]> git.lizzy.rs Git - rust.git/blob - crates/hir_ty/src/infer/expr.rs
Add const generics
[rust.git] / crates / hir_ty / src / infer / expr.rs
1 //! Type inference for expressions.
2
3 use std::{
4     collections::hash_map::Entry,
5     iter::{repeat, repeat_with},
6     mem,
7     sync::Arc,
8 };
9
10 use chalk_ir::{
11     cast::Cast, fold::Shift, DebruijnIndex, GenericArgData, Mutability, TyVariableKind,
12 };
13 use hir_def::{
14     expr::{ArithOp, Array, BinaryOp, CmpOp, Expr, ExprId, Literal, Ordering, Statement, UnaryOp},
15     generics::TypeOrConstParamData,
16     path::{GenericArg, GenericArgs},
17     resolver::resolver_for_expr,
18     ConstParamId, FieldId, FunctionId, ItemContainerId, Lookup,
19 };
20 use hir_expand::name::{name, Name};
21 use stdx::always;
22 use syntax::ast::RangeOp;
23
24 use crate::{
25     autoderef::{self, Autoderef},
26     consteval,
27     infer::coerce::CoerceMany,
28     lower::{
29         const_or_path_to_chalk, generic_arg_to_chalk, lower_to_chalk_mutability, ParamLoweringMode,
30     },
31     mapping::from_chalk,
32     method_resolution,
33     primitive::{self, UintTy},
34     static_lifetime, to_chalk_trait_id,
35     utils::{generics, Generics},
36     AdtId, Binders, CallableDefId, FnPointer, FnSig, FnSubst, Interner, Rawness, Scalar,
37     Substitution, TraitRef, Ty, TyBuilder, TyExt, TyKind,
38 };
39
40 use super::{
41     coerce::auto_deref_adjust_steps, find_breakable, BindingMode, BreakableContext, Diverges,
42     Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch,
43 };
44
45 impl<'a> InferenceContext<'a> {
46     pub(crate) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
47         let ty = self.infer_expr_inner(tgt_expr, expected);
48         if self.resolve_ty_shallow(&ty).is_never() {
49             // Any expression that produces a value of type `!` must have diverged
50             self.diverges = Diverges::Always;
51         }
52         if let Some(expected_ty) = expected.only_has_type(&mut self.table) {
53             let could_unify = self.unify(&ty, &expected_ty);
54             if !could_unify {
55                 self.result.type_mismatches.insert(
56                     tgt_expr.into(),
57                     TypeMismatch { expected: expected_ty, actual: ty.clone() },
58                 );
59             }
60         }
61         ty
62     }
63
64     /// Infer type of expression with possibly implicit coerce to the expected type.
65     /// Return the type after possible coercion.
66     pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
67         let ty = self.infer_expr_inner(expr, expected);
68         if let Some(target) = expected.only_has_type(&mut self.table) {
69             match self.coerce(Some(expr), &ty, &target) {
70                 Ok(res) => res.value,
71                 Err(_) => {
72                     self.result
73                         .type_mismatches
74                         .insert(expr.into(), TypeMismatch { expected: target, actual: ty.clone() });
75                     // Return actual type when type mismatch.
76                     // This is needed for diagnostic when return type mismatch.
77                     ty
78                 }
79             }
80         } else {
81             ty
82         }
83     }
84
85     fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
86         self.db.unwind_if_cancelled();
87
88         let body = Arc::clone(&self.body); // avoid borrow checker problem
89         let ty = match &body[tgt_expr] {
90             Expr::Missing => self.err_ty(),
91             &Expr::If { condition, then_branch, else_branch } => {
92                 self.infer_expr(
93                     condition,
94                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
95                 );
96
97                 let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
98                 let mut both_arms_diverge = Diverges::Always;
99
100                 let result_ty = self.table.new_type_var();
101                 let then_ty = self.infer_expr_inner(then_branch, expected);
102                 both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
103                 let mut coerce = CoerceMany::new(result_ty);
104                 coerce.coerce(self, Some(then_branch), &then_ty);
105                 let else_ty = match else_branch {
106                     Some(else_branch) => self.infer_expr_inner(else_branch, expected),
107                     None => TyBuilder::unit(),
108                 };
109                 both_arms_diverge &= self.diverges;
110                 // FIXME: create a synthetic `else {}` so we have something to refer to here instead of None?
111                 coerce.coerce(self, else_branch, &else_ty);
112
113                 self.diverges = condition_diverges | both_arms_diverge;
114
115                 coerce.complete()
116             }
117             &Expr::Let { pat, expr } => {
118                 let input_ty = self.infer_expr(expr, &Expectation::none());
119                 self.infer_pat(pat, &input_ty, BindingMode::default());
120                 TyKind::Scalar(Scalar::Bool).intern(Interner)
121             }
122             Expr::Block { statements, tail, label, id: _ } => {
123                 let old_resolver = mem::replace(
124                     &mut self.resolver,
125                     resolver_for_expr(self.db.upcast(), self.owner, tgt_expr),
126                 );
127                 let ty = match label {
128                     Some(_) => {
129                         let break_ty = self.table.new_type_var();
130                         self.breakables.push(BreakableContext {
131                             may_break: false,
132                             coerce: CoerceMany::new(break_ty.clone()),
133                             label: label.map(|label| self.body[label].name.clone()),
134                         });
135                         let ty = self.infer_block(
136                             tgt_expr,
137                             statements,
138                             *tail,
139                             &Expectation::has_type(break_ty),
140                         );
141                         let ctxt = self.breakables.pop().expect("breakable stack broken");
142                         if ctxt.may_break {
143                             ctxt.coerce.complete()
144                         } else {
145                             ty
146                         }
147                     }
148                     None => self.infer_block(tgt_expr, statements, *tail, expected),
149                 };
150                 self.resolver = old_resolver;
151                 ty
152             }
153             Expr::Unsafe { body } | Expr::Const { body } => self.infer_expr(*body, expected),
154             Expr::TryBlock { body } => {
155                 let _inner = self.infer_expr(*body, expected);
156                 // FIXME should be std::result::Result<{inner}, _>
157                 self.err_ty()
158             }
159             Expr::Async { body } => {
160                 // Use the first type parameter as the output type of future.
