from1(Interner, sig_ty.clone()))
293                         .intern(Interner);
294
295                 // Eagerly try to relate the closure type with the expected
296                 // type, otherwise we often won't have enough information to
297                 // infer the body.
298                 self.deduce_closure_type_from_expectations(
299                     tgt_expr,
300                     &closure_ty,
301                     &sig_ty,
302                     expected,
303                 );
304
305                 // Now go through the argument patterns
306                 for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
307                     self.infer_pat(*arg_pat, &arg_ty, BindingMode::default());
308                 }
309
310                 let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
311                 let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
312
313                 self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
314
315                 self.diverges = prev_diverges;
316                 self.return_ty = prev_ret_ty;
317
318                 closure_ty
319             }
320             Expr::Call { callee, args } => {
321                 let callee_ty = self.infer_expr(*callee, &Expectation::none());
322                 let canonicalized = self.canonicalize(callee_ty.clone());
323                 let mut derefs = Autoderef::new(
324                     self.db,
325                     self.resolver.krate(),
326                     InEnvironment {
327                         goal: canonicalized.value.clone(),
328                         environment: self.table.trait_env.env.clone(),
329                     },
330                 );
331                 let res = derefs.by_ref().find_map(|(callee_deref_ty, _)| {
332                     let ty = &canonicalized.decanonicalize_ty(&mut self.table, callee_deref_ty);
333                     self.callable_sig(ty, args.len())
334                 });
335                 let (param_tys, ret_ty): (Vec<Ty>, Ty) = match res {
336                     Some(res) => {
337                         self.write_expr_adj(*callee, self.auto_deref_adjust_steps(&derefs));
338                         res
339                     }
340                     None => (Vec::new(), self.err_ty()),
341                 };
342                 self.register_obligations_for_call(&callee_ty);
343
344                 let expected_inputs = self.expected_inputs_for_expected_output(
345                     expected,
346                     ret_ty.clone(),
347                     param_tys.clone(),
348                 );
349
350                 self.check_call_arguments(args, &expected_inputs, &param_tys);
351                 self.normalize_associated_types_in(ret_ty)
352             }
353             Expr::MethodCall { receiver, args, method_name, generic_args } => self
354                 .infer_method_call(
355                     tgt_expr,
356                     *receiver,
357                     args,
358                     method_name,
359                     generic_args.as_deref(),
360                     expected,
361                 ),
362             Expr::Match { expr, arms } => {
363                 let input_ty = self.infer_expr(*expr, &Expectation::none());
364
365                 let expected = expected.adjust_for_branches(&mut self.table);
366
367                 let result_ty = if arms.is_empty() {
368                     TyKind::Never.intern(Interner)
369                 } else {
370                     match &expected {
371                         Expectation::HasType(ty) => ty.clone(),
372                         _ => self.table.new_type_var(),
373                     }
374                 };
375                 let mut coerce = CoerceMany::new(result_ty);
376
377                 let matchee_diverges = self.diverges;
378                 let mut all_arms_diverge = Diverges::Always;
379
380                 for arm in arms.iter() {
381                     self.diverges = Diverges::Maybe;
382                     let _pat_ty = self.infer_pat(arm.pat, &input_ty, BindingMode::default());
383                     if let Some(guard_expr) = arm.guard {
384                         self.infer_expr(
385                             guard_expr,
386                             &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
387                         );
388                     }
389
390                     let arm_ty = self.infer_expr_inner(arm.expr, &expected);
391                     all_arms_diverge &= self.diverges;
392                     coerce.coerce(self, Some(arm.expr), &arm_ty);
393                 }
394
395                 self.diverges = matchee_diverges | all_arms_diverge;
396
397                 coerce.complete()
398             }
399             Expr::Path(p) => {
400                 // FIXME this could be more efficient...
401                 let resolver = resolver_for_expr(self.db.upcast(), self.owner, tgt_expr);
402                 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or_else(|| self.err_ty())
403             }
404             Expr::Continue { .. } => TyKind::Never.intern(Interner),
405             Expr::Break { expr, label } => {
406                 let mut coerce = match find_breakable(&mut self.breakables, label.as_ref()) {
407                     Some(ctxt) => {
408                         // avoiding the borrowck
409                         mem::replace(
410                             &mut ctxt.coerce,
411                             CoerceMany::new(self.result.standard_types.unknown.clone()),
412                         )
413                     }
414                     None => CoerceMany::new(self.result.standard_types.unknown.clone()),
415                 };
416
417                 let val_ty = if let Some(expr) = *expr {
418                     self.infer_expr(expr, &Expectation::none())
419                 } else {
420                     TyBuilder::unit()
421                 };
422
423                 // FIXME: create a synthetic `()` during lowering so we have something to refer to here?
