]> git.lizzy.rs Git - rust.git/blob - crates/hir_ty/src/infer/expr.rs
Merge #11200
[rust.git] / crates / hir_ty / src / infer / expr.rs
1 //! Type inference for expressions.
2
3 use std::{
4     iter::{repeat, repeat_with},
5     mem,
6     sync::Arc,
7 };
8
9 use chalk_ir::{cast::Cast, fold::Shift, Mutability, TyVariableKind};
10 use hir_def::{
11     expr::{
12         ArithOp, Array, BinaryOp, CmpOp, Expr, ExprId, Literal, MatchGuard, Ordering, Statement,
13         UnaryOp,
14     },
15     path::{GenericArg, GenericArgs},
16     resolver::resolver_for_expr,
17     FieldId, FunctionId, ItemContainerId, Lookup,
18 };
19 use hir_expand::name::{name, Name};
20 use stdx::always;
21 use syntax::ast::RangeOp;
22
23 use crate::{
24     autoderef::{self, Autoderef},
25     consteval,
26     infer::coerce::CoerceMany,
27     lower::lower_to_chalk_mutability,
28     mapping::from_chalk,
29     method_resolution,
30     primitive::{self, UintTy},
31     static_lifetime, to_chalk_trait_id,
32     traits::FnTrait,
33     utils::{generics, Generics},
34     AdtId, Binders, CallableDefId, FnPointer, FnSig, FnSubst, InEnvironment, Interner,
35     ProjectionTyExt, Rawness, Scalar, Substitution, TraitRef, Ty, TyBuilder, TyExt, TyKind,
36 };
37
38 use super::{
39     find_breakable, BindingMode, BreakableContext, Diverges, Expectation, InferenceContext,
40     InferenceDiagnostic, TypeMismatch,
41 };
42
43 impl<'a> InferenceContext<'a> {
44     pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
45         let ty = self.infer_expr_inner(tgt_expr, expected);
46         if self.resolve_ty_shallow(&ty).is_never() {
47             // Any expression that produces a value of type `!` must have diverged
48             self.diverges = Diverges::Always;
49         }
50         if let Some(expected_ty) = expected.only_has_type(&mut self.table) {
51             let could_unify = self.unify(&ty, &expected_ty);
52             if !could_unify {
53                 self.result.type_mismatches.insert(
54                     tgt_expr.into(),
55                     TypeMismatch { expected: expected_ty, actual: ty.clone() },
56                 );
57             }
58         }
59         ty
60     }
61
62     /// Infer type of expression with possibly implicit coerce to the expected type.
63     /// Return the type after possible coercion.
64     pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
65         let ty = self.infer_expr_inner(expr, expected);
66         if let Some(target) = expected.only_has_type(&mut self.table) {
67             match self.coerce(Some(expr), &ty, &target) {
68                 Ok(res) => res.value,
69                 Err(_) => {
70                     self.result
71                         .type_mismatches
72                         .insert(expr.into(), TypeMismatch { expected: target, actual: ty.clone() });
73                     // Return actual type when type mismatch.
74                     // This is needed for diagnostic when return type mismatch.
75                     ty
76                 }
77             }
78         } else {
79             ty
80         }
81     }
82
83     fn callable_sig_from_fn_trait(&mut self, ty: &Ty, num_args: usize) -> Option<(Vec<Ty>, Ty)> {
84         let krate = self.resolver.krate()?;
85         let fn_once_trait = FnTrait::FnOnce.get_id(self.db, krate)?;
86         let output_assoc_type =
87             self.db.trait_data(fn_once_trait).associated_type_by_name(&name![Output])?;
88
89         let mut arg_tys = vec![];
90         let arg_ty = TyBuilder::tuple(num_args)
91             .fill(repeat_with(|| {
92                 let arg = self.table.new_type_var();
93                 arg_tys.push(arg.clone());
94                 arg
95             }))
96             .build();
97
98         let projection = {
99             let b = TyBuilder::assoc_type_projection(self.db, output_assoc_type);
100             if b.remaining() != 2 {
101                 return None;
102             }
103             b.push(ty.clone()).push(arg_ty).build()
104         };
105
106         let trait_env = self.trait_env.env.clone();
107         let obligation = InEnvironment {
108             goal: projection.trait_ref(self.db).cast(Interner),
109             environment: trait_env,
110         };
111         let canonical = self.canonicalize(obligation.clone());
112         if self.db.trait_solve(krate, canonical.value.cast(Interner)).is_some() {
113             self.push_obligation(obligation.goal);
114             let return_ty = self.table.normalize_projection_ty(projection);
115             Some((arg_tys, return_ty))
116         } else {
117             None
118         }
119     }
120
121     pub(crate) fn callable_sig(&mut self, ty: &Ty, num_args: usize) -> Option<(Vec<Ty>, Ty)> {
122         match ty.callable_sig(self.db) {
123             Some(sig) => Some((sig.params().to_vec(), sig.ret().clone())),
124             None => self.callable_sig_from_fn_trait(ty, num_args),
125         }
126     }
127
128     fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
129         self.db.unwind_if_cancelled();
130
131         let body = Arc::clone(&self.body); // avoid borrow checker problem
132         let ty = match &body[tgt_expr] {
133             Expr::Missing => self.err_ty(),
134             &Expr::If { condition, then_branch, else_branch } => {
135                 // if let is desugared to match, so this is always simple if
136                 self.infer_expr(
137                     condition,
138                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
139                 );
140
141                 let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
142                 let mut both_arms_diverge = Diverges::Always;
143
144                 let result_ty = self.table.new_type_var();
145                 let then_ty = self.infer_expr_inner(then_branch, expected);
146                 both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
147                 let mut coerce = CoerceMany::new(result_ty);
148                 coerce.coerce(self, Some(then_branch), &then_ty);
149                 let else_ty = match else_branch {
150                     Some(else_branch) => self.infer_expr_inner(else_branch, expected),
151                     None => TyBuilder::unit(),
152                 };
153                 both_arms_diverge &= self.diverges;
154                 // FIXME: create a synthetic `else {}` so we have something to refer to here instead of None?