161                 // existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
162                 let inner_ty = self.infer_expr(*body, &Expectation::none());
163                 let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
164                 let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
165                 TyKind::OpaqueType(opaque_ty_id, Substitution::from1(Interner, inner_ty))
166                     .intern(Interner)
167             }
168             Expr::Loop { body, label } => {
169                 self.breakables.push(BreakableContext {
170                     may_break: false,
171                     coerce: CoerceMany::new(self.table.new_type_var()),
172                     label: label.map(|label| self.body[label].name.clone()),
173                 });
174                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
175
176                 let ctxt = self.breakables.pop().expect("breakable stack broken");
177
178                 if ctxt.may_break {
179                     self.diverges = Diverges::Maybe;
180                     ctxt.coerce.complete()
181                 } else {
182                     TyKind::Never.intern(Interner)
183                 }
184             }
185             Expr::While { condition, body, label } => {
186                 self.breakables.push(BreakableContext {
187                     may_break: false,
188                     coerce: CoerceMany::new(self.err_ty()),
189                     label: label.map(|label| self.body[label].name.clone()),
190                 });
191                 self.infer_expr(
192                     *condition,
193                     &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
194                 );
195                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
196                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
197                 // the body may not run, so it diverging doesn't mean we diverge
198                 self.diverges = Diverges::Maybe;
199                 TyBuilder::unit()
200             }
201             Expr::For { iterable, body, pat, label } => {
202                 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
203
204                 self.breakables.push(BreakableContext {
205                     may_break: false,
206                     coerce: CoerceMany::new(self.err_ty()),
207                     label: label.map(|label| self.body[label].name.clone()),
208                 });
209                 let pat_ty =
210                     self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
211
212                 self.infer_pat(*pat, &pat_ty, BindingMode::default());
213
214                 self.infer_expr(*body, &Expectation::has_type(TyBuilder::unit()));
215                 let _ctxt = self.breakables.pop().expect("breakable stack broken");
216                 // the body may not run, so it diverging doesn't mean we diverge
217                 self.diverges = Diverges::Maybe;
218                 TyBuilder::unit()
219             }
220             Expr::Lambda { body, args, ret_type, arg_types } => {
221                 assert_eq!(args.len(), arg_types.len());
222
223                 let mut sig_tys = Vec::new();
224
225                 // collect explicitly written argument types
226                 for arg_type in arg_types.iter() {
227                     let arg_ty = match arg_type {
228                         Some(type_ref) => self.make_ty(type_ref),
229                         None => self.table.new_type_var(),
230                     };
231                     sig_tys.push(arg_ty);
232                 }
233
234                 // add return type
235                 let ret_ty = match ret_type {
236                     Some(type_ref) => self.make_ty(type_ref),
237                     None => self.table.new_type_var(),
238                 };
239                 sig_tys.push(ret_ty.clone());
240                 let sig_ty = TyKind::Function(FnPointer {
241                     num_binders: 0,
242                     sig: FnSig { abi: (), safety: chalk_ir::Safety::Safe, variadic: false },
243                     substitution: FnSubst(
244                         Substitution::from_iter(Interner, sig_tys.clone()).shifted_in(Interner),
245                     ),
246                 })
247                 .intern(Interner);
248                 let closure_id = self.db.intern_closure((self.owner, tgt_expr)).into();
249                 let closure_ty =
250                     TyKind::Closure(closure_id, Substitution::from1(Interner, sig_ty.clone()))
251                         .intern(Interner);
252
253                 // Eagerly try to relate the closure type with the expected
254                 // type, otherwise we often won't have enough information to
255                 // infer the body.
256                 self.deduce_closure_type_from_expectations(
257                     tgt_expr,
258                     &closure_ty,
259                     &sig_ty,
260                     expected,
261                 );
262
263                 // Now go through the argument patterns
264                 for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
265                     self.infer_pat(*arg_pat, &arg_ty, BindingMode::default());
266                 }
267
268                 let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
269                 let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
270
271                 self.infer_expr_coerce(*body, &Expectation::has_type(ret_ty));
272
273                 self.diverges = prev_diverges;
274                 self.return_ty = prev_ret_ty;
275
276                 closure_ty
277             }
278             Expr::Call { callee, args } => {
279                 let callee_ty = self.infer_expr(*callee, &Expectation::none());
280                 let mut derefs = Autoderef::new(&mut self.table, callee_ty.clone());
281                 let mut res = None;
282                 // manual loop to be able to access `derefs.table`
283                 while let Some((callee_deref_ty, _)) = derefs.next() {
284                     res = derefs.table.callable_sig(&callee_deref_ty, args.len());
285                     if res.is_some() {
286                         break;
287                     }
288                 }
289                 let (param_tys, ret_ty): (Vec<Ty>, Ty) = match res {
290                     Some(res) => {
291                         let adjustments = auto_deref_adjust_steps(&derefs);
292                         self.write_expr_adj(*callee, adjustments);
293                         res
294                     }
295                     None => (Vec::new(), self.err_ty()),
296                 };
297                 self.register_obligations_for_call(&callee_ty);
298
299                 let expected_inputs = self.expected_inputs_for_expected_output(
300                     expected,
301                     ret_ty.clone(),
302                     param_tys.clone(),
303                 );
304
305                 self.check_call_arguments(args, &expected_inputs, &param_tys);
306                 self.normalize_associated_types_in(ret_ty)
307             }
308             Expr::MethodCall { receiver, args, method_name, generic_args } => self
309                 .infer_method_call(
310                     tgt_expr,
311                     *receiver,
312                     args,
313                     method_name,
314                     generic_args.as_deref(),
315                     expected,
316                 ),
317             Expr::Match { expr, arms } => {
318                 let input_ty = self.infer_expr(*expr, &Expectation::none());
319
320                 let expected = expected.adjust_for_branches(&mut self.table);
321
322                 let result_ty = if arms.is_empty() {
323                     TyKind::Never.intern(Interner)
324                 } else {
325                     match &expected {
326                         Expectation::HasType(ty) => ty.clone(),
327                         _ => self.table.new_type_var(),
328                     }
329                 };
330                 let mut coerce = CoerceMany::new(result_ty);
331
332                 let matchee_diverges = self.diverges;
333                 let mut all_arms_diverge = Diverges::Always;
334
335                 for arm in arms.iter() {
336                     self.diverges = Diverges::Maybe;
337                     let _pat_ty = self.infer_pat(arm.pat, &input_ty, BindingMode::default());
338                     if let Some(guard_expr) = arm.guard {
339                         self.infer_expr(
340                             guard_expr,
341                             &Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(Interner)),
342                         );
343                     }
344
345                     let arm_ty = self.infer_expr_inner(arm.expr, &expected);
346                     all_arms_diverge &= self.diverges;
347                     coerce.coerce(self, Some(arm.expr), &arm_ty);
348                 }
349
350                 self.diverges = matchee_diverges | all_arms_diverge;
351
352                 coerce.complete()
353             }
354             Expr::Path(p) => {
355                 // FIXME this could be more efficient...