424                 coerce.coerce(self, *expr, &val_ty);
425
426                 if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
427                     ctxt.coerce = coerce;
428                     ctxt.may_break = true;
429                 } else {
430                     self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
431                         expr: tgt_expr,
432                     });
433                 };
434
435                 TyKind::Never.intern(Interner)
436             }
437             Expr::Return { expr } => {
438                 if let Some(expr) = expr {
439                     self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
440                 } else {
441                     let unit = TyBuilder::unit();
442                     let _ = self.coerce(Some(tgt_expr), &unit, &self.return_ty.clone());
443                 }
444                 TyKind::Never.intern(Interner)
445             }
446             Expr::Yield { expr } => {
447                 // FIXME: track yield type for coercion
448                 if let Some(expr) = expr {
449                     self.infer_expr(*expr, &Expectation::none());
450                 }
451                 TyKind::Never.intern(Interner)
452             }
453             Expr::RecordLit { path, fields, spread } => {
454                 let (ty, def_id) = self.resolve_variant(path.as_deref(), false);
455                 if let Some(variant) = def_id {
456                     self.write_variant_resolution(tgt_expr.into(), variant);
457                 }
458
459                 if let Some(t) = expected.only_has_type(&mut self.table) {
460                     self.unify(&ty, &t);
461                 }
462
463                 let substs = ty
464                     .as_adt()
465                     .map(|(_, s)| s.clone())
466                     .unwrap_or_else(|| Substitution::empty(Interner));
467                 let field_types = def_id.map(|it| self.db.field_types(it)).unwrap_or_default();
468                 let variant_data = def_id.map(|it| it.variant_data(self.db.upcast()));
469                 for field in fields.iter() {
470                     let field_def =
471                         variant_data.as_ref().and_then(|it| match it.field(&field.name) {
472                             Some(local_id) => Some(FieldId { parent: def_id.unwrap(), local_id }),
473                             None => {
474                                 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
475                                     expr: field.expr,
476                                 });
477                                 None
478                             }
479                         });
480                     let field_ty = field_def.map_or(self.err_ty(), |it| {
481                         field_types[it.local_id].clone().substitute(Interner, &substs)
482                     });
483                     self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
484                 }
485                 if let Some(expr) = spread {
486                     self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
487                 }
488                 ty
489             }
490             Expr::Field { expr, name } => {
491                 let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
492                 let canonicalized = self.canonicalize(receiver_ty);
493
494                 let mut autoderef = Autoderef::new(
495                     self.db,
496                     self.resolver.krate(),
497                     InEnvironment {
498                         goal: canonicalized.value.clone(),
499                         environment: self.trait_env.env.clone(),
500                     },
501                 );
502                 let ty = autoderef.by_ref().find_map(|(derefed_ty, _)| {
503                     let module = self.resolver.module();
504                     let db = self.db;
505                     let is_visible = |field_id: &FieldId| {
506                         module
507                             .map(|mod_id| {
508                                 db.field_visibilities(field_id.parent)[field_id.local_id]
509                                     .is_visible_from(db.upcast(), mod_id)
510                             })
511                             .unwrap_or(true)
512                     };
513                     match canonicalized
514                         .decanonicalize_ty(&mut self.table, derefed_ty)
515                         .kind(Interner)
516                     {
517                         TyKind::Tuple(_, substs) => name.as_tuple_index().and_then(|idx| {
518                             substs
519                                 .as_slice(Interner)
520                                 .get(idx)
521                                 .map(|a| a.assert_ty_ref(Interner))
522                                 .cloned()
523                         }),
524                         TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => {
525                             let local_id = self.db.struct_data(*s).variant_data.field(name)?;
526                             let field = FieldId { parent: (*s).into(), local_id };
527                             if is_visible(&field) {
528                                 self.write_field_resolution(tgt_expr, field);
529                                 Some(
530                                     self.db.field_types((*s).into())[field.local_id]
531                                         .clone()
532                                         .substitute(Interner, &parameters),
533                                 )
534                             } else {
535                                 // Write down the first field resolution even if it is not visible
536                                 // This aids IDE features for private fields like goto def and in
537                                 // case of autoderef finding an applicable field, this will be
538                                 // overwritten in a following cycle
539                                 self.write_field_resolution_if_empty(tgt_expr, field);
540                                 None
541                             }
542                         }
543                         TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => {
544                             let local_id = self.db.union_data(*u).variant_data.field(name)?;
545                             let field = FieldId { parent: (*u).into(), local_id };
546                             if is_visible(&field) {
547                                 self.write_field_resolution(tgt_expr, field);
548                                 Some(
549                                     self.db.field_types((*u).into())[field.local_id]
550                                         .clone()
551                                         .substitute(Interner, &parameters),
552                                 )
553                             } else {
554                                 // Write down the first field resolution even if it is not visible
555                                 // This aids IDE features for private fields like goto def and in
556                                 // case of autoderef finding an applicable field, this will be
557                                 // overwritten in a following cycle
558                                 self.write_field_resolution_if_empty(tgt_expr, field);
559                                 None
560                             }
561                         }
562                         _ => None,
563                     }
564                 });
565                 let ty = match ty {
566                     Some(ty) => {
567                         self.write_expr_adj(*expr, self.auto_deref_adjust_steps(&autoderef));
568                         ty
569                     }
570                     None => self.err_ty(),
571                 };
572                 let ty = self.insert_type_vars(ty);
573                 self.normalize_associated_types_in(ty)
574             }
575             Expr::Await { expr } => {
576                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
577                 self.resolve_associated_type(inner_ty, self.resolve_future_future_output())
578             }
579             Expr::Try { expr } => {
580                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
581                 self.resolve_associated_type(inner_ty, self.resolve_ops_try_ok())
582             }
583             Expr::Cast { expr, type_ref } => {
584                 // FIXME: propagate the "castable to" expectation (and find a test case that shows this is necessary)
585                 let _inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
586                 let cast_ty = self.make_ty(type_ref);
587                 // FIXME check the cast...