155                 coerce.coerce(self, else_branch, &else_ty);
156
157                 self.diverges = condition_diverges | both_arms_diverge;
158
159                 coerce.complete()
160             }
161             Expr::Block { statements, tail, label, id: _ } => {
162                 let old_resolver = mem::replace(
163                     &mut self.resolver,
164                     resolver_for_expr(self.db.upcast(), self.owner, tgt_expr),
165                 );
166                 let ty = match label {
167                     Some(_) => {
168                         let break_ty = self.table.new_type_var();
169                         self.breakables.push(BreakableContext {
170                             may_break: false,
171                             coerce: CoerceMany::new(break_ty.clone()),
172                             label: label.map(|label| self.body[label].name.clone()),
173                         });
174                         let ty = self.infer_block(
175                             tgt_expr,
176                             statements,
177                             *tail,
178                             &Expectation::has_type(break_ty),
179                         );
180                         let ctxt = self.breakables.pop().expect("breakable stack broken");
181                         if ctxt.may_break {
182                             ctxt.coerce.complete()
183                         } else {
184                             ty
185                         }
186                     }
187                     None => self.infer_block(tgt_expr, statements, *tail, expected),
188                 };
189                 self.resolver = old_resolver;
190                 ty
191             }
192             Expr::Unsafe { body } | Expr::Const { body } => self.infer_expr(*body, expected),
193             Expr::TryBlock { body } => {
194                 let _inner = self.infer_expr(*body, expected);
195                 // FIXME should be std::result::Result<{inner}, _>
196                 self.err_ty()
197             }
198             Expr::Async { body } => {
199                 // Use the first type parameter as the output type of future.
200                 // existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
201                 let inner_ty = self.infer_expr(*body, &Expectation::none());
202                 let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
203                 let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
204                 TyKind::OpaqueType(opaque_ty_id, Substitution::from1(Interner, inner_ty))
205                     .intern(Interner)
206             }
207             Expr::Loop { body, label } => {
208                 self.breakables.push(BreakableContext {
209                     may_break: false,
210                     coerce: CoerceMany::new(self.table.new_type_var()),
211                     label: label.map(|label| self.body[label].name.clone()),
212                 });
213                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
214
215                 let ctxt = self.breakables.pop().expect("breakable stack broken");
216
217                 if ctxt.may_break {
218                     self.diverges = Diverges::Maybe;
219                     ctxt.coerce.complete()
220                 } else {
221                     TyKind::Never.intern(Interner)
222                 }
223             }
224             Expr::While { condition, body, label } => {
225                 self.breakables.push(BreakableContext {
226                     may_break: false,
227                     coerce: CoerceMany::new(self.err_ty()),
228                     label: label.map(|label| self.body[label].name.clone()),
229                 });
230                 // while let is desugared to a match loop, so this is always simple while
231                 self.infer_expr(
232                     *condition,
233                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
234                 );
235                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
236                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
237                 // the body may not run, so it diverging doesn't mean we diverge
238                 self.diverges = Diverges::Maybe;
239                 TyBuilder::unit()
240             }
241             Expr::For { iterable, body, pat, label } => {
242                 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
243
244                 self.breakables.push(BreakableContext {
245                     may_break: false,
246                     coerce: CoerceMany::new(self.err_ty()),
247                     label: label.map(|label| self.body[label].name.clone()),
248                 });
249                 let pat_ty =
250                     self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
251
252                 self.infer_pat(*pat, &pat_ty, BindingMode::default());
253
254                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
255                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
256                 // the body may not run, so it diverging doesn't mean we diverge
257                 self.diverges = Diverges::Maybe;
258                 TyBuilder::unit()
259             }
260             Expr::Lambda { body, args, ret_type, arg_types } => {
261                 assert_eq!(args.len(), arg_types.len());
262
263                 let mut sig_tys = Vec::new();
264
265                 // collect explicitly written argument types
266                 for arg_type in arg_types.iter() {
267                     let arg_ty = match arg_type {
268                         Some(type_ref) => self.make_ty(type_ref),
269                         None => self.table.new_type_var(),
270                     };
271                     sig_tys.push(arg_ty);
272                 }
273
274                 // add return type
275                 let ret_ty = match ret_type {
276                     Some(type_ref) => self.make_ty(type_ref),
277                     None => self.table.new_type_var(),
278                 };
279                 sig_tys.push(ret_ty.clone());
280                 let sig_ty = TyKind::Function(FnPointer {
281                     num_binders: 0,
282                     sig: FnSig { abi: (), safety: chalk_ir::Safety::Safe, variadic: false },
283                     substitution: FnSubst(
284                         Substitution::from_iter(Interner, sig_tys.clone()).shifted_in(Interner),
285                     ),
286                 })
287                 .intern(Interner);
288                 let closure_id = self.db.intern_closure((self.owner, tgt_expr)).into();
289                 let closure_ty =
290                     TyKind::Closure(closure_id, Substitution::from1(Interner, sig_ty.clone()))
291                         .intern(Interner);
292
293                 // Eagerly try to relate the closure type with the expected
294                 // type, otherwise we often won't have enough information to
295                 // infer the body.