356                 let resolver = resolver_for_expr(self.db.upcast(), self.owner, tgt_expr);
357                 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or_else(|| self.err_ty())
358             }
359             Expr::Continue { .. } => TyKind::Never.intern(Interner),
360             Expr::Break { expr, label } => {
361                 let mut coerce = match find_breakable(&mut self.breakables, label.as_ref()) {
362                     Some(ctxt) => {
363                         // avoiding the borrowck
364                         mem::replace(
365                             &mut ctxt.coerce,
366                             CoerceMany::new(self.result.standard_types.unknown.clone()),
367                         )
368                     }
369                     None => CoerceMany::new(self.result.standard_types.unknown.clone()),
370                 };
371
372                 let val_ty = if let Some(expr) = *expr {
373                     self.infer_expr(expr, &Expectation::none())
374                 } else {
375                     TyBuilder::unit()
376                 };
377
378                 // FIXME: create a synthetic `()` during lowering so we have something to refer to here?
379                 coerce.coerce(self, *expr, &val_ty);
380
381                 if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
382                     ctxt.coerce = coerce;
383                     ctxt.may_break = true;
384                 } else {
385                     self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
386                         expr: tgt_expr,
387                     });
388                 };
389
390                 TyKind::Never.intern(Interner)
391             }
392             Expr::Return { expr } => {
393                 if let Some(expr) = expr {
394                     self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
395                 } else {
396                     let unit = TyBuilder::unit();
397                     let _ = self.coerce(Some(tgt_expr), &unit, &self.return_ty.clone());
398                 }
399                 TyKind::Never.intern(Interner)
400             }
401             Expr::Yield { expr } => {
402                 // FIXME: track yield type for coercion
403                 if let Some(expr) = expr {
404                     self.infer_expr(*expr, &Expectation::none());
405                 }
406                 TyKind::Never.intern(Interner)
407             }
408             Expr::RecordLit { path, fields, spread } => {
409                 let (ty, def_id) = self.resolve_variant(path.as_deref(), false);
410                 if let Some(variant) = def_id {
411                     self.write_variant_resolution(tgt_expr.into(), variant);
412                 }
413
414                 if let Some(t) = expected.only_has_type(&mut self.table) {
415                     self.unify(&ty, &t);
416                 }
417
418                 let substs = ty
419                     .as_adt()
420                     .map(|(_, s)| s.clone())
421                     .unwrap_or_else(|| Substitution::empty(Interner));
422                 let field_types = def_id.map(|it| self.db.field_types(it)).unwrap_or_default();
423                 let variant_data = def_id.map(|it| it.variant_data(self.db.upcast()));
424                 for field in fields.iter() {
425                     let field_def =
426                         variant_data.as_ref().and_then(|it| match it.field(&field.name) {
427                             Some(local_id) => Some(FieldId { parent: def_id.unwrap(), local_id }),
428                             None => {
429                                 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
430                                     expr: field.expr,
431                                 });
432                                 None
433                             }
434                         });
435                     let field_ty = field_def.map_or(self.err_ty(), |it| {
436                         field_types[it.local_id].clone().substitute(Interner, &substs)
437                     });
438                     self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
439                 }
440                 if let Some(expr) = spread {
441                     self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
442                 }
443                 ty
444             }
445             Expr::Field { expr, name } => {
446                 let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
447
448                 let mut autoderef = Autoderef::new(&mut self.table, receiver_ty);
449                 let ty = autoderef.by_ref().find_map(|(derefed_ty, _)| {
450                     let (field_id, parameters) = match derefed_ty.kind(Interner) {
451                         TyKind::Tuple(_, substs) => {
452                             return name.as_tuple_index().and_then(|idx| {
453                                 substs
454                                     .as_slice(Interner)
455                                     .get(idx)
456                                     .map(|a| a.assert_ty_ref(Interner))
457                                     .cloned()
458                             });
459                         }
460                         TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => {
461                             let local_id = self.db.struct_data(*s).variant_data.field(name)?;
462                             let field = FieldId { parent: (*s).into(), local_id };
463                             (field, parameters.clone())
464                         }
465                         TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => {
466                             let local_id = self.db.union_data(*u).variant_data.field(name)?;
467                             let field = FieldId { parent: (*u).into(), local_id };
468                             (field, parameters.clone())
469                         }
470                         _ => return None,
471                     };
472                     let module = self.resolver.module();
473                     let is_visible = module
474                         .map(|mod_id| {
475                             self.db.field_visibilities(field_id.parent)[field_id.local_id]
476                                 .is_visible_from(self.db.upcast(), mod_id)
477                         })
478                         .unwrap_or(true);
479                     if !is_visible {
480                         // Write down the first field resolution even if it is not visible
481                         // This aids IDE features for private fields like goto def and in
482                         // case of autoderef finding an applicable field, this will be
483                         // overwritten in a following cycle
484                         if let Entry::Vacant(entry) = self.result.field_resolutions.entry(tgt_expr)
485                         {
486                             entry.insert(field_id);
487                         }
488                         return None;
489                     }
490                     // can't have `write_field_resolution` here because `self.table` is borrowed :(
491                     self.result.field_resolutions.insert(tgt_expr, field_id);
492                     let ty = self.db.field_types(field_id.parent)[field_id.local_id]
493                         .clone()
494                         .substitute(Interner, &parameters);
495                     Some(ty)
496                 });
497                 let ty = match ty {
498                     Some(ty) => {
499                         let adjustments = auto_deref_adjust_steps(&autoderef);
500                         self.write_expr_adj(*expr, adjustments);
501                         let ty = self.insert_type_vars(ty);
502                         let ty = self.normalize_associated_types_in(ty);
503                         ty
504                     }
505                     _ => self.err_ty(),
506                 };
507                 ty
508             }
509             Expr::Await { expr } => {
510                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
511                 self.resolve_associated_type(inner_ty, self.resolve_future_future_output())
512             }
513             Expr::Try { expr } => {
514                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
515                 self.resolve_associated_type(inner_ty, self.resolve_ops_try_ok())
516             }
517             Expr::Cast { expr, type_ref } => {
518                 // FIXME: propagate the "castable to" expectation (and find a test case that shows this is necessary)
519                 let _inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
520                 let cast_ty = self.make_ty(type_ref);
521                 // FIXME check the cast...