588                 cast_ty
589             }
590             Expr::Ref { expr, rawness, mutability } => {
591                 let mutability = lower_to_chalk_mutability(*mutability);
592                 let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected
593                     .only_has_type(&mut self.table)
594                     .as_ref()
595                     .and_then(|t| t.as_reference_or_ptr())
596                 {
597                     if exp_mutability == Mutability::Mut && mutability == Mutability::Not {
598                         // FIXME: record type error - expected mut reference but found shared ref,
599                         // which cannot be coerced
600                     }
601                     if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
602                         // FIXME: record type error - expected reference but found ptr,
603                         // which cannot be coerced
604                     }
605                     Expectation::rvalue_hint(&mut self.table, Ty::clone(exp_inner))
606                 } else {
607                     Expectation::none()
608                 };
609                 let inner_ty = self.infer_expr_inner(*expr, &expectation);
610                 match rawness {
611                     Rawness::RawPtr => TyKind::Raw(mutability, inner_ty),
612                     Rawness::Ref => TyKind::Ref(mutability, static_lifetime(), inner_ty),
613                 }
614                 .intern(Interner)
615             }
616             Expr::Box { expr } => {
617                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
618                 if let Some(box_) = self.resolve_boxed_box() {
619                     TyBuilder::adt(self.db, box_)
620                         .push(inner_ty)
621                         .fill_with_defaults(self.db, || self.table.new_type_var())
622                         .build()
623                 } else {
624                     self.err_ty()
625                 }
626             }
627             Expr::UnaryOp { expr, op } => {
628                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
629                 let inner_ty = self.resolve_ty_shallow(&inner_ty);
630                 match op {
631                     UnaryOp::Deref => match self.resolver.krate() {
632                         Some(krate) => {
633                             let canonicalized = self.canonicalize(inner_ty);
634                             match autoderef::deref(
635                                 self.db,
636                                 krate,
637                                 InEnvironment {
638                                     goal: &canonicalized.value,
639                                     environment: self.trait_env.env.clone(),
640                                 },
641                             ) {
642                                 Some(derefed_ty) => {
643                                     canonicalized.decanonicalize_ty(&mut self.table, derefed_ty)
644                                 }
645                                 None => self.err_ty(),
646                             }
647                         }
648                         None => self.err_ty(),
649                     },
650                     UnaryOp::Neg => {
651                         match inner_ty.kind(Interner) {
652                             // Fast path for builtins
653                             TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_))
654                             | TyKind::InferenceVar(
655                                 _,
656                                 TyVariableKind::Integer | TyVariableKind::Float,
657                             ) => inner_ty,
658                             // Otherwise we resolve via the std::ops::Neg trait
659                             _ => self
660                                 .resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
661                         }
662                     }
663                     UnaryOp::Not => {
664                         match inner_ty.kind(Interner) {
665                             // Fast path for builtins
666                             TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_))
667                             | TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty,
668                             // Otherwise we resolve via the std::ops::Not trait
669                             _ => self
670                                 .resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
671                         }
672                     }
673                 }
674             }
675             Expr::BinaryOp { lhs, rhs, op } => match op {
676                 Some(BinaryOp::Assignment { op: None }) => {
677                     let lhs_ty = self.infer_expr(*lhs, &Expectation::none());
678                     self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty));
679                     self.result.standard_types.unit.clone()
680                 }
681                 Some(BinaryOp::LogicOp(_)) => {
682                     let bool_ty = self.result.standard_types.bool_.clone();
683                     self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone()));
684                     let lhs_diverges = self.diverges;
685                     self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone()));
686                     // Depending on the LHS' value, the RHS can never execute.
