]> git.lizzy.rs Git - rust.git/blob - crates/hir_ty/src/infer/expr.rs
Merge #11660
[rust.git] / crates / hir_ty / src / infer / expr.rs
1 //! Type inference for expressions.
2
3 use std::{
4     collections::hash_map::Entry,
5     iter::{repeat, repeat_with},
6     mem,
7     sync::Arc,
8 };
9
10 use chalk_ir::{cast::Cast, fold::Shift, Mutability, TyVariableKind};
11 use hir_def::{
12     expr::{ArithOp, Array, BinaryOp, CmpOp, Expr, ExprId, Literal, Ordering, Statement, UnaryOp},
13     generics::TypeOrConstParamData,
14     path::{GenericArg, GenericArgs},
15     resolver::resolver_for_expr,
16     FieldId, FunctionId, ItemContainerId, Lookup,
17 };
18 use hir_expand::name::{name, Name};
19 use stdx::always;
20 use syntax::ast::RangeOp;
21
22 use crate::{
23     autoderef::{self, Autoderef},
24     consteval,
25     infer::coerce::CoerceMany,
26     lower::lower_to_chalk_mutability,
27     mapping::from_chalk,
28     method_resolution,
29     primitive::{self, UintTy},
30     static_lifetime, to_chalk_trait_id,
31     utils::{generics, Generics},
32     AdtId, Binders, CallableDefId, FnPointer, FnSig, FnSubst, Interner, Rawness, Scalar,
33     Substitution, TraitRef, Ty, TyBuilder, TyExt, TyKind,
34 };
35
36 use super::{
37     coerce::auto_deref_adjust_steps, find_breakable, BindingMode, BreakableContext, Diverges,
38     Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch,
39 };
40
41 impl<'a> InferenceContext<'a> {
42     pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
43         let ty = self.infer_expr_inner(tgt_expr, expected);
44         if self.resolve_ty_shallow(&ty).is_never() {
45             // Any expression that produces a value of type `!` must have diverged
46             self.diverges = Diverges::Always;
47         }
48         if let Some(expected_ty) = expected.only_has_type(&mut self.table) {
49             let could_unify = self.unify(&ty, &expected_ty);
50             if !could_unify {
51                 self.result.type_mismatches.insert(
52                     tgt_expr.into(),
53                     TypeMismatch { expected: expected_ty, actual: ty.clone() },
54                 );
55             }
56         }
57         ty
58     }
59
60     /// Infer type of expression with possibly implicit coerce to the expected type.
61     /// Return the type after possible coercion.
62     pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
63         let ty = self.infer_expr_inner(expr, expected);
64         if let Some(target) = expected.only_has_type(&mut self.table) {
65             match self.coerce(Some(expr), &ty, &target) {
66                 Ok(res) => res.value,
67                 Err(_) => {
68                     self.result
69                         .type_mismatches
70                         .insert(expr.into(), TypeMismatch { expected: target, actual: ty.clone() });
71                     // Return actual type when type mismatch.
72                     // This is needed for diagnostic when return type mismatch.
73                     ty
74                 }
75             }
76         } else {
77             ty
78         }
79     }
80
81     fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
82         self.db.unwind_if_cancelled();
83
84         let body = Arc::clone(&self.body); // avoid borrow checker problem
85         let ty = match &body[tgt_expr] {
86             Expr::Missing => self.err_ty(),
87             &Expr::If { condition, then_branch, else_branch } => {
88                 self.infer_expr(
89                     condition,
90                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
91                 );
92
93                 let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
94                 let mut both_arms_diverge = Diverges::Always;
95
96                 let result_ty = self.table.new_type_var();
97                 let then_ty = self.infer_expr_inner(then_branch, expected);
98                 both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
99                 let mut coerce = CoerceMany::new(result_ty);
100                 coerce.coerce(self, Some(then_branch), &then_ty);
101                 let else_ty = match else_branch {
102                     Some(else_branch) => self.infer_expr_inner(else_branch, expected),
103                     None => TyBuilder::unit(),
104                 };
105                 both_arms_diverge &= self.diverges;
106                 // FIXME: create a synthetic `else {}` so we have something to refer to here instead of None?
107                 coerce.coerce(self, else_branch, &else_ty);
108
109                 self.diverges = condition_diverges | both_arms_diverge;
110
111                 coerce.complete()
112             }
113             &Expr::Let { pat, expr } => {
114                 let input_ty = self.infer_expr(expr, &Expectation::none());
115                 self.infer_pat(pat, &input_ty, BindingMode::default());
116                 TyKind::Scalar(Scalar::Bool).intern(Interner)
117             }
118             Expr::Block { statements, tail, label, id: _ } => {
119                 let old_resolver = mem::replace(
120                     &mut self.resolver,
121                     resolver_for_expr(self.db.upcast(), self.owner, tgt_expr),
122                 );
123                 let ty = match label {
124                     Some(_) => {
125                         let break_ty = self.table.new_type_var();
126                         self.breakables.push(BreakableContext {
127                             may_break: false,
128                             coerce: CoerceMany::new(break_ty.clone()),
129                             label: label.map(|label| self.body[label].name.clone()),
130                         });
131                         let ty = self.infer_block(
132                             tgt_expr,
133                             statements,
134                             *tail,
135                             &Expectation::has_type(break_ty),
136                         );
137                         let ctxt = self.breakables.pop().expect("breakable stack broken");
138                         if ctxt.may_break {
139                             ctxt.coerce.complete()
140                         } else {
141                             ty
142                         }
143                     }
144                     None => self.infer_block(tgt_expr, statements, *tail, expected),
145                 };
146                 self.resolver = old_resolver;
147                 ty
148             }
149             Expr::Unsafe { body } | Expr::Const { body } => self.infer_expr(*body, expected),
150             Expr::TryBlock { body } => {
151                 let _inner = self.infer_expr(*body, expected);
152                 // FIXME should be std::result::Result<{inner}, _>
153                 self.err_ty()
154             }
155             Expr::Async { body } => {
156                 // Use the first type parameter as the output type of future.