296                 self.deduce_closure_type_from_expectations(
297                     tgt_expr,
298                     &closure_ty,
299                     &sig_ty,
300                     expected,
301                 );
302
303                 // Now go through the argument patterns
304                 for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
305                     self.infer_pat(*arg_pat, &arg_ty, BindingMode::default());
306                 }
307
308                 let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
309                 let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
310
311                 self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
312
313                 self.diverges = prev_diverges;
314                 self.return_ty = prev_ret_ty;
315
316                 closure_ty
317             }
318             Expr::Call { callee, args } => {
319                 let callee_ty = self.infer_expr(*callee, &Expectation::none());
320                 let canonicalized = self.canonicalize(callee_ty.clone());
321                 let mut derefs = Autoderef::new(
322                     self.db,
323                     self.resolver.krate(),
324                     InEnvironment {
325                         goal: canonicalized.value.clone(),
326                         environment: self.table.trait_env.env.clone(),
327                     },
328                 );
329                 let res = derefs.by_ref().find_map(|(callee_deref_ty, _)| {
330                     let ty = &canonicalized.decanonicalize_ty(&mut self.table, callee_deref_ty);
331                     self.callable_sig(ty, args.len())
332                 });
333                 let (param_tys, ret_ty): (Vec<Ty>, Ty) = match res {
334                     Some(res) => {
335                         self.write_expr_adj(*callee, self.auto_deref_adjust_steps(&derefs));
336                         res
337                     }
338                     None => (Vec::new(), self.err_ty()),
339                 };
340                 self.register_obligations_for_call(&callee_ty);
341
342                 let expected_inputs = self.expected_inputs_for_expected_output(
343                     expected,
344                     ret_ty.clone(),
345                     param_tys.clone(),
346                 );
347
348                 self.check_call_arguments(args, &expected_inputs, &param_tys);
349                 self.normalize_associated_types_in(ret_ty)
350             }
351             Expr::MethodCall { receiver, args, method_name, generic_args } => self
352                 .infer_method_call(
353                     tgt_expr,
354                     *receiver,
355                     args,
356                     method_name,
357                     generic_args.as_deref(),
358                     expected,
359                 ),
360             Expr::Match { expr, arms } => {
361                 let input_ty = self.infer_expr(*expr, &Expectation::none());
362
363                 let expected = expected.adjust_for_branches(&mut self.table);
364
365                 let result_ty = if arms.is_empty() {
366                     TyKind::Never.intern(Interner)
367                 } else {
368                     match &expected {
369                         Expectation::HasType(ty) => ty.clone(),
370                         _ => self.table.new_type_var(),
371                     }
372                 };
373                 let mut coerce = CoerceMany::new(result_ty);
374
375                 let matchee_diverges = self.diverges;
376                 let mut all_arms_diverge = Diverges::Always;
377
378                 for arm in arms.iter() {
379                     self.diverges = Diverges::Maybe;
380                     let _pat_ty = self.infer_pat(arm.pat, &input_ty, BindingMode::default());
381                     match arm.guard {
382                         Some(MatchGuard::If { expr: guard_expr }) => {
383                             self.infer_expr(
384                                 guard_expr,
385                                 &Expectation::has_type(
386                                     TyKind::Scalar(Scalar::Bool).intern(Interner),
387                                 ),
388                             );
389                         }
390                         Some(MatchGuard::IfLet { expr, pat }) => {
391                             let input_ty = self.infer_expr(expr, &Expectation::none());
392                             let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
393                         }
394                         _ => {}
395                     }
396
397                     let arm_ty = self.infer_expr_inner(arm.expr, &expected);
398                     all_arms_diverge &= self.diverges;
399                     coerce.coerce(self, Some(arm.expr), &arm_ty);
400                 }
401
402                 self.diverges = matchee_diverges | all_arms_diverge;
403
404                 coerce.complete()
405             }
406             Expr::Path(p) => {
407                 // FIXME this could be more efficient...
408                 let resolver = resolver_for_expr(self.db.upcast(), self.owner, tgt_expr);
409                 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or_else(|| self.err_ty())
410             }
411             Expr::Continue { .. } => TyKind::Never.intern(Interner),
412             Expr::Break { expr, label } => {
413                 let mut coerce = match find_breakable(&mut self.breakables, label.as_ref()) {
414                     Some(ctxt) => {
415                         // avoiding the borrowck
416                         mem::replace(
417                             &mut ctxt.coerce,
418                             CoerceMany::new(self.result.standard_types.unknown.clone()),
419                         )
420                     }
421                     None => CoerceMany::new(self.result.standard_types.unknown.clone()),
422                 };
423
424                 let val_ty = if let Some(expr) = *expr {
425                     self.infer_expr(expr, &Expectation::none())
426                 } else {
427                     TyBuilder::unit()
428                 };
429
430                 // FIXME: create a synthetic `()` during lowering so we have something to refer to here?
431                 coerce.coerce(self, *expr, &val_ty);
432
433                 if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
434                     ctxt.coerce = coerce;
435                     ctxt.may_break = true;
436                 } else {
437                     self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
438                         expr: tgt_expr,
439                     });
440                 };
441
442                 TyKind::Never.intern(Interner)
443             }
444             Expr::Return { expr } => {
445                 if let Some(expr) = expr {
446                     self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
447                 } else {
448                     let unit = TyBuilder::unit();
449                     let _ = self.coerce(Some(tgt_expr), &unit, &self.return_ty.clone());
450                 }
451                 TyKind::Never.intern(Interner)
452             }
453             Expr::Yield { expr } => {
454                 // FIXME: track yield type for coercion
455                 if let Some(expr) = expr {
456                     self.infer_expr(*expr, &Expectation::none());
457                 }
458                 TyKind::Never.intern(Interner)
459             }
460             Expr::RecordLit { path, fields, spread } => {
461                 let (ty, def_id) = self.resolve_variant(path.as_deref(), false);
462                 if let Some(variant) = def_id {
463                     self.write_variant_resolution(tgt_expr.into(), variant);
464                 }
465
466                 if let Some(t) = expected.only_has_type(&mut self.table) {
467                     self.unify(&ty, &t);
468                 }
469
470                 let substs = ty
471                     .as_adt()
472                     .map(|(_, s)| s.clone())
473                     .unwrap_or_else(|| Substitution::empty(Interner));
474                 let field_types = def_id.map(|it| self.db.field_types(it)).unwrap_or_default();
475                 let variant_data = def_id.map(|it| it.variant_data(self.db.upcast()));
476                 for field in fields.iter() {
477                     let field_def =
478                         variant_data.as_ref().and_then(|it| match it.field(&field.name) {
479                             Some(local_id) => Some(FieldId { parent: def_id.unwrap(), local_id }),
480                             None => {
481                                 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
482                                     expr: field.expr,
483                                 });
484                                 None
485                             }
486                         });
487                     let field_ty = field_def.map_or(self.err_ty(), |it| {
488                         field_types[it.local_id].clone().substitute(Interner, &substs)
489                     });
490                     self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
491                 }
492                 if let Some(expr) = spread {
493                     self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
494                 }
495                 ty
496             }
497             Expr::Field { expr, name } => {
498                 let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
499                 let canonicalized = self.canonicalize(receiver_ty);
500
501                 let mut autoderef = Autoderef::new(
502                     self.db,
503                     self.resolver.krate(),
504                     InEnvironment {