687                     self.diverges = lhs_diverges;
688                     bool_ty
689                 }
690                 Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr),
691                 _ => self.err_ty(),
692             },
693             Expr::Range { lhs, rhs, range_type } => {
694                 let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
695                 let rhs_expect = lhs_ty
696                     .as_ref()
697                     .map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
698                 let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
699                 match (range_type, lhs_ty, rhs_ty) {
700                     (RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
701                         Some(adt) => TyBuilder::adt(self.db, adt).build(),
702                         None => self.err_ty(),
703                     },
704                     (RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
705                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
706                         None => self.err_ty(),
707                     },
708                     (RangeOp::Inclusive, None, Some(ty)) => {
709                         match self.resolve_range_to_inclusive() {
710                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
711                             None => self.err_ty(),
712                         }
713                     }
714                     (RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
715                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
716                         None => self.err_ty(),
717                     },
718                     (RangeOp::Inclusive, Some(_), Some(ty)) => {
719                         match self.resolve_range_inclusive() {
720                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
721                             None => self.err_ty(),
722                         }
723                     }
724                     (RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
725                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
726                         None => self.err_ty(),
727                     },
728                     (RangeOp::Inclusive, _, None) => self.err_ty(),
729                 }
730             }
731             Expr::Index { base, index } => {
732                 let base_ty = self.infer_expr_inner(*base, &Expectation::none());
733                 let index_ty = self.infer_expr(*index, &Expectation::none());
734
735                 if let (Some(index_trait), Some(krate)) =
736                     (self.resolve_ops_index(), self.resolver.krate())
737                 {
738                     let canonicalized = self.canonicalize(base_ty);
739                     let self_ty = method_resolution::resolve_indexing_op(
740                         self.db,
741                         &canonicalized.value,
742                         self.trait_env.clone(),
743                         krate,
744                         index_trait,
745                     );
746                     let self_ty = self_ty.map_or(self.err_ty(), |t| {
747                         canonicalized.decanonicalize_ty(&mut self.table, t)
748                     });
749                     self.resolve_associated_type_with_params(
750                         self_ty,
751                         self.resolve_ops_index_output(),
752                         &[index_ty],
753                     )
754                 } else {
755                     self.err_ty()
756                 }
757             }
758             Expr::Tuple { exprs } => {
759                 let mut tys = match expected
760                     .only_has_type(&mut self.table)
761                     .as_ref()
762                     .map(|t| t.kind(Interner))
763                 {
764                     Some(TyKind::Tuple(_, substs)) => substs
765                         .iter(Interner)
766                         .map(|a| a.assert_ty_ref(Interner).clone())
767                         .chain(repeat_with(|| self.table.new_type_var()))
768                         .take(exprs.len())
769                         .collect::<Vec<_>>(),
770                     _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
771                 };
772
773                 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
774                     self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
775                 }
776
777                 TyKind::Tuple(tys.len(), Substitution::from_iter(Interner, tys)).intern(Interner)
778             }
779             Expr::Array(array) => {
780                 let elem_ty =
781                     match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(Interner)) {
782                         Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
783                         _ => self.table.new_type_var(),
784                     };
785                 let mut coerce = CoerceMany::new(elem_ty.clone());
786
787                 let expected = Expectation::has_type(elem_ty.clone());
788                 let len = match array {
789                     Array::ElementList(items) => {
790                         for &expr in items.iter() {
791                             let cur_elem_ty = self.infer_expr_inner(expr, &expected);
792                             coerce.coerce(self, Some(expr), &cur_elem_ty);
793                         }
794                         Some(items.len() as u64)
795                     }
796                     &Array::Repeat { initializer, repeat } => {
797                         self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty));
798                         self.infer_expr(
799                             repeat,
800                             &Expectation::has_type(
801                                 TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner),
802                             ),
803                         );
804
805                         consteval::eval_usize(
806                             repeat,
807                             consteval::ConstEvalCtx {
808                                 exprs: &body.exprs,
809                                 pats: &body.pats,
810                                 local_data: Default::default(),
811                                 infer: &mut |x| self.infer_expr(x, &expected),
812                             },
813                         )
814                     }
815                 };
816