157                 // existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
158                 let inner_ty = self.infer_expr(*body, &Expectation::none());
159                 let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
160                 let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
161                 TyKind::OpaqueType(opaque_ty_id, Substitution::from1(Interner, inner_ty))
162                     .intern(Interner)
163             }
164             Expr::Loop { body, label } => {
165                 self.breakables.push(BreakableContext {
166                     may_break: false,
167                     coerce: CoerceMany::new(self.table.new_type_var()),
168                     label: label.map(|label| self.body[label].name.clone()),
169                 });
170                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
171
172                 let ctxt = self.breakables.pop().expect("breakable stack broken");
173
174                 if ctxt.may_break {
175                     self.diverges = Diverges::Maybe;
176                     ctxt.coerce.complete()
177                 } else {
178                     TyKind::Never.intern(Interner)
179                 }
180             }
181             Expr::While { condition, body, label } => {
182                 self.breakables.push(BreakableContext {
183                     may_break: false,
184                     coerce: CoerceMany::new(self.err_ty()),
185                     label: label.map(|label| self.body[label].name.clone()),
186                 });
187                 self.infer_expr(
188                     *condition,
189                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
190                 );
191                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
192                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
193                 // the body may not run, so it diverging doesn't mean we diverge
194                 self.diverges = Diverges::Maybe;
195                 TyBuilder::unit()
196             }
197             Expr::For { iterable, body, pat, label } => {
198                 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
199
200                 self.breakables.push(BreakableContext {
201                     may_break: false,
202                     coerce: CoerceMany::new(self.err_ty()),
203                     label: label.map(|label| self.body[label].name.clone()),
204                 });
205                 let pat_ty =
206                     self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
207
208                 self.infer_pat(*pat, &pat_ty, BindingMode::default());
209
210                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
211                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
212                 // the body may not run, so it diverging doesn't mean we diverge
213                 self.diverges = Diverges::Maybe;
214                 TyBuilder::unit()
215             }
216             Expr::Lambda { body, args, ret_type, arg_types } => {
217                 assert_eq!(args.len(), arg_types.len());
218
219                 let mut sig_tys = Vec::new();
220
221                 // collect explicitly written argument types
222                 for arg_type in arg_types.iter() {
223                     let arg_ty = match arg_type {
224                         Some(type_ref) => self.make_ty(type_ref),
225                         None => self.table.new_type_var(),
226                     };
227                     sig_tys.push(arg_ty);
228                 }
229
230                 // add return type
231                 let ret_ty = match ret_type {
232                     Some(type_ref) => self.make_ty(type_ref),
233                     None => self.table.new_type_var(),
234                 };
235                 sig_tys.push(ret_ty.clone());
236                 let sig_ty = TyKind::Function(FnPointer {
237                     num_binders: 0,
238                     sig: FnSig { abi: (), safety: chalk_ir::Safety::Safe, variadic: false },
239                     substitution: FnSubst(
240                         Substitution::from_iter(Interner, sig_tys.clone()).shifted_in(Interner),
241                     ),
242                 })
243                 .intern(Interner);
244                 let closure_id = self.db.intern_closure((self.owner, tgt_expr)).into();
245                 let closure_ty =
246                     TyKind::Closure(closure_id, Substitution::from1(Interner, sig_ty.clone()))
247                         .intern(Interner);
248
249                 // Eagerly try to relate the closure type with the expected
250                 // type, otherwise we often won't have enough information to
251                 // infer the body.
252                 self.deduce_closure_type_from_expectations(
253                     tgt_expr,
254                     &closure_ty,
255                     &sig_ty,
256                     expected,
257                 );
258
259                 // Now go through the argument patterns
260                 for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
261                     self.infer_pat(*arg_pat, &arg_ty, BindingMode::default());
262                 }
263
264                 let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
265                 let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
266
267                 self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
268
269                 self.diverges = prev_diverges;
270                 self.return_ty = prev_ret_ty;
271
272                 closure_ty
273             }
274             Expr::Call { callee, args } => {
275                 let callee_ty = self.infer_expr(*callee, &Expectation::none());
276                 let mut derefs = Autoderef::new(&mut self.table, callee_ty.clone());
277                 let mut res = None;
278                 // manual loop to be able to access `derefs.table`
279                 while let Some((callee_deref_ty, _)) = derefs.next() {
280                     res = derefs.table.callable_sig(&callee_deref_ty, args.len());
281                     if res.is_some() {
282                         break;
283                     }
284                 }
285                 let (param_tys, ret_ty): (Vec<Ty>, Ty) = match res {
286                     Some(res) => {
287                         let adjustments = auto_deref_adjust_steps(&derefs);
288                         self.write_expr_adj(*callee, adjustments);
289                         res
290                     }
291                     None => (Vec::new(), self.err_ty()),
292                 };
293                 self.register_obligations_for_call(&callee_ty);
294
295                 let expected_inputs = self.expected_inputs_for_expected_output(
296                     expected,
297                     ret_ty.clone(),
298                     param_tys.clone(),
299                 );
300
301                 self.check_call_arguments(args, &expected_inputs, &param_tys);
302                 self.normalize_associated_types_in(ret_ty)
303             }
304             Expr::MethodCall { receiver, args, method_name, generic_args } => self
305                 .infer_method_call(
306                     tgt_expr,
307                     *receiver,
308                     args,
309                     method_name,
310                     generic_args.as_deref(),
311                     expected,
312                 ),
313             Expr::Match { expr, arms } => {
314                 let input_ty = self.infer_expr(*expr, &Expectation::none());
315
316                 let expected = expected.adjust_for_branches(&mut self.table);
317
318                 let result_ty = if arms.is_empty() {
319                     TyKind::Never.intern(Interner)
320                 } else {
321                     match &expected {
322                         Expectation::HasType(ty) => ty.clone(),
323                         _ => self.table.new_type_var(),
324                     }
325                 };
326                 let mut coerce = CoerceMany::new(result_ty);
327
328                 let matchee_diverges = self.diverges;
329                 let mut all_arms_diverge = Diverges::Always;
330
331                 for arm in arms.iter() {
332                     self.diverges = Diverges::Maybe;
333                     let _pat_ty = self.infer_pat(arm.pat, &input_ty, BindingMode::default());
334                     if let Some(guard_expr) = arm.guard {
335                         self.infer_expr(
336                             guard_expr,
337                             &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
338                         );
339                     }
340
341                     let arm_ty = self.infer_expr_inner(arm.expr, &expected);
342                     all_arms_diverge &= self.diverges;
343                     coerce.coerce(self, Some(arm.expr), &arm_ty);
344                 }
345
346                 self.diverges = matchee_diverges | all_arms_diverge;
347
348                 coerce.complete()
349             }
350             Expr::Path(p) => {
351                 // FIXME this could be more efficient...