505                         goal: canonicalized.value.clone(),
506                         environment: self.trait_env.env.clone(),
507                     },
508                 );
509                 let ty = autoderef.by_ref().find_map(|(derefed_ty, _)| {
510                     let module = self.resolver.module();
511                     let db = self.db;
512                     let is_visible = |field_id: &FieldId| {
513                         module
514                             .map(|mod_id| {
515                                 db.field_visibilities(field_id.parent)[field_id.local_id]
516                                     .is_visible_from(db.upcast(), mod_id)
517                             })
518                             .unwrap_or(true)
519                     };
520                     match canonicalized
521                         .decanonicalize_ty(&mut self.table, derefed_ty)
522                         .kind(Interner)
523                     {
524                         TyKind::Tuple(_, substs) => name.as_tuple_index().and_then(|idx| {
525                             substs
526                                 .as_slice(Interner)
527                                 .get(idx)
528                                 .map(|a| a.assert_ty_ref(Interner))
529                                 .cloned()
530                         }),
531                         TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => {
532                             let local_id = self.db.struct_data(*s).variant_data.field(name)?;
533                             let field = FieldId { parent: (*s).into(), local_id };
534                             if is_visible(&field) {
535                                 self.write_field_resolution(tgt_expr, field);
536                                 Some(
537                                     self.db.field_types((*s).into())[field.local_id]
538                                         .clone()
539                                         .substitute(Interner, &parameters),
540                                 )
541                             } else {
542                                 None
543                             }
544                         }
545                         TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => {
546                             let local_id = self.db.union_data(*u).variant_data.field(name)?;
547                             let field = FieldId { parent: (*u).into(), local_id };
548                             if is_visible(&field) {
549                                 self.write_field_resolution(tgt_expr, field);
550                                 Some(
551                                     self.db.field_types((*u).into())[field.local_id]
552                                         .clone()
553                                         .substitute(Interner, &parameters),
554                                 )
555                             } else {
556                                 None
557                             }
558                         }
559                         _ => None,
560                     }
561                 });
562                 let ty = match ty {
563                     Some(ty) => {
564                         self.write_expr_adj(*expr, self.auto_deref_adjust_steps(&autoderef));
565                         ty
566                     }
567                     None => self.err_ty(),
568                 };
569                 let ty = self.insert_type_vars(ty);
570                 self.normalize_associated_types_in(ty)
571             }
572             Expr::Await { expr } => {
573                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
574                 self.resolve_associated_type(inner_ty, self.resolve_future_future_output())
575             }
576             Expr::Try { expr } => {
577                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
578                 self.resolve_associated_type(inner_ty, self.resolve_ops_try_ok())
579             }
580             Expr::Cast { expr, type_ref } => {
581                 // FIXME: propagate the "castable to" expectation (and find a test case that shows this is necessary)
582                 let _inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
583                 let cast_ty = self.make_ty(type_ref);
584                 // FIXME check the cast...
585                 cast_ty
586             }
587             Expr::Ref { expr, rawness, mutability } => {
588                 let mutability = lower_to_chalk_mutability(*mutability);
589                 let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected
590                     .only_has_type(&mut self.table)
591                     .as_ref()
592                     .and_then(|t| t.as_reference_or_ptr())
593                 {
594                     if exp_mutability == Mutability::Mut && mutability == Mutability::Not {
595                         // FIXME: record type error - expected mut reference but found shared ref,
596                         // which cannot be coerced
597                     }
598                     if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
599                         // FIXME: record type error - expected reference but found ptr,
600                         // which cannot be coerced
601                     }
602                     Expectation::rvalue_hint(&mut self.table, Ty::clone(exp_inner))
603                 } else {
604                     Expectation::none()
605                 };
606                 let inner_ty = self.infer_expr_inner(*expr, &expectation);
607                 match rawness {
608                     Rawness::RawPtr => TyKind::Raw(mutability, inner_ty),
609                     Rawness::Ref => TyKind::Ref(mutability, static_lifetime(), inner_ty),
610                 }
611                 .intern(Interner)
612             }
613             Expr::Box { expr } => {
614                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
615                 if let Some(box_) = self.resolve_boxed_box() {
616                     TyBuilder::adt(self.db, box_)
617                         .push(inner_ty)
618                         .fill_with_defaults(self.db, || self.table.new_type_var())
619                         .build()
620                 } else {
621                     self.err_ty()
622                 }
623             }
624             Expr::UnaryOp { expr, op } => {
625                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
626                 let inner_ty = self.resolve_ty_shallow(&inner_ty);
627                 match op {
628                     UnaryOp::Deref => match self.resolver.krate() {
629                         Some(krate) => {
630                             let canonicalized = self.canonicalize(inner_ty);
631                             match autoderef::deref(
632                                 self.db,
633                                 krate,
634                                 InEnvironment {
635                                     goal: &canonicalized.value,
636                                     environment: self.trait_env.env.clone(),
637                                 },
638                             ) {
639                                 Some(derefed_ty) => {
640                                     canonicalized.decanonicalize_ty(&mut self.table, derefed_ty)
641                                 }
642                                 None => self.err_ty(),
643                             }
644                         }
645                         None => self.err_ty(),
646                     },
647                     UnaryOp::Neg => {
648                         match inner_ty.kind(Interner) {
649                             // Fast path for builtins
650                             TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_))
651                             | TyKind::InferenceVar(
652                                 _,
653                                 TyVariableKind::Integer | TyVariableKind::Float,
654                             ) => inner_ty,
655                             // Otherwise we resolve via the std::ops::Neg trait
656                             _ => self
657                                 .resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
658                         }
659                     }
660                     UnaryOp::Not => {
661                         match inner_ty.kind(Interner) {
662                             // Fast path for builtins
663                             TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_))
664                             | TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty,
665                             // Otherwise we resolve via the std::ops::Not trait
666                             _ => self
667                                 .resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
668                         }
669                     }
670                 }
671             }
672             Expr::BinaryOp { lhs, rhs, op } => match op {
673                 Some(BinaryOp::Assignment { op: None }) => {
674                     let lhs_ty = self.infer_expr(*lhs, &Expectation::none());
675                     self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty));
676                     self.result.standard_types.unit.clone()
677                 }
678                 Some(BinaryOp::LogicOp(_)) => {
679                     let bool_ty = self.result.standard_types.bool_.clone();
680                     self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone()));
681                     let lhs_diverges = self.diverges;
682                     self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone()));
683                     // Depending on the LHS' value, the RHS can never execute.