817                 TyKind::Array(coerce.complete(), consteval::usize_const(len)).intern(Interner)
818             }
819             Expr::Literal(lit) => match lit {
820                 Literal::Bool(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
821                 Literal::String(..) => {
822                     TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(Interner))
823                         .intern(Interner)
824                 }
825                 Literal::ByteString(bs) => {
826                     let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner);
827
828                     let len = consteval::usize_const(Some(bs.len() as u64));
829
830                     let array_type = TyKind::Array(byte_type, len).intern(Interner);
831                     TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(Interner)
832                 }
833                 Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(Interner),
834                 Literal::Int(_v, ty) => match ty {
835                     Some(int_ty) => {
836                         TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty)))
837                             .intern(Interner)
838                     }
839                     None => self.table.new_integer_var(),
840                 },
841                 Literal::Uint(_v, ty) => match ty {
842                     Some(int_ty) => {
843                         TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty)))
844                             .intern(Interner)
845                     }
846                     None => self.table.new_integer_var(),
847                 },
848                 Literal::Float(_v, ty) => match ty {
849                     Some(float_ty) => {
850                         TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty)))
851                             .intern(Interner)
852                     }
853                     None => self.table.new_float_var(),
854                 },
855             },
856             Expr::MacroStmts { tail } => self.infer_expr_inner(*tail, expected),
857         };
858         // use a new type variable if we got unknown here
859         let ty = self.insert_type_vars_shallow(ty);
860         self.write_expr_ty(tgt_expr, ty.clone());
861         ty
862     }
863
864     fn infer_overloadable_binop(
865         &mut self,
866         lhs: ExprId,
867         op: BinaryOp,
868         rhs: ExprId,
869         tgt_expr: ExprId,
870     ) -> Ty {
871         let lhs_expectation = Expectation::none();
872         let lhs_ty = self.infer_expr(lhs, &lhs_expectation);
873         let rhs_ty = self.table.new_type_var();
874
875         let func = self.resolve_binop_method(op);
876         let func = match func {
877             Some(func) => func,
878             None => {
879                 let rhs_ty = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone());
880                 let rhs_ty = self.infer_expr_coerce(rhs, &Expectation::from_option(rhs_ty));
881                 return self
882                     .builtin_binary_op_return_ty(op, lhs_ty, rhs_ty)
883                     .unwrap_or_else(|| self.err_ty());
884             }
885         };
886
887         let subst = TyBuilder::subst_for_def(self.db, func)
888             .push(lhs_ty.clone())
889             .push(rhs_ty.clone())
890             .build();
891         self.write_method_resolution(tgt_expr, func, subst.clone());
892
893         let method_ty = self.db.value_ty(func.into()).substitute(Interner, &subst);
894         self.register_obligations_for_call(&method_ty);
895
896         self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone()));
897
898         let ret_ty = match method_ty.callable_sig(self.db) {
899             Some(sig) => sig.ret().clone(),
900             None => self.err_ty(),
901         };
902
903         let ret_ty = self.normalize_associated_types_in(ret_ty);
904
905         // FIXME: record autoref adjustments
906
907         // use knowledge of built-in binary ops, which can sometimes help inference
908         if let Some(builtin_rhs) = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone()) {
909             self.unify(&builtin_rhs, &rhs_ty);
910         }
911         if let Some(builtin_ret) = self.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty) {
912             self.unify(&builtin_ret, &ret_ty);
913         }
914
915         ret_ty
916     }
917
918     fn infer_block(
919         &mut self,
920         expr: ExprId,
921         statements: &[Statement],
922         tail: Option<ExprId>,
923         expected: &Expectation,
924     ) -> Ty {
925         for stmt in statements {
926             match stmt {
927                 Statement::Let { pat, type_ref, initializer, else_branch } => {
928                     let decl_ty = type_ref
929                         .as_ref()
930                         .map(|tr| self.make_ty(tr))
931                         .unwrap_or_else(|| self.err_ty());
932
933                     // Always use the declared type when specified
934                     let mut ty = decl_ty.clone();
935
936                     if let Some(expr) = initializer {
937                         let actual_ty =
938                             self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
939                         if decl_ty.is_unknown() {
940                             ty = actual_ty;
941                         }
942                     }
943
944                     if let Some(expr) = else_branch {
945                         self.infer_expr_coerce(
946                             *expr,
947                             &Expectation::has_type(Ty::new(Interner, TyKind::Never)),
948                         );
949                     }
950
951                     self.infer_pat(*pat, &ty, BindingMode::default());
952                 }
953                 Statement::Expr { expr, .. } => {
954                     self.infer_expr(*expr, &Expectation::none());
955                 }
956             }
957         }
958
959         if let Some(expr) = tail {
960             self.infer_expr_coerce(expr, expected)
961         } else {
962             // Citing rustc: if there is no explicit tail expression,
963             // that is typically equivalent to a tail expression
964             // of `()` -- except if the block diverges. In that
965             // case, there is no value supplied from the tail
966             // expression (assuming there are no other breaks,
967             // this implies that the type of the block will be
968             // `!`).
