]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/collect.rs
Auto merge of #102265 - fee1-dead-contrib:rollup-a7fccbg, r=fee1-dead
[rust.git] / compiler / rustc_typeck / src / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::AstConv;
18 use crate::bounds::Bounds;
19 use crate::check::intrinsic::intrinsic_operation_unsafety;
20 use crate::constrained_generic_params as cgp;
21 use crate::errors;
22 use crate::middle::resolve_lifetime as rl;
23 use rustc_ast as ast;
24 use rustc_ast::{MetaItemKind, NestedMetaItem};
25 use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
26 use rustc_data_structures::captures::Captures;
27 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
28 use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed, StashKey};
29 use rustc_hir as hir;
30 use rustc_hir::def::{CtorKind, DefKind};
31 use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE};
32 use rustc_hir::intravisit::{self, Visitor};
33 use rustc_hir::weak_lang_items;
34 use rustc_hir::{GenericParamKind, HirId, Node};
35 use rustc_middle::hir::nested_filter;
36 use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
37 use rustc_middle::mir::mono::Linkage;
38 use rustc_middle::ty::query::Providers;
39 use rustc_middle::ty::subst::InternalSubsts;
40 use rustc_middle::ty::util::Discr;
41 use rustc_middle::ty::util::IntTypeExt;
42 use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, IsSuggestable, Ty, TyCtxt};
43 use rustc_middle::ty::{ReprOptions, ToPredicate};
44 use rustc_session::lint;
45 use rustc_session::parse::feature_err;
46 use rustc_span::symbol::{kw, sym, Ident, Symbol};
47 use rustc_span::{Span, DUMMY_SP};
48 use rustc_target::spec::{abi, SanitizerSet};
49 use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
50 use std::iter;
51
52 mod item_bounds;
53 mod type_of;
54
55 #[derive(Debug)]
56 struct OnlySelfBounds(bool);
57
58 ///////////////////////////////////////////////////////////////////////////
59 // Main entry point
60
61 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
62     tcx.hir().visit_item_likes_in_module(module_def_id, &mut CollectItemTypesVisitor { tcx });
63 }
64
65 pub fn provide(providers: &mut Providers) {
66     *providers = Providers {
67         opt_const_param_of: type_of::opt_const_param_of,
68         type_of: type_of::type_of,
69         item_bounds: item_bounds::item_bounds,
70         explicit_item_bounds: item_bounds::explicit_item_bounds,
71         generics_of,
72         predicates_of,
73         predicates_defined_on,
74         explicit_predicates_of,
75         super_predicates_of,
76         super_predicates_that_define_assoc_type,
77         trait_explicit_predicates_and_bounds,
78         type_param_predicates,
79         trait_def,
80         adt_def,
81         fn_sig,
82         impl_trait_ref,
83         impl_polarity,
84         is_foreign_item,
85         generator_kind,
86         codegen_fn_attrs,
87         asm_target_features,
88         collect_mod_item_types,
89         should_inherit_track_caller,
90         ..*providers
91     };
92 }
93
94 ///////////////////////////////////////////////////////////////////////////
95
96 /// Context specific to some particular item. This is what implements
97 /// [`AstConv`].
98 ///
99 /// # `ItemCtxt` vs `FnCtxt`
100 ///
101 /// `ItemCtxt` is primarily used to type-check item signatures and lower them
102 /// from HIR to their [`ty::Ty`] representation, which is exposed using [`AstConv`].
103 /// It's also used for the bodies of items like structs where the body (the fields)
104 /// are just signatures.
105 ///
106 /// This is in contrast to [`FnCtxt`], which is used to type-check bodies of
107 /// functions, closures, and `const`s -- anywhere that expressions and statements show up.
108 ///
109 /// An important thing to note is that `ItemCtxt` does no inference -- it has no [`InferCtxt`] --
110 /// while `FnCtxt` does do inference.
111 ///
112 /// [`FnCtxt`]: crate::check::FnCtxt
113 /// [`InferCtxt`]: rustc_infer::infer::InferCtxt
114 ///
115 /// # Trait predicates
116 ///
117 /// `ItemCtxt` has information about the predicates that are defined
118 /// on the trait. Unfortunately, this predicate information is
119 /// available in various different forms at various points in the
120 /// process. So we can't just store a pointer to e.g., the AST or the
121 /// parsed ty form, we have to be more flexible. To this end, the
122 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
123 /// `get_type_parameter_bounds` requests, drawing the information from
124 /// the AST (`hir::Generics`), recursively.
125 pub struct ItemCtxt<'tcx> {
126     tcx: TyCtxt<'tcx>,
127     item_def_id: DefId,
128 }
129
130 ///////////////////////////////////////////////////////////////////////////
131
132 #[derive(Default)]
133 pub(crate) struct HirPlaceholderCollector(pub(crate) Vec<Span>);
134
135 impl<'v> Visitor<'v> for HirPlaceholderCollector {
136     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
137         if let hir::TyKind::Infer = t.kind {
138             self.0.push(t.span);
139         }
140         intravisit::walk_ty(self, t)
141     }
142     fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
143         match generic_arg {
144             hir::GenericArg::Infer(inf) => {
145                 self.0.push(inf.span);
146                 intravisit::walk_inf(self, inf);
147             }
148             hir::GenericArg::Type(t) => self.visit_ty(t),
149             _ => {}
150         }
151     }
152     fn visit_array_length(&mut self, length: &'v hir::ArrayLen) {
153         if let &hir::ArrayLen::Infer(_, span) = length {
154             self.0.push(span);
155         }
156         intravisit::walk_array_len(self, length)
157     }
158 }
159
160 struct CollectItemTypesVisitor<'tcx> {
161     tcx: TyCtxt<'tcx>,
162 }
163
164 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
165 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
166 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
167 pub(crate) fn placeholder_type_error<'tcx>(
168     tcx: TyCtxt<'tcx>,
169     generics: Option<&hir::Generics<'_>>,
170     placeholder_types: Vec<Span>,
171     suggest: bool,
172     hir_ty: Option<&hir::Ty<'_>>,
173     kind: &'static str,
174 ) {
175     if placeholder_types.is_empty() {
176         return;
177     }
178
179     placeholder_type_error_diag(tcx, generics, placeholder_types, vec![], suggest, hir_ty, kind)
180         .emit();
181 }
182
183 pub(crate) fn placeholder_type_error_diag<'tcx>(
184     tcx: TyCtxt<'tcx>,
185     generics: Option<&hir::Generics<'_>>,
186     placeholder_types: Vec<Span>,
187     additional_spans: Vec<Span>,
188     suggest: bool,
189     hir_ty: Option<&hir::Ty<'_>>,
190     kind: &'static str,
191 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
192     if placeholder_types.is_empty() {
193         return bad_placeholder(tcx, additional_spans, kind);
194     }
195
196     let params = generics.map(|g| g.params).unwrap_or_default();
197     let type_name = params.next_type_param_name(None);
198     let mut sugg: Vec<_> =
199         placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
200
201     if let Some(generics) = generics {
202         if let Some(arg) = params.iter().find(|arg| {
203             matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. }))
204         }) {
205             // Account for `_` already present in cases like `struct S<_>(_);` and suggest
206             // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
207             sugg.push((arg.span, (*type_name).to_string()));
208         } else if let Some(span) = generics.span_for_param_suggestion() {
209             // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
210             sugg.push((span, format!(", {}", type_name)));
211         } else {
212             sugg.push((generics.span, format!("<{}>", type_name)));
213         }
214     }
215
216     let mut err =
217         bad_placeholder(tcx, placeholder_types.into_iter().chain(additional_spans).collect(), kind);
218
219     // Suggest, but only if it is not a function in const or static
220     if suggest {
221         let mut is_fn = false;
222         let mut is_const_or_static = false;
223
224         if let Some(hir_ty) = hir_ty && let hir::TyKind::BareFn(_) = hir_ty.kind {
225             is_fn = true;
226
227             // Check if parent is const or static
228             let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
229             let parent_node = tcx.hir().get(parent_id);
230
231             is_const_or_static = matches!(
232                 parent_node,
233                 Node::Item(&hir::Item {
234                     kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
235                     ..