522                 cast_ty
523             }
524             Expr::Ref { expr, rawness, mutability } => {
525                 let mutability = lower_to_chalk_mutability(*mutability);
526                 let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected
527                     .only_has_type(&mut self.table)
528                     .as_ref()
529                     .and_then(|t| t.as_reference_or_ptr())
530                 {
531                     if exp_mutability == Mutability::Mut && mutability == Mutability::Not {
532                         // FIXME: record type error - expected mut reference but found shared ref,
533                         // which cannot be coerced
534                     }
535                     if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
536                         // FIXME: record type error - expected reference but found ptr,
537                         // which cannot be coerced
538                     }
539                     Expectation::rvalue_hint(&mut self.table, Ty::clone(exp_inner))
540                 } else {
541                     Expectation::none()
542                 };
543                 let inner_ty = self.infer_expr_inner(*expr, &expectation);
544                 match rawness {
545                     Rawness::RawPtr => TyKind::Raw(mutability, inner_ty),
546                     Rawness::Ref => TyKind::Ref(mutability, static_lifetime(), inner_ty),
547                 }
548                 .intern(Interner)
549             }
550             Expr::Box { expr } => {
551                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
552                 if let Some(box_) = self.resolve_boxed_box() {
553                     TyBuilder::adt(self.db, box_)
554                         .push(inner_ty)
555                         .fill_with_defaults(self.db, || self.table.new_type_var())
556                         .build()
557                 } else {
558                     self.err_ty()
559                 }
560             }
561             Expr::UnaryOp { expr, op } => {
562                 let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
563                 let inner_ty = self.resolve_ty_shallow(&inner_ty);
564                 match op {
565                     UnaryOp::Deref => {
566                         autoderef::deref(&mut self.table, inner_ty).unwrap_or_else(|| self.err_ty())
567                     }
568                     UnaryOp::Neg => {
569                         match inner_ty.kind(Interner) {
570                             // Fast path for builtins
571                             TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_))
572                             | TyKind::InferenceVar(
573                                 _,
574                                 TyVariableKind::Integer | TyVariableKind::Float,
575                             ) => inner_ty,
576                             // Otherwise we resolve via the std::ops::Neg trait
577                             _ => self
578                                 .resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
579                         }
580                     }
581                     UnaryOp::Not => {
582                         match inner_ty.kind(Interner) {
583                             // Fast path for builtins
584                             TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_))
585                             | TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty,
586                             // Otherwise we resolve via the std::ops::Not trait
587                             _ => self
588                                 .resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
589                         }
590                     }
591                 }
592             }
593             Expr::BinaryOp { lhs, rhs, op } => match op {
594                 Some(BinaryOp::Assignment { op: None }) => {
595                     let lhs_ty = self.infer_expr(*lhs, &Expectation::none());
596                     self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty));
597                     self.result.standard_types.unit.clone()
598                 }
599                 Some(BinaryOp::LogicOp(_)) => {
600                     let bool_ty = self.result.standard_types.bool_.clone();
601                     self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone()));
602                     let lhs_diverges = self.diverges;
603                     self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone()));
604                     // Depending on the LHS' value, the RHS can never execute.