352                 let resolver = resolver_for_expr(self.db.upcast(), self.owner, tgt_expr);
353                 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or_else(|| self.err_ty())
354             }
355             Expr::Continue { .. } => TyKind::Never.intern(Interner),
356             Expr::Break { expr, label } => {
357                 let mut coerce = match find_breakable(&mut self.breakables, label.as_ref()) {
358                     Some(ctxt) => {
359                         // avoiding the borrowck
360                         mem::replace(
361                             &mut ctxt.coerce,
362                             CoerceMany::new(self.result.standard_types.unknown.clone()),
363                         )
364                     }
365                     None => CoerceMany::new(self.result.standard_types.unknown.clone()),
366                 };
367
368                 let val_ty = if let Some(expr) = *expr {
369                     self.infer_expr(expr, &Expectation::none())
370                 } else {
371                     TyBuilder::unit()
372                 };
373
374                 // FIXME: create a synthetic `()` during lowering so we have something to refer to here?
375                 coerce.coerce(self, *expr, &val_ty);
376
377                 if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
378                     ctxt.coerce = coerce;
379                     ctxt.may_break = true;
380                 } else {
381                     self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
382                         expr: tgt_expr,
383                     });
384                 };
385
386                 TyKind::Never.intern(Interner)
387             }
388             Expr::Return { expr } => {
389                 if let Some(expr) = expr {
390                     self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
391                 } else {
392                     let unit = TyBuilder::unit();
393                     let _ = self.coerce(Some(tgt_expr), &unit, &self.return_ty.clone());
394                 }
395                 TyKind::Never.intern(Interner)
396             }
397             Expr::Yield { expr } => {
398                 // FIXME: track yield type for coercion
399                 if let Some(expr) = expr {
400                     self.infer_expr(*expr, &Expectation::none());
401                 }
402                 TyKind::Never.intern(Interner)
403             }
404             Expr::RecordLit { path, fields, spread } => {
405                 let (ty, def_id) = self.resolve_variant(path.as_deref(), false);
406                 if let Some(variant) = def_id {
407                     self.write_variant_resolution(tgt_expr.into(), variant);
408                 }
409
410                 if let Some(t) = expected.only_has_type(&mut self.table) {
411                     self.unify(&ty, &t);
412                 }
413
414                 let substs = ty
415                     .as_adt()
416                     .map(|(_, s)| s.clone())
417                     .unwrap_or_else(|| Substitution::empty(Interner));
418                 let field_types = def_id.map(|it| self.db.field_types(it)).unwrap_or_default();
419                 let variant_data = def_id.map(|it| it.variant_data(self.db.upcast()));
420                 for field in fields.iter() {
421                     let field_def =
422                         variant_data.as_ref().and_then(|it| match it.field(&field.name) {
423                             Some(local_id) => Some(FieldId { parent: def_id.unwrap(), local_id }),
424                             None => {
425                                 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
426                                     expr: field.expr,
427                                 });
428                                 None
429                             }
430                         });
431                     let field_ty = field_def.map_or(self.err_ty(), |it| {
432                         field_types[it.local_id].clone().substitute(Interner, &substs)
433                     });
434                     self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
435                 }
436                 if let Some(expr) = spread {
437                     self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
438                 }
439                 ty
440             }
441             Expr::Field { expr, name } => {
442                 let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
443
444                 let mut autoderef = Autoderef::new(&mut self.table, receiver_ty);
445                 let ty = autoderef.by_ref().find_map(|(derefed_ty, _)| {
446                     let (field_id, parameters) = match derefed_ty.kind(Interner) {
447                         TyKind::Tuple(_, substs) => {
448                             return name.as_tuple_index().and_then(|idx| {
449                                 substs
450                                     .as_slice(Interner)
451                                     .get(idx)
452                                     .map(|a| a.assert_ty_ref(Interner))
453                                     .cloned()
454                             });
455                         }
456                         TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => {
457                             let local_id = self.db.struct_data(*s).variant_data.field(name)?;
458                             let field = FieldId { parent: (*s).into(), local_id };
459                             (field, parameters.clone())
460                         }
461                         TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => {
462                             let local_id = self.db.union_data(*u).variant_data.field(name)?;
463                             let field = FieldId { parent: (*u).into(), local_id };
464                             (field, parameters.clone())
465                         }
466                         _ => return None,
467                     };
468                     let module = self.resolver.module();
469                     let is_visible = module
470                         .map(|mod_id| {
471                             self.db.field_visibilities(field_id.parent)[field_id.local_id]
472                                 .is_visible_from(self.db.upcast(), mod_id)
473                         })
474                         .unwrap_or(true);
475                     if !is_visible {
476                         // Write down the first field resolution even if it is not visible
477                         // This aids IDE features for private fields like goto def and in
478                         // case of autoderef finding an applicable field, this will be
479                         // overwritten in a following cycle
480                         if let Entry::Vacant(entry) = self.result.field_resolutions.entry(tgt_expr)
481                         {
482                             entry.insert(field_id);
483                         }
484                         return None;
485                     }
486                     // can't have `write_field_resolution` here because `self.table` is borrowed :(
487                     self.result.field_resolutions.insert(tgt_expr, field_id);
488                     let ty = self.db.field_types(field_id.parent)[field_id.local_id]
489                         .clone()
490                         .substitute(Interner, &parameters);
491                     Some(ty)
492                 });
493                 let ty = match ty {
494                     Some(ty) => {
495                         let adjustments = auto_deref_adjust_steps(&autoderef);
496                         self.write_expr_adj(*expr, adjustments);
497                         let ty = self.insert_type_vars(ty);
498                         let ty = self.normalize_associated_types_in(ty);
499                         ty
500                     }
501                     _ => self.err_ty(),
502                 };
503                 ty
504             }
505             Expr::Await { expr } => {
506                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
507                 self.resolve_associated_type(inner_ty, self.resolve_future_future_output())
508             }
509             Expr::Try { expr } => {
510                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
511                 self.resolve_associated_type(inner_ty, self.resolve_ops_try_ok())
512             }
513             Expr::Cast { expr, type_ref } => {
514                 // FIXME: propagate the "castable to" expectation (and find a test case that shows this is necessary)
515                 let _inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
516                 let cast_ty = self.make_ty(type_ref);
517                 // FIXME check the cast...