236                 }) | Node::TraitItem(&hir::TraitItem {
237                     kind: hir::TraitItemKind::Const(..),
238                     ..
239                 }) | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
240             );
241         }
242
243         // if function is wrapped around a const or static,
244         // then don't show the suggestion
245         if !(is_fn && is_const_or_static) {
246             err.multipart_suggestion(
247                 "use type parameters instead",
248                 sugg,
249                 Applicability::HasPlaceholders,
250             );
251         }
252     }
253
254     err
255 }
256
257 fn reject_placeholder_type_signatures_in_item<'tcx>(
258     tcx: TyCtxt<'tcx>,
259     item: &'tcx hir::Item<'tcx>,
260 ) {
261     let (generics, suggest) = match &item.kind {
262         hir::ItemKind::Union(_, generics)
263         | hir::ItemKind::Enum(_, generics)
264         | hir::ItemKind::TraitAlias(generics, _)
265         | hir::ItemKind::Trait(_, _, generics, ..)
266         | hir::ItemKind::Impl(hir::Impl { generics, .. })
267         | hir::ItemKind::Struct(_, generics) => (generics, true),
268         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
269         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
270         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
271         _ => return,
272     };
273
274     let mut visitor = HirPlaceholderCollector::default();
275     visitor.visit_item(item);
276
277     placeholder_type_error(tcx, Some(generics), visitor.0, suggest, None, item.kind.descr());
278 }
279
280 impl<'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
281     type NestedFilter = nested_filter::OnlyBodies;
282
283     fn nested_visit_map(&mut self) -> Self::Map {
284         self.tcx.hir()
285     }
286
287     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
288         convert_item(self.tcx, item.item_id());
289         reject_placeholder_type_signatures_in_item(self.tcx, item);
290         intravisit::walk_item(self, item);
291     }
292
293     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
294         for param in generics.params {
295             match param.kind {
296                 hir::GenericParamKind::Lifetime { .. } => {}
297                 hir::GenericParamKind::Type { default: Some(_), .. } => {
298                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
299                     self.tcx.ensure().type_of(def_id);
300                 }
301                 hir::GenericParamKind::Type { .. } => {}
302                 hir::GenericParamKind::Const { default, .. } => {
303                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
304                     self.tcx.ensure().type_of(def_id);
305                     if let Some(default) = default {
306                         let default_def_id = self.tcx.hir().local_def_id(default.hir_id);
307                         // need to store default and type of default
308                         self.tcx.ensure().type_of(default_def_id);
309                         self.tcx.ensure().const_param_default(def_id);
310                     }
311                 }
312             }
313         }
314         intravisit::walk_generics(self, generics);
315     }
316
317     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
318         if let hir::ExprKind::Closure { .. } = expr.kind {
319             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
320             self.tcx.ensure().generics_of(def_id);
321             // We do not call `type_of` for closures here as that
322             // depends on typecheck and would therefore hide
323             // any further errors in case one typeck fails.
324         }
325         intravisit::walk_expr(self, expr);
326     }
327
328     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
329         convert_trait_item(self.tcx, trait_item.trait_item_id());
330         intravisit::walk_trait_item(self, trait_item);
331     }
332
333     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
334         convert_impl_item(self.tcx, impl_item.impl_item_id());
335         intravisit::walk_impl_item(self, impl_item);
336     }
337 }
338
339 ///////////////////////////////////////////////////////////////////////////
340 // Utility types and common code for the above passes.
341
342 fn bad_placeholder<'tcx>(
343     tcx: TyCtxt<'tcx>,
344     mut spans: Vec<Span>,
345     kind: &'static str,
346 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
347     let kind = if kind.ends_with('s') { format!("{}es", kind) } else { format!("{}s", kind) };
348
349     spans.sort();
350     let mut err = struct_span_err!(
351         tcx.sess,
352         spans.clone(),
353         E0121,
354         "the placeholder `_` is not allowed within types on item signatures for {}",
355         kind
356     );
357     for span in spans {
358         err.span_label(span, "not allowed in type signatures");
359     }
360     err
361 }
362
363 impl<'tcx> ItemCtxt<'tcx> {
364     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
365         ItemCtxt { tcx, item_def_id }
366     }
367
368     pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
369         <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
370     }
371
372     pub fn hir_id(&self) -> hir::HirId {
373         self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
374     }
375
376     pub fn node(&self) -> hir::Node<'tcx> {
377         self.tcx.hir().get(self.hir_id())
378     }
379 }
380
381 impl<'tcx> AstConv<'tcx> for ItemCtxt<'tcx> {
382     fn tcx(&self) -> TyCtxt<'tcx> {
383         self.tcx
384     }
385
386     fn item_def_id(&self) -> Option<DefId> {
387         Some(self.item_def_id)
388     }
389
390     fn get_type_parameter_bounds(
391         &self,
392         span: Span,
393         def_id: DefId,
394         assoc_name: Ident,
395     ) -> ty::GenericPredicates<'tcx> {
396         self.tcx.at(span).type_param_predicates((
397             self.item_def_id,
398             def_id.expect_local(),
399             assoc_name,
400         ))
401     }
402
403     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
404         None
405     }
406
407     fn allow_ty_infer(&self) -> bool {
408         false
409     }
410
411     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
412         self.tcx().ty_error_with_message(span, "bad placeholder type")
413     }
414
415     fn ct_infer(&self, ty: Ty<'tcx>, _: Option<&ty::GenericParamDef>, span: Span) -> Const<'tcx> {
416         let ty = self.tcx.fold_regions(ty, |r, _| match *r {
417             ty::ReErased => self.tcx.lifetimes.re_static,
418             _ => r,
419         });
420         self.tcx().const_error_with_message(ty, span, "bad placeholder constant")
421     }
422
423     fn projected_ty_from_poly_trait_ref(
424         &self,
425         span: Span,
426         item_def_id: DefId,
427         item_segment: &hir::PathSegment<'_>,
428         poly_trait_ref: ty::PolyTraitRef<'tcx>,
429     ) -> Ty<'tcx> {
430         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
431             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
432                 self,
433                 span,
434                 item_def_id,
435                 item_segment,
436                 trait_ref.substs,
437             );
438             self.tcx().mk_projection(item_def_id, item_substs)
439         } else {
440             // There are no late-bound regions; we can just ignore the binder.
