]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/collect.rs
Rollup merge of #101958 - hanar3:101666/enhance-error-message, r=oli-obk
[rust.git] / compiler / rustc_typeck / src / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::AstConv;
18 use crate::bounds::Bounds;
19 use crate::check::intrinsic::intrinsic_operation_unsafety;
20 use crate::constrained_generic_params as cgp;
21 use crate::errors;
22 use crate::middle::resolve_lifetime as rl;
23 use rustc_ast as ast;
24 use rustc_ast::{MetaItemKind, NestedMetaItem};
25 use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
26 use rustc_data_structures::captures::Captures;
27 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
28 use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed, StashKey};
29 use rustc_hir as hir;
30 use rustc_hir::def::{CtorKind, DefKind};
31 use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID, LOCAL_CRATE};
32 use rustc_hir::intravisit::{self, Visitor};
33 use rustc_hir::weak_lang_items;
34 use rustc_hir::{GenericParamKind, HirId, Node};
35 use rustc_middle::hir::nested_filter;
36 use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
37 use rustc_middle::mir::mono::Linkage;
38 use rustc_middle::ty::query::Providers;
39 use rustc_middle::ty::subst::InternalSubsts;
40 use rustc_middle::ty::util::Discr;
41 use rustc_middle::ty::util::IntTypeExt;
42 use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, IsSuggestable, Ty, TyCtxt};
43 use rustc_middle::ty::{ReprOptions, ToPredicate};
44 use rustc_session::lint;
45 use rustc_session::parse::feature_err;
46 use rustc_span::symbol::{kw, sym, Ident, Symbol};
47 use rustc_span::{Span, DUMMY_SP};
48 use rustc_target::spec::{abi, SanitizerSet};
49 use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
50 use std::iter;
51
52 mod item_bounds;
53 mod type_of;
54
55 #[derive(Debug)]
56 struct OnlySelfBounds(bool);
57
58 ///////////////////////////////////////////////////////////////////////////
59 // Main entry point
60
61 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
62     tcx.hir().visit_item_likes_in_module(module_def_id, &mut CollectItemTypesVisitor { tcx });
63 }
64
65 pub fn provide(providers: &mut Providers) {
66     *providers = Providers {
67         opt_const_param_of: type_of::opt_const_param_of,
68         type_of: type_of::type_of,
69         item_bounds: item_bounds::item_bounds,
70         explicit_item_bounds: item_bounds::explicit_item_bounds,
71         generics_of,
72         predicates_of,
73         predicates_defined_on,
74         explicit_predicates_of,
75         super_predicates_of,
76         super_predicates_that_define_assoc_type,
77         trait_explicit_predicates_and_bounds,
78         type_param_predicates,
79         trait_def,
80         adt_def,
81         fn_sig,
82         impl_trait_ref,
83         impl_polarity,
84         is_foreign_item,
85         generator_kind,
86         codegen_fn_attrs,
87         asm_target_features,
88         collect_mod_item_types,
89         should_inherit_track_caller,
90         ..*providers
91     };
92 }
93
94 ///////////////////////////////////////////////////////////////////////////
95
96 /// Context specific to some particular item. This is what implements
97 /// [`AstConv`].
98 ///
99 /// # `ItemCtxt` vs `FnCtxt`
100 ///
101 /// `ItemCtxt` is primarily used to type-check item signatures and lower them
102 /// from HIR to their [`ty::Ty`] representation, which is exposed using [`AstConv`].
103 /// It's also used for the bodies of items like structs where the body (the fields)
104 /// are just signatures.
105 ///
106 /// This is in contrast to [`FnCtxt`], which is used to type-check bodies of
107 /// functions, closures, and `const`s -- anywhere that expressions and statements show up.
108 ///
109 /// An important thing to note is that `ItemCtxt` does no inference -- it has no [`InferCtxt`] --
110 /// while `FnCtxt` does do inference.
111 ///
112 /// [`FnCtxt`]: crate::check::FnCtxt
113 /// [`InferCtxt`]: rustc_infer::infer::InferCtxt
114 ///
115 /// # Trait predicates
116 ///
117 /// `ItemCtxt` has information about the predicates that are defined
118 /// on the trait. Unfortunately, this predicate information is
119 /// available in various different forms at various points in the
120 /// process. So we can't just store a pointer to e.g., the AST or the
121 /// parsed ty form, we have to be more flexible. To this end, the
122 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
123 /// `get_type_parameter_bounds` requests, drawing the information from
124 /// the AST (`hir::Generics`), recursively.
125 pub struct ItemCtxt<'tcx> {
126     tcx: TyCtxt<'tcx>,
127     item_def_id: DefId,
128 }
129
130 ///////////////////////////////////////////////////////////////////////////
131
132 #[derive(Default)]
133 pub(crate) struct HirPlaceholderCollector(pub(crate) Vec<Span>);
134
135 impl<'v> Visitor<'v> for HirPlaceholderCollector {
136     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
137         if let hir::TyKind::Infer = t.kind {
138             self.0.push(t.span);
139         }
140         intravisit::walk_ty(self, t)
141     }
142     fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
143         match generic_arg {
144             hir::GenericArg::Infer(inf) => {
145                 self.0.push(inf.span);
146                 intravisit::walk_inf(self, inf);
147             }
148             hir::GenericArg::Type(t) => self.visit_ty(t),
149             _ => {}
150         }
151     }
152     fn visit_array_length(&mut self, length: &'v hir::ArrayLen) {
153         if let &hir::ArrayLen::Infer(_, span) = length {
154             self.0.push(span);
155         }
156         intravisit::walk_array_len(self, length)
157     }
158 }
159
160 struct CollectItemTypesVisitor<'tcx> {
161     tcx: TyCtxt<'tcx>,
162 }
163
164 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
165 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
166 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
167 pub(crate) fn placeholder_type_error<'tcx>(
168     tcx: TyCtxt<'tcx>,
169     generics: Option<&hir::Generics<'_>>,
170     placeholder_types: Vec<Span>,
171     suggest: bool,
172     hir_ty: Option<&hir::Ty<'_>>,
173     kind: &'static str,
174 ) {
175     if placeholder_types.is_empty() {
176         return;
177     }
178
179     placeholder_type_error_diag(tcx, generics, placeholder_types, vec![], suggest, hir_ty, kind)
180         .emit();
181 }
182
183 pub(crate) fn placeholder_type_error_diag<'tcx>(
184     tcx: TyCtxt<'tcx>,
185     generics: Option<&hir::Generics<'_>>,
186     placeholder_types: Vec<Span>,
187     additional_spans: Vec<Span>,
188     suggest: bool,
189     hir_ty: Option<&hir::Ty<'_>>,
190     kind: &'static str,
191 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
192     if placeholder_types.is_empty() {
193         return bad_placeholder(tcx, additional_spans, kind);
194     }
195
196     let params = generics.map(|g| g.params).unwrap_or_default();
197     let type_name = params.next_type_param_name(None);
198     let mut sugg: Vec<_> =
199         placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
200
201     if let Some(generics) = generics {
202         if let Some(arg) = params.iter().find(|arg| {
203             matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. }))
204         }) {
205             // Account for `_` already present in cases like `struct S<_>(_);` and suggest
206             // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
207             sugg.push((arg.span, (*type_name).to_string()));
208         } else if let Some(span) = generics.span_for_param_suggestion() {
209             // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
210             sugg.push((span, format!(", {}", type_name)));
211         } else {
212             sugg.push((generics.span, format!("<{}>", type_name)));
213         }
214     }
215
216     let mut err =
217         bad_placeholder(tcx, placeholder_types.into_iter().chain(additional_spans).collect(), kind);
218
219     // Suggest, but only if it is not a function in const or static
220     if suggest {
221         let mut is_fn = false;
222         let mut is_const_or_static = false;
223
224         if let Some(hir_ty) = hir_ty && let hir::TyKind::BareFn(_) = hir_ty.kind {
225             is_fn = true;
226
227             // Check if parent is const or static
228             let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
229             let parent_node = tcx.hir().get(parent_id);
230
231             is_const_or_static = matches!(
232                 parent_node,
233                 Node::Item(&hir::Item {
234                     kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
235                     ..
236                 }) | Node::TraitItem(&hir::TraitItem {
237                     kind: hir::TraitItemKind::Const(..),
238                     ..
239                 }) | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
240             );
241         }
242
243         // if function is wrapped around a const or static,
244         // then don't show the suggestion
245         if !(is_fn && is_const_or_static) {
246             err.multipart_suggestion(
247                 "use type parameters instead",
248                 sugg,
249                 Applicability::HasPlaceholders,
250             );
251         }
252     }
253
254     err
255 }
256
257 fn reject_placeholder_type_signatures_in_item<'tcx>(
258     tcx: TyCtxt<'tcx>,
259     item: &'tcx hir::Item<'tcx>,
260 ) {
261     let (generics, suggest) = match &item.kind {
262         hir::ItemKind::Union(_, generics)
263         | hir::ItemKind::Enum(_, generics)
264         | hir::ItemKind::TraitAlias(generics, _)
265         | hir::ItemKind::Trait(_, _, generics, ..)
266         | hir::ItemKind::Impl(hir::Impl { generics, .. })
267         | hir::ItemKind::Struct(_, generics) => (generics, true),
268         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
269         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
270         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
271         _ => return,
272     };
273
274     let mut visitor = HirPlaceholderCollector::default();
275     visitor.visit_item(item);
276
277     placeholder_type_error(tcx, Some(generics), visitor.0, suggest, None, item.kind.descr());
278 }
279
280 impl<'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
281     type NestedFilter = nested_filter::OnlyBodies;
282
283     fn nested_visit_map(&mut self) -> Self::Map {
284         self.tcx.hir()
285     }
286
287     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
288         convert_item(self.tcx, item.item_id());
289         reject_placeholder_type_signatures_in_item(self.tcx, item);
290         intravisit::walk_item(self, item);
291     }
292
293     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
294         for param in generics.params {
295             match param.kind {
296                 hir::GenericParamKind::Lifetime { .. } => {}
297                 hir::GenericParamKind::Type { default: Some(_), .. } => {
298                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
299                     self.tcx.ensure().type_of(def_id);
300                 }
301                 hir::GenericParamKind::Type { .. } => {}
302                 hir::GenericParamKind::Const { default, .. } => {
303                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
304                     self.tcx.ensure().type_of(def_id);
305                     if let Some(default) = default {
306                         let default_def_id = self.tcx.hir().local_def_id(default.hir_id);
307                         // need to store default and type of default
308                         self.tcx.ensure().type_of(default_def_id);
309                         self.tcx.ensure().const_param_default(def_id);
310                     }
311                 }
312             }
313         }
314         intravisit::walk_generics(self, generics);
315     }
316
317     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
318         if let hir::ExprKind::Closure { .. } = expr.kind {
319             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
320             self.tcx.ensure().generics_of(def_id);
321             // We do not call `type_of` for closures here as that
322             // depends on typecheck and would therefore hide
323             // any further errors in case one typeck fails.
324         }
325         intravisit::walk_expr(self, expr);
326     }
327
328     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
329         convert_trait_item(self.tcx, trait_item.trait_item_id());
330         intravisit::walk_trait_item(self, trait_item);
331     }
332
333     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
334         convert_impl_item(self.tcx, impl_item.impl_item_id());
335         intravisit::walk_impl_item(self, impl_item);
336     }
337 }
338
339 ///////////////////////////////////////////////////////////////////////////
340 // Utility types and common code for the above passes.
341
342 fn bad_placeholder<'tcx>(
343     tcx: TyCtxt<'tcx>,
344     mut spans: Vec<Span>,
345     kind: &'static str,
346 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
347     let kind = if kind.ends_with('s') { format!("{}es", kind) } else { format!("{}s", kind) };
348
349     spans.sort();
350     let mut err = struct_span_err!(
351         tcx.sess,
352         spans.clone(),
353         E0121,
354         "the placeholder `_` is not allowed within types on item signatures for {}",
355         kind
356     );
357     for span in spans {
358         err.span_label(span, "not allowed in type signatures");
359     }
360     err
361 }
362
363 impl<'tcx> ItemCtxt<'tcx> {
364     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
365         ItemCtxt { tcx, item_def_id }
366     }
367
368     pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
369         <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
370     }
371
372     pub fn hir_id(&self) -> hir::HirId {
373         self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
374     }
375
376     pub fn node(&self) -> hir::Node<'tcx> {
377         self.tcx.hir().get(self.hir_id())
378     }
379 }
380
381 impl<'tcx> AstConv<'tcx> for ItemCtxt<'tcx> {
382     fn tcx(&self) -> TyCtxt<'tcx> {
383         self.tcx
384     }
385
386     fn item_def_id(&self) -> Option<DefId> {
387         Some(self.item_def_id)
388     }
389
390     fn get_type_parameter_bounds(
391         &self,
392         span: Span,
393         def_id: DefId,
394         assoc_name: Ident,
395     ) -> ty::GenericPredicates<'tcx> {
396         self.tcx.at(span).type_param_predicates((
397             self.item_def_id,
398             def_id.expect_local(),
399             assoc_name,
400         ))
401     }
402
403     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
404         None
405     }
406
407     fn allow_ty_infer(&self) -> bool {
408         false
409     }
410
411     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
412         self.tcx().ty_error_with_message(span, "bad placeholder type")
413     }
414
415     fn ct_infer(&self, ty: Ty<'tcx>, _: Option<&ty::GenericParamDef>, span: Span) -> Const<'tcx> {
416         let ty = self.tcx.fold_regions(ty, |r, _| match *r {
417             ty::ReErased => self.tcx.lifetimes.re_static,
418             _ => r,
419         });
420         self.tcx().const_error_with_message(ty, span, "bad placeholder constant")
421     }
422
423     fn projected_ty_from_poly_trait_ref(
424         &self,
425         span: Span,
426         item_def_id: DefId,
427         item_segment: &hir::PathSegment<'_>,
428         poly_trait_ref: ty::PolyTraitRef<'tcx>,
429     ) -> Ty<'tcx> {
430         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
431             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
432                 self,
433                 self.tcx,
434                 span,
435                 item_def_id,
436                 item_segment,
437                 trait_ref.substs,
438             );
439             self.tcx().mk_projection(item_def_id, item_substs)
440         } else {
441             // There are no late-bound regions; we can just ignore the binder.