605                     self.diverges = lhs_diverges;
606                     bool_ty
607                 }
608                 Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr),
609                 _ => self.err_ty(),
610             },
611             Expr::Range { lhs, rhs, range_type } => {
612                 let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
613                 let rhs_expect = lhs_ty
614                     .as_ref()
615                     .map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
616                 let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
617                 match (range_type, lhs_ty, rhs_ty) {
618                     (RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
619                         Some(adt) => TyBuilder::adt(self.db, adt).build(),
620                         None => self.err_ty(),
621                     },
622                     (RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
623                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
624                         None => self.err_ty(),
625                     },
626                     (RangeOp::Inclusive, None, Some(ty)) => {
627                         match self.resolve_range_to_inclusive() {
628                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
629                             None => self.err_ty(),
630                         }
631                     }
632                     (RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
633                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
634                         None => self.err_ty(),
635                     },
636                     (RangeOp::Inclusive, Some(_), Some(ty)) => {
637                         match self.resolve_range_inclusive() {
638                             Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
639                             None => self.err_ty(),
640                         }
641                     }
642                     (RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
643                         Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
644                         None => self.err_ty(),
645                     },
646                     (RangeOp::Inclusive, _, None) => self.err_ty(),
647                 }
648             }
649             Expr::Index { base, index } => {
650                 let base_ty = self.infer_expr_inner(*base, &Expectation::none());
651                 let index_ty = self.infer_expr(*index, &Expectation::none());
652
653                 if let Some(index_trait) = self.resolve_ops_index() {
654                     let canonicalized = self.canonicalize(base_ty.clone());
655                     let receiver_adjustments = method_resolution::resolve_indexing_op(
656                         self.db,
657                         self.trait_env.clone(),
658                         canonicalized.value,
659                         index_trait,
660                     );
661                     let (self_ty, adj) = receiver_adjustments
662                         .map_or((self.err_ty(), Vec::new()), |adj| {
663                             adj.apply(&mut self.table, base_ty)
664                         });
665                     self.write_expr_adj(*base, adj);
666                     self.resolve_associated_type_with_params(
667                         self_ty,
668                         self.resolve_ops_index_output(),
669                         &[GenericArgData::Ty(index_ty).intern(Interner)],
670                     )
671                 } else {
672                     self.err_ty()
673                 }
674             }
675             Expr::Tuple { exprs } => {
676                 let mut tys = match expected
677                     .only_has_type(&mut self.table)
678                     .as_ref()
679                     .map(|t| t.kind(Interner))
680                 {
681                     Some(TyKind::Tuple(_, substs)) => substs
682                         .iter(Interner)
683                         .map(|a| a.assert_ty_ref(Interner).clone())
684                         .chain(repeat_with(|| self.table.new_type_var()))
685                         .take(exprs.len())
686                         .collect::<Vec<_>>(),
687                     _ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
688                 };
689
690                 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
691                     self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
692                 }
693
694                 TyKind::Tuple(tys.len(), Substitution::from_iter(Interner, tys)).intern(Interner)
695             }
696             Expr::Array(array) => {
697                 let elem_ty =
698                     match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(Interner)) {
699                         Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
700                         _ => self.table.new_type_var(),
701                     };
702                 let mut coerce = CoerceMany::new(elem_ty.clone());
703
704                 let expected = Expectation::has_type(elem_ty.clone());
705                 let len = match array {
706                     Array::ElementList(items) => {
707                         for &expr in items.iter() {
708                             let cur_elem_ty = self.infer_expr_inner(expr, &expected);
709                             coerce.coerce(self, Some(expr), &cur_elem_ty);
710                         }
711                         consteval::usize_const(Some(items.len() as u64))
712                     }
713                     &Array::Repeat { initializer, repeat } => {
714                         self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty));
715                         self.infer_expr(
716                             repeat,
717                             &Expectation::has_type(
718                                 TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner),
719                             ),
720                         );
721
722                         if let Some(g_def) = self.owner.as_generic_def_id() {
723                             let generics = generics(self.db.upcast(), g_def);
724                             consteval::eval_to_const(
725                                 repeat,
726                                 ParamLoweringMode::Placeholder,
727                                 self,
728                                 || generics,
729                                 DebruijnIndex::INNERMOST,
730                             )
731                         } else {
732                             consteval::usize_const(None)
733                         }
734                     }
735                 };
736
737                 TyKind::Array(coerce.complete(), len).intern(Interner)
738             }
739             Expr::Literal(lit) => match lit {
740                 Literal::Bool(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
741                 Literal::String(..) => {
742                     TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(Interner))
743                         .intern(Interner)
744                 }
745                 Literal::ByteString(bs) => {
746                     let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner);
747
748                     let len = consteval::usize_const(Some(bs.len() as u64));
749
750                     let array_type = TyKind::Array(byte_type, len).intern(Interner);
751                     TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(Interner)
752                 }
753                 Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(Interner),
754                 Literal::Int(_v, ty) => match ty {
755                     Some(int_ty) => {
756                         TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty)))
757                             .intern(Interner)
758                     }
759                     None => self.table.new_integer_var(),
760                 },
761                 Literal::Uint(_v, ty) => match ty {
762                     Some(int_ty) => {
763                         TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty)))
764                             .intern(Interner)
765                     }
766                     None => self.table.new_integer_var(),
767                 },
768                 Literal::Float(_v, ty) => match ty {
769                     Some(float_ty) => {
770                         TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty)))
771                             .intern(Interner)
772                     }
773                     None => self.table.new_float_var(),
774                 },
775             },
776             Expr::MacroStmts { tail } => self.infer_expr_inner(*tail, expected),
777         };
778         // use a new type variable if we got unknown here
779         let ty = self.insert_type_vars_shallow(ty);
780         self.write_expr_ty(tgt_expr, ty.clone());
781         ty
782     }
783
784     fn infer_overloadable_binop(
785         &mut self,
786         lhs: ExprId,
787         op: BinaryOp,
788         rhs: ExprId,
789         tgt_expr: ExprId,
790     ) -> Ty {
791         let lhs_expectation = Expectation::none();
792         let lhs_ty = self.infer_expr(lhs, &lhs_expectation);
793         let rhs_ty = self.table.new_type_var();
794
795         let func = self.resolve_binop_method(op);
796         let func = match func {
797             Some(func) => func,
798             None => {
799                 let rhs_ty = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone());
800                 let rhs_ty = self.infer_expr_coerce(rhs, &Expectation::from_option(rhs_ty));
801                 return self
802                     .builtin_binary_op_return_ty(op, lhs_ty, rhs_ty)
803                     .unwrap_or_else(|| self.err_ty());
804             }
805         };
806
807         let subst = TyBuilder::subst_for_def(self.db, func)
808             .push(lhs_ty.clone())
809             .push(rhs_ty.clone())
810             .build();
811         self.write_method_resolution(tgt_expr, func, subst.clone());
812
813         let method_ty = self.db.value_ty(func.into()).substitute(Interner, &subst);
814         self.register_obligations_for_call(&method_ty);
815
816         self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone()));
817
818         let ret_ty = match method_ty.callable_sig(self.db) {
819             Some(sig) => sig.ret().clone(),
820             None => self.err_ty(),
821         };
822
823         let ret_ty = self.normalize_associated_types_in(ret_ty);
824
825         // FIXME: record autoref adjustments
826
827         // use knowledge of built-in binary ops, which can sometimes help inference
828         if let Some(builtin_rhs) = self.builtin_binary_op_rhs_expectation(op, lhs_ty.clone()) {
829             self.unify(&builtin_rhs, &rhs_ty);
830         }
831         if let Some(builtin_ret) = self.builtin_binary_op_return_ty(op, lhs_ty, rhs_ty) {
832             self.unify(&builtin_ret, &ret_ty);
833         }
834
835         ret_ty
836     }
837
838     fn infer_block(
839         &mut self,
840         expr: ExprId,
841         statements: &[Statement],
842         tail: Option<ExprId>,
843         expected: &Expectation,
844     ) -> Ty {
845         for stmt in statements {
846             match stmt {
847                 Statement::Let { pat, type_ref, initializer, else_branch } => {
848                     let decl_ty = type_ref
849                         .as_ref()
850                         .map(|tr| self.make_ty(tr))
851                         .unwrap_or_else(|| self.err_ty());
852
853                     // Always use the declared type when specified
854                     let mut ty = decl_ty.clone();
855
856                     if let Some(expr) = initializer {
857                         let actual_ty =
858                             self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
859                         if decl_ty.is_unknown() {
860                             ty = actual_ty;
861                         }
862                     }
863
864                     if let Some(expr) = else_branch {
865                         self.infer_expr_coerce(
866                             *expr,
867                             &Expectation::has_type(Ty::new(Interner, TyKind::Never)),
868                         );
869                     }
870
871                     self.infer_pat(*pat, &ty, BindingMode::default());
872                 }
873                 Statement::Expr { expr, .. } => {
874                     self.infer_expr(*expr, &Expectation::none());
875                 }
876             }
877         }
878
879         if let Some(expr) = tail {
880             self.infer_expr_coerce(expr, expected)
881         } else {
882             // Citing rustc: if there is no explicit tail expression,
883             // that is typically equivalent to a tail expression
884             // of `()` -- except if the block diverges. In that
885             // case, there is no value supplied from the tail
886             // expression (assuming there are no other breaks,
887             // this implies that the type of the block will be
888             // `!`).