441             let mut err = struct_span_err!(
442                 self.tcx().sess,
443                 span,
444                 E0212,
445                 "cannot use the associated type of a trait \
446                  with uninferred generic parameters"
447             );
448
449             match self.node() {
450                 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
451                     let item = self
452                         .tcx
453                         .hir()
454                         .expect_item(self.tcx.hir().get_parent_item(self.hir_id()).def_id);
455                     match &item.kind {
456                         hir::ItemKind::Enum(_, generics)
457                         | hir::ItemKind::Struct(_, generics)
458                         | hir::ItemKind::Union(_, generics) => {
459                             let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
460                             let (lt_sp, sugg) = match generics.params {
461                                 [] => (generics.span, format!("<{}>", lt_name)),
462                                 [bound, ..] => {
463                                     (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
464                                 }
465                             };
466                             let suggestions = vec![
467                                 (lt_sp, sugg),
468                                 (
469                                     span.with_hi(item_segment.ident.span.lo()),
470                                     format!(
471                                         "{}::",
472                                         // Replace the existing lifetimes with a new named lifetime.
473                                         self.tcx.replace_late_bound_regions_uncached(
474                                             poly_trait_ref,
475                                             |_| {
476                                                 self.tcx.mk_region(ty::ReEarlyBound(
477                                                     ty::EarlyBoundRegion {
478                                                         def_id: item_def_id,
479                                                         index: 0,
480                                                         name: Symbol::intern(&lt_name),
481                                                     },
482                                                 ))
483                                             }
484                                         ),
485                                     ),
486                                 ),
487                             ];
488                             err.multipart_suggestion(
489                                 "use a fully qualified path with explicit lifetimes",
490                                 suggestions,
491                                 Applicability::MaybeIncorrect,
492                             );
493                         }
494                         _ => {}
495                     }
496                 }
497                 hir::Node::Item(hir::Item {
498                     kind:
499                         hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
500                     ..
501                 }) => {}
502                 hir::Node::Item(_)
503                 | hir::Node::ForeignItem(_)
504                 | hir::Node::TraitItem(_)
505                 | hir::Node::ImplItem(_) => {
506                     err.span_suggestion_verbose(
507                         span.with_hi(item_segment.ident.span.lo()),
508                         "use a fully qualified path with inferred lifetimes",
509                         format!(
510                             "{}::",
511                             // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
512                             self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
513                         ),
514                         Applicability::MaybeIncorrect,
515                     );
516                 }
517                 _ => {}
518             }
519             err.emit();
520             self.tcx().ty_error()
521         }
522     }
523
524     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
525         // Types in item signatures are not normalized to avoid undue dependencies.
526         ty
527     }
528
529     fn set_tainted_by_errors(&self) {
530         // There's no obvious place to track this, so just let it go.
531     }
532
533     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
534         // There's no place to record types from signatures?
535     }
536 }
537
538 /// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
539 fn get_new_lifetime_name<'tcx>(
540     tcx: TyCtxt<'tcx>,
541     poly_trait_ref: ty::PolyTraitRef<'tcx>,
542     generics: &hir::Generics<'tcx>,
543 ) -> String {
544     let existing_lifetimes = tcx
545         .collect_referenced_late_bound_regions(&poly_trait_ref)
546         .into_iter()
547         .filter_map(|lt| {
548             if let ty::BoundRegionKind::BrNamed(_, name) = lt {
549                 Some(name.as_str().to_string())
550             } else {
551                 None
552             }
553         })
554         .chain(generics.params.iter().filter_map(|param| {
555             if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
556                 Some(param.name.ident().as_str().to_string())
557             } else {
558                 None
559             }
560         }))
561         .collect::<FxHashSet<String>>();
562
563     let a_to_z_repeat_n = |n| {
564         (b'a'..=b'z').map(move |c| {
565             let mut s = '\''.to_string();
566             s.extend(std::iter::repeat(char::from(c)).take(n));
567             s
568         })
569     };
570
571     // If all single char lifetime names are present, we wrap around and double the chars.
572     (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
573 }
574
575 /// Returns the predicates defined on `item_def_id` of the form
576 /// `X: Foo` where `X` is the type parameter `def_id`.
577 #[instrument(level = "trace", skip(tcx))]
578 fn type_param_predicates(
579     tcx: TyCtxt<'_>,
580     (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
581 ) -> ty::GenericPredicates<'_> {
582     use rustc_hir::*;
583
584     // In the AST, bounds can derive from two places. Either
585     // written inline like `<T: Foo>` or in a where-clause like
586     // `where T: Foo`.
587
588     let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
589     let param_owner = tcx.hir().ty_param_owner(def_id);
590     let generics = tcx.generics_of(param_owner);
591     let index = generics.param_def_id_to_index[&def_id.to_def_id()];
592     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(def_id));
593
594     // Don't look for bounds where the type parameter isn't in scope.
595     let parent = if item_def_id == param_owner.to_def_id() {
596         None
597     } else {
598         tcx.generics_of(item_def_id).parent
599     };
600
601     let mut result = parent
602         .map(|parent| {
603             let icx = ItemCtxt::new(tcx, parent);
604             icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
605         })
606         .unwrap_or_default();
607     let mut extend = None;
608
609     let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
610     let ast_generics = match tcx.hir().get(item_hir_id) {
611         Node::TraitItem(item) => &item.generics,
612
613         Node::ImplItem(item) => &item.generics,
614
615         Node::Item(item) => {
616             match item.kind {
617                 ItemKind::Fn(.., ref generics, _)
618                 | ItemKind::Impl(hir::Impl { ref generics, .. })
619                 | ItemKind::TyAlias(_, ref generics)
620                 | ItemKind::OpaqueTy(OpaqueTy {
621                     ref generics,
622                     origin: hir::OpaqueTyOrigin::TyAlias,
623                     ..
624                 })
625                 | ItemKind::Enum(_, ref generics)
626                 | ItemKind::Struct(_, ref generics)
627                 | ItemKind::Union(_, ref generics) => generics,
628                 ItemKind::Trait(_, _, ref generics, ..) => {
629                     // Implied `Self: Trait` and supertrait bounds.
630                     if param_id == item_hir_id {
631                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
632                         extend =
633                             Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
634                     }
635                     generics
636                 }
637                 _ => return result,
638             }
639         }
640
641         Node::ForeignItem(item) => match item.kind {
642             ForeignItemKind::Fn(_, _, ref generics) => generics,
643             _ => return result,
644         },
645
646         _ => return result,
647     };
648
649     let icx = ItemCtxt::new(tcx, item_def_id);
650     let extra_predicates = extend.into_iter().chain(
651         icx.type_parameter_bounds_in_generics(
652             ast_generics,
653             param_id,
654             ty,
655             OnlySelfBounds(true),
656             Some(assoc_name),
657         )
658         .into_iter()
659         .filter(|(predicate, _)| match predicate.kind().skip_binder() {
660             ty::PredicateKind::Trait(data) => data.self_ty().is_param(index),
661             _ => false,
662         }),
663     );
664     result.predicates =
665         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
666     result
667 }
668
669 impl<'tcx> ItemCtxt<'tcx> {
670     /// Finds bounds from `hir::Generics`. This requires scanning through the
671     /// AST. We do this to avoid having to convert *all* the bounds, which
672     /// would create artificial cycles. Instead, we can only convert the
673     /// bounds for a type parameter `X` if `X::Foo` is used.