442             let mut err = struct_span_err!(
443                 self.tcx().sess,
444                 span,
445                 E0212,
446                 "cannot use the associated type of a trait \
447                  with uninferred generic parameters"
448             );
449
450             match self.node() {
451                 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
452                     let item =
453                         self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
454                     match &item.kind {
455                         hir::ItemKind::Enum(_, generics)
456                         | hir::ItemKind::Struct(_, generics)
457                         | hir::ItemKind::Union(_, generics) => {
458                             let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
459                             let (lt_sp, sugg) = match generics.params {
460                                 [] => (generics.span, format!("<{}>", lt_name)),
461                                 [bound, ..] => {
462                                     (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
463                                 }
464                             };
465                             let suggestions = vec![
466                                 (lt_sp, sugg),
467                                 (
468                                     span.with_hi(item_segment.ident.span.lo()),
469                                     format!(
470                                         "{}::",
471                                         // Replace the existing lifetimes with a new named lifetime.
472                                         self.tcx.replace_late_bound_regions_uncached(
473                                             poly_trait_ref,
474                                             |_| {
475                                                 self.tcx.mk_region(ty::ReEarlyBound(
476                                                     ty::EarlyBoundRegion {
477                                                         def_id: item_def_id,
478                                                         index: 0,
479                                                         name: Symbol::intern(&lt_name),
480                                                     },
481                                                 ))
482                                             }
483                                         ),
484                                     ),
485                                 ),
486                             ];
487                             err.multipart_suggestion(
488                                 "use a fully qualified path with explicit lifetimes",
489                                 suggestions,
490                                 Applicability::MaybeIncorrect,
491                             );
492                         }
493                         _ => {}
494                     }
495                 }
496                 hir::Node::Item(hir::Item {
497                     kind:
498                         hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
499                     ..
500                 }) => {}
501                 hir::Node::Item(_)
502                 | hir::Node::ForeignItem(_)
503                 | hir::Node::TraitItem(_)
504                 | hir::Node::ImplItem(_) => {
505                     err.span_suggestion_verbose(
506                         span.with_hi(item_segment.ident.span.lo()),
507                         "use a fully qualified path with inferred lifetimes",
508                         format!(
509                             "{}::",
510                             // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
511                             self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
512                         ),
513                         Applicability::MaybeIncorrect,
514                     );
515                 }
516                 _ => {}
517             }
518             err.emit();
519             self.tcx().ty_error()
520         }
521     }
522
523     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
524         // Types in item signatures are not normalized to avoid undue dependencies.
525         ty
526     }
527
528     fn set_tainted_by_errors(&self) {
529         // There's no obvious place to track this, so just let it go.
530     }
531
532     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
533         // There's no place to record types from signatures?
534     }
535 }
536
537 /// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
538 fn get_new_lifetime_name<'tcx>(
539     tcx: TyCtxt<'tcx>,
540     poly_trait_ref: ty::PolyTraitRef<'tcx>,
541     generics: &hir::Generics<'tcx>,
542 ) -> String {
543     let existing_lifetimes = tcx
544         .collect_referenced_late_bound_regions(&poly_trait_ref)
545         .into_iter()
546         .filter_map(|lt| {
547             if let ty::BoundRegionKind::BrNamed(_, name) = lt {
548                 Some(name.as_str().to_string())
549             } else {
550                 None
551             }
552         })
553         .chain(generics.params.iter().filter_map(|param| {
554             if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
555                 Some(param.name.ident().as_str().to_string())
556             } else {
557                 None
558             }
559         }))
560         .collect::<FxHashSet<String>>();
561
562     let a_to_z_repeat_n = |n| {
563         (b'a'..=b'z').map(move |c| {
564             let mut s = '\''.to_string();
565             s.extend(std::iter::repeat(char::from(c)).take(n));
566             s
567         })
568     };
569
570     // If all single char lifetime names are present, we wrap around and double the chars.
571     (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
572 }
573
574 /// Returns the predicates defined on `item_def_id` of the form
575 /// `X: Foo` where `X` is the type parameter `def_id`.
576 #[instrument(level = "trace", skip(tcx))]
577 fn type_param_predicates(
578     tcx: TyCtxt<'_>,
579     (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
580 ) -> ty::GenericPredicates<'_> {
581     use rustc_hir::*;
582
583     // In the AST, bounds can derive from two places. Either
584     // written inline like `<T: Foo>` or in a where-clause like
585     // `where T: Foo`.
586
587     let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
588     let param_owner = tcx.hir().ty_param_owner(def_id);
589     let generics = tcx.generics_of(param_owner);
590     let index = generics.param_def_id_to_index[&def_id.to_def_id()];
591     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(def_id));
592
593     // Don't look for bounds where the type parameter isn't in scope.
594     let parent = if item_def_id == param_owner.to_def_id() {
595         None
596     } else {
597         tcx.generics_of(item_def_id).parent
598     };
599
600     let mut result = parent
601         .map(|parent| {
602             let icx = ItemCtxt::new(tcx, parent);
603             icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
604         })
605         .unwrap_or_default();
606     let mut extend = None;
607
608     let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
609     let ast_generics = match tcx.hir().get(item_hir_id) {
610         Node::TraitItem(item) => &item.generics,
611
612         Node::ImplItem(item) => &item.generics,
613
614         Node::Item(item) => {
615             match item.kind {
616                 ItemKind::Fn(.., ref generics, _)
617                 | ItemKind::Impl(hir::Impl { ref generics, .. })
618                 | ItemKind::TyAlias(_, ref generics)
619                 | ItemKind::OpaqueTy(OpaqueTy {
620                     ref generics,
621                     origin: hir::OpaqueTyOrigin::TyAlias,
622                     ..
623                 })
624                 | ItemKind::Enum(_, ref generics)
625                 | ItemKind::Struct(_, ref generics)
626                 | ItemKind::Union(_, ref generics) => generics,
627                 ItemKind::Trait(_, _, ref generics, ..) => {
628                     // Implied `Self: Trait` and supertrait bounds.
629                     if param_id == item_hir_id {
630                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
631                         extend =
632                             Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
633                     }
634                     generics
635                 }
636                 _ => return result,
637             }
638         }
639
640         Node::ForeignItem(item) => match item.kind {
641             ForeignItemKind::Fn(_, _, ref generics) => generics,
642             _ => return result,
643         },
644
645         _ => return result,
646     };
647
648     let icx = ItemCtxt::new(tcx, item_def_id);
649     let extra_predicates = extend.into_iter().chain(
650         icx.type_parameter_bounds_in_generics(
651             ast_generics,
652             param_id,
653             ty,
654             OnlySelfBounds(true),
655             Some(assoc_name),
656         )
657         .into_iter()
658         .filter(|(predicate, _)| match predicate.kind().skip_binder() {
659             ty::PredicateKind::Trait(data) => data.self_ty().is_param(index),
660             _ => false,
661         }),
662     );
663     result.predicates =
664         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
665     result
666 }
667
668 impl<'tcx> ItemCtxt<'tcx> {
669     /// Finds bounds from `hir::Generics`. This requires scanning through the
670     /// AST. We do this to avoid having to convert *all* the bounds, which
671     /// would create artificial cycles. Instead, we can only convert the
672     /// bounds for a type parameter `X` if `X::Foo` is used.
673     #[instrument(level = "trace", skip(self, ast_generics))]
674     fn type_parameter_bounds_in_generics(
675         &self,
676         ast_generics: &'tcx hir::Generics<'tcx>,
677         param_id: hir::HirId,
678         ty: Ty<'tcx>,
679         only_self_bounds: OnlySelfBounds,
680         assoc_name: Option<Ident>,
681     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
682         let param_def_id = self.tcx.hir().local_def_id(param_id).to_def_id();
683         trace!(?param_def_id);
684         ast_generics
685             .predicates
686             .iter()
687             .filter_map(|wp| match *wp {
688                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
689                 _ => None,
690             })
691             .flat_map(|bp| {
692                 let bt = if bp.is_param_bound(param_def_id) {
693                     Some(ty)
694                 } else if !only_self_bounds.0 {
695                     Some(self.to_ty(bp.bounded_ty))
696                 } else {
697                     None
698                 };
699                 let bvars = self.tcx.late_bound_vars(bp.bounded_ty.hir_id);
700
701                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b, bvars))).filter(
702                     |(_, b, _)| match assoc_name {
703                         Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
704                         None => true,
705                     },
706                 )
707             })
708             .flat_map(|(bt, b, bvars)| predicates_from_bound(self, bt, b, bvars))
709             .collect()
710     }
711
712     #[instrument(level = "trace", skip(self))]
713     fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
714         match b {
715             hir::GenericBound::Trait(poly_trait_ref, _) => {
716                 let trait_ref = &poly_trait_ref.trait_ref;
717                 if let Some(trait_did) = trait_ref.trait_def_id() {
718                     self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
719                 } else {
720                     false
721                 }
722             }
723             _ => false,
724         }
725     }
726 }
727
728 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
729     let it = tcx.hir().item(item_id);
730     debug!("convert: item {} with id {}", it.ident, it.hir_id());
731     let def_id = item_id.def_id;
732
733     match it.kind {
734         // These don't define types.
735         hir::ItemKind::ExternCrate(_)
736         | hir::ItemKind::Use(..)
737         | hir::ItemKind::Macro(..)
738         | hir::ItemKind::Mod(_)
739         | hir::ItemKind::GlobalAsm(_) => {}
740         hir::ItemKind::ForeignMod { items, .. } => {
741             for item in items {
742                 let item = tcx.hir().foreign_item(item.id);
743                 tcx.ensure().generics_of(item.def_id);
744                 tcx.ensure().type_of(item.def_id);
745                 tcx.ensure().predicates_of(item.def_id);
746                 match item.kind {
747                     hir::ForeignItemKind::Fn(..) => tcx.ensure().fn_sig(item.def_id),
748                     hir::ForeignItemKind::Static(..) => {
749                         let mut visitor = HirPlaceholderCollector::default();
750                         visitor.visit_foreign_item(item);
751                         placeholder_type_error(
752                             tcx,
753                             None,
754                             visitor.0,
755                             false,
756                             None,
757                             "static variable",
758                         );
759                     }
760                     _ => (),
761                 }
762             }
763         }
764         hir::ItemKind::Enum(ref enum_definition, _) => {
765             tcx.ensure().generics_of(def_id);
766             tcx.ensure().type_of(def_id);
767             tcx.ensure().predicates_of(def_id);
768             convert_enum_variant_types(tcx, def_id.to_def_id(), enum_definition.variants);
769         }
770         hir::ItemKind::Impl { .. } => {
771             tcx.ensure().generics_of(def_id);
772             tcx.ensure().type_of(def_id);
773             tcx.ensure().impl_trait_ref(def_id);
774             tcx.ensure().predicates_of(def_id);
775         }
776         hir::ItemKind::Trait(..) => {
777             tcx.ensure().generics_of(def_id);
778             tcx.ensure().trait_def(def_id);
779             tcx.at(it.span).super_predicates_of(def_id);
780             tcx.ensure().predicates_of(def_id);
781         }
782         hir::ItemKind::TraitAlias(..) => {
783             tcx.ensure().generics_of(def_id);
784             tcx.at(it.span).super_predicates_of(def_id);
785             tcx.ensure().predicates_of(def_id);
786         }
787         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
788             tcx.ensure().generics_of(def_id);
789             tcx.ensure().type_of(def_id);
790             tcx.ensure().predicates_of(def_id);
791
792             for f in struct_def.fields() {
793                 let def_id = tcx.hir().local_def_id(f.hir_id);
794                 tcx.ensure().generics_of(def_id);
795                 tcx.ensure().type_of(def_id);
796                 tcx.ensure().predicates_of(def_id);
797             }
798
799             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
800                 convert_variant_ctor(tcx, ctor_hir_id);
801             }
802         }
803
804         // Desugared from `impl Trait`, so visited by the function's return type.
805         hir::ItemKind::OpaqueTy(hir::OpaqueTy {
806             origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
807             ..
808         }) => {}
809
810         // Don't call `type_of` on opaque types, since that depends on type
811         // checking function bodies. `check_item_type` ensures that it's called
812         // instead.
813         hir::ItemKind::OpaqueTy(..) => {
814             tcx.ensure().generics_of(def_id);
815             tcx.ensure().predicates_of(def_id);
816             tcx.ensure().explicit_item_bounds(def_id);
817         }
818         hir::ItemKind::TyAlias(..)
819         | hir::ItemKind::Static(..)
820         | hir::ItemKind::Const(..)
821         | hir::ItemKind::Fn(..) => {
822             tcx.ensure().generics_of(def_id);
823             tcx.ensure().type_of(def_id);
824             tcx.ensure().predicates_of(def_id);
825             match it.kind {
826                 hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
827                 hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
828                 hir::ItemKind::Const(ty, ..) | hir::ItemKind::Static(ty, ..) => {
829                     if !is_suggestable_infer_ty(ty) {
830                         let mut visitor = HirPlaceholderCollector::default();
831                         visitor.visit_item(it);
832                         placeholder_type_error(tcx, None, visitor.0, false, None, it.kind.descr());
833                     }
834                 }
835                 _ => (),
836             }
837         }
838     }
839 }
840
841 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
842     let trait_item = tcx.hir().trait_item(trait_item_id);
843     tcx.ensure().generics_of(trait_item_id.def_id);
844
845     match trait_item.kind {
846         hir::TraitItemKind::Fn(..) => {
847             tcx.ensure().type_of(trait_item_id.def_id);
848             tcx.ensure().fn_sig(trait_item_id.def_id);
849         }
850
851         hir::TraitItemKind::Const(.., Some(_)) => {
852             tcx.ensure().type_of(trait_item_id.def_id);
853         }
854
855         hir::TraitItemKind::Const(hir_ty, _) => {
856             tcx.ensure().type_of(trait_item_id.def_id);
857             // Account for `const C: _;`.
858             let mut visitor = HirPlaceholderCollector::default();
859             visitor.visit_trait_item(trait_item);
860             if !tcx.sess.diagnostic().has_stashed_diagnostic(hir_ty.span, StashKey::ItemNoType) {
861                 placeholder_type_error(tcx, None, visitor.0, false, None, "constant");
862             }
863         }
864
865         hir::TraitItemKind::Type(_, Some(_)) => {
866             tcx.ensure().item_bounds(trait_item_id.def_id);
867             tcx.ensure().type_of(trait_item_id.def_id);
868             // Account for `type T = _;`.
869             let mut visitor = HirPlaceholderCollector::default();
870             visitor.visit_trait_item(trait_item);
871             placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
872         }
873
874         hir::TraitItemKind::Type(_, None) => {
875             tcx.ensure().item_bounds(trait_item_id.def_id);
876             // #74612: Visit and try to find bad placeholders
877             // even if there is no concrete type.