518                 cast_ty
519             }
520             Expr::Ref { expr, rawness, mutability } => {
521                 let mutability = lower_to_chalk_mutability(*mutability);
522                 let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected
523                     .only_has_type(&mut self.table)
524                     .as_ref()
525                     .and_then(|t| t.as_reference_or_ptr())
526                 {
527                     if exp_mutability == Mutability::Mut && mutability == Mutability::Not {
528                         // FIXME: record type error - expected mut reference but found shared ref,
529                         // which cannot be coerced
530                     }
531                     if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
532                         // FIXME: record type error - expected reference but found ptr,
533                         // which cannot be coerced
534                     }
535                     Expectation::rvalue_hint(&mut self.table, Ty::clone(exp_inner))
536                 } else {
537                     Expectation::none()
538                 };
539                 let inner_ty = self.infer_expr_inner(*expr, &expectation);
540                 match rawness {
541                     Rawness::RawPtr => TyKind::Raw(mutability, inner_ty),
542                     Rawness::Ref => TyKind::Ref(mutability, static_lifetime(), inner_ty),
543                 }
544                 .intern(Interner)
545             }
546             Expr::Box { expr } => {
547                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
548                 if let Some(box_) = self.resolve_boxed_box() {
549                     TyBuilder::adt(self.db, box_)
550                         .push(inner_ty)
551                         .fill_with_defaults(self.db, || self.table.new_type_var())
552                         .build()
553                 } else {
554                     self.err_ty()
555                 }
556             }
557             Expr::UnaryOp { expr, op } => {
558                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
559                 let inner_ty = self.resolve_ty_shallow(&inner_ty);
560                 match op {
561                     UnaryOp::Deref => {
562                         autoderef::deref(&mut self.table, inner_ty).unwrap_or_else(|| self.err_ty())
563                     }
564                     UnaryOp::Neg => {
565                         match inner_ty.kind(Interner) {
566                             // Fast path for builtins
567                             TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_))
568                             | TyKind::InferenceVar(
569                                 _,
570                                 TyVariableKind::Integer | TyVariableKind::Float,
571                             ) => inner_ty,
572                             // Otherwise we resolve via the std::ops::Neg trait
573                             _ => self
574                                 .resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
575                         }
576                     }
577                     UnaryOp::Not => {
578                         match inner_ty.kind(Interner) {
579                             // Fast path for builtins
580                             TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_))
581                             | TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty,
582                             // Otherwise we resolve via the std::ops::Not trait
583                             _ => self
584                                 .resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
585                         }
586                     }
587                 }
588             }
589             Expr::BinaryOp { lhs, rhs, op } => match op {
590                 Some(BinaryOp::Assignment { op: None }) => {
591                     let lhs_ty = self.infer_expr(*lhs, &Expectation::none());
592                     self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty));
593                     self.result.standard_types.unit.clone()
594                 }
595                 Some(BinaryOp::LogicOp(_)) => {
596                     let bool_ty = self.result.standard_types.bool_.clone();
597                     self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone()));
598                     let lhs_diverges = self.diverges;
599                     self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone()));
600                     // Depending on the LHS' value, the RHS can never execute.