674     #[instrument(level = "trace", skip(self, ast_generics))]
675     fn type_parameter_bounds_in_generics(
676         &self,
677         ast_generics: &'tcx hir::Generics<'tcx>,
678         param_id: hir::HirId,
679         ty: Ty<'tcx>,
680         only_self_bounds: OnlySelfBounds,
681         assoc_name: Option<Ident>,
682     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
683         let param_def_id = self.tcx.hir().local_def_id(param_id).to_def_id();
684         trace!(?param_def_id);
685         ast_generics
686             .predicates
687             .iter()
688             .filter_map(|wp| match *wp {
689                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
690                 _ => None,
691             })
692             .flat_map(|bp| {
693                 let bt = if bp.is_param_bound(param_def_id) {
694                     Some(ty)
695                 } else if !only_self_bounds.0 {
696                     Some(self.to_ty(bp.bounded_ty))
697                 } else {
698                     None
699                 };
700                 let bvars = self.tcx.late_bound_vars(bp.bounded_ty.hir_id);
701
702                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b, bvars))).filter(
703                     |(_, b, _)| match assoc_name {
704                         Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
705                         None => true,
706                     },
707                 )
708             })
709             .flat_map(|(bt, b, bvars)| predicates_from_bound(self, bt, b, bvars))
710             .collect()
711     }
712
713     #[instrument(level = "trace", skip(self))]
714     fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
715         match b {
716             hir::GenericBound::Trait(poly_trait_ref, _) => {
717                 let trait_ref = &poly_trait_ref.trait_ref;
718                 if let Some(trait_did) = trait_ref.trait_def_id() {
719                     self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
720                 } else {
721                     false
722                 }
723             }
724             _ => false,
725         }
726     }
727 }
728
729 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
730     let it = tcx.hir().item(item_id);
731     debug!("convert: item {} with id {}", it.ident, it.hir_id());
732     let def_id = item_id.def_id.def_id;
733
734     match it.kind {
735         // These don't define types.
736         hir::ItemKind::ExternCrate(_)
737         | hir::ItemKind::Use(..)
738         | hir::ItemKind::Macro(..)
739         | hir::ItemKind::Mod(_)
740         | hir::ItemKind::GlobalAsm(_) => {}
741         hir::ItemKind::ForeignMod { items, .. } => {
742             for item in items {
743                 let item = tcx.hir().foreign_item(item.id);
744                 tcx.ensure().generics_of(item.def_id);
745                 tcx.ensure().type_of(item.def_id);
746                 tcx.ensure().predicates_of(item.def_id);
747                 match item.kind {
748                     hir::ForeignItemKind::Fn(..) => tcx.ensure().fn_sig(item.def_id),
749                     hir::ForeignItemKind::Static(..) => {
750                         let mut visitor = HirPlaceholderCollector::default();
751                         visitor.visit_foreign_item(item);
752                         placeholder_type_error(
753                             tcx,
754                             None,
755                             visitor.0,
756                             false,
757                             None,
758                             "static variable",
759                         );
760                     }
761                     _ => (),
762                 }
763             }
764         }
765         hir::ItemKind::Enum(ref enum_definition, _) => {
766             tcx.ensure().generics_of(def_id);
767             tcx.ensure().type_of(def_id);
768             tcx.ensure().predicates_of(def_id);
769             convert_enum_variant_types(tcx, def_id.to_def_id(), enum_definition.variants);
770         }
771         hir::ItemKind::Impl { .. } => {
772             tcx.ensure().generics_of(def_id);
773             tcx.ensure().type_of(def_id);
774             tcx.ensure().impl_trait_ref(def_id);
775             tcx.ensure().predicates_of(def_id);
776         }
777         hir::ItemKind::Trait(..) => {
778             tcx.ensure().generics_of(def_id);
779             tcx.ensure().trait_def(def_id);
780             tcx.at(it.span).super_predicates_of(def_id);
781             tcx.ensure().predicates_of(def_id);
782         }
783         hir::ItemKind::TraitAlias(..) => {
784             tcx.ensure().generics_of(def_id);
785             tcx.at(it.span).super_predicates_of(def_id);
786             tcx.ensure().predicates_of(def_id);
787         }
788         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
789             tcx.ensure().generics_of(def_id);
790             tcx.ensure().type_of(def_id);
791             tcx.ensure().predicates_of(def_id);
792
793             for f in struct_def.fields() {
794                 let def_id = tcx.hir().local_def_id(f.hir_id);
795                 tcx.ensure().generics_of(def_id);
796                 tcx.ensure().type_of(def_id);
797                 tcx.ensure().predicates_of(def_id);
798             }
799
800             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
801                 convert_variant_ctor(tcx, ctor_hir_id);
802             }
803         }
804
805         // Desugared from `impl Trait`, so visited by the function's return type.
806         hir::ItemKind::OpaqueTy(hir::OpaqueTy {
807             origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
808             ..
809         }) => {}
810
811         // Don't call `type_of` on opaque types, since that depends on type
812         // checking function bodies. `check_item_type` ensures that it's called
813         // instead.
814         hir::ItemKind::OpaqueTy(..) => {
815             tcx.ensure().generics_of(def_id);
816             tcx.ensure().predicates_of(def_id);
817             tcx.ensure().explicit_item_bounds(def_id);
818         }
819         hir::ItemKind::TyAlias(..)
820         | hir::ItemKind::Static(..)
821         | hir::ItemKind::Const(..)
822         | hir::ItemKind::Fn(..) => {
823             tcx.ensure().generics_of(def_id);
824             tcx.ensure().type_of(def_id);
825             tcx.ensure().predicates_of(def_id);
826             match it.kind {
827                 hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
828                 hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
829                 hir::ItemKind::Const(ty, ..) | hir::ItemKind::Static(ty, ..) => {
830                     if !is_suggestable_infer_ty(ty) {
831                         let mut visitor = HirPlaceholderCollector::default();
832                         visitor.visit_item(it);
833                         placeholder_type_error(tcx, None, visitor.0, false, None, it.kind.descr());
834                     }
835                 }
836                 _ => (),
837             }
838         }
839     }
840 }
841
842 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
843     let trait_item = tcx.hir().trait_item(trait_item_id);
844     let def_id = trait_item_id.def_id;
845     tcx.ensure().generics_of(def_id);
846
847     match trait_item.kind {
848         hir::TraitItemKind::Fn(..) => {
849             tcx.ensure().type_of(def_id);
850             tcx.ensure().fn_sig(def_id);
851         }
852
853         hir::TraitItemKind::Const(.., Some(_)) => {
854             tcx.ensure().type_of(def_id);
855         }
856
857         hir::TraitItemKind::Const(hir_ty, _) => {
858             tcx.ensure().type_of(def_id);
859             // Account for `const C: _;`.