889             if self.diverges.is_always() {
890                 // we don't even make an attempt at coercion
891                 self.table.new_maybe_never_var()
892             } else {
893                 if let Some(t) = expected.only_has_type(&mut self.table) {
894                     let _ = self.coerce(Some(expr), &TyBuilder::unit(), &t);
895                 }
896                 TyBuilder::unit()
897             }
898         }
899     }
900
901     fn infer_method_call(
902         &mut self,
903         tgt_expr: ExprId,
904         receiver: ExprId,
905         args: &[ExprId],
906         method_name: &Name,
907         generic_args: Option<&GenericArgs>,
908         expected: &Expectation,
909     ) -> Ty {
910         let receiver_ty = self.infer_expr(receiver, &Expectation::none());
911         let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
912
913         let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
914
915         let resolved = method_resolution::lookup_method(
916             &canonicalized_receiver.value,
917             self.db,
918             self.trait_env.clone(),
919             &traits_in_scope,
920             self.resolver.module().into(),
921             method_name,
922         );
923         let (receiver_ty, method_ty, substs) = match resolved {
924             Some((adjust, func)) => {
925                 let (ty, adjustments) = adjust.apply(&mut self.table, receiver_ty);
926                 let generics = generics(self.db.upcast(), func.into());
927                 let substs = self.substs_for_method_call(generics, generic_args);
928                 self.write_expr_adj(receiver, adjustments);
929                 self.write_method_resolution(tgt_expr, func, substs.clone());
930                 (ty, self.db.value_ty(func.into()), substs)
931             }
932             None => (
933                 receiver_ty,
934                 Binders::empty(Interner, self.err_ty()),
935                 Substitution::empty(Interner),
936             ),
937         };
938         let method_ty = method_ty.substitute(Interner, &substs);
939         self.register_obligations_for_call(&method_ty);
940         let (formal_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
941             Some(sig) => {
942                 if !sig.params().is_empty() {
943                     (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
944                 } else {
945                     (self.err_ty(), Vec::new(), sig.ret().clone())
946                 }
947             }
948             None => (self.err_ty(), Vec::new(), self.err_ty()),
949         };
950         self.unify(&formal_receiver_ty, &receiver_ty);
951
952         let expected_inputs =
953             self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone());
954
955         self.check_call_arguments(args, &expected_inputs, &param_tys);
956         self.normalize_associated_types_in(ret_ty)
957     }
958
959     fn expected_inputs_for_expected_output(
960         &mut self,
961         expected_output: &Expectation,
962         output: Ty,
963         inputs: Vec<Ty>,
964     ) -> Vec<Ty> {
965         if let Some(expected_ty) = expected_output.to_option(&mut self.table) {
966             self.table.fudge_inference(|table| {
967                 if table.try_unify(&expected_ty, &output).is_ok() {
968                     table.resolve_with_fallback(inputs, &|var, kind, _, _| match kind {
969                         chalk_ir::VariableKind::Ty(tk) => var.to_ty(Interner, tk).cast(Interner),
970                         chalk_ir::VariableKind::Lifetime => {
971                             var.to_lifetime(Interner).cast(Interner)
972                         }
973                         chalk_ir::VariableKind::Const(ty) => {
974                             var.to_const(Interner, ty).cast(Interner)
975                         }
976                     })
977                 } else {
978                     Vec::new()
979                 }
980             })
981         } else {
982             Vec::new()
983         }
984     }
985
986     fn check_call_arguments(&mut self, args: &[ExprId], expected_inputs: &[Ty], param_tys: &[Ty]) {
987         // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
988         // We do this in a pretty awful way: first we type-check any arguments
989         // that are not closures, then we type-check the closures. This is so
990         // that we have more information about the types of arguments when we
991         // type-check the functions. This isn't really the right way to do this.
992         for &check_closures in &[false, true] {
993             let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty()));
994             let expected_iter = expected_inputs
995                 .iter()
996                 .cloned()
997                 .chain(param_iter.clone().skip(expected_inputs.len()));
998             for ((&arg, param_ty), expected_ty) in args.iter().zip(param_iter).zip(expected_iter) {
999                 let is_closure = matches!(&self.body[arg], Expr::Lambda { .. });
1000                 if is_closure != check_closures {
1001                     continue;
1002                 }
1003
1004                 // the difference between param_ty and expected here is that
1005                 // expected is the parameter when the expected *return* type is
1006                 // taken into account. So in `let _: &[i32] = identity(&[1, 2])`
1007                 // the expected type is already `&[i32]`, whereas param_ty is
1008                 // still an unbound type variable. We don't always want to force
1009                 // the parameter to coerce to the expected type (for example in
1010                 // `coerce_unsize_expected_type_4`).