601                     self.diverges = lhs_diverges;
602                     bool_ty
603                 }
604                 Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr),
605                 _ => self.err_ty(),
606             },
607             Expr::Range { lhs, rhs, range_type } => {
608                 let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
609                 let rhs_expect = lhs_ty
610                     .as_ref()
611                     .map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
612                 let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
613                 match (range_type, lhs_ty, rhs_ty) {
614                     (RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
615                         Some(adt) => TyBuilder::adt(self.db, adt).build(),
616                         None => self.err_ty(),
617                     },
618                     (RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
619                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
620                         None => self.err_ty(),
621                     },
622                     (RangeOp::Inclusive, None, Some(ty)) => {
623                         match self.resolve_range_to_inclusive() {
624                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
625                             None => self.err_ty(),
626                         }
627                     }
628                     (RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
629                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
630                         None => self.err_ty(),
631                     },
632                     (RangeOp::Inclusive, Some(_), Some(ty)) => {
633                         match self.resolve_range_inclusive() {
634                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
635                             None => self.err_ty(),
636                         }
637                     }
638                     (RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
639                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
640                         None => self.err_ty(),
641                     },
642                     (RangeOp::Inclusive, _, None) => self.err_ty(),
643                 }
644             }
645             Expr::Index { base, index } => {
646                 let base_ty = self.infer_expr_inner(*base, &Expectation::none());
647                 let index_ty = self.infer_expr(*index, &Expectation::none());
648
649                 if let Some(index_trait) = self.resolve_ops_index() {
650                     let canonicalized = self.canonicalize(base_ty.clone());
651                     let receiver_adjustments = method_resolution::resolve_indexing_op(
652                         self.db,
653                         self.trait_env.clone(),
654                         canonicalized.value,
655                         index_trait,
656                     );
657                     let (self_ty, adj) = receiver_adjustments
658                         .map_or((self.err_ty(), Vec::new()), |adj| {
659                             adj.apply(&mut self.table, base_ty)
660                         });
661                     self.write_expr_adj(*base, adj);
662                     self.resolve_associated_type_with_params(
663                         self_ty,
664                         self.resolve_ops_index_output(),
665                         &[index_ty],
666                     )
667                 } else {
668                     self.err_ty()
669                 }
670             }
671             Expr::Tuple { exprs } => {
672                 let mut tys = match expected
673                     .only_has_type(&mut self.table)
674                     .as_ref()
675                     .map(|t| t.kind(Interner))
676                 {
677                     Some(TyKind::Tuple(_, substs)) => substs
678                         .iter(Interner)
679                         .map(|a| a.assert_ty_ref(Interner).clone())
680                         .chain(repeat_with(|| self.table.new_type_var()))
681                         .take(exprs.len())
682                         .collect::<Vec<_>>(),
683                     _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
684                 };
685
686                 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
687                     self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
688                 }
689
690                 TyKind::Tuple(tys.len(), Substitution::from_iter(Interner, tys)).intern(Interner)
691             }
692             Expr::Array(array) => {
693                 let elem_ty =
694                     match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(Interner)) {
695                         Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
696                         _ => self.table.new_type_var(),
697                     };
698                 let mut coerce = CoerceMany::new(elem_ty.clone());
699
700                 let expected = Expectation::has_type(elem_ty.clone());
701                 let len = match array {
702                     Array::ElementList(items) => {
703                         for &expr in items.iter() {
704                             let cur_elem_ty = self.infer_expr_inner(expr, &expected);
705                             coerce.coerce(self, Some(expr), &cur_elem_ty);
706                         }
707                         Some(items.len() as u64)
708                     }
709                     &Array::Repeat { initializer, repeat } => {
710                         self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty));
711                         self.infer_expr(
712                             repeat,
713                             &Expectation::has_type(
714                                 TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner),
715                             ),
716                         );
717
718                         consteval::eval_usize(
719                             repeat,
720                             consteval::ConstEvalCtx {
721                                 exprs: &body.exprs,
722                                 pats: &body.pats,
723                                 local_data: Default::default(),
724                                 infer: &mut |x| self.infer_expr(x, &expected),
725                             },
726                         )
727                     }
728                 };
729
730                 TyKind::Array(coerce.complete(), consteval::usize_const(len)).intern(Interner)
731             }
732             Expr::Literal(lit) => match lit {
733                 Literal::Bool(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
734                 Literal::String(..) => {
735                     TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(Interner))
736                         .intern(Interner)
737                 }
738                 Literal::ByteString(bs) => {
739                     let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner);
740
741                     let len = consteval::usize_const(Some(bs.len() as u64));
742
743                     let array_type = TyKind::Array(byte_type, len).intern(Interner);
744                     TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(Interner)
745                 }
746                 Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(Interner),
747                 Literal::Int(_v, ty) => match ty {
748                     Some(int_ty) => {
749                         TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty)))
750                             .intern(Interner)
751                     }
752                     None => self.table.new_integer_var(),
753                 },
754                 Literal::Uint(_v, ty) => match ty {
755                     Some(int_ty) => {
756                         TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty)))
757                             .intern(Interner)
758                     }
759                     None => self.table.new_integer_var(),
760                 },
761                 Literal::Float(_v, ty) => match ty {
762                     Some(float_ty) => {
763                         TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty)))
764                             .intern(Interner)
765                     }
766                     None => self.table.new_float_var(),
767                 },
768             },
769             Expr::MacroStmts { tail } => self.infer_expr_inner(*tail, expected),
770         };
771         // use a new type variable if we got unknown here
772         let ty = self.insert_type_vars_shallow(ty);
773         self.write_expr_ty(tgt_expr, ty.clone());
774         ty
775     }