860             let mut visitor = HirPlaceholderCollector::default();
861             visitor.visit_trait_item(trait_item);
862             if !tcx.sess.diagnostic().has_stashed_diagnostic(hir_ty.span, StashKey::ItemNoType) {
863                 placeholder_type_error(tcx, None, visitor.0, false, None, "constant");
864             }
865         }
866
867         hir::TraitItemKind::Type(_, Some(_)) => {
868             tcx.ensure().item_bounds(def_id);
869             tcx.ensure().type_of(def_id);
870             // Account for `type T = _;`.
871             let mut visitor = HirPlaceholderCollector::default();
872             visitor.visit_trait_item(trait_item);
873             placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
874         }
875
876         hir::TraitItemKind::Type(_, None) => {
877             tcx.ensure().item_bounds(def_id);
878             // #74612: Visit and try to find bad placeholders
879             // even if there is no concrete type.
880             let mut visitor = HirPlaceholderCollector::default();
881             visitor.visit_trait_item(trait_item);
882
883             placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
884         }
885     };
886
887     tcx.ensure().predicates_of(def_id);
888 }
889
890 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
891     let def_id = impl_item_id.def_id;
892     tcx.ensure().generics_of(def_id);
893     tcx.ensure().type_of(def_id);
894     tcx.ensure().predicates_of(def_id);
895     let impl_item = tcx.hir().impl_item(impl_item_id);
896     match impl_item.kind {
897         hir::ImplItemKind::Fn(..) => {
898             tcx.ensure().fn_sig(def_id);
899         }
900         hir::ImplItemKind::TyAlias(_) => {
901             // Account for `type T = _;`
902             let mut visitor = HirPlaceholderCollector::default();
903             visitor.visit_impl_item(impl_item);
904
905             placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
906         }
907         hir::ImplItemKind::Const(..) => {}
908     }
909 }
910
911 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
912     let def_id = tcx.hir().local_def_id(ctor_id);
913     tcx.ensure().generics_of(def_id);
914     tcx.ensure().type_of(def_id);
915     tcx.ensure().predicates_of(def_id);
916 }
917
918 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
919     let def = tcx.adt_def(def_id);
920     let repr_type = def.repr().discr_type();
921     let initial = repr_type.initial_discriminant(tcx);
922     let mut prev_discr = None::<Discr<'_>>;
923
924     // fill the discriminant values and field types
925     for variant in variants {
926         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
927         prev_discr = Some(
928             if let Some(ref e) = variant.disr_expr {
929                 let expr_did = tcx.hir().local_def_id(e.hir_id);
930                 def.eval_explicit_discr(tcx, expr_did.to_def_id())
931             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
932                 Some(discr)
933             } else {
934                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
935                     .span_label(
936                         variant.span,
937                         format!("overflowed on value after {}", prev_discr.unwrap()),
938                     )
939                     .note(&format!(
940                         "explicitly set `{} = {}` if that is desired outcome",
941                         variant.ident, wrapped_discr
942                     ))
943                     .emit();
944                 None
945             }
946             .unwrap_or(wrapped_discr),
947         );
948
949         for f in variant.data.fields() {
950             let def_id = tcx.hir().local_def_id(f.hir_id);
951             tcx.ensure().generics_of(def_id);
952             tcx.ensure().type_of(def_id);
953             tcx.ensure().predicates_of(def_id);
954         }
955
956         // Convert the ctor, if any. This also registers the variant as
957         // an item.
958         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
959             convert_variant_ctor(tcx, ctor_hir_id);
960         }
961     }
962 }
963
964 fn convert_variant(
965     tcx: TyCtxt<'_>,
966     variant_did: Option<LocalDefId>,
967     ctor_did: Option<LocalDefId>,
968     ident: Ident,
969     discr: ty::VariantDiscr,
970     def: &hir::VariantData<'_>,
971     adt_kind: ty::AdtKind,
972     parent_did: LocalDefId,
973 ) -> ty::VariantDef {
974     let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
975     let fields = def
976         .fields()
977         .iter()
978         .map(|f| {
979             let fid = tcx.hir().local_def_id(f.hir_id);
980             let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
981             if let Some(prev_span) = dup_span {
982                 tcx.sess.emit_err(errors::FieldAlreadyDeclared {
983                     field_name: f.ident,
984                     span: f.span,
985                     prev_span,
986                 });
987             } else {
988                 seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
989             }
990
991             ty::FieldDef { did: fid.to_def_id(), name: f.ident.name, vis: tcx.visibility(fid) }
992         })
993         .collect();
994     let recovered = match def {
995         hir::VariantData::Struct(_, r) => *r,
996         _ => false,
997     };
998     ty::VariantDef::new(
999         ident.name,
1000         variant_did.map(LocalDefId::to_def_id),
1001         ctor_did.map(LocalDefId::to_def_id),
1002         discr,
1003         fields,
1004         CtorKind::from_hir(def),
1005         adt_kind,
1006         parent_did.to_def_id(),
1007         recovered,
1008         adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
1009             || variant_did.map_or(false, |variant_did| {
1010                 tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
1011             }),
1012     )
1013 }
1014
1015 fn adt_def<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::AdtDef<'tcx> {
1016     use rustc_hir::*;
1017
1018     let def_id = def_id.expect_local();
1019     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1020     let Node::Item(item) = tcx.hir().get(hir_id) else {
1021         bug!();
1022     };
1023
1024     let repr = ReprOptions::new(tcx, def_id.to_def_id());
1025     let (kind, variants) = match item.kind {
1026         ItemKind::Enum(ref def, _) => {
1027             let mut distance_from_explicit = 0;
1028             let variants = def
1029                 .variants
1030                 .iter()
1031                 .map(|v| {
1032                     let variant_did = Some(tcx.hir().local_def_id(v.id));
1033                     let ctor_did =
1034                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1035
1036                     let discr = if let Some(ref e) = v.disr_expr {
1037                         distance_from_explicit = 0;
1038                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
1039                     } else {
1040                         ty::VariantDiscr::Relative(distance_from_explicit)
1041                     };
1042                     distance_from_explicit += 1;
1043
1044                     convert_variant(
1045                         tcx,
1046                         variant_did,
1047                         ctor_did,
1048                         v.ident,
1049                         discr,
1050                         &v.data,
1051                         AdtKind::Enum,
1052                         def_id,
1053                     )
1054                 })
1055                 .collect();
1056
1057             (AdtKind::Enum, variants)
1058         }
1059         ItemKind::Struct(ref def, _) => {
1060             let variant_did = None::<LocalDefId>;
1061             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1062
1063             let variants = std::iter::once(convert_variant(
1064                 tcx,
1065                 variant_did,
1066                 ctor_did,
1067                 item.ident,
1068                 ty::VariantDiscr::Relative(0),
1069                 def,
1070                 AdtKind::Struct,
1071                 def_id,
1072             ))
1073             .collect();
1074
1075             (AdtKind::Struct, variants)
1076         }
1077         ItemKind::Union(ref def, _) => {
1078             let variant_did = None;
1079             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1080
1081             let variants = std::iter::once(convert_variant(
1082                 tcx,
1083                 variant_did,
1084                 ctor_did,
1085                 item.ident,
1086                 ty::VariantDiscr::Relative(0),
1087                 def,
1088                 AdtKind::Union,
1089                 def_id,
1090             ))
1091             .collect();
1092
1093             (AdtKind::Union, variants)
1094         }
1095         _ => bug!(),
1096     };
1097     tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
1098 }
1099
1100 /// Ensures that the super-predicates of the trait with a `DefId`
1101 /// of `trait_def_id` are converted and stored. This also ensures that
1102 /// the transitive super-predicates are converted.