1011                 let param_ty = self.normalize_associated_types_in(param_ty);
1012                 let expected = Expectation::rvalue_hint(&mut self.table, expected_ty);
1013                 // infer with the expected type we have...
1014                 let ty = self.infer_expr_inner(arg, &expected);
1015
1016                 // then coerce to either the expected type or just the formal parameter type
1017                 let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) {
1018                     // if we are coercing to the expectation, unify with the
1019                     // formal parameter type to connect everything
1020                     self.unify(&ty, &param_ty);
1021                     ty
1022                 } else {
1023                     param_ty
1024                 };
1025                 if !coercion_target.is_unknown() {
1026                     if self.coerce(Some(arg), &ty, &coercion_target).is_err() {
1027                         self.result.type_mismatches.insert(
1028                             arg.into(),
1029                             TypeMismatch { expected: coercion_target, actual: ty.clone() },
1030                         );
1031                     }
1032                 }
1033             }
1034         }
1035     }
1036
1037     fn substs_for_method_call(
1038         &mut self,
1039         def_generics: Generics,
1040         generic_args: Option<&GenericArgs>,
1041     ) -> Substitution {
1042         let (parent_params, self_params, type_params, const_params, impl_trait_params) =
1043             def_generics.provenance_split();
1044         assert_eq!(self_params, 0); // method shouldn't have another Self param
1045         let total_len = parent_params + type_params + const_params + impl_trait_params;
1046         let mut substs = Vec::with_capacity(total_len);
1047         // Parent arguments are unknown
1048         for (id, param) in def_generics.iter_parent() {
1049             match param {
1050                 TypeOrConstParamData::TypeParamData(_) => {
1051                     substs.push(GenericArgData::Ty(self.table.new_type_var()).intern(Interner));
1052                 }
1053                 TypeOrConstParamData::ConstParamData(_) => {
1054                     let ty = self.db.const_param_ty(ConstParamId::from_unchecked(id));
1055                     substs
1056                         .push(GenericArgData::Const(self.table.new_const_var(ty)).intern(Interner));
1057                 }
1058             }
1059         }
1060         // handle provided arguments
1061         if let Some(generic_args) = generic_args {
1062             // if args are provided, it should be all of them, but we can't rely on that
1063             for (arg, kind_id) in generic_args
1064                 .args
1065                 .iter()
1066                 .filter(|arg| !matches!(arg, GenericArg::Lifetime(_)))
1067                 .take(type_params + const_params)
1068                 .zip(def_generics.iter_id().skip(parent_params))
1069             {
1070                 if let Some(g) = generic_arg_to_chalk(
1071                     self.db,
1072                     kind_id,
1073                     arg,
1074                     self,
1075                     |this, type_ref| this.make_ty(type_ref),
1076                     |this, c| {
1077                         const_or_path_to_chalk(
1078                             this.db,
1079                             &this.resolver,
1080                             c,
1081                             ParamLoweringMode::Placeholder,
1082                             || generics(this.db.upcast(), (&this.resolver).generic_def().unwrap()),
1083                             DebruijnIndex::INNERMOST,
1084                         )
1085                     },
1086                 ) {
1087                     substs.push(g);
1088                 }
1089             }
1090         };
1091         let supplied_params = substs.len();
1092         for _ in supplied_params..total_len {
1093             substs.push(GenericArgData::Ty(self.table.new_type_var()).intern(Interner));
1094         }
1095         assert_eq!(substs.len(), total_len);
1096         Substitution::from_iter(Interner, substs)
1097     }
1098
1099     fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
1100         let callable_ty = self.resolve_ty_shallow(callable_ty);
1101         if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(Interner) {
1102             let def: CallableDefId = from_chalk(self.db, *fn_def);
1103             let generic_predicates = self.db.generic_predicates(def.into());
1104             for predicate in generic_predicates.iter() {
1105                 let (predicate, binders) = predicate
1106                     .clone()
1107                     .substitute(Interner, parameters)
1108                     .into_value_and_skipped_binders();
1109                 always!(binders.len(Interner) == 0); // quantified where clauses not yet handled
1110                 self.push_obligation(predicate.cast(Interner));
1111             }
1112             // add obligation for trait implementation, if this is a trait method
1113             match def {
1114                 CallableDefId::FunctionId(f) => {
1115                     if let ItemContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container {
1116                         // construct a TraitRef
1117                         let substs = crate::subst_prefix(
1118                             &*parameters,
1119                             generics(self.db.upcast(), trait_.into()).len(),
1120                         );
1121                         self.push_obligation(
1122                             TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs }
1123                                 .cast(Interner),
1124                         );
1125                     }
1126                 }
1127                 CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {}
1128             }
1129         }
1130     }
1131
1132     fn builtin_binary_op_return_ty(&mut self, op: BinaryOp, lhs_ty: Ty, rhs_ty: Ty) -> Option<Ty> {
1133         let lhs_ty = self.resolve_ty_shallow(&lhs_ty);
1134         let rhs_ty = self.resolve_ty_shallow(&rhs_ty);
1135         match op {
1136             BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => {
1137                 Some(TyKind::Scalar(Scalar::Bool).intern(Interner))
1138             }
1139             BinaryOp::Assignment { .. } => Some(TyBuilder::unit()),
1140             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
1141                 // all integer combinations are valid here
1142                 if matches!(
1143                     lhs_ty.kind(Interner),