776
777     fn infer_overloadable_binop(
778         &mut self,
779         lhs: ExprId,
780         op: BinaryOp,
781         rhs: ExprId,
782         tgt_expr: ExprId,
783     ) -> Ty {
784         let lhs_expectation = Expectation::none();
785         let lhs_ty = self.infer_expr(lhs, &lhs_expectation);
786         let rhs_ty = self.table.new_type_var();
787
788         let func = self.resolve_binop_method(op);
789         let func = match func {
790             Some(func) => func,
791             None => {
792                 let rhs_ty = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone());
793                 let rhs_ty = self.infer_expr_coerce(rhs, &Expectation::from_option(rhs_ty));
794                 return self
795                     .builtin_binary_op_return_ty(op, lhs_ty, rhs_ty)
796                     .unwrap_or_else(|| self.err_ty());
797             }
798         };
799
800         let subst = TyBuilder::subst_for_def(self.db, func)
801             .push(lhs_ty.clone())
802             .push(rhs_ty.clone())
803             .build();
804         self.write_method_resolution(tgt_expr, func, subst.clone());
805
806         let method_ty = self.db.value_ty(func.into()).substitute(Interner, &subst);
807         self.register_obligations_for_call(&method_ty);
808
809         self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone()));
810
811         let ret_ty = match method_ty.callable_sig(self.db) {
812             Some(sig) => sig.ret().clone(),
813             None => self.err_ty(),
814         };
815
816         let ret_ty = self.normalize_associated_types_in(ret_ty);
817
818         // FIXME: record autoref adjustments
819
820         // use knowledge of built-in binary ops, which can sometimes help inference
821         if let Some(builtin_rhs) = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone()) {
822             self.unify(&builtin_rhs, &rhs_ty);
823         }
824         if let Some(builtin_ret) = self.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty) {
825             self.unify(&builtin_ret, &ret_ty);
826         }
827
828         ret_ty
829     }
830
831     fn infer_block(
832         &mut self,
833         expr: ExprId,
834         statements: &[Statement],
835         tail: Option<ExprId>,
836         expected: &Expectation,
837     ) -> Ty {
838         for stmt in statements {
839             match stmt {
840                 Statement::Let { pat, type_ref, initializer, else_branch } => {
841                     let decl_ty = type_ref
842                         .as_ref()
843                         .map(|tr| self.make_ty(tr))
844                         .unwrap_or_else(|| self.err_ty());
845
846                     // Always use the declared type when specified
847                     let mut ty = decl_ty.clone();
848
849                     if let Some(expr) = initializer {
850                         let actual_ty =
851                             self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
852                         if decl_ty.is_unknown() {
853                             ty = actual_ty;
854                         }
855                     }
856
857                     if let Some(expr) = else_branch {
858                         self.infer_expr_coerce(
859                             *expr,
860                             &Expectation::has_type(Ty::new(Interner, TyKind::Never)),
861                         );
862                     }
863
864                     self.infer_pat(*pat, &ty, BindingMode::default());
865                 }
866                 Statement::Expr { expr, .. } => {
867                     self.infer_expr(*expr, &Expectation::none());
868                 }
869             }
870         }
871
872         if let Some(expr) = tail {
873             self.infer_expr_coerce(expr, expected)
874         } else {
875             // Citing rustc: if there is no explicit tail expression,
876             // that is typically equivalent to a tail expression
877             // of `()` -- except if the block diverges. In that
878             // case, there is no value supplied from the tail
879             // expression (assuming there are no other breaks,
880             // this implies that the type of the block will be
881             // `!`).
882             if self.diverges.is_always() {
883                 // we don't even make an attempt at coercion
884                 self.table.new_maybe_never_var()
885             } else {
886                 if let Some(t) = expected.only_has_type(&mut self.table) {
887                     let _ = self.coerce(Some(expr), &TyBuilder::unit(), &t);
888                 }
889                 TyBuilder::unit()
890             }
891         }
892     }
893
894     fn infer_method_call(
895         &mut self,
896         tgt_expr: ExprId,
897         receiver: ExprId,
898         args: &[ExprId],
899         method_name: &Name,
900         generic_args: Option<&GenericArgs>,
901         expected: &Expectation,
902     ) -> Ty {
903         let receiver_ty = self.infer_expr(receiver, &Expectation::none());
904         let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
905
906         let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
907
908         let resolved = method_resolution::lookup_method(
909             &canonicalized_receiver.value,
910             self.db,
911             self.trait_env.clone(),
912             &traits_in_scope,
913             self.resolver.module().into(),
914             method_name,
915         );
916         let (receiver_ty, method_ty, substs) = match resolved {
917             Some((adjust, func)) => {
918                 let (ty, adjustments) = adjust.apply(&mut self.table, receiver_ty);
919                 let generics = generics(self.db.upcast(), func.into());
920                 let substs = self.substs_for_method_call(generics, generic_args);
921                 self.write_expr_adj(receiver, adjustments);
922                 self.write_method_resolution(tgt_expr, func, substs.clone());
923                 (ty, self.db.value_ty(func.into()), substs)
924             }
925             None => (
926                 receiver_ty,
927                 Binders::empty(Interner, self.err_ty()),
928                 Substitution::empty(Interner),
929             ),
930         };
931         let method_ty = method_ty.substitute(Interner, &substs);
932         self.register_obligations_for_call(&method_ty);
933         let (formal_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
934             Some(sig) => {
935                 if !sig.params().is_empty() {
936                     (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
937                 } else {
938                     (self.err_ty(), Vec::new(), sig.ret().clone())
939                 }
940             }
941             None => (self.err_ty(), Vec::new(), self.err_ty()),
942         };
943         self.unify(&formal_receiver_ty, &receiver_ty);
944
945         let expected_inputs =
946             self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone());
947
948         self.check_call_arguments(args, &expected_inputs, &param_tys);
949         self.normalize_associated_types_in(ret_ty)
950     }
951
952     fn expected_inputs_for_expected_output(
953         &mut self,
954         expected_output: &Expectation,
955         output: Ty,
956         inputs: Vec<Ty>,
957     ) -> Vec<Ty> {
958         if let Some(expected_ty) = expected_output.to_option(&mut self.table) {
959             self.table.fudge_inference(|table| {
960                 if table.try_unify(&expected_ty, &output).is_ok() {
961                     table.resolve_with_fallback(inputs, &|var, kind, _, _| match kind {
962                         chalk_ir::VariableKind::Ty(tk) => var.to_ty(Interner, tk).cast(Interner),
963                         chalk_ir::VariableKind::Lifetime => {
964                             var.to_lifetime(Interner).cast(Interner)
965                         }
966                         chalk_ir::VariableKind::Const(ty) => {
967                             var.to_const(Interner, ty).cast(Interner)
968                         }
969                     })
970                 } else {
971                     Vec::new()
972                 }
973             })
974         } else {
975             Vec::new()
976         }
977     }
978
979     fn check_call_arguments(&mut self, args: &[ExprId], expected_inputs: &[Ty], param_tys: &[Ty]) {
980         // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
981         // We do this in a pretty awful way: first we type-check any arguments
982         // that are not closures, then we type-check the closures. This is so
983         // that we have more information about the types of arguments when we
984         // type-check the functions. This isn't really the right way to do this.