1103 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
1104     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
1105     tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
1106 }
1107
1108 /// Ensures that the super-predicates of the trait with a `DefId`
1109 /// of `trait_def_id` are converted and stored. This also ensures that
1110 /// the transitive super-predicates are converted.
1111 fn super_predicates_that_define_assoc_type(
1112     tcx: TyCtxt<'_>,
1113     (trait_def_id, assoc_name): (DefId, Option<Ident>),
1114 ) -> ty::GenericPredicates<'_> {
1115     debug!(
1116         "super_predicates_that_define_assoc_type(trait_def_id={:?}, assoc_name={:?})",
1117         trait_def_id, assoc_name
1118     );
1119     if trait_def_id.is_local() {
1120         debug!("super_predicates_that_define_assoc_type: local trait_def_id={:?}", trait_def_id);
1121         let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
1122
1123         let Node::Item(item) = tcx.hir().get(trait_hir_id) else {
1124             bug!("trait_node_id {} is not an item", trait_hir_id);
1125         };
1126
1127         let (generics, bounds) = match item.kind {
1128             hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
1129             hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
1130             _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
1131         };
1132
1133         let icx = ItemCtxt::new(tcx, trait_def_id);
1134
1135         // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
1136         let self_param_ty = tcx.types.self_param;
1137         let superbounds1 = if let Some(assoc_name) = assoc_name {
1138             <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
1139                 &icx,
1140                 self_param_ty,
1141                 bounds,
1142                 assoc_name,
1143             )
1144         } else {
1145             <dyn AstConv<'_>>::compute_bounds(&icx, self_param_ty, bounds)
1146         };
1147
1148         let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
1149
1150         // Convert any explicit superbounds in the where-clause,
1151         // e.g., `trait Foo where Self: Bar`.
1152         // In the case of trait aliases, however, we include all bounds in the where-clause,
1153         // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
1154         // as one of its "superpredicates".
1155         let is_trait_alias = tcx.is_trait_alias(trait_def_id);
1156         let superbounds2 = icx.type_parameter_bounds_in_generics(
1157             generics,
1158             item.hir_id(),
1159             self_param_ty,
1160             OnlySelfBounds(!is_trait_alias),
1161             assoc_name,
1162         );
1163
1164         // Combine the two lists to form the complete set of superbounds:
1165         let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
1166         debug!(?superbounds);
1167
1168         // Now require that immediate supertraits are converted,
1169         // which will, in turn, reach indirect supertraits.
1170         if assoc_name.is_none() {
1171             // Now require that immediate supertraits are converted,
1172             // which will, in turn, reach indirect supertraits.
1173             for &(pred, span) in superbounds {
1174                 debug!("superbound: {:?}", pred);
1175                 if let ty::PredicateKind::Trait(bound) = pred.kind().skip_binder() {
1176                     tcx.at(span).super_predicates_of(bound.def_id());
1177                 }
1178             }
1179         }
1180
1181         ty::GenericPredicates { parent: None, predicates: superbounds }
1182     } else {
1183         // if `assoc_name` is None, then the query should've been redirected to an
1184         // external provider
1185         assert!(assoc_name.is_some());
1186         tcx.super_predicates_of(trait_def_id)
1187     }
1188 }
1189
1190 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
1191     let item = tcx.hir().expect_item(def_id.expect_local());
1192
1193     let (is_auto, unsafety, items) = match item.kind {
1194         hir::ItemKind::Trait(is_auto, unsafety, .., items) => {
1195             (is_auto == hir::IsAuto::Yes, unsafety, items)
1196         }
1197         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal, &[][..]),
1198         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
1199     };
1200
1201     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
1202     if paren_sugar && !tcx.features().unboxed_closures {
1203         tcx.sess
1204             .struct_span_err(
1205                 item.span,
1206                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1207                  which traits can use parenthetical notation",
1208             )
1209             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
1210             .emit();
1211     }
1212
1213     let is_marker = tcx.has_attr(def_id, sym::marker);
1214     let skip_array_during_method_dispatch =
1215         tcx.has_attr(def_id, sym::rustc_skip_array_during_method_dispatch);
1216     let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
1217         ty::trait_def::TraitSpecializationKind::Marker
1218     } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
1219         ty::trait_def::TraitSpecializationKind::AlwaysApplicable
1220     } else {
1221         ty::trait_def::TraitSpecializationKind::None
1222     };
1223     let must_implement_one_of = tcx
1224         .get_attr(def_id, sym::rustc_must_implement_one_of)
1225         // Check that there are at least 2 arguments of `#[rustc_must_implement_one_of]`
1226         // and that they are all identifiers
1227         .and_then(|attr| match attr.meta_item_list() {
1228             Some(items) if items.len() < 2 => {
1229                 tcx.sess
1230                     .struct_span_err(
1231                         attr.span,
1232                         "the `#[rustc_must_implement_one_of]` attribute must be \
1233                         used with at least 2 args",
1234                     )
1235                     .emit();
1236
1237                 None
1238             }
1239             Some(items) => items
1240                 .into_iter()
1241                 .map(|item| item.ident().ok_or(item.span()))
1242                 .collect::<Result<Box<[_]>, _>>()
1243                 .map_err(|span| {
1244                     tcx.sess
1245                         .struct_span_err(span, "must be a name of an associated function")
1246                         .emit();
1247                 })
1248                 .ok()
1249                 .zip(Some(attr.span)),
1250             // Error is reported by `rustc_attr!`
1251             None => None,
1252         })
1253         // Check that all arguments of `#[rustc_must_implement_one_of]` reference
1254         // functions in the trait with default implementations
1255         .and_then(|(list, attr_span)| {
1256             let errors = list.iter().filter_map(|ident| {
1257                 let item = items.iter().find(|item| item.ident == *ident);
1258
1259                 match item {
1260                     Some(item) if matches!(item.kind, hir::AssocItemKind::Fn { .. }) => {
1261                         if !tcx.impl_defaultness(item.id.def_id).has_value() {
1262                             tcx.sess
1263                                 .struct_span_err(
1264                                     item.span,
1265                                     "This function doesn't have a default implementation",
1266                                 )
1267                                 .span_note(attr_span, "required by this annotation")
1268                                 .emit();
1269
1270                             return Some(());
1271                         }
1272
1273                         return None;
1274                     }
1275                     Some(item) => {
1276                         tcx.sess
1277                             .struct_span_err(item.span, "Not a function")
1278                             .span_note(attr_span, "required by this annotation")