878             let mut visitor = HirPlaceholderCollector::default();
879             visitor.visit_trait_item(trait_item);
880
881             placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
882         }
883     };
884
885     tcx.ensure().predicates_of(trait_item_id.def_id);
886 }
887
888 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
889     let def_id = impl_item_id.def_id;
890     tcx.ensure().generics_of(def_id);
891     tcx.ensure().type_of(def_id);
892     tcx.ensure().predicates_of(def_id);
893     let impl_item = tcx.hir().impl_item(impl_item_id);
894     match impl_item.kind {
895         hir::ImplItemKind::Fn(..) => {
896             tcx.ensure().fn_sig(def_id);
897         }
898         hir::ImplItemKind::TyAlias(_) => {
899             // Account for `type T = _;`
900             let mut visitor = HirPlaceholderCollector::default();
901             visitor.visit_impl_item(impl_item);
902
903             placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
904         }
905         hir::ImplItemKind::Const(..) => {}
906     }
907 }
908
909 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
910     let def_id = tcx.hir().local_def_id(ctor_id);
911     tcx.ensure().generics_of(def_id);
912     tcx.ensure().type_of(def_id);
913     tcx.ensure().predicates_of(def_id);
914 }
915
916 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
917     let def = tcx.adt_def(def_id);
918     let repr_type = def.repr().discr_type();
919     let initial = repr_type.initial_discriminant(tcx);
920     let mut prev_discr = None::<Discr<'_>>;
921
922     // fill the discriminant values and field types
923     for variant in variants {
924         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
925         prev_discr = Some(
926             if let Some(ref e) = variant.disr_expr {
927                 let expr_did = tcx.hir().local_def_id(e.hir_id);
928                 def.eval_explicit_discr(tcx, expr_did.to_def_id())
929             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
930                 Some(discr)
931             } else {
932                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
933                     .span_label(
934                         variant.span,
935                         format!("overflowed on value after {}", prev_discr.unwrap()),
936                     )
937                     .note(&format!(
938                         "explicitly set `{} = {}` if that is desired outcome",
939                         variant.ident, wrapped_discr
940                     ))
941                     .emit();
942                 None
943             }
944             .unwrap_or(wrapped_discr),
945         );
946
947         for f in variant.data.fields() {
948             let def_id = tcx.hir().local_def_id(f.hir_id);
949             tcx.ensure().generics_of(def_id);
950             tcx.ensure().type_of(def_id);
951             tcx.ensure().predicates_of(def_id);
952         }
953
954         // Convert the ctor, if any. This also registers the variant as
955         // an item.
956         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
957             convert_variant_ctor(tcx, ctor_hir_id);
958         }
959     }
960 }
961
962 fn convert_variant(
963     tcx: TyCtxt<'_>,
964     variant_did: Option<LocalDefId>,
965     ctor_did: Option<LocalDefId>,
966     ident: Ident,
967     discr: ty::VariantDiscr,
968     def: &hir::VariantData<'_>,
969     adt_kind: ty::AdtKind,
970     parent_did: LocalDefId,
971 ) -> ty::VariantDef {
972     let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
973     let fields = def
974         .fields()
975         .iter()
976         .map(|f| {
977             let fid = tcx.hir().local_def_id(f.hir_id);
978             let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
979             if let Some(prev_span) = dup_span {
980                 tcx.sess.emit_err(errors::FieldAlreadyDeclared {
981                     field_name: f.ident,
982                     span: f.span,
983                     prev_span,
984                 });
985             } else {
986                 seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
987             }
988
989             ty::FieldDef { did: fid.to_def_id(), name: f.ident.name, vis: tcx.visibility(fid) }
990         })
991         .collect();
992     let recovered = match def {
993         hir::VariantData::Struct(_, r) => *r,
994         _ => false,
995     };
996     ty::VariantDef::new(
997         ident.name,
998         variant_did.map(LocalDefId::to_def_id),
999         ctor_did.map(LocalDefId::to_def_id),
1000         discr,
1001         fields,
1002         CtorKind::from_hir(def),
1003         adt_kind,
1004         parent_did.to_def_id(),
1005         recovered,
1006         adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
1007             || variant_did.map_or(false, |variant_did| {
1008                 tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
1009             }),
1010     )
1011 }
1012
1013 fn adt_def<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::AdtDef<'tcx> {
1014     use rustc_hir::*;
1015
1016     let def_id = def_id.expect_local();
1017     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1018     let Node::Item(item) = tcx.hir().get(hir_id) else {
1019         bug!();
1020     };
1021
1022     let repr = ReprOptions::new(tcx, def_id.to_def_id());
1023     let (kind, variants) = match item.kind {
1024         ItemKind::Enum(ref def, _) => {
1025             let mut distance_from_explicit = 0;
1026             let variants = def
1027                 .variants
1028                 .iter()
1029                 .map(|v| {
1030                     let variant_did = Some(tcx.hir().local_def_id(v.id));
1031                     let ctor_did =
1032                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1033
1034                     let discr = if let Some(ref e) = v.disr_expr {
1035                         distance_from_explicit = 0;
1036                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
1037                     } else {
1038                         ty::VariantDiscr::Relative(distance_from_explicit)
1039                     };
1040                     distance_from_explicit += 1;
1041
1042                     convert_variant(
1043                         tcx,
1044                         variant_did,
1045                         ctor_did,
1046                         v.ident,
1047                         discr,
1048                         &v.data,
1049                         AdtKind::Enum,
1050                         def_id,
1051                     )
1052                 })
1053                 .collect();
1054
1055             (AdtKind::Enum, variants)
1056         }
1057         ItemKind::Struct(ref def, _) => {
1058             let variant_did = None::<LocalDefId>;
1059             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1060
1061             let variants = std::iter::once(convert_variant(
1062                 tcx,
1063                 variant_did,
1064                 ctor_did,
1065                 item.ident,
1066                 ty::VariantDiscr::Relative(0),
1067                 def,
1068                 AdtKind::Struct,
1069                 def_id,
1070             ))
1071             .collect();
1072
1073             (AdtKind::Struct, variants)
1074         }
1075         ItemKind::Union(ref def, _) => {
1076             let variant_did = None;
1077             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1078
1079             let variants = std::iter::once(convert_variant(
1080                 tcx,
1081                 variant_did,
1082                 ctor_did,
1083                 item.ident,
1084                 ty::VariantDiscr::Relative(0),
1085                 def,
1086                 AdtKind::Union,
1087                 def_id,
1088             ))
1089             .collect();
1090
1091             (AdtKind::Union, variants)
1092         }
1093         _ => bug!(),
1094     };
1095     tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
1096 }
1097
1098 /// Ensures that the super-predicates of the trait with a `DefId`
1099 /// of `trait_def_id` are converted and stored. This also ensures that
1100 /// the transitive super-predicates are converted.
1101 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
1102     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
1103     tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
1104 }
1105
1106 /// Ensures that the super-predicates of the trait with a `DefId`
1107 /// of `trait_def_id` are converted and stored. This also ensures that
1108 /// the transitive super-predicates are converted.
1109 fn super_predicates_that_define_assoc_type(
1110     tcx: TyCtxt<'_>,
1111     (trait_def_id, assoc_name): (DefId, Option<Ident>),
1112 ) -> ty::GenericPredicates<'_> {
1113     debug!(
1114         "super_predicates_that_define_assoc_type(trait_def_id={:?}, assoc_name={:?})",
1115         trait_def_id, assoc_name
1116     );
1117     if trait_def_id.is_local() {
1118         debug!("super_predicates_that_define_assoc_type: local trait_def_id={:?}", trait_def_id);
1119         let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
1120
1121         let Node::Item(item) = tcx.hir().get(trait_hir_id) else {
1122             bug!("trait_node_id {} is not an item", trait_hir_id);
1123         };
1124
1125         let (generics, bounds) = match item.kind {
1126             hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
1127             hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
1128             _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
1129         };
1130
1131         let icx = ItemCtxt::new(tcx, trait_def_id);
1132
1133         // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
1134         let self_param_ty = tcx.types.self_param;
1135         let superbounds1 = if let Some(assoc_name) = assoc_name {
1136             <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
1137                 &icx,
1138                 self_param_ty,
1139                 bounds,
1140                 assoc_name,
1141             )
1142         } else {
1143             <dyn AstConv<'_>>::compute_bounds(&icx, self_param_ty, bounds)
1144         };
1145
1146         let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
1147
1148         // Convert any explicit superbounds in the where-clause,
1149         // e.g., `trait Foo where Self: Bar`.
1150         // In the case of trait aliases, however, we include all bounds in the where-clause,
1151         // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
1152         // as one of its "superpredicates".
1153         let is_trait_alias = tcx.is_trait_alias(trait_def_id);
1154         let superbounds2 = icx.type_parameter_bounds_in_generics(
1155             generics,
1156             item.hir_id(),
1157             self_param_ty,
1158             OnlySelfBounds(!is_trait_alias),
1159             assoc_name,
1160         );
1161
1162         // Combine the two lists to form the complete set of superbounds:
1163         let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
1164         debug!(?superbounds);
1165
1166         // Now require that immediate supertraits are converted,
1167         // which will, in turn, reach indirect supertraits.
1168         if assoc_name.is_none() {
1169             // Now require that immediate supertraits are converted,
1170             // which will, in turn, reach indirect supertraits.
1171             for &(pred, span) in superbounds {
1172                 debug!("superbound: {:?}", pred);
1173                 if let ty::PredicateKind::Trait(bound) = pred.kind().skip_binder() {
1174                     tcx.at(span).super_predicates_of(bound.def_id());
1175                 }
1176             }
1177         }
1178
1179         ty::GenericPredicates { parent: None, predicates: superbounds }
1180     } else {
1181         // if `assoc_name` is None, then the query should've been redirected to an
1182         // external provider
1183         assert!(assoc_name.is_some());
1184         tcx.super_predicates_of(trait_def_id)
1185     }
1186 }
1187
1188 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
1189     let item = tcx.hir().expect_item(def_id.expect_local());
1190
1191     let (is_auto, unsafety, items) = match item.kind {
1192         hir::ItemKind::Trait(is_auto, unsafety, .., items) => {
1193             (is_auto == hir::IsAuto::Yes, unsafety, items)
1194         }
1195         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal, &[][..]),
1196         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
1197     };
1198
1199     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
1200     if paren_sugar && !tcx.features().unboxed_closures {
1201         tcx.sess
1202             .struct_span_err(
1203                 item.span,
1204                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1205                  which traits can use parenthetical notation",
1206             )
1207             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
1208             .emit();
1209     }
1210
1211     let is_marker = tcx.has_attr(def_id, sym::marker);
1212     let skip_array_during_method_dispatch =
1213         tcx.has_attr(def_id, sym::rustc_skip_array_during_method_dispatch);
1214     let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
1215         ty::trait_def::TraitSpecializationKind::Marker
1216     } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
1217         ty::trait_def::TraitSpecializationKind::AlwaysApplicable
1218     } else {
1219         ty::trait_def::TraitSpecializationKind::None
1220     };
1221     let must_implement_one_of = tcx
1222         .get_attr(def_id, sym::rustc_must_implement_one_of)
1223         // Check that there are at least 2 arguments of `#[rustc_must_implement_one_of]`
1224         // and that they are all identifiers
1225         .and_then(|attr| match attr.meta_item_list() {
1226             Some(items) if items.len() < 2 => {
1227                 tcx.sess
1228                     .struct_span_err(
1229                         attr.span,
1230                         "the `#[rustc_must_implement_one_of]` attribute must be \
1231                         used with at least 2 args",
1232                     )
1233                     .emit();
1234
1235                 None
1236             }
1237             Some(items) => items
1238                 .into_iter()
1239                 .map(|item| item.ident().ok_or(item.span()))
1240                 .collect::<Result<Box<[_]>, _>>()
1241                 .map_err(|span| {
1242                     tcx.sess
1243                         .struct_span_err(span, "must be a name of an associated function")
1244                         .emit();
1245                 })
1246                 .ok()
1247                 .zip(Some(attr.span)),
1248             // Error is reported by `rustc_attr!`
1249             None => None,
1250         })
1251         // Check that all arguments of `#[rustc_must_implement_one_of]` reference
1252         // functions in the trait with default implementations
1253         .and_then(|(list, attr_span)| {
1254             let errors = list.iter().filter_map(|ident| {
1255                 let item = items.iter().find(|item| item.ident == *ident);
1256
1257                 match item {
1258                     Some(item) if matches!(item.kind, hir::AssocItemKind::Fn { .. }) => {
1259                         if !tcx.impl_defaultness(item.id.def_id).has_value() {
1260                             tcx.sess
1261                                 .struct_span_err(
1262                                     item.span,
1263                                     "This function doesn't have a default implementation",
1264                                 )
1265                                 .span_note(attr_span, "required by this annotation")
1266                                 .emit();
1267
1268                             return Some(());
1269                         }
1270
1271                         return None;
1272                     }
1273                     Some(item) => {
1274                         tcx.sess
1275                             .struct_span_err(item.span, "Not a function")
1276                             .span_note(attr_span, "required by this annotation")
1277                             .note(
1278                                 "All `#[rustc_must_implement_one_of]` arguments \
1279                             must be associated function names",
1280                             )
1281                             .emit();
1282                     }
1283                     None => {
1284                         tcx.sess
1285                             .struct_span_err(ident.span, "Function not found in this trait")
1286                             .emit();
1287                     }
1288                 }
1289
1290                 Some(())
1291             });
1292
1293             (errors.count() == 0).then_some(list)
1294         })
1295         // Check for duplicates
1296         .and_then(|list| {
1297             let mut set: FxHashMap<Symbol, Span> = FxHashMap::default();
1298             let mut no_dups = true;
1299
1300             for ident in &*list {
1301                 if let Some(dup) = set.insert(ident.name, ident.span) {
1302                     tcx.sess
1303                         .struct_span_err(vec![dup, ident.span], "Functions names are duplicated")
1304                         .note(
1305                             "All `#[rustc_must_implement_one_of]` arguments \
1306                             must be unique",
1307                         )
1308                         .emit();
1309
1310                     no_dups = false;
1311                 }
1312             }
1313
1314             no_dups.then_some(list)
1315         });
1316
1317     ty::TraitDef::new(
1318         def_id,
1319         unsafety,
1320         paren_sugar,
1321         is_auto,
1322         is_marker,
1323         skip_array_during_method_dispatch,
1324         spec_kind,
1325         must_implement_one_of,
1326     )
1327 }
1328
1329 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
1330     struct LateBoundRegionsDetector<'tcx> {
1331         tcx: TyCtxt<'tcx>,
1332         outer_index: ty::DebruijnIndex,
1333         has_late_bound_regions: Option<Span>,
1334     }
1335
1336     impl<'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
1337         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
1338             if self.has_late_bound_regions.is_some() {
1339                 return;
1340             }
1341             match ty.kind {
1342                 hir::TyKind::BareFn(..) => {
1343                     self.outer_index.shift_in(1);
1344                     intravisit::walk_ty(self, ty);
1345                     self.outer_index.shift_out(1);
1346                 }
1347                 _ => intravisit::walk_ty(self, ty),
1348             }
1349         }
1350
1351         fn visit_poly_trait_ref(&mut self, tr: &'tcx hir::PolyTraitRef<'tcx>) {
1352             if self.has_late_bound_regions.is_some() {
1353                 return;
1354             }
1355             self.outer_index.shift_in(1);
1356             intravisit::walk_poly_trait_ref(self, tr);
1357             self.outer_index.shift_out(1);
1358         }
1359
1360         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1361             if self.has_late_bound_regions.is_some() {
1362                 return;
1363             }
1364
1365             match self.tcx.named_region(lt.hir_id) {
1366                 Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
1367                 Some(rl::Region::LateBound(debruijn, _, _)) if debruijn < self.outer_index => {}
1368                 Some(rl::Region::LateBound(..) | rl::Region::Free(..)) | None => {
1369                     self.has_late_bound_regions = Some(lt.span);
1370                 }
1371             }
1372         }
1373     }
1374
1375     fn has_late_bound_regions<'tcx>(
1376         tcx: TyCtxt<'tcx>,
1377         generics: &'tcx hir::Generics<'tcx>,
1378         decl: &'tcx hir::FnDecl<'tcx>,
1379     ) -> Option<Span> {
1380         let mut visitor = LateBoundRegionsDetector {
1381             tcx,
1382             outer_index: ty::INNERMOST,
1383             has_late_bound_regions: None,
1384         };
1385         for param in generics.params {
1386             if let GenericParamKind::Lifetime { .. } = param.kind {
1387                 if tcx.is_late_bound(param.hir_id) {
1388                     return Some(param.span);
1389                 }
1390             }
1391         }
1392         visitor.visit_fn_decl(decl);
1393         visitor.has_late_bound_regions
1394     }
1395
1396     match node {
1397         Node::TraitItem(item) => match item.kind {
1398             hir::TraitItemKind::Fn(ref sig, _) => {
1399                 has_late_bound_regions(tcx, &item.generics, sig.decl)
1400             }
1401             _ => None,
1402         },
1403         Node::ImplItem(item) => match item.kind {
1404             hir::ImplItemKind::Fn(ref sig, _) => {
1405                 has_late_bound_regions(tcx, &item.generics, sig.decl)
1406             }
1407             _ => None,
1408         },
1409         Node::ForeignItem(item) => match item.kind {
1410             hir::ForeignItemKind::Fn(fn_decl, _, ref generics) => {
1411                 has_late_bound_regions(tcx, generics, fn_decl)
1412             }
1413             _ => None,
1414         },
1415         Node::Item(item) => match item.kind {
1416             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1417                 has_late_bound_regions(tcx, generics, sig.decl)
1418             }
1419             _ => None,
1420         },
1421         _ => None,
1422     }
1423 }
1424
1425 struct AnonConstInParamTyDetector {
1426     in_param_ty: bool,
1427     found_anon_const_in_param_ty: bool,
1428     ct: HirId,
1429 }
1430
1431 impl<'v> Visitor<'v> for AnonConstInParamTyDetector {
1432     fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
1433         if let GenericParamKind::Const { ty, default: _ } = p.kind {
1434             let prev = self.in_param_ty;
1435             self.in_param_ty = true;
1436             self.visit_ty(ty);
1437             self.in_param_ty = prev;
1438         }
1439     }
1440
1441     fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
1442         if self.in_param_ty && self.ct == c.hir_id {
1443             self.found_anon_const_in_param_ty = true;
1444         } else {
1445             intravisit::walk_anon_const(self, c)
1446         }
1447     }
1448 }
1449
1450 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
1451     use rustc_hir::*;
1452
1453     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1454
1455     let node = tcx.hir().get(hir_id);
1456     let parent_def_id = match node {
1457         Node::ImplItem(_)
1458         | Node::TraitItem(_)
1459         | Node::Variant(_)
1460         | Node::Ctor(..)