684                     self.diverges = lhs_diverges;
685                     bool_ty
686                 }
687                 Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr),
688                 _ => self.err_ty(),
689             },
690             Expr::Range { lhs, rhs, range_type } => {
691                 let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
692                 let rhs_expect = lhs_ty
693                     .as_ref()
694                     .map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
695                 let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
696                 match (range_type, lhs_ty, rhs_ty) {
697                     (RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
698                         Some(adt) => TyBuilder::adt(self.db, adt).build(),
699                         None => self.err_ty(),
700                     },
701                     (RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
702                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
703                         None => self.err_ty(),
704                     },
705                     (RangeOp::Inclusive, None, Some(ty)) => {
706                         match self.resolve_range_to_inclusive() {
707                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
708                             None => self.err_ty(),
709                         }
710                     }
711                     (RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
712                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
713                         None => self.err_ty(),
714                     },
715                     (RangeOp::Inclusive, Some(_), Some(ty)) => {
716                         match self.resolve_range_inclusive() {
717                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
718                             None => self.err_ty(),
719                         }
720                     }
721                     (RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
722                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
723                         None => self.err_ty(),
724                     },
725                     (RangeOp::Inclusive, _, None) => self.err_ty(),
726                 }
727             }
728             Expr::Index { base, index } => {
729                 let base_ty = self.infer_expr_inner(*base, &Expectation::none());
730                 let index_ty = self.infer_expr(*index, &Expectation::none());
731
732                 if let (Some(index_trait), Some(krate)) =
733                     (self.resolve_ops_index(), self.resolver.krate())
734                 {
735                     let canonicalized = self.canonicalize(base_ty);
736                     let self_ty = method_resolution::resolve_indexing_op(
737                         self.db,
738                         &canonicalized.value,
739                         self.trait_env.clone(),
740                         krate,
741                         index_trait,
742                     );
743                     let self_ty = self_ty.map_or(self.err_ty(), |t| {
744                         canonicalized.decanonicalize_ty(&mut self.table, t)
745                     });
746                     self.resolve_associated_type_with_params(
747                         self_ty,
748                         self.resolve_ops_index_output(),
749                         &[index_ty],
750                     )
751                 } else {
752                     self.err_ty()
753                 }
754             }
755             Expr::Tuple { exprs } => {
756                 let mut tys = match expected
757                     .only_has_type(&mut self.table)
758                     .as_ref()
759                     .map(|t| t.kind(Interner))
760                 {
761                     Some(TyKind::Tuple(_, substs)) => substs
762                         .iter(Interner)
763                         .map(|a| a.assert_ty_ref(Interner).clone())
764                         .chain(repeat_with(|| self.table.new_type_var()))
765                         .take(exprs.len())
766                         .collect::<Vec<_>>(),
767                     _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
768                 };
769
770                 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
771                     self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
772                 }
773
774                 TyKind::Tuple(tys.len(), Substitution::from_iter(Interner, tys)).intern(Interner)
775             }
776             Expr::Array(array) => {
777                 let elem_ty =
778                     match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(Interner)) {
779                         Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
780                         _ => self.table.new_type_var(),
781                     };
782                 let mut coerce = CoerceMany::new(elem_ty.clone());
783
784                 let expected = Expectation::has_type(elem_ty.clone());
785                 let len = match array {
786                     Array::ElementList(items) => {
787                         for &expr in items.iter() {
788                             let cur_elem_ty = self.infer_expr_inner(expr, &expected);
789                             coerce.coerce(self, Some(expr), &cur_elem_ty);
790                         }
791                         Some(items.len() as u64)
792                     }
793                     &Array::Repeat { initializer, repeat } => {
794                         self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty));
795                         self.infer_expr(
796                             repeat,
797                             &Expectation::has_type(
798                                 TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner),
799                             ),
800                         );
801
802                         consteval::eval_usize(
803                             repeat,
804                             consteval::ConstEvalCtx {
805                                 exprs: &body.exprs,
806                                 pats: &body.pats,
807                                 local_data: Default::default(),
808                                 infer: &mut |x| self.infer_expr(x, &expected),
809                             },
810                         )
811                     }
812                 };
813
814                 TyKind::Array(coerce.complete(), consteval::usize_const(len)).intern(Interner)
815             }
816             Expr::Literal(lit) => match lit {
817                 Literal::Bool(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
818                 Literal::String(..) => {
819                     TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(Interner))
820                         .intern(Interner)
821                 }
822                 Literal::ByteString(bs) => {
823                     let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner);
824
825                     let len = consteval::usize_const(Some(bs.len() as u64));
826
827                     let array_type = TyKind::Array(byte_type, len).intern(Interner);
828                     TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(Interner)
829                 }
830                 Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(Interner),
831                 Literal::Int(_v, ty) => match ty {
832                     Some(int_ty) => {
833                         TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty)))
834                             .intern(Interner)
835                     }
836                     None => self.table.new_integer_var(),
837                 },
838                 Literal::Uint(_v, ty) => match ty {
839                     Some(int_ty) => {
840                         TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty)))
841                             .intern(Interner)
842                     }
843                     None => self.table.new_integer_var(),
844                 },
845                 Literal::Float(_v, ty) => match ty {
846                     Some(float_ty) => {
847                         TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty)))
848                             .intern(Interner)
849                     }
850                     None => self.table.new_float_var(),
851                 },
852             },
853             Expr::MacroStmts { tail } => self.infer_expr_inner(*tail, expected),
854         };
855         // use a new type variable if we got unknown here
856         let ty = self.insert_type_vars_shallow(ty);
857         self.write_expr_ty(tgt_expr, ty.clone());
858         ty
859     }
860
861     fn infer_overloadable_binop(
862         &mut self,