1279                             .note(
1280                                 "All `#[rustc_must_implement_one_of]` arguments \
1281                             must be associated function names",
1282                             )
1283                             .emit();
1284                     }
1285                     None => {
1286                         tcx.sess
1287                             .struct_span_err(ident.span, "Function not found in this trait")
1288                             .emit();
1289                     }
1290                 }
1291
1292                 Some(())
1293             });
1294
1295             (errors.count() == 0).then_some(list)
1296         })
1297         // Check for duplicates
1298         .and_then(|list| {
1299             let mut set: FxHashMap<Symbol, Span> = FxHashMap::default();
1300             let mut no_dups = true;
1301
1302             for ident in &*list {
1303                 if let Some(dup) = set.insert(ident.name, ident.span) {
1304                     tcx.sess
1305                         .struct_span_err(vec![dup, ident.span], "Functions names are duplicated")
1306                         .note(
1307                             "All `#[rustc_must_implement_one_of]` arguments \
1308                             must be unique",
1309                         )
1310                         .emit();
1311
1312                     no_dups = false;
1313                 }
1314             }
1315
1316             no_dups.then_some(list)
1317         });
1318
1319     ty::TraitDef::new(
1320         def_id,
1321         unsafety,
1322         paren_sugar,
1323         is_auto,
1324         is_marker,
1325         skip_array_during_method_dispatch,
1326         spec_kind,
1327         must_implement_one_of,
1328     )
1329 }
1330
1331 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
1332     struct LateBoundRegionsDetector<'tcx> {
1333         tcx: TyCtxt<'tcx>,
1334         outer_index: ty::DebruijnIndex,
1335         has_late_bound_regions: Option<Span>,
1336     }
1337
1338     impl<'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
1339         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
1340             if self.has_late_bound_regions.is_some() {
1341                 return;
1342             }
1343             match ty.kind {
1344                 hir::TyKind::BareFn(..) => {
1345                     self.outer_index.shift_in(1);
1346                     intravisit::walk_ty(self, ty);
1347                     self.outer_index.shift_out(1);
1348                 }
1349                 _ => intravisit::walk_ty(self, ty),
1350             }
1351         }
1352
1353         fn visit_poly_trait_ref(&mut self, tr: &'tcx hir::PolyTraitRef<'tcx>) {
1354             if self.has_late_bound_regions.is_some() {
1355                 return;
1356             }
1357             self.outer_index.shift_in(1);
1358             intravisit::walk_poly_trait_ref(self, tr);
1359             self.outer_index.shift_out(1);
1360         }
1361
1362         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1363             if self.has_late_bound_regions.is_some() {
1364                 return;
1365             }
1366
1367             match self.tcx.named_region(lt.hir_id) {
1368                 Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
1369                 Some(rl::Region::LateBound(debruijn, _, _)) if debruijn < self.outer_index => {}
1370                 Some(rl::Region::LateBound(..) | rl::Region::Free(..)) | None => {
1371                     self.has_late_bound_regions = Some(lt.span);
1372                 }
1373             }
1374         }
1375     }
1376
1377     fn has_late_bound_regions<'tcx>(
1378         tcx: TyCtxt<'tcx>,
1379         generics: &'tcx hir::Generics<'tcx>,
1380         decl: &'tcx hir::FnDecl<'tcx>,
1381     ) -> Option<Span> {
1382         let mut visitor = LateBoundRegionsDetector {
1383             tcx,
1384             outer_index: ty::INNERMOST,
1385             has_late_bound_regions: None,
1386         };
1387         for param in generics.params {
1388             if let GenericParamKind::Lifetime { .. } = param.kind {
1389                 if tcx.is_late_bound(param.hir_id) {
1390                     return Some(param.span);
1391                 }
1392             }
1393         }
1394         visitor.visit_fn_decl(decl);
1395         visitor.has_late_bound_regions
1396     }
1397
1398     match node {
1399         Node::TraitItem(item) => match item.kind {
1400             hir::TraitItemKind::Fn(ref sig, _) => {
1401                 has_late_bound_regions(tcx, &item.generics, sig.decl)
1402             }
1403             _ => None,
1404         },
1405         Node::ImplItem(item) => match item.kind {
1406             hir::ImplItemKind::Fn(ref sig, _) => {
1407                 has_late_bound_regions(tcx, &item.generics, sig.decl)
1408             }
1409             _ => None,
1410         },
1411         Node::ForeignItem(item) => match item.kind {
1412             hir::ForeignItemKind::Fn(fn_decl, _, ref generics) => {
1413                 has_late_bound_regions(tcx, generics, fn_decl)
1414             }
1415             _ => None,
1416         },
1417         Node::Item(item) => match item.kind {
1418             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1419                 has_late_bound_regions(tcx, generics, sig.decl)
1420             }
1421             _ => None,
1422         },
1423         _ => None,
1424     }
1425 }
1426
1427 struct AnonConstInParamTyDetector {
1428     in_param_ty: bool,
1429     found_anon_const_in_param_ty: bool,
1430     ct: HirId,
1431 }
1432
1433 impl<'v> Visitor<'v> for AnonConstInParamTyDetector {
1434     fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
1435         if let GenericParamKind::Const { ty, default: _ } = p.kind {
1436             let prev = self.in_param_ty;
1437             self.in_param_ty = true;
1438             self.visit_ty(ty);
1439             self.in_param_ty = prev;
1440         }
1441     }
1442
1443     fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
1444         if self.in_param_ty && self.ct == c.hir_id {
1445             self.found_anon_const_in_param_ty = true;
1446         } else {
1447             intravisit::walk_anon_const(self, c)
1448         }
1449     }
1450 }
1451
1452 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
1453     use rustc_hir::*;
1454
1455     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1456
1457     let node = tcx.hir().get(hir_id);
1458     let parent_def_id = match node {
1459         Node::ImplItem(_)
1460         | Node::TraitItem(_)
1461         | Node::Variant(_)
1462         | Node::Ctor(..)
1463         | Node::Field(_) => {
1464             let parent_id = tcx.hir().get_parent_item(hir_id);
1465             Some(parent_id.to_def_id())
1466         }
1467         // FIXME(#43408) always enable this once `lazy_normalization` is
1468         // stable enough and does not need a feature gate anymore.
1469         Node::AnonConst(_) => {
1470             let parent_def_id = tcx.hir().get_parent_item(hir_id);
1471
1472             let mut in_param_ty = false;
1473             for (_parent, node) in tcx.hir().parent_iter(hir_id) {
1474                 if let Some(generics) = node.generics() {
1475                     let mut visitor = AnonConstInParamTyDetector {
1476                         in_param_ty: false,
1477                         found_anon_const_in_param_ty: false,
1478                         ct: hir_id,
1479                     };
1480
1481                     visitor.visit_generics(generics);
1482                     in_param_ty = visitor.found_anon_const_in_param_ty;
1483                     break;
1484                 }
1485             }
1486
1487             if in_param_ty {
1488                 // We do not allow generic parameters in anon consts if we are inside
1489                 // of a const parameter type, e.g. `struct Foo<const N: usize, const M: [u8; N]>` is not allowed.