1461         | Node::Field(_) => {
1462             let parent_id = tcx.hir().get_parent_item(hir_id);
1463             Some(parent_id.to_def_id())
1464         }
1465         // FIXME(#43408) always enable this once `lazy_normalization` is
1466         // stable enough and does not need a feature gate anymore.
1467         Node::AnonConst(_) => {
1468             let parent_def_id = tcx.hir().get_parent_item(hir_id);
1469
1470             let mut in_param_ty = false;
1471             for (_parent, node) in tcx.hir().parent_iter(hir_id) {
1472                 if let Some(generics) = node.generics() {
1473                     let mut visitor = AnonConstInParamTyDetector {
1474                         in_param_ty: false,
1475                         found_anon_const_in_param_ty: false,
1476                         ct: hir_id,
1477                     };
1478
1479                     visitor.visit_generics(generics);
1480                     in_param_ty = visitor.found_anon_const_in_param_ty;
1481                     break;
1482                 }
1483             }
1484
1485             if in_param_ty {
1486                 // We do not allow generic parameters in anon consts if we are inside
1487                 // of a const parameter type, e.g. `struct Foo<const N: usize, const M: [u8; N]>` is not allowed.
1488                 None
1489             } else if tcx.lazy_normalization() {
1490                 if let Some(param_id) = tcx.hir().opt_const_param_default_param_hir_id(hir_id) {
1491                     // If the def_id we are calling generics_of on is an anon ct default i.e:
1492                     //
1493                     // struct Foo<const N: usize = { .. }>;
1494                     //        ^^^       ^          ^^^^^^ def id of this anon const
1495                     //        ^         ^ param_id
1496                     //        ^ parent_def_id
1497                     //
1498                     // then we only want to return generics for params to the left of `N`. If we don't do that we
1499                     // end up with that const looking like: `ty::ConstKind::Unevaluated(def_id, substs: [N#0])`.
1500                     //
1501                     // This causes ICEs (#86580) when building the substs for Foo in `fn foo() -> Foo { .. }` as
1502                     // we substitute the defaults with the partially built substs when we build the substs. Subst'ing
1503                     // the `N#0` on the unevaluated const indexes into the empty substs we're in the process of building.
1504                     //
1505                     // We fix this by having this function return the parent's generics ourselves and truncating the
1506                     // generics to only include non-forward declared params (with the exception of the `Self` ty)
1507                     //
1508                     // For the above code example that means we want `substs: []`
1509                     // For the following struct def we want `substs: [N#0]` when generics_of is called on
1510                     // the def id of the `{ N + 1 }` anon const
1511                     // struct Foo<const N: usize, const M: usize = { N + 1 }>;
1512                     //
1513                     // This has some implications for how we get the predicates available to the anon const
1514                     // see `explicit_predicates_of` for more information on this
1515                     let generics = tcx.generics_of(parent_def_id.to_def_id());
1516                     let param_def = tcx.hir().local_def_id(param_id).to_def_id();
1517                     let param_def_idx = generics.param_def_id_to_index[&param_def];
1518                     // In the above example this would be .params[..N#0]
1519                     let params = generics.params[..param_def_idx as usize].to_owned();
1520                     let param_def_id_to_index =
1521                         params.iter().map(|param| (param.def_id, param.index)).collect();
1522
1523                     return ty::Generics {
1524                         // we set the parent of these generics to be our parent's parent so that we
1525                         // dont end up with substs: [N, M, N] for the const default on a struct like this:
1526                         // struct Foo<const N: usize, const M: usize = { ... }>;
1527                         parent: generics.parent,
1528                         parent_count: generics.parent_count,
1529                         params,
1530                         param_def_id_to_index,
1531                         has_self: generics.has_self,
1532                         has_late_bound_regions: generics.has_late_bound_regions,
1533                     };
1534                 }
1535
1536                 // HACK(eddyb) this provides the correct generics when
1537                 // `feature(generic_const_expressions)` is enabled, so that const expressions
1538                 // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1539                 //
1540                 // Note that we do not supply the parent generics when using
1541                 // `min_const_generics`.
1542                 Some(parent_def_id.to_def_id())
1543             } else {
1544                 let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1545                 match parent_node {
1546                     // HACK(eddyb) this provides the correct generics for repeat
1547                     // expressions' count (i.e. `N` in `[x; N]`), and explicit
1548                     // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
1549                     // as they shouldn't be able to cause query cycle errors.
1550                     Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1551                         if constant.hir_id() == hir_id =>
1552                     {
1553                         Some(parent_def_id.to_def_id())
1554                     }
1555                     Node::Variant(Variant { disr_expr: Some(ref constant), .. })
1556                         if constant.hir_id == hir_id =>
1557                     {
1558                         Some(parent_def_id.to_def_id())
1559                     }
1560                     Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) => {
1561                         Some(tcx.typeck_root_def_id(def_id))
1562                     }
1563                     // Exclude `GlobalAsm` here which cannot have generics.
1564                     Node::Expr(&Expr { kind: ExprKind::InlineAsm(asm), .. })
1565                         if asm.operands.iter().any(|(op, _op_sp)| match op {
1566                             hir::InlineAsmOperand::Const { anon_const }
1567                             | hir::InlineAsmOperand::SymFn { anon_const } => {
1568                                 anon_const.hir_id == hir_id
1569                             }
1570                             _ => false,
1571                         }) =>
1572                     {
1573                         Some(parent_def_id.to_def_id())
1574                     }
1575                     _ => None,
1576                 }
1577             }
1578         }
1579         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
1580             Some(tcx.typeck_root_def_id(def_id))
1581         }
1582         Node::Item(item) => match item.kind {
1583             ItemKind::OpaqueTy(hir::OpaqueTy {
1584                 origin:
1585                     hir::OpaqueTyOrigin::FnReturn(fn_def_id) | hir::OpaqueTyOrigin::AsyncFn(fn_def_id),
1586                 in_trait,
1587                 ..
1588             }) => {
1589                 if in_trait {
1590                     assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn))
1591                 } else {
1592                     assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn | DefKind::Fn))
1593                 }
1594                 Some(fn_def_id.to_def_id())
1595             }
1596             ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias, .. }) => {
1597                 let parent_id = tcx.hir().get_parent_item(hir_id);
1598                 assert_ne!(parent_id, CRATE_DEF_ID);
1599                 debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1600                 // Opaque types are always nested within another item, and
1601                 // inherit the generics of the item.
1602                 Some(parent_id.to_def_id())
1603             }
1604             _ => None,
1605         },
1606         _ => None,
1607     };
1608
1609     enum Defaults {
1610         Allowed,
1611         // See #36887
1612         FutureCompatDisallowed,
1613         Deny,
1614     }
1615
1616     let no_generics = hir::Generics::empty();
1617     let ast_generics = node.generics().unwrap_or(&no_generics);
1618     let (opt_self, allow_defaults) = match node {
1619         Node::Item(item) => {
1620             match item.kind {
1621                 ItemKind::Trait(..) | ItemKind::TraitAlias(..) => {
1622                     // Add in the self type parameter.
1623                     //
1624                     // Something of a hack: use the node id for the trait, also as
1625                     // the node id for the Self type parameter.
1626                     let opt_self = Some(ty::GenericParamDef {
1627                         index: 0,
1628                         name: kw::SelfUpper,
1629                         def_id,
1630                         pure_wrt_drop: false,
1631                         kind: ty::GenericParamDefKind::Type {
1632                             has_default: false,
1633                             synthetic: false,
1634                         },
1635                     });
1636
1637                     (opt_self, Defaults::Allowed)
1638                 }
1639                 ItemKind::TyAlias(..)
1640                 | ItemKind::Enum(..)
1641                 | ItemKind::Struct(..)
1642                 | ItemKind::OpaqueTy(..)
1643                 | ItemKind::Union(..) => (None, Defaults::Allowed),
1644                 _ => (None, Defaults::FutureCompatDisallowed),
1645             }
1646         }
1647
1648         // GATs
1649         Node::TraitItem(item) if matches!(item.kind, TraitItemKind::Type(..)) => {
1650             (None, Defaults::Deny)
1651         }
1652         Node::ImplItem(item) if matches!(item.kind, ImplItemKind::TyAlias(..)) => {
1653             (None, Defaults::Deny)
1654         }
1655
1656         _ => (None, Defaults::FutureCompatDisallowed),
1657     };
1658
1659     let has_self = opt_self.is_some();
1660     let mut parent_has_self = false;
1661     let mut own_start = has_self as u32;
1662     let parent_count = parent_def_id.map_or(0, |def_id| {
1663         let generics = tcx.generics_of(def_id);
1664         assert!(!has_self);
1665         parent_has_self = generics.has_self;
1666         own_start = generics.count() as u32;
1667         generics.parent_count + generics.params.len()
1668     });
1669
1670     let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
1671
1672     if let Some(opt_self) = opt_self {
1673         params.push(opt_self);
1674     }
1675
1676     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1677     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1678         name: param.name.ident().name,
1679         index: own_start + i as u32,
1680         def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1681         pure_wrt_drop: param.pure_wrt_drop,
1682         kind: ty::GenericParamDefKind::Lifetime,
1683     }));
1684
1685     // Now create the real type and const parameters.
1686     let type_start = own_start - has_self as u32 + params.len() as u32;
1687     let mut i = 0;
1688
1689     const TYPE_DEFAULT_NOT_ALLOWED: &'static str = "defaults for type parameters are only allowed in \
1690     `struct`, `enum`, `type`, or `trait` definitions";
1691
1692     params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
1693         GenericParamKind::Lifetime { .. } => None,
1694         GenericParamKind::Type { ref default, synthetic, .. } => {
1695             if default.is_some() {
1696                 match allow_defaults {
1697                     Defaults::Allowed => {}
1698                     Defaults::FutureCompatDisallowed
1699                         if tcx.features().default_type_parameter_fallback => {}
1700                     Defaults::FutureCompatDisallowed => {
1701                         tcx.struct_span_lint_hir(
1702                             lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1703                             param.hir_id,
1704                             param.span,
1705                             |lint| {
1706                                 lint.build(TYPE_DEFAULT_NOT_ALLOWED).emit();
1707                             },
1708                         );
1709                     }
1710                     Defaults::Deny => {
1711                         tcx.sess.span_err(param.span, TYPE_DEFAULT_NOT_ALLOWED);
1712                     }
1713                 }
1714             }
1715
1716             let kind = ty::GenericParamDefKind::Type { has_default: default.is_some(), synthetic };
1717
1718             let param_def = ty::GenericParamDef {
1719                 index: type_start + i as u32,
1720                 name: param.name.ident().name,
1721                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1722                 pure_wrt_drop: param.pure_wrt_drop,
1723                 kind,
1724             };
1725             i += 1;
1726             Some(param_def)
1727         }
1728         GenericParamKind::Const { default, .. } => {
1729             if !matches!(allow_defaults, Defaults::Allowed) && default.is_some() {
1730                 tcx.sess.span_err(
1731                     param.span,
1732                     "defaults for const parameters are only allowed in \
1733                     `struct`, `enum`, `type`, or `trait` definitions",
1734                 );
1735             }
1736
1737             let param_def = ty::GenericParamDef {
1738                 index: type_start + i as u32,
1739                 name: param.name.ident().name,
1740                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1741                 pure_wrt_drop: param.pure_wrt_drop,
1742                 kind: ty::GenericParamDefKind::Const { has_default: default.is_some() },
1743             };
1744             i += 1;
1745             Some(param_def)
1746         }
1747     }));
1748
1749     // provide junk type parameter defs - the only place that
1750     // cares about anything but the length is instantiation,
1751     // and we don't do that for closures.