863         lhs: ExprId,
864         op: BinaryOp,
865         rhs: ExprId,
866         tgt_expr: ExprId,
867     ) -> Ty {
868         let lhs_expectation = Expectation::none();
869         let lhs_ty = self.infer_expr(lhs, &lhs_expectation);
870         let rhs_ty = self.table.new_type_var();
871
872         let func = self.resolve_binop_method(op);
873         let func = match func {
874             Some(func) => func,
875             None => {
876                 let rhs_ty = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone());
877                 let rhs_ty = self.infer_expr_coerce(rhs, &Expectation::from_option(rhs_ty));
878                 return self
879                     .builtin_binary_op_return_ty(op, lhs_ty, rhs_ty)
880                     .unwrap_or_else(|| self.err_ty());
881             }
882         };
883
884         let subst = TyBuilder::subst_for_def(self.db, func)
885             .push(lhs_ty.clone())
886             .push(rhs_ty.clone())
887             .build();
888         self.write_method_resolution(tgt_expr, func, subst.clone());
889
890         let method_ty = self.db.value_ty(func.into()).substitute(Interner, &subst);
891         self.register_obligations_for_call(&method_ty);
892
893         self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone()));
894
895         let ret_ty = match method_ty.callable_sig(self.db) {
896             Some(sig) => sig.ret().clone(),
897             None => self.err_ty(),
898         };
899
900         let ret_ty = self.normalize_associated_types_in(ret_ty);
901
902         // FIXME: record autoref adjustments
903
904         // use knowledge of built-in binary ops, which can sometimes help inference
905         if let Some(builtin_rhs) = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone()) {
906             self.unify(&builtin_rhs, &rhs_ty);
907         }
908         if let Some(builtin_ret) = self.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty) {
909             self.unify(&builtin_ret, &ret_ty);
910         }
911
912         ret_ty
913     }
914
915     fn infer_block(
916         &mut self,
917         expr: ExprId,
918         statements: &[Statement],
919         tail: Option<ExprId>,
920         expected: &Expectation,
921     ) -> Ty {
922         for stmt in statements {
923             match stmt {
924                 Statement::Let { pat, type_ref, initializer, else_branch } => {
925                     let decl_ty = type_ref
926                         .as_ref()
927                         .map(|tr| self.make_ty(tr))
928                         .unwrap_or_else(|| self.err_ty());
929
930                     // Always use the declared type when specified
931                     let mut ty = decl_ty.clone();
932
933                     if let Some(expr) = initializer {
934                         let actual_ty =
935                             self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
936                         if decl_ty.is_unknown() {
937                             ty = actual_ty;
938                         }
939                     }
940
941                     if let Some(expr) = else_branch {
942                         self.infer_expr_coerce(
943                             *expr,
944                             &Expectation::has_type(Ty::new(Interner, TyKind::Never)),
945                         );
946                     }
947
948                     self.infer_pat(*pat, &ty, BindingMode::default());
949                 }
950                 Statement::Expr { expr, .. } => {
951                     self.infer_expr(*expr, &Expectation::none());
952                 }
953             }
954         }
955
956         if let Some(expr) = tail {
957             self.infer_expr_coerce(expr, expected)
958         } else {
959             // Citing rustc: if there is no explicit tail expression,
960             // that is typically equivalent to a tail expression
961             // of `()` -- except if the block diverges. In that
962             // case, there is no value supplied from the tail
963             // expression (assuming there are no other breaks,
964             // this implies that the type of the block will be
965             // `!`).
966             if self.diverges.is_always() {
967                 // we don't even make an attempt at coercion
968                 self.table.new_maybe_never_var()
969             } else {
970                 if let Some(t) = expected.only_has_type(&mut self.table) {
971                     let _ = self.coerce(Some(expr), &TyBuilder::unit(), &t);
972                 }
973                 TyBuilder::unit()
974             }
975         }
976     }
977
978     fn infer_method_call(
979         &mut self,
980         tgt_expr: ExprId,
981         receiver: ExprId,
982         args: &[ExprId],
983         method_name: &Name,
984         generic_args: Option<&GenericArgs>,
985         expected: &Expectation,
986     ) -> Ty {
987         let receiver_ty = self.infer_expr(receiver, &Expectation::none());
988         let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
989
990         let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
991
992         let resolved = self.resolver.krate().and_then(|krate| {
993             method_resolution::lookup_method(
994                 &canonicalized_receiver.value,
995                 self.db,
996                 self.trait_env.clone(),
997                 krate,
998                 &traits_in_scope,
999                 self.resolver.module(),
1000                 method_name,
1001             )
1002         });
1003         let (receiver_ty, method_ty, substs) = match resolved {
1004             Some((ty, func)) => {
1005                 let ty = canonicalized_receiver.decanonicalize_ty(&mut self.table, ty);
1006                 let generics = generics(self.db.upcast(), func.into());
1007                 let substs = self.substs_for_method_call(generics, generic_args, &ty);
1008                 self.write_method_resolution(tgt_expr, func, substs.clone());
1009                 (ty, self.db.value_ty(func.into()), substs)
1010             }
1011             None => (
1012                 receiver_ty,
1013                 Binders::empty(Interner, self.err_ty()),
1014                 Substitution::empty(Interner),
1015             ),
1016         };
1017         let method_ty = method_ty.substitute(Interner, &substs);
1018         self.register_obligations_for_call(&method_ty);
1019         let (formal_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
1020             Some(sig) => {
1021                 if !sig.params().is_empty() {
1022                     (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
1023                 } else {
1024                     (self.err_ty(), Vec::new(), sig.ret().clone())
1025                 }
1026             }
1027             None => (self.err_ty(), Vec::new(), self.err_ty()),
1028         };
1029         self.unify(&formal_receiver_ty, &receiver_ty);
1030
1031         let expected_inputs =
1032             self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone());
1033
1034         self.check_call_arguments(args, &expected_inputs, &param_tys);
1035         self.normalize_associated_types_in(ret_ty)
1036     }
1037
1038     fn expected_inputs_for_expected_output(
1039         &mut self,
1040         expected_output: &Expectation,
1041         output: Ty,
1042         inputs: Vec<Ty>,
1043     ) -> Vec<Ty> {
1044         if let Some(expected_ty) = expected_output.to_option(&mut self.table) {
1045             self.table.fudge_inference(|table| {
1046                 if table.try_unify(&expected_ty, &output).is_ok() {
1047                     table.resolve_with_fallback(inputs, &|var, kind, _, _| match kind {
1048                         chalk_ir::VariableKind::Ty(tk) => var.to_ty(Interner, tk).cast(Interner),
1049                         chalk_ir::VariableKind::Lifetime => {
1050                             var.to_lifetime(Interner).cast(Interner)
1051                         }
1052                         chalk_ir::VariableKind::Const(ty) => {
1053                             var.to_const(Interner, ty).cast(Interner)
1054                         }
1055                     })
1056                 } else {
1057                     Vec::new()
1058                 }
1059             })
1060         } else {
1061             Vec::new()
1062         }
1063     }
1064
1065     fn check_call_arguments(&mut self, args: &[ExprId], expected_inputs: &[Ty], param_tys: &[Ty]) {
1066         // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
1067         // We do this in a pretty awful way: first we type-check any arguments
1068         // that are not closures, then we type-check the closures. This is so
1069         // that we have more information about the types of arguments when we
1070         // type-check the functions. This isn't really the right way to do this.