969             if self.diverges.is_always() {
970                 // we don't even make an attempt at coercion
971                 self.table.new_maybe_never_var()
972             } else {
973                 if let Some(t) = expected.only_has_type(&mut self.table) {
974                     let _ = self.coerce(Some(expr), &TyBuilder::unit(), &t);
975                 }
976                 TyBuilder::unit()
977             }
978         }
979     }
980
981     fn infer_method_call(
982         &mut self,
983         tgt_expr: ExprId,
984         receiver: ExprId,
985         args: &[ExprId],
986         method_name: &Name,
987         generic_args: Option<&GenericArgs>,
988         expected: &Expectation,
989     ) -> Ty {
990         let receiver_ty = self.infer_expr(receiver, &Expectation::none());
991         let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
992
993         let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
994
995         let resolved = self.resolver.krate().and_then(|krate| {
996             method_resolution::lookup_method(
997                 &canonicalized_receiver.value,
998                 self.db,
999                 self.trait_env.clone(),
1000                 krate,
1001                 &traits_in_scope,
1002                 self.resolver.module().into(),
1003                 method_name,
1004             )
1005         });
1006         let (receiver_ty, method_ty, substs) = match resolved {
1007             Some((ty, func)) => {
1008                 let ty = canonicalized_receiver.decanonicalize_ty(&mut self.table, ty);
1009                 let generics = generics(self.db.upcast(), func.into());
1010                 let substs = self.substs_for_method_call(generics, generic_args, &ty);
1011                 self.write_method_resolution(tgt_expr, func, substs.clone());
1012                 (ty, self.db.value_ty(func.into()), substs)
1013             }
1014             None => (
1015                 receiver_ty,
1016                 Binders::empty(Interner, self.err_ty()),
1017                 Substitution::empty(Interner),
1018             ),
1019         };
1020         let method_ty = method_ty.substitute(Interner, &substs);
1021         self.register_obligations_for_call(&method_ty);
1022         let (formal_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
1023             Some(sig) => {
1024                 if !sig.params().is_empty() {
1025                     (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
1026                 } else {
1027                     (self.err_ty(), Vec::new(), sig.ret().clone())
1028                 }
1029             }
1030             None => (self.err_ty(), Vec::new(), self.err_ty()),
1031         };
1032         self.unify(&formal_receiver_ty, &receiver_ty);
1033
1034         let expected_inputs =
1035             self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone());
1036
1037         self.check_call_arguments(args, &expected_inputs, &param_tys);
1038         self.normalize_associated_types_in(ret_ty)
1039     }
1040
1041     fn expected_inputs_for_expected_output(
1042         &mut self,
1043         expected_output: &Expectation,
1044         output: Ty,
1045         inputs: Vec<Ty>,
1046     ) -> Vec<Ty> {
1047         if let Some(expected_ty) = expected_output.to_option(&mut self.table) {
1048             self.table.fudge_inference(|table| {
1049                 if table.try_unify(&expected_ty, &output).is_ok() {
1050                     table.resolve_with_fallback(inputs, &|var, kind, _, _| match kind {
1051                         chalk_ir::VariableKind::Ty(tk) => var.to_ty(Interner, tk).cast(Interner),
1052                         chalk_ir::VariableKind::Lifetime => {
1053                             var.to_lifetime(Interner).cast(Interner)
1054                         }
1055                         chalk_ir::VariableKind::Const(ty) => {
1056                             var.to_const(Interner, ty).cast(Interner)
1057                         }
1058                     })
1059                 } else {
1060                     Vec::new()
1061                 }
1062             })
1063         } else {
1064             Vec::new()
1065         }
1066     }
1067
1068     fn check_call_arguments(&mut self, args: &[ExprId], expected_inputs: &[Ty], param_tys: &[Ty]) {
1069         // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
1070         // We do this in a pretty awful way: first we type-check any arguments
1071         // that are not closures, then we type-check the closures. This is so
1072         // that we have more information about the types of arguments when we
1073         // type-check the functions. This isn't really the right way to do this.
1074         for &check_closures in &[false, true] {
1075             let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty()));
1076             let expected_iter = expected_inputs
1077                 .iter()
1078                 .cloned()
1079                 .chain(param_iter.clone().skip(expected_inputs.len()));
1080             for ((&arg, param_ty), expected_ty) in args.iter().zip(param_iter).zip(expected_iter) {
1081                 let is_closure = matches!(&self.body[arg], Expr::Lambda { .. });
1082                 if is_closure != check_closures {
1083                     continue;
1084                 }
1085
1086                 // the difference between param_ty and expected here is that
1087                 // expected is the parameter when the expected *return* type is
1088                 // taken into account. So in `let _: &[i32] = identity(&[1, 2])`
1089                 // the expected type is already `&[i32]`, whereas param_ty is
1090                 // still an unbound type variable. We don't always want to force
1091                 // the parameter to coerce to the expected type (for example in
1092                 // `coerce_unsize_expected_type_4`).
1093                 let param_ty = self.normalize_associated_types_in(param_ty);
1094                 let expected = Expectation::rvalue_hint(&mut self.table, expected_ty);
1095                 // infer with the expected type we have...