1752     if let Node::Expr(&hir::Expr {
1753         kind: hir::ExprKind::Closure(hir::Closure { movability: gen, .. }),
1754         ..
1755     }) = node
1756     {
1757         let dummy_args = if gen.is_some() {
1758             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
1759         } else {
1760             &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
1761         };
1762
1763         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1764             index: type_start + i as u32,
1765             name: Symbol::intern(arg),
1766             def_id,
1767             pure_wrt_drop: false,
1768             kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false },
1769         }));
1770     }
1771
1772     // provide junk type parameter defs for const blocks.
1773     if let Node::AnonConst(_) = node {
1774         let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1775         if let Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) = parent_node {
1776             params.push(ty::GenericParamDef {
1777                 index: type_start,
1778                 name: Symbol::intern("<const_ty>"),
1779                 def_id,
1780                 pure_wrt_drop: false,
1781                 kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false },
1782             });
1783         }
1784     }
1785
1786     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1787
1788     ty::Generics {
1789         parent: parent_def_id,
1790         parent_count,
1791         params,
1792         param_def_id_to_index,
1793         has_self: has_self || parent_has_self,
1794         has_late_bound_regions: has_late_bound_regions(tcx, node),
1795     }
1796 }
1797
1798 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1799     generic_args.iter().any(|arg| match arg {
1800         hir::GenericArg::Type(ty) => is_suggestable_infer_ty(ty),
1801         hir::GenericArg::Infer(_) => true,
1802         _ => false,
1803     })
1804 }
1805
1806 /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
1807 /// use inference to provide suggestions for the appropriate type if possible.
1808 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1809     debug!(?ty);
1810     use hir::TyKind::*;
1811     match &ty.kind {
1812         Infer => true,
1813         Slice(ty) => is_suggestable_infer_ty(ty),
1814         Array(ty, length) => {
1815             is_suggestable_infer_ty(ty) || matches!(length, hir::ArrayLen::Infer(_, _))
1816         }
1817         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1818         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1819         OpaqueDef(_, generic_args, _) => are_suggestable_generic_args(generic_args),
1820         Path(hir::QPath::TypeRelative(ty, segment)) => {
1821             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
1822         }
1823         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1824             ty_opt.map_or(false, is_suggestable_infer_ty)
1825                 || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
1826         }
1827         _ => false,
1828     }
1829 }
1830
1831 pub fn get_infer_ret_ty<'hir>(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1832     if let hir::FnRetTy::Return(ty) = output {
1833         if is_suggestable_infer_ty(ty) {
1834             return Some(&*ty);
1835         }
1836     }
1837     None
1838 }
1839
1840 #[instrument(level = "debug", skip(tcx))]
1841 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1842     use rustc_hir::Node::*;
1843     use rustc_hir::*;
1844
1845     let def_id = def_id.expect_local();
1846     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1847
1848     let icx = ItemCtxt::new(tcx, def_id.to_def_id());
1849
1850     match tcx.hir().get(hir_id) {
1851         TraitItem(hir::TraitItem {
1852             kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
1853             generics,
1854             ..
1855         })
1856         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), .. }) => {
1857             infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
1858         }
1859
1860         ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), generics, .. }) => {
1861             // Do not try to inference the return type for a impl method coming from a trait
1862             if let Item(hir::Item { kind: ItemKind::Impl(i), .. }) =
1863                 tcx.hir().get(tcx.hir().get_parent_node(hir_id))
1864                 && i.of_trait.is_some()
1865             {
1866                 <dyn AstConv<'_>>::ty_of_fn(
1867                     &icx,
1868                     hir_id,
1869                     sig.header.unsafety,
1870                     sig.header.abi,
1871                     sig.decl,
1872                     Some(generics),
1873                     None,
1874                 )
1875             } else {
1876                 infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
1877             }
1878         }
1879
1880         TraitItem(hir::TraitItem {
1881             kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
1882             generics,
1883             ..
1884         }) => <dyn AstConv<'_>>::ty_of_fn(
1885             &icx,
1886             hir_id,
1887             header.unsafety,
1888             header.abi,
1889             decl,
1890             Some(generics),
1891             None,
1892         ),
1893
1894         ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
1895             let abi = tcx.hir().get_foreign_abi(hir_id);
1896             compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi)
1897         }
1898
1899         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1900             let ty = tcx.type_of(tcx.hir().get_parent_item(hir_id));
1901             let inputs =
1902                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1903             ty::Binder::dummy(tcx.mk_fn_sig(
1904                 inputs,
1905                 ty,
1906                 false,
1907                 hir::Unsafety::Normal,
1908                 abi::Abi::Rust,
1909             ))
1910         }
1911
1912         Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
1913             // Closure signatures are not like other function
1914             // signatures and cannot be accessed through `fn_sig`. For
1915             // example, a closure signature excludes the `self`
1916             // argument. In any case they are embedded within the
1917             // closure type as part of the `ClosureSubsts`.
1918             //
1919             // To get the signature of a closure, you should use the
1920             // `sig` method on the `ClosureSubsts`:
1921             //
1922             //    substs.as_closure().sig(def_id, tcx)
1923             bug!(
1924                 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
1925             );
1926         }
1927
1928         x => {
1929             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1930         }
1931     }
1932 }
1933
1934 fn infer_return_ty_for_fn_sig<'tcx>(
1935     tcx: TyCtxt<'tcx>,
1936     sig: &hir::FnSig<'_>,
1937     generics: &hir::Generics<'_>,
1938     def_id: LocalDefId,
1939     icx: &ItemCtxt<'tcx>,
1940 ) -> ty::PolyFnSig<'tcx> {
1941     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1942
1943     match get_infer_ret_ty(&sig.decl.output) {
1944         Some(ty) => {
1945             let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
1946             // Typeck doesn't expect erased regions to be returned from `type_of`.
1947             let fn_sig = tcx.fold_regions(fn_sig, |r, _| match *r {
1948                 ty::ReErased => tcx.lifetimes.re_static,
1949                 _ => r,
1950             });
1951             let fn_sig = ty::Binder::dummy(fn_sig);
1952
1953             let mut visitor = HirPlaceholderCollector::default();
1954             visitor.visit_ty(ty);
1955             let mut diag = bad_placeholder(tcx, visitor.0, "return type");
1956             let ret_ty = fn_sig.skip_binder().output();
1957             if ret_ty.is_suggestable(tcx, false) {
1958                 diag.span_suggestion(
1959                     ty.span,
1960                     "replace with the correct return type",
1961                     ret_ty,
1962                     Applicability::MachineApplicable,
1963                 );
1964             } else if matches!(ret_ty.kind(), ty::FnDef(..)) {
1965                 let fn_sig = ret_ty.fn_sig(tcx);
1966                 if fn_sig
1967                     .skip_binder()
1968                     .inputs_and_output
1969                     .iter()
1970                     .all(|t| t.is_suggestable(tcx, false))
1971                 {
1972                     diag.span_suggestion(
1973                         ty.span,
1974                         "replace with the correct return type",
1975                         fn_sig,
1976                         Applicability::MachineApplicable,
1977                     );
1978                 }
1979             } else if ret_ty.is_closure() {
1980                 // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
1981                 // to prevent the user from getting a papercut while trying to use the unique closure
1982                 // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
1983                 diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
1984                 diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
1985             }
1986             diag.emit();
1987
1988             fn_sig
1989         }
1990         None => <dyn AstConv<'_>>::ty_of_fn(
1991             icx,
1992             hir_id,
1993             sig.header.unsafety,
1994             sig.header.abi,
1995             sig.decl,
1996             Some(generics),
1997             None,
1998         ),
1999     }
2000 }
2001
2002 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
2003     let icx = ItemCtxt::new(tcx, def_id);
2004     match tcx.hir().expect_item(def_id.expect_local()).kind {
2005         hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
2006             let selfty = tcx.type_of(def_id);
2007             <dyn AstConv<'_>>::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
2008         }),
2009         _ => bug!(),
2010     }
2011 }
2012
2013 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
2014     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
2015     let item = tcx.hir().expect_item(def_id.expect_local());
2016     match &item.kind {
2017         hir::ItemKind::Impl(hir::Impl {
2018             polarity: hir::ImplPolarity::Negative(span),
2019             of_trait,
2020             ..
2021         }) => {
2022             if is_rustc_reservation {
2023                 let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
2024                 tcx.sess.span_err(span, "reservation impls can't be negative");
2025             }
2026             ty::ImplPolarity::Negative
2027         }
2028         hir::ItemKind::Impl(hir::Impl {
2029             polarity: hir::ImplPolarity::Positive,
2030             of_trait: None,
2031             ..
2032         }) => {
2033             if is_rustc_reservation {
2034                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
2035             }
2036             ty::ImplPolarity::Positive
2037         }
2038         hir::ItemKind::Impl(hir::Impl {
2039             polarity: hir::ImplPolarity::Positive,
2040             of_trait: Some(_),
2041             ..
2042         }) => {
2043             if is_rustc_reservation {
2044                 ty::ImplPolarity::Reservation
2045             } else {
2046                 ty::ImplPolarity::Positive
2047             }
2048         }
2049         item => bug!("impl_polarity: {:?} not an impl", item),
2050     }
2051 }
2052
2053 /// Returns the early-bound lifetimes declared in this generics
2054 /// listing. For anything other than fns/methods, this is just all
2055 /// the lifetimes that are declared. For fns or methods, we have to
2056 /// screen out those that do not appear in any where-clauses etc using
2057 /// `resolve_lifetime::early_bound_lifetimes`.
2058 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
2059     tcx: TyCtxt<'tcx>,
2060     generics: &'a hir::Generics<'a>,
2061 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
2062     generics.params.iter().filter(move |param| match param.kind {
2063         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
2064         _ => false,
2065     })
2066 }
2067
2068 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
2069 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
2070 /// inferred constraints concerning which regions outlive other regions.
2071 #[instrument(level = "debug", skip(tcx))]
2072 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2073     let mut result = tcx.explicit_predicates_of(def_id);
2074     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
2075     let inferred_outlives = tcx.inferred_outlives_of(def_id);
2076     if !inferred_outlives.is_empty() {
2077         debug!(
2078             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
2079             def_id, inferred_outlives,
2080         );
2081         if result.predicates.is_empty() {
2082             result.predicates = inferred_outlives;
2083         } else {
2084             result.predicates = tcx
2085                 .arena
2086                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
2087         }
2088     }
2089
2090     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
2091     result
2092 }
2093
2094 /// Returns a list of all type predicates (explicit and implicit) for the definition with
2095 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
2096 /// `Self: Trait` predicates for traits.
2097 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2098     let mut result = tcx.predicates_defined_on(def_id);
2099
2100     if tcx.is_trait(def_id) {
2101         // For traits, add `Self: Trait` predicate. This is
2102         // not part of the predicates that a user writes, but it
2103         // is something that one must prove in order to invoke a
2104         // method or project an associated type.
2105         //
2106         // In the chalk setup, this predicate is not part of the
2107         // "predicates" for a trait item. But it is useful in
2108         // rustc because if you directly (e.g.) invoke a trait
2109         // method like `Trait::method(...)`, you must naturally
2110         // prove that the trait applies to the types that were
2111         // used, and adding the predicate into this list ensures
2112         // that this is done.
2113         //
2114         // We use a DUMMY_SP here as a way to signal trait bounds that come
2115         // from the trait itself that *shouldn't* be shown as the source of
2116         // an obligation and instead be skipped. Otherwise we'd use
2117         // `tcx.def_span(def_id);`
2118
2119         let constness = if tcx.has_attr(def_id, sym::const_trait) {
2120             ty::BoundConstness::ConstIfConst
2121         } else {
2122             ty::BoundConstness::NotConst
2123         };
2124
2125         let span = rustc_span::DUMMY_SP;
2126         result.predicates =
2127             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
2128                 ty::TraitRef::identity(tcx, def_id).with_constness(constness).to_predicate(tcx),
2129                 span,
2130             ))));
2131     }
2132     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2133     result
2134 }
2135
2136 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2137 /// N.B., this does not include any implied/inferred constraints.
2138 #[instrument(level = "trace", skip(tcx), ret)]
2139 fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2140     use rustc_hir::*;
2141
2142     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2143     let node = tcx.hir().get(hir_id);
2144
2145     let mut is_trait = None;
2146     let mut is_default_impl_trait = None;
2147
2148     let icx = ItemCtxt::new(tcx, def_id);
2149
2150     const NO_GENERICS: &hir::Generics<'_> = hir::Generics::empty();
2151
2152     // We use an `IndexSet` to preserves order of insertion.
2153     // Preserving the order of insertion is important here so as not to break UI tests.
2154     let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
2155
2156     let ast_generics = match node {
2157         Node::TraitItem(item) => item.generics,
2158
2159         Node::ImplItem(item) => item.generics,
2160
2161         Node::Item(item) => {
2162             match item.kind {
2163                 ItemKind::Impl(ref impl_) => {
2164                     if impl_.defaultness.is_default() {
2165                         is_default_impl_trait = tcx.impl_trait_ref(def_id).map(ty::Binder::dummy);
2166                     }
2167                     &impl_.generics
2168                 }
2169                 ItemKind::Fn(.., ref generics, _)
2170                 | ItemKind::TyAlias(_, ref generics)
2171                 | ItemKind::Enum(_, ref generics)
2172                 | ItemKind::Struct(_, ref generics)
2173                 | ItemKind::Union(_, ref generics) => *generics,
2174
2175                 ItemKind::Trait(_, _, ref generics, ..) => {
2176                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
2177                     *generics
2178                 }
2179                 ItemKind::TraitAlias(ref generics, _) => {
2180                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
2181                     *generics
2182                 }
2183                 ItemKind::OpaqueTy(OpaqueTy {
2184                     origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
2185                     ..