985         for &check_closures in &[false, true] {
986             let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty()));
987             let expected_iter = expected_inputs
988                 .iter()
989                 .cloned()
990                 .chain(param_iter.clone().skip(expected_inputs.len()));
991             for ((&arg, param_ty), expected_ty) in args.iter().zip(param_iter).zip(expected_iter) {
992                 let is_closure = matches!(&self.body[arg], Expr::Lambda { .. });
993                 if is_closure != check_closures {
994                     continue;
995                 }
996
997                 // the difference between param_ty and expected here is that
998                 // expected is the parameter when the expected *return* type is
999                 // taken into account. So in `let _: &[i32] = identity(&[1, 2])`
1000                 // the expected type is already `&[i32]`, whereas param_ty is
1001                 // still an unbound type variable. We don't always want to force
1002                 // the parameter to coerce to the expected type (for example in
1003                 // `coerce_unsize_expected_type_4`).
1004                 let param_ty = self.normalize_associated_types_in(param_ty);
1005                 let expected = Expectation::rvalue_hint(&mut self.table, expected_ty);
1006                 // infer with the expected type we have...
1007                 let ty = self.infer_expr_inner(arg, &expected);
1008
1009                 // then coerce to either the expected type or just the formal parameter type
1010                 let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) {
1011                     // if we are coercing to the expectation, unify with the
1012                     // formal parameter type to connect everything
1013                     self.unify(&ty, &param_ty);
1014                     ty
1015                 } else {
1016                     param_ty
1017                 };
1018                 if !coercion_target.is_unknown() {
1019                     if self.coerce(Some(arg), &ty, &coercion_target).is_err() {
1020                         self.result.type_mismatches.insert(
1021                             arg.into(),
1022                             TypeMismatch { expected: coercion_target, actual: ty.clone() },
1023                         );
1024                     }
1025                 }
1026             }
1027         }
1028     }
1029
1030     fn substs_for_method_call(
1031         &mut self,
1032         def_generics: Generics,
1033         generic_args: Option<&GenericArgs>,
1034     ) -> Substitution {
1035         let (parent_params, self_params, type_params, const_params, impl_trait_params) =
1036             def_generics.provenance_split();
1037         assert_eq!(self_params, 0); // method shouldn't have another Self param
1038         let total_len = parent_params + type_params + const_params + impl_trait_params;
1039         let mut substs = Vec::with_capacity(total_len);
1040         // Parent arguments are unknown
1041         for (_id, param) in def_generics.iter_parent() {
1042             match param {
1043                 TypeOrConstParamData::TypeParamData(_) => {
1044                     substs.push(self.table.new_type_var());
1045                 }
1046                 TypeOrConstParamData::ConstParamData(_) => {
1047                     // FIXME: here we should do something else
1048                     substs.push(self.table.new_type_var());
1049                 }
1050             }
1051         }
1052         // handle provided type arguments
1053         if let Some(generic_args) = generic_args {
1054             // if args are provided, it should be all of them, but we can't rely on that
1055             for arg in generic_args
1056                 .args
1057                 .iter()
1058                 .filter(|arg| matches!(arg, GenericArg::Type(_)))
1059                 .take(type_params)
1060             {
1061                 match arg {
1062                     GenericArg::Type(type_ref) => {
1063                         let ty = self.make_ty(type_ref);
1064                         substs.push(ty);
1065                     }
1066                     GenericArg::Lifetime(_) => {}
1067                 }
1068             }
1069         };
1070         let supplied_params = substs.len();
1071         for _ in supplied_params..total_len {
1072             substs.push(self.table.new_type_var());
1073         }
1074         assert_eq!(substs.len(), total_len);
1075         Substitution::from_iter(Interner, substs)
1076     }
1077
1078     fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
1079         let callable_ty = self.resolve_ty_shallow(callable_ty);
1080         if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(Interner) {
1081             let def: CallableDefId = from_chalk(self.db, *fn_def);
1082             let generic_predicates = self.db.generic_predicates(def.into());
1083             for predicate in generic_predicates.iter() {
1084                 let (predicate, binders) = predicate
1085                     .clone()
1086                     .substitute(Interner, parameters)
1087                     .into_value_and_skipped_binders();
1088                 always!(binders.len(Interner) == 0); // quantified where clauses not yet handled
1089                 self.push_obligation(predicate.cast(Interner));
1090             }
1091             // add obligation for trait implementation, if this is a trait method
1092             match def {
1093                 CallableDefId::FunctionId(f) => {
1094                     if let ItemContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container {
1095                         // construct a TraitRef
1096                         let substs = crate::subst_prefix(
1097                             &*parameters,
1098                             generics(self.db.upcast(), trait_.into()).len(),
1099                         );
1100                         self.push_obligation(
1101                             TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs }
1102                                 .cast(Interner),
1103                         );
1104                     }
1105                 }
1106                 CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {}
1107             }
1108         }
1109     }
1110
1111     fn builtin_binary_op_return_ty(&mut self, op: BinaryOp, lhs_ty: Ty, rhs_ty: Ty) -> Option<Ty> {
1112         let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
1113         let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
1114         match op {
1115             BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => {
1116                 Some(TyKind::Scalar(Scalar::Bool).intern(Interner))
1117             }
1118             BinaryOp::Assignment { .. } => Some(TyBuilder::unit()),