1071         for &check_closures in &[false, true] {
1072             let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty()));
1073             let expected_iter = expected_inputs
1074                 .iter()
1075                 .cloned()
1076                 .chain(param_iter.clone().skip(expected_inputs.len()));
1077             for ((&arg, param_ty), expected_ty) in args.iter().zip(param_iter).zip(expected_iter) {
1078                 let is_closure = matches!(&self.body[arg], Expr::Lambda { .. });
1079                 if is_closure != check_closures {
1080                     continue;
1081                 }
1082
1083                 // the difference between param_ty and expected here is that
1084                 // expected is the parameter when the expected *return* type is
1085                 // taken into account. So in `let _: &[i32] = identity(&[1, 2])`
1086                 // the expected type is already `&[i32]`, whereas param_ty is
1087                 // still an unbound type variable. We don't always want to force
1088                 // the parameter to coerce to the expected type (for example in
1089                 // `coerce_unsize_expected_type_4`).
1090                 let param_ty = self.normalize_associated_types_in(param_ty);
1091                 let expected = Expectation::rvalue_hint(&mut self.table, expected_ty);
1092                 // infer with the expected type we have...
1093                 let ty = self.infer_expr_inner(arg, &expected);
1094
1095                 // then coerce to either the expected type or just the formal parameter type
1096                 let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) {
1097                     // if we are coercing to the expectation, unify with the
1098                     // formal parameter type to connect everything
1099                     self.unify(&ty, &param_ty);
1100                     ty
1101                 } else {
1102                     param_ty
1103                 };
1104                 if !coercion_target.is_unknown() {
1105                     if self.coerce(Some(arg), &ty, &coercion_target).is_err() {
1106                         self.result.type_mismatches.insert(
1107                             arg.into(),
1108                             TypeMismatch { expected: coercion_target, actual: ty.clone() },
1109                         );
1110                     }
1111                 }
1112             }
1113         }
1114     }
1115
1116     fn substs_for_method_call(
1117         &mut self,
1118         def_generics: Generics,
1119         generic_args: Option<&GenericArgs>,
1120         receiver_ty: &Ty,
1121     ) -> Substitution {
1122         let (parent_params, self_params, type_params, impl_trait_params) =
1123             def_generics.provenance_split();
1124         assert_eq!(self_params, 0); // method shouldn't have another Self param
1125         let total_len = parent_params + type_params + impl_trait_params;
1126         let mut substs = Vec::with_capacity(total_len);
1127         // Parent arguments are unknown, except for the receiver type
1128         for (_id, param) in def_generics.iter_parent() {
1129             if param.provenance == hir_def::generics::TypeParamProvenance::TraitSelf {
1130                 substs.push(receiver_ty.clone());
1131             } else {
1132                 substs.push(self.table.new_type_var());
1133             }
1134         }
1135         // handle provided type arguments
1136         if let Some(generic_args) = generic_args {
1137             // if args are provided, it should be all of them, but we can't rely on that
1138             for arg in generic_args
1139                 .args
1140                 .iter()
1141                 .filter(|arg| matches!(arg, GenericArg::Type(_)))
1142                 .take(type_params)
1143             {
1144                 match arg {
1145                     GenericArg::Type(type_ref) => {
1146                         let ty = self.make_ty(type_ref);
1147                         substs.push(ty);
1148                     }
1149                     GenericArg::Lifetime(_) => {}
1150                 }
1151             }
1152         };
1153         let supplied_params = substs.len();
1154         for _ in supplied_params..total_len {
1155             substs.push(self.table.new_type_var());
1156         }
1157         assert_eq!(substs.len(), total_len);
1158         Substitution::from_iter(Interner, substs)
1159     }
1160
1161     fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
1162         let callable_ty = self.resolve_ty_shallow(callable_ty);
1163         if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(Interner) {
1164             let def: CallableDefId = from_chalk(self.db, *fn_def);
1165             let generic_predicates = self.db.generic_predicates(def.into());
1166             for predicate in generic_predicates.iter() {
1167                 let (predicate, binders) = predicate
1168                     .clone()
1169                     .substitute(Interner, parameters)
1170                     .into_value_and_skipped_binders();
1171                 always!(binders.len(Interner) == 0); // quantified where clauses not yet handled
1172                 self.push_obligation(predicate.cast(Interner));
1173             }
1174             // add obligation for trait implementation, if this is a trait method
1175             match def {
1176                 CallableDefId::FunctionId(f) => {
1177                     if let ItemContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container {
1178                         // construct a TraitRef
1179                         let substs = crate::subst_prefix(
1180                             &*parameters,
1181                             generics(self.db.upcast(), trait_.into()).len(),
1182                         );
1183                         self.push_obligation(
1184                             TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs }
1185                                 .cast(Interner),
1186                         );
1187                     }
1188                 }
1189                 CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {}
1190             }
1191         }
1192     }
1193
1194     fn builtin_binary_op_return_ty(&mut self, op: BinaryOp, lhs_ty: Ty, rhs_ty: Ty) -> Option<Ty> {
1195         let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
1196         let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
1197         match op {
1198             BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => {
1199                 Some(TyKind::Scalar(Scalar::Bool).intern(Interner))
1200             }
1201             BinaryOp::Assignment { .. } => Some(TyBuilder::unit()),
1202             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