2186                 }) => {
2187                     // return-position impl trait
2188                     //
2189                     // We don't inherit predicates from the parent here:
2190                     // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
2191                     // then the return type is `f::<'static, T>::{{opaque}}`.
2192                     //
2193                     // If we inherited the predicates of `f` then we would
2194                     // require that `T: 'static` to show that the return
2195                     // type is well-formed.
2196                     //
2197                     // The only way to have something with this opaque type
2198                     // is from the return type of the containing function,
2199                     // which will ensure that the function's predicates
2200                     // hold.
2201                     return ty::GenericPredicates { parent: None, predicates: &[] };
2202                 }
2203                 ItemKind::OpaqueTy(OpaqueTy {
2204                     ref generics,
2205                     origin: hir::OpaqueTyOrigin::TyAlias,
2206                     ..
2207                 }) => {
2208                     // type-alias impl trait
2209                     generics
2210                 }
2211
2212                 _ => NO_GENERICS,
2213             }
2214         }
2215
2216         Node::ForeignItem(item) => match item.kind {
2217             ForeignItemKind::Static(..) => NO_GENERICS,
2218             ForeignItemKind::Fn(_, _, ref generics) => *generics,
2219             ForeignItemKind::Type => NO_GENERICS,
2220         },
2221
2222         _ => NO_GENERICS,
2223     };
2224
2225     let generics = tcx.generics_of(def_id);
2226     let parent_count = generics.parent_count as u32;
2227     let has_own_self = generics.has_self && parent_count == 0;
2228
2229     // Below we'll consider the bounds on the type parameters (including `Self`)
2230     // and the explicit where-clauses, but to get the full set of predicates
2231     // on a trait we need to add in the supertrait bounds and bounds found on
2232     // associated types.
2233     if let Some(_trait_ref) = is_trait {
2234         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2235     }
2236
2237     // In default impls, we can assume that the self type implements
2238     // the trait. So in:
2239     //
2240     //     default impl Foo for Bar { .. }
2241     //
2242     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2243     // (see below). Recall that a default impl is not itself an impl, but rather a
2244     // set of defaults that can be incorporated into another impl.
2245     if let Some(trait_ref) = is_default_impl_trait {
2246         predicates.insert((trait_ref.without_const().to_predicate(tcx), tcx.def_span(def_id)));
2247     }
2248
2249     // Collect the region predicates that were declared inline as
2250     // well. In the case of parameters declared on a fn or method, we
2251     // have to be careful to only iterate over early-bound regions.
2252     let mut index = parent_count
2253         + has_own_self as u32
2254         + early_bound_lifetimes_from_generics(tcx, ast_generics).count() as u32;
2255
2256     trace!(?predicates);
2257     trace!(?ast_generics);
2258
2259     // Collect the predicates that were written inline by the user on each
2260     // type parameter (e.g., `<T: Foo>`).
2261     for param in ast_generics.params {
2262         match param.kind {
2263             // We already dealt with early bound lifetimes above.
2264             GenericParamKind::Lifetime { .. } => (),
2265             GenericParamKind::Type { .. } => {
2266                 let name = param.name.ident().name;
2267                 let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2268                 index += 1;
2269
2270                 let mut bounds = Bounds::default();
2271                 // Params are implicitly sized unless a `?Sized` bound is found
2272                 <dyn AstConv<'_>>::add_implicitly_sized(
2273                     &icx,
2274                     &mut bounds,
2275                     &[],
2276                     Some((param.hir_id, ast_generics.predicates)),
2277                     param.span,
2278                 );
2279                 trace!(?bounds);
2280                 predicates.extend(bounds.predicates(tcx, param_ty));
2281                 trace!(?predicates);
2282             }
2283             GenericParamKind::Const { .. } => {
2284                 // Bounds on const parameters are currently not possible.
2285                 index += 1;
2286             }
2287         }
2288     }
2289
2290     trace!(?predicates);
2291     // Add in the bounds that appear in the where-clause.
2292     for predicate in ast_generics.predicates {
2293         match predicate {
2294             hir::WherePredicate::BoundPredicate(bound_pred) => {
2295                 let ty = icx.to_ty(bound_pred.bounded_ty);
2296                 let bound_vars = icx.tcx.late_bound_vars(bound_pred.bounded_ty.hir_id);
2297
2298                 // Keep the type around in a dummy predicate, in case of no bounds.
2299                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2300                 // is still checked for WF.
2301                 if bound_pred.bounds.is_empty() {
2302                     if let ty::Param(_) = ty.kind() {
2303                         // This is a `where T:`, which can be in the HIR from the
2304                         // transformation that moves `?Sized` to `T`'s declaration.
2305                         // We can skip the predicate because type parameters are
2306                         // trivially WF, but also we *should*, to avoid exposing
2307                         // users who never wrote `where Type:,` themselves, to
2308                         // compiler/tooling bugs from not handling WF predicates.
2309                     } else {
2310                         let span = bound_pred.bounded_ty.span;
2311                         let predicate = ty::Binder::bind_with_vars(
2312                             ty::PredicateKind::WellFormed(ty.into()),
2313                             bound_vars,
2314                         );
2315                         predicates.insert((predicate.to_predicate(tcx), span));
2316                     }
2317                 }
2318
2319                 let mut bounds = Bounds::default();
2320                 <dyn AstConv<'_>>::add_bounds(
2321                     &icx,
2322                     ty,
2323                     bound_pred.bounds.iter(),
2324                     &mut bounds,
2325                     bound_vars,
2326                 );
2327                 predicates.extend(bounds.predicates(tcx, ty));
2328             }
2329
2330             hir::WherePredicate::RegionPredicate(region_pred) => {
2331                 let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
2332                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2333                     let (r2, span) = match bound {
2334                         hir::GenericBound::Outlives(lt) => {
2335                             (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
2336                         }
2337                         _ => bug!(),
2338                     };
2339                     let pred = ty::Binder::dummy(ty::PredicateKind::RegionOutlives(
2340                         ty::OutlivesPredicate(r1, r2),
2341                     ))
2342                     .to_predicate(icx.tcx);
2343
2344                     (pred, span)
2345                 }))
2346             }
2347
2348             hir::WherePredicate::EqPredicate(..) => {
2349                 // FIXME(#20041)
2350             }
2351         }
2352     }
2353
2354     if tcx.features().generic_const_exprs {
2355         predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
2356     }
2357
2358     let mut predicates: Vec<_> = predicates.into_iter().collect();
2359
2360     // Subtle: before we store the predicates into the tcx, we
2361     // sort them so that predicates like `T: Foo<Item=U>` come
2362     // before uses of `U`.  This avoids false ambiguity errors
2363     // in trait checking. See `setup_constraining_predicates`
2364     // for details.
2365     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2366         let self_ty = tcx.type_of(def_id);
2367         let trait_ref = tcx.impl_trait_ref(def_id);
2368         cgp::setup_constraining_predicates(
2369             tcx,
2370             &mut predicates,
2371             trait_ref,
2372             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2373         );
2374     }
2375
2376     ty::GenericPredicates {
2377         parent: generics.parent,
2378         predicates: tcx.arena.alloc_from_iter(predicates),
2379     }
2380 }
2381
2382 fn const_evaluatable_predicates_of<'tcx>(
2383     tcx: TyCtxt<'tcx>,
2384     def_id: LocalDefId,
2385 ) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
2386     struct ConstCollector<'tcx> {
2387         tcx: TyCtxt<'tcx>,
2388         preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
2389     }
2390
2391     impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
2392         fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
2393             let def_id = self.tcx.hir().local_def_id(c.hir_id);
2394             let ct = ty::Const::from_anon_const(self.tcx, def_id);
2395             if let ty::ConstKind::Unevaluated(uv) = ct.kind() {
2396                 assert_eq!(uv.promoted, ());
2397                 let span = self.tcx.hir().span(c.hir_id);
2398                 self.preds.insert((
2399                     ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(uv))
2400                         .to_predicate(self.tcx),
2401                     span,
2402                 ));
2403             }
2404         }
2405
2406         fn visit_const_param_default(&mut self, _param: HirId, _ct: &'tcx hir::AnonConst) {
2407             // Do not look into const param defaults,
2408             // these get checked when they are actually instantiated.
2409             //
2410             // We do not want the following to error:
2411             //
2412             //     struct Foo<const N: usize, const M: usize = { N + 1 }>;
2413             //     struct Bar<const N: usize>(Foo<N, 3>);
2414         }
2415     }
2416
2417     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
2418     let node = tcx.hir().get(hir_id);
2419
2420     let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
2421     if let hir::Node::Item(item) = node && let hir::ItemKind::Impl(ref impl_) = item.kind {
2422         if let Some(of_trait) = &impl_.of_trait {
2423             debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
2424             collector.visit_trait_ref(of_trait);
2425         }
2426
2427         debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
2428         collector.visit_ty(impl_.self_ty);
2429     }
2430
2431     if let Some(generics) = node.generics() {
2432         debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
2433         collector.visit_generics(generics);
2434     }
2435
2436     if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
2437         debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
2438         collector.visit_fn_decl(fn_sig.decl);
2439     }
2440     debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
2441
2442     collector.preds
2443 }
2444
2445 fn trait_explicit_predicates_and_bounds(
2446     tcx: TyCtxt<'_>,
2447     def_id: LocalDefId,
2448 ) -> ty::GenericPredicates<'_> {
2449     assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
2450     gather_explicit_predicates_of(tcx, def_id.to_def_id())
2451 }
2452
2453 fn explicit_predicates_of<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::GenericPredicates<'tcx> {
2454     let def_kind = tcx.def_kind(def_id);
2455     if let DefKind::Trait = def_kind {
2456         // Remove bounds on associated types from the predicates, they will be
2457         // returned by `explicit_item_bounds`.
2458         let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
2459         let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
2460
2461         let is_assoc_item_ty = |ty: Ty<'tcx>| {
2462             // For a predicate from a where clause to become a bound on an
2463             // associated type:
2464             // * It must use the identity substs of the item.
2465             //     * Since any generic parameters on the item are not in scope,
2466             //       this means that the item is not a GAT, and its identity
2467             //       substs are the same as the trait's.
2468             // * It must be an associated type for this trait (*not* a
2469             //   supertrait).
2470             if let ty::Projection(projection) = ty.kind() {
2471                 projection.substs == trait_identity_substs
2472                     && tcx.associated_item(projection.item_def_id).container_id(tcx) == def_id
2473             } else {
2474                 false
2475             }
2476         };
2477
2478         let predicates: Vec<_> = predicates_and_bounds
2479             .predicates
2480             .iter()
2481             .copied()
2482             .filter(|(pred, _)| match pred.kind().skip_binder() {
2483                 ty::PredicateKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
2484                 ty::PredicateKind::Projection(proj) => {
2485                     !is_assoc_item_ty(proj.projection_ty.self_ty())
2486                 }
2487                 ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
2488                 _ => true,
2489             })
2490             .collect();
2491         if predicates.len() == predicates_and_bounds.predicates.len() {
2492             predicates_and_bounds
2493         } else {
2494             ty::GenericPredicates {
2495                 parent: predicates_and_bounds.parent,
2496                 predicates: tcx.arena.alloc_slice(&predicates),
2497             }
2498         }
2499     } else {
2500         if matches!(def_kind, DefKind::AnonConst) && tcx.lazy_normalization() {
2501             let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2502             if tcx.hir().opt_const_param_default_param_hir_id(hir_id).is_some() {
2503                 // In `generics_of` we set the generics' parent to be our parent's parent which means that
2504                 // we lose out on the predicates of our actual parent if we dont return those predicates here.
2505                 // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
2506                 //
2507                 // struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
2508                 //        ^^^                     ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
2509                 //        ^^^                                             explicit_predicates_of on
2510                 //        parent item we dont have set as the
2511                 //        parent of generics returned by `generics_of`
2512                 //
2513                 // In the above code we want the anon const to have predicates in its param env for `T: Trait`
2514                 let item_def_id = tcx.hir().get_parent_item(hir_id);
2515                 // In the above code example we would be calling `explicit_predicates_of(Foo)` here
2516                 return tcx.explicit_predicates_of(item_def_id);
2517             }
2518         }
2519         gather_explicit_predicates_of(tcx, def_id)
2520     }
2521 }
2522
2523 /// Converts a specific `GenericBound` from the AST into a set of
2524 /// predicates that apply to the self type. A vector is returned
2525 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2526 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2527 /// and `<T as Bar>::X == i32`).
2528 fn predicates_from_bound<'tcx>(
2529     astconv: &dyn AstConv<'tcx>,
2530     param_ty: Ty<'tcx>,
2531     bound: &'tcx hir::GenericBound<'tcx>,
2532     bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
2533 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2534     let mut bounds = Bounds::default();
2535     astconv.add_bounds(param_ty, [bound].into_iter(), &mut bounds, bound_vars);
2536     bounds.predicates(astconv.tcx(), param_ty).collect()
2537 }
2538
2539 fn compute_sig_of_foreign_fn_decl<'tcx>(
2540     tcx: TyCtxt<'tcx>,
2541     def_id: DefId,
2542     decl: &'tcx hir::FnDecl<'tcx>,
2543     abi: abi::Abi,
2544 ) -> ty::PolyFnSig<'tcx> {
2545     let unsafety = if abi == abi::Abi::RustIntrinsic {
2546         intrinsic_operation_unsafety(tcx.item_name(def_id))
2547     } else {
2548         hir::Unsafety::Unsafe
2549     };
2550     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2551     let fty = <dyn AstConv<'_>>::ty_of_fn(
2552         &ItemCtxt::new(tcx, def_id),
2553         hir_id,
2554         unsafety,
2555         abi,
2556         decl,
2557         None,
2558         None,
2559     );
2560
2561     // Feature gate SIMD types in FFI, since I am not sure that the
2562     // ABIs are handled at all correctly. -huonw
2563     if abi != abi::Abi::RustIntrinsic
2564         && abi != abi::Abi::PlatformIntrinsic
2565         && !tcx.features().simd_ffi
2566     {
2567         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2568             if ty.is_simd() {
2569                 let snip = tcx
2570                     .sess
2571                     .source_map()
2572                     .span_to_snippet(ast_ty.span)
2573                     .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
2574                 tcx.sess
2575                     .struct_span_err(
2576                         ast_ty.span,
2577                         &format!(
2578                             "use of SIMD type{} in FFI is highly experimental and \
2579                              may result in invalid code",
2580                             snip
2581                         ),
2582                     )
2583                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2584                     .emit();
2585             }
2586         };
2587         for (input, ty) in iter::zip(decl.inputs, fty.inputs().skip_binder()) {
2588             check(input, *ty)
2589         }
2590         if let hir::FnRetTy::Return(ref ty) = decl.output {
2591             check(ty, fty.output().skip_binder())
2592         }
2593     }
2594
2595     fty
2596 }
2597
2598 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2599     match tcx.hir().get_if_local(def_id) {
2600         Some(Node::ForeignItem(..)) => true,
2601         Some(_) => false,
2602         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2603     }
2604 }
2605
2606 fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
2607     match tcx.hir().get_if_local(def_id) {
2608         Some(Node::Expr(&rustc_hir::Expr {
2609             kind: rustc_hir::ExprKind::Closure(&rustc_hir::Closure { body, .. }),
2610             ..