1096                 let ty = self.infer_expr_inner(arg, &expected);
1097
1098                 // then coerce to either the expected type or just the formal parameter type
1099                 let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) {
1100                     // if we are coercing to the expectation, unify with the
1101                     // formal parameter type to connect everything
1102                     self.unify(&ty, &param_ty);
1103                     ty
1104                 } else {
1105                     param_ty
1106                 };
1107                 if !coercion_target.is_unknown() {
1108                     if self.coerce(Some(arg), &ty, &coercion_target).is_err() {
1109                         self.result.type_mismatches.insert(
1110                             arg.into(),
1111                             TypeMismatch { expected: coercion_target, actual: ty.clone() },
1112                         );
1113                     }
1114                 }
1115             }
1116         }
1117     }
1118
1119     fn substs_for_method_call(
1120         &mut self,
1121         def_generics: Generics,
1122         generic_args: Option<&GenericArgs>,
1123         receiver_ty: &Ty,
1124     ) -> Substitution {
1125         let (parent_params, self_params, type_params, impl_trait_params) =
1126             def_generics.provenance_split();
1127         assert_eq!(self_params, 0); // method shouldn't have another Self param
1128         let total_len = parent_params + type_params + impl_trait_params;
1129         let mut substs = Vec::with_capacity(total_len);
1130         // Parent arguments are unknown, except for the receiver type
1131         for (_id, param) in def_generics.iter_parent() {
1132             if param.provenance == hir_def::generics::TypeParamProvenance::TraitSelf {
1133                 substs.push(receiver_ty.clone());
1134             } else {
1135                 substs.push(self.table.new_type_var());
1136             }
1137         }
1138         // handle provided type arguments
1139         if let Some(generic_args) = generic_args {
1140             // if args are provided, it should be all of them, but we can't rely on that
1141             for arg in generic_args
1142                 .args
1143                 .iter()
1144                 .filter(|arg| matches!(arg, GenericArg::Type(_)))
1145                 .take(type_params)
1146             {
1147                 match arg {
1148                     GenericArg::Type(type_ref) => {
1149                         let ty = self.make_ty(type_ref);
1150                         substs.push(ty);
1151                     }
1152                     GenericArg::Lifetime(_) => {}
1153                 }
1154             }
1155         };
1156         let supplied_params = substs.len();
1157         for _ in supplied_params..total_len {
1158             substs.push(self.table.new_type_var());
1159         }
1160         assert_eq!(substs.len(), total_len);
1161         Substitution::from_iter(Interner, substs)
1162     }
1163
1164     fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
1165         let callable_ty = self.resolve_ty_shallow(callable_ty);
1166         if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(Interner) {
1167             let def: CallableDefId = from_chalk(self.db, *fn_def);
1168             let generic_predicates = self.db.generic_predicates(def.into());
1169             for predicate in generic_predicates.iter() {
1170                 let (predicate, binders) = predicate
1171                     .clone()
1172                     .substitute(Interner, parameters)
1173                     .into_value_and_skipped_binders();
1174                 always!(binders.len(Interner) == 0); // quantified where clauses not yet handled
1175                 self.push_obligation(predicate.cast(Interner));
1176             }
1177             // add obligation for trait implementation, if this is a trait method
1178             match def {
1179                 CallableDefId::FunctionId(f) => {
1180                     if let ItemContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container {
1181                         // construct a TraitRef
1182                         let substs = crate::subst_prefix(
1183                             &*parameters,
1184                             generics(self.db.upcast(), trait_.into()).len(),
1185                         );
1186                         self.push_obligation(
1187                             TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs }
1188                                 .cast(Interner),
1189                         );
1190                     }
1191                 }
1192                 CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {}
1193             }
1194         }
1195     }
1196
1197     fn builtin_binary_op_return_ty(&mut self, op: BinaryOp, lhs_ty: Ty, rhs_ty: Ty) -> Option<Ty> {
1198         let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
1199         let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
1200         match op {
1201             BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => {
1202                 Some(TyKind::Scalar(Scalar::Bool).intern(Interner))
1203             }
1204             BinaryOp::Assignment { .. } => Some(TyBuilder::unit()),
1205             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
1206                 // all integer combinations are valid here
1207                 if matches!(
1208                     lhs_ty.kind(Interner),
1209                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1210                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1211                 ) && matches!(
1212                     rhs_ty.kind(Interner),
1213                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1214                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1215                 ) {
1216                     Some(lhs_ty)
1217                 } else {
1218                     None
1219                 }
1220             }