1144                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1145                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1146                 ) && matches!(
1147                     rhs_ty.kind(Interner),
1148                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
1149                         | TyKind::InferenceVar(_, TyVariableKind::Integer)
1150                 ) {
1151                     Some(lhs_ty)
1152                 } else {
1153                     None
1154                 }
1155             }
1156             BinaryOp::ArithOp(_) => match (lhs_ty.kind(Interner), rhs_ty.kind(Interner)) {
1157                 // (int, int) | (uint, uint) | (float, float)
1158                 (TyKind::Scalar(Scalar::Int(_)), TyKind::Scalar(Scalar::Int(_)))
1159                 | (TyKind::Scalar(Scalar::Uint(_)), TyKind::Scalar(Scalar::Uint(_)))
1160                 | (TyKind::Scalar(Scalar::Float(_)), TyKind::Scalar(Scalar::Float(_))) => {
1161                     Some(rhs_ty)
1162                 }
1163                 // ({int}, int) | ({int}, uint)
1164                 (
1165                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1166                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1167                 ) => Some(rhs_ty),
1168                 // (int, {int}) | (uint, {int})
1169                 (
1170                     TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_)),
1171                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1172                 ) => Some(lhs_ty),
1173                 // ({float} | float)
1174                 (
1175                     TyKind::InferenceVar(_, TyVariableKind::Float),
1176                     TyKind::Scalar(Scalar::Float(_)),
1177                 ) => Some(rhs_ty),
1178                 // (float, {float})
1179                 (
1180                     TyKind::Scalar(Scalar::Float(_)),
1181                     TyKind::InferenceVar(_, TyVariableKind::Float),
1182                 ) => Some(lhs_ty),
1183                 // ({int}, {int}) | ({float}, {float})
1184                 (
1185                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1186                     TyKind::InferenceVar(_, TyVariableKind::Integer),
1187                 )
1188                 | (
1189                     TyKind::InferenceVar(_, TyVariableKind::Float),
1190                     TyKind::InferenceVar(_, TyVariableKind::Float),
1191                 ) => Some(rhs_ty),
1192                 _ => None,
1193             },
1194         }
1195     }
1196
1197     fn builtin_binary_op_rhs_expectation(&mut self, op: BinaryOp, lhs_ty: Ty) -> Option<Ty> {
1198         Some(match op {
1199             BinaryOp::LogicOp(..) => TyKind::Scalar(Scalar::Bool).intern(Interner),
1200             BinaryOp::Assignment { op: None } => lhs_ty,
1201             BinaryOp::CmpOp(CmpOp::Eq { .. }) => match self
1202                 .resolve_ty_shallow(&lhs_ty)
1203                 .kind(Interner)
1204             {
1205                 TyKind::Scalar(_) | TyKind::Str => lhs_ty,
1206                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1207                 _ => return None,
1208             },
1209             BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => return None,
1210             BinaryOp::CmpOp(CmpOp::Ord { .. })
1211             | BinaryOp::Assignment { op: Some(_) }
1212             | BinaryOp::ArithOp(_) => match self.resolve_ty_shallow(&lhs_ty).kind(Interner) {
1213                 TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_)) => lhs_ty,
1214                 TyKind::InferenceVar(_, TyVariableKind::Integer | TyVariableKind::Float) => lhs_ty,
1215                 _ => return None,
1216             },
1217         })
1218     }
1219
1220     fn resolve_binop_method(&self, op: BinaryOp) -> Option<FunctionId> {
1221         let (name, lang_item) = match op {
1222             BinaryOp::LogicOp(_) => return None,
1223             BinaryOp::ArithOp(aop) => match aop {
1224                 ArithOp::Add => (name!(add), name!(add)),
1225                 ArithOp::Mul => (name!(mul), name!(mul)),
1226                 ArithOp::Sub => (name!(sub), name!(sub)),
1227                 ArithOp::Div => (name!(div), name!(div)),
1228                 ArithOp::Rem => (name!(rem), name!(rem)),
1229                 ArithOp::Shl => (name!(shl), name!(shl)),
1230                 ArithOp::Shr => (name!(shr), name!(shr)),
1231                 ArithOp::BitXor => (name!(bitxor), name!(bitxor)),
1232                 ArithOp::BitOr => (name!(bitor), name!(bitor)),
1233                 ArithOp::BitAnd => (name!(bitand), name!(bitand)),
1234             },
1235             BinaryOp::Assignment { op: Some(aop) } => match aop {
1236                 ArithOp::Add => (name!(add_assign), name!(add_assign)),
1237                 ArithOp::Mul => (name!(mul_assign), name!(mul_assign)),
1238                 ArithOp::Sub => (name!(sub_assign), name!(sub_assign)),
1239                 ArithOp::Div => (name!(div_assign), name!(div_assign)),
1240                 ArithOp::Rem => (name!(rem_assign), name!(rem_assign)),
1241                 ArithOp::Shl => (name!(shl_assign), name!(shl_assign)),
1242                 ArithOp::Shr => (name!(shr_assign), name!(shr_assign)),
1243                 ArithOp::BitXor => (name!(bitxor_assign), name!(bitxor_assign)),
1244                 ArithOp::BitOr => (name!(bitor_assign), name!(bitor_assign)),
1245                 ArithOp::BitAnd => (name!(bitand_assign), name!(bitand_assign)),
1246             },
1247             BinaryOp::CmpOp(cop) => match cop {
1248                 CmpOp::Eq { negated: false } => (name!(eq), name!(eq)),
1249                 CmpOp::Eq { negated: true } => (name!(ne), name!(eq)),
1250                 CmpOp::Ord { ordering: Ordering::Less, strict: false } => {
1251                     (name!(le), name!(partial_ord))
1252                 }
1253                 CmpOp::Ord { ordering: Ordering::Less, strict: true } => {
1254                     (name!(lt), name!(partial_ord))
1255                 }
1256                 CmpOp::Ord { ordering: Ordering::Greater, strict: false } => {
1257                     (name!(ge), name!(partial_ord))
1258                 }
1259                 CmpOp::Ord { ordering: Ordering::Greater, strict: true } => {
1260                     (name!(gt), name!(partial_ord))
1261                 }
1262             },
1263             BinaryOp::Assignment { op: None } => return None,
1264         };
1265
1266         let trait_ = self.resolve_lang_item(lang_item)?.as_trait()?;
1267
1268         self.db.trait_data(trait_).method_by_name(&name)
1269     }
1270 }