2611         })) => tcx.hir().body(body).generator_kind(),
2612         Some(_) => None,
2613         _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
2614     }
2615 }
2616
2617 fn from_target_feature(
2618     tcx: TyCtxt<'_>,
2619     attr: &ast::Attribute,
2620     supported_target_features: &FxHashMap<String, Option<Symbol>>,
2621     target_features: &mut Vec<Symbol>,
2622 ) {
2623     let Some(list) = attr.meta_item_list() else { return };
2624     let bad_item = |span| {
2625         let msg = "malformed `target_feature` attribute input";
2626         let code = "enable = \"..\"";
2627         tcx.sess
2628             .struct_span_err(span, msg)
2629             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2630             .emit();
2631     };
2632     let rust_features = tcx.features();
2633     for item in list {
2634         // Only `enable = ...` is accepted in the meta-item list.
2635         if !item.has_name(sym::enable) {
2636             bad_item(item.span());
2637             continue;
2638         }
2639
2640         // Must be of the form `enable = "..."` (a string).
2641         let Some(value) = item.value_str() else {
2642             bad_item(item.span());
2643             continue;
2644         };
2645
2646         // We allow comma separation to enable multiple features.
2647         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2648             let Some(feature_gate) = supported_target_features.get(feature) else {
2649                 let msg =
2650                     format!("the feature named `{}` is not valid for this target", feature);
2651                 let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2652                 err.span_label(
2653                     item.span(),
2654                     format!("`{}` is not valid for this target", feature),
2655                 );
2656                 if let Some(stripped) = feature.strip_prefix('+') {
2657                     let valid = supported_target_features.contains_key(stripped);
2658                     if valid {
2659                         err.help("consider removing the leading `+` in the feature name");
2660                     }
2661                 }
2662                 err.emit();
2663                 return None;
2664             };
2665
2666             // Only allow features whose feature gates have been enabled.
2667             let allowed = match feature_gate.as_ref().copied() {
2668                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2669                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2670                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2671                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2672                 Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
2673                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2674                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2675                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2676                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2677                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2678                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2679                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2680                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2681                 Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
2682                 Some(sym::bpf_target_feature) => rust_features.bpf_target_feature,
2683                 Some(sym::aarch64_ver_target_feature) => rust_features.aarch64_ver_target_feature,
2684                 Some(name) => bug!("unknown target feature gate {}", name),
2685                 None => true,
2686             };
2687             if !allowed {
2688                 feature_err(
2689                     &tcx.sess.parse_sess,
2690                     feature_gate.unwrap(),
2691                     item.span(),
2692                     &format!("the target feature `{}` is currently unstable", feature),
2693                 )
2694                 .emit();
2695             }
2696             Some(Symbol::intern(feature))
2697         }));
2698     }
2699 }
2700
2701 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: LocalDefId, name: &str) -> Linkage {
2702     use rustc_middle::mir::mono::Linkage::*;
2703
2704     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2705     // applicable to variable declarations and may not really make sense for
2706     // Rust code in the first place but allow them anyway and trust that the
2707     // user knows what they're doing. Who knows, unanticipated use cases may pop
2708     // up in the future.
2709     //
2710     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2711     // and don't have to be, LLVM treats them as no-ops.
2712     match name {
2713         "appending" => Appending,
2714         "available_externally" => AvailableExternally,
2715         "common" => Common,
2716         "extern_weak" => ExternalWeak,
2717         "external" => External,
2718         "internal" => Internal,
2719         "linkonce" => LinkOnceAny,
2720         "linkonce_odr" => LinkOnceODR,
2721         "private" => Private,
2722         "weak" => WeakAny,
2723         "weak_odr" => WeakODR,
2724         _ => tcx.sess.span_fatal(tcx.def_span(def_id), "invalid linkage specified"),
2725     }
2726 }
2727
2728 fn codegen_fn_attrs(tcx: TyCtxt<'_>, did: DefId) -> CodegenFnAttrs {
2729     if cfg!(debug_assertions) {
2730         let def_kind = tcx.def_kind(did);
2731         assert!(
2732             def_kind.has_codegen_attrs(),
2733             "unexpected `def_kind` in `codegen_fn_attrs`: {def_kind:?}",
2734         );
2735     }
2736
2737     let did = did.expect_local();
2738     let attrs = tcx.hir().attrs(tcx.hir().local_def_id_to_hir_id(did));
2739     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2740     if tcx.should_inherit_track_caller(did) {
2741         codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2742     }
2743
2744     // The panic_no_unwind function called by TerminatorKind::Abort will never
2745     // unwind. If the panic handler that it invokes unwind then it will simply
2746     // call the panic handler again.
2747     if Some(did.to_def_id()) == tcx.lang_items().panic_no_unwind() {
2748         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
2749     }
2750
2751     let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
2752
2753     let mut inline_span = None;
2754     let mut link_ordinal_span = None;
2755     let mut no_sanitize_span = None;
2756     for attr in attrs.iter() {
2757         if attr.has_name(sym::cold) {
2758             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2759         } else if attr.has_name(sym::rustc_allocator) {
2760             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2761         } else if attr.has_name(sym::ffi_returns_twice) {
2762             if tcx.is_foreign_item(did) {
2763                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2764             } else {
2765                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2766                 struct_span_err!(
2767                     tcx.sess,
2768                     attr.span,
2769                     E0724,
2770                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2771                 )
2772                 .emit();
2773             }
2774         } else if attr.has_name(sym::ffi_pure) {
2775             if tcx.is_foreign_item(did) {
2776                 if attrs.iter().any(|a| a.has_name(sym::ffi_const)) {
2777                     // `#[ffi_const]` functions cannot be `#[ffi_pure]`
2778                     struct_span_err!(
2779                         tcx.sess,
2780                         attr.span,
2781                         E0757,
2782                         "`#[ffi_const]` function cannot be `#[ffi_pure]`"
2783                     )
2784                     .emit();
2785                 } else {
2786                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
2787                 }
2788             } else {
2789                 // `#[ffi_pure]` is only allowed on foreign functions
2790                 struct_span_err!(
2791                     tcx.sess,
2792                     attr.span,
2793                     E0755,
2794                     "`#[ffi_pure]` may only be used on foreign functions"
2795                 )
2796                 .emit();
2797             }
2798         } else if attr.has_name(sym::ffi_const) {
2799             if tcx.is_foreign_item(did) {
2800                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
2801             } else {
2802                 // `#[ffi_const]` is only allowed on foreign functions
2803                 struct_span_err!(
2804                     tcx.sess,
2805                     attr.span,
2806                     E0756,
2807                     "`#[ffi_const]` may only be used on foreign functions"
2808                 )
2809                 .emit();
2810             }
2811         } else if attr.has_name(sym::rustc_allocator_nounwind) {
2812             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
2813         } else if attr.has_name(sym::rustc_reallocator) {
2814             codegen_fn_attrs.flags |= CodegenFnAttrFlags::REALLOCATOR;
2815         } else if attr.has_name(sym::rustc_deallocator) {
2816             codegen_fn_attrs.flags |= CodegenFnAttrFlags::DEALLOCATOR;
2817         } else if attr.has_name(sym::rustc_allocator_zeroed) {
2818             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR_ZEROED;
2819         } else if attr.has_name(sym::naked) {
2820             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2821         } else if attr.has_name(sym::no_mangle) {
2822             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2823         } else if attr.has_name(sym::no_coverage) {
2824             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_COVERAGE;
2825         } else if attr.has_name(sym::rustc_std_internal_symbol) {
2826             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2827         } else if attr.has_name(sym::used) {
2828             let inner = attr.meta_item_list();
2829             match inner.as_deref() {
2830                 Some([item]) if item.has_name(sym::linker) => {
2831                     if !tcx.features().used_with_arg {
2832                         feature_err(
2833                             &tcx.sess.parse_sess,
2834                             sym::used_with_arg,
2835                             attr.span,
2836                             "`#[used(linker)]` is currently unstable",
2837                         )
2838                         .emit();
2839                     }
2840                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED_LINKER;
2841                 }
2842                 Some([item]) if item.has_name(sym::compiler) => {
2843                     if !tcx.features().used_with_arg {
2844                         feature_err(
2845                             &tcx.sess.parse_sess,
2846                             sym::used_with_arg,
2847                             attr.span,
2848                             "`#[used(compiler)]` is currently unstable",
2849                         )
2850                         .emit();
2851                     }
2852                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2853                 }
2854                 Some(_) => {
2855                     tcx.sess.emit_err(errors::ExpectedUsedSymbol { span: attr.span });
2856                 }
2857                 None => {
2858                     // Unfortunately, unconditionally using `llvm.used` causes
2859                     // issues in handling `.init_array` with the gold linker,
2860                     // but using `llvm.compiler.used` caused a nontrival amount
2861                     // of unintentional ecosystem breakage -- particularly on
2862                     // Mach-O targets.
2863                     //
2864                     // As a result, we emit `llvm.compiler.used` only on ELF
2865                     // targets. This is somewhat ad-hoc, but actually follows
2866                     // our pre-LLVM 13 behavior (prior to the ecosystem
2867                     // breakage), and seems to match `clang`'s behavior as well
2868                     // (both before and after LLVM 13), possibly because they
2869                     // have similar compatibility concerns to us. See
2870                     // https://github.com/rust-lang/rust/issues/47384#issuecomment-1019080146
2871                     // and following comments for some discussion of this, as
2872                     // well as the comments in `rustc_codegen_llvm` where these
2873                     // flags are handled.
2874                     //
2875                     // Anyway, to be clear: this is still up in the air
2876                     // somewhat, and is subject to change in the future (which
2877                     // is a good thing, because this would ideally be a bit
2878                     // more firmed up).
2879                     let is_like_elf = !(tcx.sess.target.is_like_osx
2880                         || tcx.sess.target.is_like_windows
2881                         || tcx.sess.target.is_like_wasm);
2882                     codegen_fn_attrs.flags |= if is_like_elf {
2883                         CodegenFnAttrFlags::USED
2884                     } else {
2885                         CodegenFnAttrFlags::USED_LINKER
2886                     };
2887                 }
2888             }
2889         } else if attr.has_name(sym::cmse_nonsecure_entry) {
2890             if !matches!(tcx.fn_sig(did).abi(), abi::Abi::C { .. }) {
2891                 struct_span_err!(
2892                     tcx.sess,
2893                     attr.span,
2894                     E0776,
2895                     "`#[cmse_nonsecure_entry]` requires C ABI"
2896                 )
2897                 .emit();
2898             }
2899             if !tcx.sess.target.llvm_target.contains("thumbv8m") {
2900                 struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
2901                     .emit();
2902             }
2903             codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
2904         } else if attr.has_name(sym::thread_local) {
2905             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2906         } else if attr.has_name(sym::track_caller) {
2907             if !tcx.is_closure(did.to_def_id()) && tcx.fn_sig(did).abi() != abi::Abi::Rust {
2908                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2909                     .emit();
2910             }
2911             if tcx.is_closure(did.to_def_id()) && !tcx.features().closure_track_caller {
2912                 feature_err(
2913                     &tcx.sess.parse_sess,
2914                     sym::closure_track_caller,
2915                     attr.span,
2916                     "`#[track_caller]` on closures is currently unstable",
2917                 )
2918                 .emit();
2919             }
2920             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2921         } else if attr.has_name(sym::export_name) {
2922             if let Some(s) = attr.value_str() {
2923                 if s.as_str().contains('\0') {
2924                     // `#[export_name = ...]` will be converted to a null-terminated string,
2925                     // so it may not contain any null characters.
2926                     struct_span_err!(
2927                         tcx.sess,
2928                         attr.span,
2929                         E0648,
2930                         "`export_name` may not contain null characters"
2931                     )
2932                     .emit();
2933                 }
2934                 codegen_fn_attrs.export_name = Some(s);
2935             }
2936         } else if attr.has_name(sym::target_feature) {
2937             if !tcx.is_closure(did.to_def_id())
2938                 && tcx.fn_sig(did).unsafety() == hir::Unsafety::Normal
2939             {
2940                 if tcx.sess.target.is_like_wasm || tcx.sess.opts.actually_rustdoc {
2941                     // The `#[target_feature]` attribute is allowed on
2942                     // WebAssembly targets on all functions, including safe
2943                     // ones. Other targets require that `#[target_feature]` is
2944                     // only applied to unsafe functions (pending the
2945                     // `target_feature_11` feature) because on most targets
2946                     // execution of instructions that are not supported is
2947                     // considered undefined behavior. For WebAssembly which is a
2948                     // 100% safe target at execution time it's not possible to
2949                     // execute undefined instructions, and even if a future
2950                     // feature was added in some form for this it would be a
2951                     // deterministic trap. There is no undefined behavior when
2952                     // executing WebAssembly so `#[target_feature]` is allowed
2953                     // on safe functions (but again, only for WebAssembly)
2954                     //
2955                     // Note that this is also allowed if `actually_rustdoc` so
2956                     // if a target is documenting some wasm-specific code then
2957                     // it's not spuriously denied.