1221             BinaryOp::ArithOp(_) => match (lhs_ty.kind(Interner), rhs_ty.kind(Interner)) {
1222                 // (int, int) | (uint, uint) | (float, float)
1223                 (TyKind::Scalar(Scalar::Int(_)), TyKind::Scalar(Scalar::Int(_)))
1224                 | (TyKind::Scalar(Scalar::Uint(_)), TyKind::Scalar(Scalar::Uint(_)))
1225                 | (TyKind::Scalar(Scalar::Float(_)), TyKind::Scalar(Scalar::Float(_))) => {
1226                     Some(rhs_ty)
1227                 }
1228                 // ({int}, int) | ({int}, uint)
1229                 (
1230                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1231                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1232                 ) => Some(rhs_ty),
1233                 // (int, {int}) | (uint, {int})
1234                 (
1235                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1236                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1237                 ) => Some(lhs_ty),
1238                 // ({float} | float)
1239                 (
1240                     TyKind::InferenceVar(_, TyVariableKind::Float),
1241                     TyKind::Scalar(Scalar::Float(_)),
1242                 ) => Some(rhs_ty),
1243                 // (float, {float})
1244                 (
1245                     TyKind::Scalar(Scalar::Float(_)),
1246                     TyKind::InferenceVar(_, TyVariableKind::Float),
1247                 ) => Some(lhs_ty),
1248                 // ({int}, {int}) | ({float}, {float})
1249                 (
1250                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1251                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1252                 )
1253                 | (
1254                     TyKind::InferenceVar(_, TyVariableKind::Float),
1255                     TyKind::InferenceVar(_, TyVariableKind::Float),
1256                 ) => Some(rhs_ty),
1257                 _ => None,
1258             },
1259         }
1260     }
1261
1262     fn builtin_binary_op_rhs_expectation(&mut self, op: BinaryOp, lhs_ty: Ty) -> Option<Ty> {
1263         Some(match op {
1264             BinaryOp::LogicOp(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
1265             BinaryOp::Assignment { op: None } => lhs_ty,
1266             BinaryOp::CmpOp(CmpOp::Eq { .. }) => match self
1267                 .resolve_ty_shallow(&lhs_ty)
1268                 .kind(Interner)
1269             {
1270                 TyKind::Scalar(_) | TyKind::Str => lhs_ty,
1271                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1272                 _ => return None,
1273             },
1274             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => return None,
1275             BinaryOp::CmpOp(CmpOp::Ord { .. })
1276             | BinaryOp::Assignment { op: Some(_) }
1277             | BinaryOp::ArithOp(_) => match self.resolve_ty_shallow(&lhs_ty).kind(Interner) {
1278                 TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) => lhs_ty,
1279                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1280                 _ => return None,
1281             },
1282         })
1283     }
1284
1285     fn resolve_binop_method(&self, op: BinaryOp) -> Option<FunctionId> {
1286         let (name, lang_item) = match op {
1287             BinaryOp::LogicOp(_) => return None,
1288             BinaryOp::ArithOp(aop) => match aop {
1289                 ArithOp::Add => (name!(add), name!(add)),
1290                 ArithOp::Mul => (name!(mul), name!(mul)),
1291                 ArithOp::Sub => (name!(sub), name!(sub)),
1292                 ArithOp::Div => (name!(div), name!(div)),
1293                 ArithOp::Rem => (name!(rem), name!(rem)),
1294                 ArithOp::Shl => (name!(shl), name!(shl)),
1295                 ArithOp::Shr => (name!(shr), name!(shr)),
1296                 ArithOp::BitXor => (name!(bitxor), name!(bitxor)),
1297                 ArithOp::BitOr => (name!(bitor), name!(bitor)),
1298                 ArithOp::BitAnd => (name!(bitand), name!(bitand)),
1299             },
1300             BinaryOp::Assignment { op: Some(aop) } => match aop {
1301                 ArithOp::Add => (name!(add_assign), name!(add_assign)),
1302                 ArithOp::Mul => (name!(mul_assign), name!(mul_assign)),
1303                 ArithOp::Sub => (name!(sub_assign), name!(sub_assign)),
1304                 ArithOp::Div => (name!(div_assign), name!(div_assign)),
1305                 ArithOp::Rem => (name!(rem_assign), name!(rem_assign)),
1306                 ArithOp::Shl => (name!(shl_assign), name!(shl_assign)),
1307                 ArithOp::Shr => (name!(shr_assign), name!(shr_assign)),
1308                 ArithOp::BitXor => (name!(bitxor_assign), name!(bitxor_assign)),
1309                 ArithOp::BitOr => (name!(bitor_assign), name!(bitor_assign)),
1310                 ArithOp::BitAnd => (name!(bitand_assign), name!(bitand_assign)),
1311             },
1312             BinaryOp::CmpOp(cop) => match cop {
1313                 CmpOp::Eq { negated: false } => (name!(eq), name!(eq)),
1314                 CmpOp::Eq { negated: true } => (name!(ne), name!(eq)),
1315                 CmpOp::Ord { ordering: Ordering::Less, strict: false } => {
1316                     (name!(le), name!(partial_ord))
1317                 }
1318                 CmpOp::Ord { ordering: Ordering::Less, strict: true } => {
1319                     (name!(lt), name!(partial_ord))
1320                 }
1321                 CmpOp::Ord { ordering: Ordering::Greater, strict: false } => {
1322                     (name!(ge), name!(partial_ord))
1323                 }
1324                 CmpOp::Ord { ordering: Ordering::Greater, strict: true } => {
1325                     (name!(gt), name!(partial_ord))
1326                 }
1327             },
1328             BinaryOp::Assignment { op: None } => return None,
1329         };
1330
1331         let trait_ = self.resolve_lang_item(lang_item)?.as_trait()?;
1332
1333         self.db.trait_data(trait_).method_by_name(&name)
1334     }
1335 }