1203                 // all integer combinations are valid here
1204                 if matches!(
1205                     lhs_ty.kind(Interner),
1206                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1207                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1208                 ) && matches!(
1209                     rhs_ty.kind(Interner),
1210                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1211                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1212                 ) {
1213                     Some(lhs_ty)
1214                 } else {
1215                     None
1216                 }
1217             }
1218             BinaryOp::ArithOp(_) => match (lhs_ty.kind(Interner), rhs_ty.kind(Interner)) {
1219                 // (int, int) | (uint, uint) | (float, float)
1220                 (TyKind::Scalar(Scalar::Int(_)), TyKind::Scalar(Scalar::Int(_)))
1221                 | (TyKind::Scalar(Scalar::Uint(_)), TyKind::Scalar(Scalar::Uint(_)))
1222                 | (TyKind::Scalar(Scalar::Float(_)), TyKind::Scalar(Scalar::Float(_))) => {
1223                     Some(rhs_ty)
1224                 }
1225                 // ({int}, int) | ({int}, uint)
1226                 (
1227                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1228                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1229                 ) => Some(rhs_ty),
1230                 // (int, {int}) | (uint, {int})
1231                 (
1232                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1233                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1234                 ) => Some(lhs_ty),
1235                 // ({float} | float)
1236                 (
1237                     TyKind::InferenceVar(_, TyVariableKind::Float),
1238                     TyKind::Scalar(Scalar::Float(_)),
1239                 ) => Some(rhs_ty),
1240                 // (float, {float})
1241                 (
1242                     TyKind::Scalar(Scalar::Float(_)),
1243                     TyKind::InferenceVar(_, TyVariableKind::Float),
1244                 ) => Some(lhs_ty),
1245                 // ({int}, {int}) | ({float}, {float})
1246                 (
1247                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1248                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1249                 )
1250                 | (
1251                     TyKind::InferenceVar(_, TyVariableKind::Float),
1252                     TyKind::InferenceVar(_, TyVariableKind::Float),
1253                 ) => Some(rhs_ty),
1254                 _ => None,
1255             },
1256         }
1257     }
1258
1259     fn builtin_binary_op_rhs_expectation(&mut self, op: BinaryOp, lhs_ty: Ty) -> Option<Ty> {
1260         Some(match op {
1261             BinaryOp::LogicOp(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
1262             BinaryOp::Assignment { op: None } => lhs_ty,
1263             BinaryOp::CmpOp(CmpOp::Eq { .. }) => match self
1264                 .resolve_ty_shallow(&lhs_ty)
1265                 .kind(Interner)
1266             {
1267                 TyKind::Scalar(_) | TyKind::Str => lhs_ty,
1268                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1269                 _ => return None,
1270             },
1271             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => return None,
1272             BinaryOp::CmpOp(CmpOp::Ord { .. })
1273             | BinaryOp::Assignment { op: Some(_) }
1274             | BinaryOp::ArithOp(_) => match self.resolve_ty_shallow(&lhs_ty).kind(Interner) {
1275                 TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) => lhs_ty,
1276                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1277                 _ => return None,
1278             },
1279         })
1280     }
1281
1282     fn resolve_binop_method(&self, op: BinaryOp) -> Option<FunctionId> {
1283         let (name, lang_item) = match op {
1284             BinaryOp::LogicOp(_) => return None,
1285             BinaryOp::ArithOp(aop) => match aop {
1286                 ArithOp::Add => (name!(add), name!(add)),
1287                 ArithOp::Mul => (name!(mul), name!(mul)),
1288                 ArithOp::Sub => (name!(sub), name!(sub)),
1289                 ArithOp::Div => (name!(div), name!(div)),
1290                 ArithOp::Rem => (name!(rem), name!(rem)),
1291                 ArithOp::Shl => (name!(shl), name!(shl)),
1292                 ArithOp::Shr => (name!(shr), name!(shr)),
1293                 ArithOp::BitXor => (name!(bitxor), name!(bitxor)),
1294                 ArithOp::BitOr => (name!(bitor), name!(bitor)),
1295                 ArithOp::BitAnd => (name!(bitand), name!(bitand)),
1296             },
1297             BinaryOp::Assignment { op: Some(aop) } => match aop {
1298                 ArithOp::Add => (name!(add_assign), name!(add_assign)),
1299                 ArithOp::Mul => (name!(mul_assign), name!(mul_assign)),
1300                 ArithOp::Sub => (name!(sub_assign), name!(sub_assign)),
1301                 ArithOp::Div => (name!(div_assign), name!(div_assign)),
1302                 ArithOp::Rem => (name!(rem_assign), name!(rem_assign)),
1303                 ArithOp::Shl => (name!(shl_assign), name!(shl_assign)),
1304                 ArithOp::Shr => (name!(shr_assign), name!(shr_assign)),
1305                 ArithOp::BitXor => (name!(bitxor_assign), name!(bitxor_assign)),
1306                 ArithOp::BitOr => (name!(bitor_assign), name!(bitor_assign)),
1307                 ArithOp::BitAnd => (name!(bitand_assign), name!(bitand_assign)),
1308             },
1309             BinaryOp::CmpOp(cop) => match cop {
1310                 CmpOp::Eq { negated: false } => (name!(eq), name!(eq)),
1311                 CmpOp::Eq { negated: true } => (name!(ne), name!(eq)),
1312                 CmpOp::Ord { ordering: Ordering::Less, strict: false } => {
1313                     (name!(le), name!(partial_ord))
1314                 }
1315                 CmpOp::Ord { ordering: Ordering::Less, strict: true } => {
1316                     (name!(lt), name!(partial_ord))
1317                 }
1318                 CmpOp::Ord { ordering: Ordering::Greater, strict: false } => {
1319                     (name!(ge), name!(partial_ord))
1320                 }
1321                 CmpOp::Ord { ordering: Ordering::Greater, strict: true } => {
1322                     (name!(gt), name!(partial_ord))
1323                 }
1324             },
1325             BinaryOp::Assignment { op: None } => return None,
1326         };
1327
1328         let trait_ = self.resolve_lang_item(lang_item)?.as_trait()?;
1329
1330         self.db.trait_data(trait_).method_by_name(&name)
1331     }
1332 }