2958                 } else if !tcx.features().target_feature_11 {
2959                     let mut err = feature_err(
2960                         &tcx.sess.parse_sess,
2961                         sym::target_feature_11,
2962                         attr.span,
2963                         "`#[target_feature(..)]` can only be applied to `unsafe` functions",
2964                     );
2965                     err.span_label(tcx.def_span(did), "not an `unsafe` function");
2966                     err.emit();
2967                 } else {
2968                     check_target_feature_trait_unsafe(tcx, did, attr.span);
2969                 }
2970             }
2971             from_target_feature(
2972                 tcx,
2973                 attr,
2974                 supported_target_features,
2975                 &mut codegen_fn_attrs.target_features,
2976             );
2977         } else if attr.has_name(sym::linkage) {
2978             if let Some(val) = attr.value_str() {
2979                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, did, val.as_str()));
2980             }
2981         } else if attr.has_name(sym::link_section) {
2982             if let Some(val) = attr.value_str() {
2983                 if val.as_str().bytes().any(|b| b == 0) {
2984                     let msg = format!(
2985                         "illegal null byte in link_section \
2986                          value: `{}`",
2987                         &val
2988                     );
2989                     tcx.sess.span_err(attr.span, &msg);
2990                 } else {
2991                     codegen_fn_attrs.link_section = Some(val);
2992                 }
2993             }
2994         } else if attr.has_name(sym::link_name) {
2995             codegen_fn_attrs.link_name = attr.value_str();
2996         } else if attr.has_name(sym::link_ordinal) {
2997             link_ordinal_span = Some(attr.span);
2998             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2999                 codegen_fn_attrs.link_ordinal = ordinal;
3000             }
3001         } else if attr.has_name(sym::no_sanitize) {
3002             no_sanitize_span = Some(attr.span);
3003             if let Some(list) = attr.meta_item_list() {
3004                 for item in list.iter() {
3005                     if item.has_name(sym::address) {
3006                         codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
3007                     } else if item.has_name(sym::cfi) {
3008                         codegen_fn_attrs.no_sanitize |= SanitizerSet::CFI;
3009                     } else if item.has_name(sym::memory) {
3010                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
3011                     } else if item.has_name(sym::memtag) {
3012                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMTAG;
3013                     } else if item.has_name(sym::shadow_call_stack) {
3014                         codegen_fn_attrs.no_sanitize |= SanitizerSet::SHADOWCALLSTACK;
3015                     } else if item.has_name(sym::thread) {
3016                         codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
3017                     } else if item.has_name(sym::hwaddress) {
3018                         codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
3019                     } else {
3020                         tcx.sess
3021                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
3022                             .note("expected one of: `address`, `cfi`, `hwaddress`, `memory`, `memtag`, `shadow-call-stack`, or `thread`")
3023                             .emit();
3024                     }
3025                 }
3026             }
3027         } else if attr.has_name(sym::instruction_set) {
3028             codegen_fn_attrs.instruction_set = match attr.meta_kind() {
3029                 Some(MetaItemKind::List(ref items)) => match items.as_slice() {
3030                     [NestedMetaItem::MetaItem(set)] => {
3031                         let segments =
3032                             set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
3033                         match segments.as_slice() {
3034                             [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
3035                                 if !tcx.sess.target.has_thumb_interworking {
3036                                     struct_span_err!(
3037                                         tcx.sess.diagnostic(),
3038                                         attr.span,
3039                                         E0779,
3040                                         "target does not support `#[instruction_set]`"
3041                                     )
3042                                     .emit();
3043                                     None
3044                                 } else if segments[1] == sym::a32 {
3045                                     Some(InstructionSetAttr::ArmA32)
3046                                 } else if segments[1] == sym::t32 {
3047                                     Some(InstructionSetAttr::ArmT32)
3048                                 } else {
3049                                     unreachable!()
3050                                 }
3051                             }
3052                             _ => {
3053                                 struct_span_err!(
3054                                     tcx.sess.diagnostic(),
3055                                     attr.span,
3056                                     E0779,
3057                                     "invalid instruction set specified",
3058                                 )
3059                                 .emit();
3060                                 None
3061                             }
3062                         }
3063                     }
3064                     [] => {
3065                         struct_span_err!(
3066                             tcx.sess.diagnostic(),
3067                             attr.span,
3068                             E0778,
3069                             "`#[instruction_set]` requires an argument"
3070                         )
3071                         .emit();
3072                         None
3073                     }
3074                     _ => {
3075                         struct_span_err!(
3076                             tcx.sess.diagnostic(),
3077                             attr.span,
3078                             E0779,
3079                             "cannot specify more than one instruction set"
3080                         )
3081                         .emit();
3082                         None
3083                     }
3084                 },
3085                 _ => {
3086                     struct_span_err!(
3087                         tcx.sess.diagnostic(),
3088                         attr.span,
3089                         E0778,
3090                         "must specify an instruction set"
3091                     )
3092                     .emit();
3093                     None
3094                 }
3095             };
3096         } else if attr.has_name(sym::repr) {
3097             codegen_fn_attrs.alignment = match attr.meta_item_list() {
3098                 Some(items) => match items.as_slice() {
3099                     [item] => match item.name_value_literal() {
3100                         Some((sym::align, literal)) => {
3101                             let alignment = rustc_attr::parse_alignment(&literal.kind);
3102
3103                             match alignment {
3104                                 Ok(align) => Some(align),
3105                                 Err(msg) => {
3106                                     struct_span_err!(
3107                                         tcx.sess.diagnostic(),
3108                                         attr.span,
3109                                         E0589,
3110                                         "invalid `repr(align)` attribute: {}",
3111                                         msg
3112                                     )
3113                                     .emit();
3114
3115                                     None
3116                                 }
3117                             }
3118                         }
3119                         _ => None,
3120                     },
3121                     [] => None,
3122                     _ => None,
3123                 },
3124                 None => None,
3125             };
3126         }
3127     }
3128
3129     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
3130         if !attr.has_name(sym::inline) {
3131             return ia;
3132         }
3133         match attr.meta_kind() {
3134             Some(MetaItemKind::Word) => InlineAttr::Hint,
3135             Some(MetaItemKind::List(ref items)) => {
3136                 inline_span = Some(attr.span);
3137                 if items.len() != 1 {
3138                     struct_span_err!(
3139                         tcx.sess.diagnostic(),
3140                         attr.span,
3141                         E0534,
3142                         "expected one argument"
3143                     )
3144                     .emit();
3145                     InlineAttr::None
3146                 } else if list_contains_name(&items, sym::always) {
3147                     InlineAttr::Always
3148                 } else if list_contains_name(&items, sym::never) {
3149                     InlineAttr::Never
3150                 } else {
3151                     struct_span_err!(
3152                         tcx.sess.diagnostic(),
3153                         items[0].span(),
3154                         E0535,
3155                         "invalid argument"
3156                     )
3157                     .help("valid inline arguments are `always` and `never`")
3158                     .emit();
3159
3160                     InlineAttr::None
3161                 }
3162             }
3163             Some(MetaItemKind::NameValue(_)) => ia,
3164             None => ia,
3165         }
3166     });
3167
3168     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
3169         if !attr.has_name(sym::optimize) {
3170             return ia;
3171         }
3172         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
3173         match attr.meta_kind() {
3174             Some(MetaItemKind::Word) => {
3175                 err(attr.span, "expected one argument");
3176                 ia
3177             }
3178             Some(MetaItemKind::List(ref items)) => {
3179                 inline_span = Some(attr.span);
3180                 if items.len() != 1 {
3181                     err(attr.span, "expected one argument");
3182                     OptimizeAttr::None
3183                 } else if list_contains_name(&items, sym::size) {
3184                     OptimizeAttr::Size
3185                 } else if list_contains_name(&items, sym::speed) {
3186                     OptimizeAttr::Speed
3187                 } else {
3188                     err(items[0].span(), "invalid argument");
3189                     OptimizeAttr::None
3190                 }
3191             }
3192             Some(MetaItemKind::NameValue(_)) => ia,
3193             None => ia,
3194         }
3195     });
3196
3197     // #73631: closures inherit `#[target_feature]` annotations
3198     if tcx.features().target_feature_11 && tcx.is_closure(did.to_def_id()) {
3199         let owner_id = tcx.parent(did.to_def_id());
3200         if tcx.def_kind(owner_id).has_codegen_attrs() {
3201             codegen_fn_attrs
3202                 .target_features
3203                 .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied());
3204         }
3205     }
3206
3207     // If a function uses #[target_feature] it can't be inlined into general
3208     // purpose functions as they wouldn't have the right target features
3209     // enabled. For that reason we also forbid #[inline(always)] as it can't be
3210     // respected.
3211     if !codegen_fn_attrs.target_features.is_empty() {
3212         if codegen_fn_attrs.inline == InlineAttr::Always {
3213             if let Some(span) = inline_span {
3214                 tcx.sess.span_err(
3215                     span,
3216                     "cannot use `#[inline(always)]` with \
3217                      `#[target_feature]`",
3218                 );
3219             }
3220         }
3221     }
3222
3223     if !codegen_fn_attrs.no_sanitize.is_empty() {
3224         if codegen_fn_attrs.inline == InlineAttr::Always {
3225             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
3226                 let hir_id = tcx.hir().local_def_id_to_hir_id(did);
3227                 tcx.struct_span_lint_hir(
3228                     lint::builtin::INLINE_NO_SANITIZE,
3229                     hir_id,
3230                     no_sanitize_span,
3231                     |lint| {
3232                         lint.build("`no_sanitize` will have no effect after inlining")
3233                             .span_note(inline_span, "inlining requested here")
3234                             .emit();
3235                     },
3236                 )
3237             }
3238         }
3239     }
3240
3241     // Weak lang items have the same semantics as "std internal" symbols in the
3242     // sense that they're preserved through all our LTO passes and only
3243     // strippable by the linker.
3244     //
3245     // Additionally weak lang items have predetermined symbol names.
3246     if tcx.is_weak_lang_item(did.to_def_id()) {
3247         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
3248     }
3249     if let Some(name) = weak_lang_items::link_name(attrs) {
3250         codegen_fn_attrs.export_name = Some(name);
3251         codegen_fn_attrs.link_name = Some(name);
3252     }
3253     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
3254
3255     // Internal symbols to the standard library all have no_mangle semantics in
3256     // that they have defined symbol names present in the function name. This
3257     // also applies to weak symbols where they all have known symbol names.
3258     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
3259         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
3260     }
3261
3262     // Any linkage to LLVM intrinsics for now forcibly marks them all as never
3263     // unwinds since LLVM sometimes can't handle codegen which `invoke`s
3264     // intrinsic functions.
3265     if let Some(name) = &codegen_fn_attrs.link_name {
3266         if name.as_str().starts_with("llvm.") {
3267             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
3268         }
3269     }
3270
3271     codegen_fn_attrs
3272 }
3273
3274 /// Computes the set of target features used in a function for the purposes of
3275 /// inline assembly.
3276 fn asm_target_features<'tcx>(tcx: TyCtxt<'tcx>, did: DefId) -> &'tcx FxHashSet<Symbol> {
3277     let mut target_features = tcx.sess.unstable_target_features.clone();
3278     if tcx.def_kind(did).has_codegen_attrs() {
3279         let attrs = tcx.codegen_fn_attrs(did);
3280         target_features.extend(&attrs.target_features);
3281         match attrs.instruction_set {
3282             None => {}
3283             Some(InstructionSetAttr::ArmA32) => {
3284                 target_features.remove(&sym::thumb_mode);
3285             }
3286             Some(InstructionSetAttr::ArmT32) => {
3287                 target_features.insert(sym::thumb_mode);
3288             }
3289         }
3290     }
3291
3292     tcx.arena.alloc(target_features)
3293 }
3294
3295 /// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
3296 /// applied to the method prototype.
3297 fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
3298     if let Some(impl_item) = tcx.opt_associated_item(def_id)
3299         && let ty::AssocItemContainer::ImplContainer = impl_item.container
3300         && let Some(trait_item) = impl_item.trait_item_def_id
3301     {
3302         return tcx
3303             .codegen_fn_attrs(trait_item)
3304             .flags
3305             .intersects(CodegenFnAttrFlags::TRACK_CALLER);
3306     }
3307
3308     false
3309 }
3310
3311 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<u16> {
3312     use rustc_ast::{Lit, LitIntType, LitKind};
3313     if !tcx.features().raw_dylib && tcx.sess.target.arch == "x86" {
3314         feature_err(
3315             &tcx.sess.parse_sess,
3316             sym::raw_dylib,
3317             attr.span,
3318             "`#[link_ordinal]` is unstable on x86",
3319         )
3320         .emit();
3321     }
3322     let meta_item_list = attr.meta_item_list();
3323     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
3324     let sole_meta_list = match meta_item_list {
3325         Some([item]) => item.literal(),
3326         Some(_) => {
3327             tcx.sess
3328                 .struct_span_err(attr.span, "incorrect number of arguments to `#[link_ordinal]`")
3329                 .note("the attribute requires exactly one argument")
3330                 .emit();
3331             return None;
3332         }
3333         _ => None,
3334     };
3335     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
3336         // According to the table at https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-header,
3337         // the ordinal must fit into 16 bits.  Similarly, the Ordinal field in COFFShortExport (defined
3338         // in llvm/include/llvm/Object/COFFImportFile.h), which we use to communicate import information
3339         // to LLVM for `#[link(kind = "raw-dylib"_])`, is also defined to be uint16_t.
3340         //
3341         // FIXME: should we allow an ordinal of 0?  The MSVC toolchain has inconsistent support for this:
3342         // both LINK.EXE and LIB.EXE signal errors and abort when given a .DEF file that specifies
3343         // a zero ordinal.  However, llvm-dlltool is perfectly happy to generate an import library
3344         // for such a .DEF file, and MSVC's LINK.EXE is also perfectly happy to consume an import
3345         // library produced by LLVM with an ordinal of 0, and it generates an .EXE.  (I don't know yet
3346         // if the resulting EXE runs, as I haven't yet built the necessary DLL -- see earlier comment
3347         // about LINK.EXE failing.)
3348         if *ordinal <= u16::MAX as u128 {
3349             Some(*ordinal as u16)
3350         } else {
3351             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
3352             tcx.sess
3353                 .struct_span_err(attr.span, &msg)
3354                 .note("the value may not exceed `u16::MAX`")
3355                 .emit();
3356             None
3357         }
3358     } else {
3359         tcx.sess
3360             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
3361             .note("an unsuffixed integer value, e.g., `1`, is expected")
3362             .emit();
3363         None
3364     }
3365 }
3366
3367 fn check_link_name_xor_ordinal(
3368     tcx: TyCtxt<'_>,
3369     codegen_fn_attrs: &CodegenFnAttrs,
3370     inline_span: Option<Span>,
3371 ) {
3372     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
3373         return;
3374     }
3375     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
3376     if let Some(span) = inline_span {
3377         tcx.sess.span_err(span, msg);
3378     } else {
3379         tcx.sess.err(msg);
3380     }
3381 }
3382
3383 /// Checks the function annotated with `#[target_feature]` is not a safe
3384 /// trait method implementation, reporting an error if it is.
3385 fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
3386     let hir_id = tcx.hir().local_def_id_to_hir_id(id);
3387     let node = tcx.hir().get(hir_id);
3388     if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
3389         let parent_id = tcx.hir().get_parent_item(hir_id);
3390         let parent_item = tcx.hir().expect_item(parent_id);
3391         if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
3392             tcx.sess
3393                 .struct_span_err(
3394                     attr_span,
3395                     "`#[target_feature(..)]` cannot be applied to safe trait method",
3396                 )
3397                 .span_label(attr_span, "cannot be applied to safe trait method")
3398                 .span_label(tcx.def_span(id), "not an `unsafe` function")
3399                 .emit();
3400         }
3401     }
3402 }