1119             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
1120                 // all integer combinations are valid here
1121                 if matches!(
1122                     lhs_ty.kind(Interner),
1123                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1124                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1125                 ) && matches!(
1126                     rhs_ty.kind(Interner),
1127                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1128                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1129                 ) {
1130                     Some(lhs_ty)
1131                 } else {
1132                     None
1133                 }
1134             }
1135             BinaryOp::ArithOp(_) => match (lhs_ty.kind(Interner), rhs_ty.kind(Interner)) {
1136                 // (int, int) | (uint, uint) | (float, float)
1137                 (TyKind::Scalar(Scalar::Int(_)), TyKind::Scalar(Scalar::Int(_)))
1138                 | (TyKind::Scalar(Scalar::Uint(_)), TyKind::Scalar(Scalar::Uint(_)))
1139                 | (TyKind::Scalar(Scalar::Float(_)), TyKind::Scalar(Scalar::Float(_))) => {
1140                     Some(rhs_ty)
1141                 }
1142                 // ({int}, int) | ({int}, uint)
1143                 (
1144                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1145                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1146                 ) => Some(rhs_ty),
1147                 // (int, {int}) | (uint, {int})
1148                 (
1149                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1150                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1151                 ) => Some(lhs_ty),
1152                 // ({float} | float)
1153                 (
1154                     TyKind::InferenceVar(_, TyVariableKind::Float),
1155                     TyKind::Scalar(Scalar::Float(_)),
1156                 ) => Some(rhs_ty),
1157                 // (float, {float})
1158                 (
1159                     TyKind::Scalar(Scalar::Float(_)),
1160                     TyKind::InferenceVar(_, TyVariableKind::Float),
1161                 ) => Some(lhs_ty),
1162                 // ({int}, {int}) | ({float}, {float})
1163                 (
1164                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1165                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1166                 )
1167                 | (
1168                     TyKind::InferenceVar(_, TyVariableKind::Float),
1169                     TyKind::InferenceVar(_, TyVariableKind::Float),
1170                 ) => Some(rhs_ty),
1171                 _ => None,
1172             },
1173         }
1174     }
1175
1176     fn builtin_binary_op_rhs_expectation(&mut self, op: BinaryOp, lhs_ty: Ty) -> Option<Ty> {
1177         Some(match op {
1178             BinaryOp::LogicOp(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
1179             BinaryOp::Assignment { op: None } => lhs_ty,
1180             BinaryOp::CmpOp(CmpOp::Eq { .. }) => match self
1181                 .resolve_ty_shallow(&lhs_ty)
1182                 .kind(Interner)
1183             {
1184                 TyKind::Scalar(_) | TyKind::Str => lhs_ty,
1185                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1186                 _ => return None,
1187             },
1188             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => return None,
1189             BinaryOp::CmpOp(CmpOp::Ord { .. })
1190             | BinaryOp::Assignment { op: Some(_) }
1191             | BinaryOp::ArithOp(_) => match self.resolve_ty_shallow(&lhs_ty).kind(Interner) {
1192                 TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) => lhs_ty,
1193                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1194                 _ => return None,
1195             },
1196         })
1197     }
1198
1199     fn resolve_binop_method(&self, op: BinaryOp) -> Option<FunctionId> {
1200         let (name, lang_item) = match op {
1201             BinaryOp::LogicOp(_) => return None,
1202             BinaryOp::ArithOp(aop) => match aop {
1203                 ArithOp::Add => (name!(add), name!(add)),
1204                 ArithOp::Mul => (name!(mul), name!(mul)),
1205                 ArithOp::Sub => (name!(sub), name!(sub)),
1206                 ArithOp::Div => (name!(div), name!(div)),
1207                 ArithOp::Rem => (name!(rem), name!(rem)),
1208                 ArithOp::Shl => (name!(shl), name!(shl)),
1209                 ArithOp::Shr => (name!(shr), name!(shr)),
1210                 ArithOp::BitXor => (name!(bitxor), name!(bitxor)),
1211                 ArithOp::BitOr => (name!(bitor), name!(bitor)),
1212                 ArithOp::BitAnd => (name!(bitand), name!(bitand)),
1213             },
1214             BinaryOp::Assignment { op: Some(aop) } => match aop {
1215                 ArithOp::Add => (name!(add_assign), name!(add_assign)),
1216                 ArithOp::Mul => (name!(mul_assign), name!(mul_assign)),
1217                 ArithOp::Sub => (name!(sub_assign), name!(sub_assign)),
1218                 ArithOp::Div => (name!(div_assign), name!(div_assign)),
1219                 ArithOp::Rem => (name!(rem_assign), name!(rem_assign)),
1220                 ArithOp::Shl => (name!(shl_assign), name!(shl_assign)),
1221                 ArithOp::Shr => (name!(shr_assign), name!(shr_assign)),
1222                 ArithOp::BitXor => (name!(bitxor_assign), name!(bitxor_assign)),
1223                 ArithOp::BitOr => (name!(bitor_assign), name!(bitor_assign)),
1224                 ArithOp::BitAnd => (name!(bitand_assign), name!(bitand_assign)),
1225             },
1226             BinaryOp::CmpOp(cop) => match cop {
1227                 CmpOp::Eq { negated: false } => (name!(eq), name!(eq)),
1228                 CmpOp::Eq { negated: true } => (name!(ne), name!(eq)),
1229                 CmpOp::Ord { ordering: Ordering::Less, strict: false } => {
1230                     (name!(le), name!(partial_ord))
1231                 }
1232                 CmpOp::Ord { ordering: Ordering::Less, strict: true } => {
1233                     (name!(lt), name!(partial_ord))
1234                 }
1235                 CmpOp::Ord { ordering: Ordering::Greater, strict: false } => {
1236                     (name!(ge), name!(partial_ord))
1237                 }
1238                 CmpOp::Ord { ordering: Ordering::Greater, strict: true } => {
1239                     (name!(gt), name!(partial_ord))
1240                 }
1241             },
1242             BinaryOp::Assignment { op: None } => return None,
1243         };
1244
1245         let trait_ = self.resolve_lang_item(lang_item)?.as_trait()?;
1246
1247         self.db.trait_data(trait_).method_by_name(&name)
1248     }
1249 }