1490                 None
1491             } else if tcx.lazy_normalization() {
1492                 if let Some(param_id) = tcx.hir().opt_const_param_default_param_hir_id(hir_id) {
1493                     // If the def_id we are calling generics_of on is an anon ct default i.e:
1494                     //
1495                     // struct Foo<const N: usize = { .. }>;
1496                     //        ^^^       ^          ^^^^^^ def id of this anon const
1497                     //        ^         ^ param_id
1498                     //        ^ parent_def_id
1499                     //
1500                     // then we only want to return generics for params to the left of `N`. If we don't do that we
1501                     // end up with that const looking like: `ty::ConstKind::Unevaluated(def_id, substs: [N#0])`.
1502                     //
1503                     // This causes ICEs (#86580) when building the substs for Foo in `fn foo() -> Foo { .. }` as
1504                     // we substitute the defaults with the partially built substs when we build the substs. Subst'ing
1505                     // the `N#0` on the unevaluated const indexes into the empty substs we're in the process of building.
1506                     //
1507                     // We fix this by having this function return the parent's generics ourselves and truncating the
1508                     // generics to only include non-forward declared params (with the exception of the `Self` ty)
1509                     //
1510                     // For the above code example that means we want `substs: []`
1511                     // For the following struct def we want `substs: [N#0]` when generics_of is called on
1512                     // the def id of the `{ N + 1 }` anon const
1513                     // struct Foo<const N: usize, const M: usize = { N + 1 }>;
1514                     //
1515                     // This has some implications for how we get the predicates available to the anon const
1516                     // see `explicit_predicates_of` for more information on this
1517                     let generics = tcx.generics_of(parent_def_id.to_def_id());
1518                     let param_def = tcx.hir().local_def_id(param_id).to_def_id();
1519                     let param_def_idx = generics.param_def_id_to_index[&param_def];
1520                     // In the above example this would be .params[..N#0]
1521                     let params = generics.params[..param_def_idx as usize].to_owned();
1522                     let param_def_id_to_index =
1523                         params.iter().map(|param| (param.def_id, param.index)).collect();
1524
1525                     return ty::Generics {
1526                         // we set the parent of these generics to be our parent's parent so that we
1527                         // dont end up with substs: [N, M, N] for the const default on a struct like this:
1528                         // struct Foo<const N: usize, const M: usize = { ... }>;
1529                         parent: generics.parent,
1530                         parent_count: generics.parent_count,
1531                         params,
1532                         param_def_id_to_index,
1533                         has_self: generics.has_self,
1534                         has_late_bound_regions: generics.has_late_bound_regions,
1535                     };
1536                 }
1537
1538                 // HACK(eddyb) this provides the correct generics when
1539                 // `feature(generic_const_expressions)` is enabled, so that const expressions
1540                 // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1541                 //
1542                 // Note that we do not supply the parent generics when using
1543                 // `min_const_generics`.
1544                 Some(parent_def_id.to_def_id())
1545             } else {
1546                 let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1547                 match parent_node {
1548                     // HACK(eddyb) this provides the correct generics for repeat
1549                     // expressions' count (i.e. `N` in `[x; N]`), and explicit
1550                     // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
1551                     // as they shouldn't be able to cause query cycle errors.
1552                     Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1553                         if constant.hir_id() == hir_id =>
1554                     {
1555                         Some(parent_def_id.to_def_id())
1556                     }
1557                     Node::Variant(Variant { disr_expr: Some(ref constant), .. })
1558                         if constant.hir_id == hir_id =>
1559                     {
1560                         Some(parent_def_id.to_def_id())
1561                     }
1562                     Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) => {
1563                         Some(tcx.typeck_root_def_id(def_id))
1564                     }
1565                     // Exclude `GlobalAsm` here which cannot have generics.
1566                     Node::Expr(&Expr { kind: ExprKind::InlineAsm(asm), .. })
1567                         if asm.operands.iter().any(|(op, _op_sp)| match op {
1568                             hir::InlineAsmOperand::Const { anon_const }
1569                             | hir::InlineAsmOperand::SymFn { anon_const } => {
1570                                 anon_const.hir_id == hir_id
1571                             }
1572                             _ => false,
1573                         }) =>
1574                     {
1575                         Some(parent_def_id.to_def_id())
1576                     }
1577                     _ => None,
1578                 }
1579             }
1580         }
1581         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
1582             Some(tcx.typeck_root_def_id(def_id))
1583         }
1584         Node::Item(item) => match item.kind {
1585             ItemKind::OpaqueTy(hir::OpaqueTy {
1586                 origin:
1587                     hir::OpaqueTyOrigin::FnReturn(fn_def_id) | hir::OpaqueTyOrigin::AsyncFn(fn_def_id),
1588                 in_trait,
1589                 ..
1590             }) => {
1591                 if in_trait {
1592                     assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn))
1593                 } else {
1594                     assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn | DefKind::Fn))
1595                 }
1596                 Some(fn_def_id.to_def_id())
1597             }
1598             ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias, .. }) => {
1599                 let parent_id = tcx.hir().get_parent_item(hir_id);
1600                 assert_ne!(parent_id, hir::CRATE_OWNER_ID);
1601                 debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1602                 // Opaque types are always nested within another item, and
1603                 // inherit the generics of the item.
1604                 Some(parent_id.to_def_id())
1605             }
1606             _ => None,
1607         },
1608         _ => None,
1609     };
1610
1611     enum Defaults {
1612         Allowed,
1613         // See #36887
1614         FutureCompatDisallowed,
1615         Deny,
1616     }
1617
1618     let no_generics = hir::Generics::empty();
1619     let ast_generics = node.generics().unwrap_or(&no_generics);
1620     let (opt_self, allow_defaults) = match node {
1621         Node::Item(item) => {
1622             match item.kind {
1623                 ItemKind::Trait(..) | ItemKind::TraitAlias(..) => {
1624                     // Add in the self type parameter.
1625                     //
1626                     // Something of a hack: use the node id for the trait, also as
1627                     // the node id for the Self type parameter.
1628                     let opt_self = Some(ty::GenericParamDef {
1629                         index: 0,
1630                         name: kw::SelfUpper,
1631                         def_id,
1632                         pure_wrt_drop: false,
1633                         kind: ty::GenericParamDefKind::Type {
1634                             has_default: false,
1635                             synthetic: false,
1636                         },
1637                     });
1638
1639                     (opt_self, Defaults::Allowed)
1640                 }
1641                 ItemKind::TyAlias(..)
1642                 | ItemKind::Enum(..)
1643                 | ItemKind::Struct(..)
1644                 | ItemKind::OpaqueTy(..)
1645                 | ItemKind::Union(..) => (None, Defaults::Allowed),
1646                 _ => (None, Defaults::FutureCompatDisallowed),
1647             }
1648         }
1649
1650         // GATs
1651         Node::TraitItem(item) if matches!(item.kind, TraitItemKind::Type(..)) => {
1652             (None, Defaults::Deny)
1653         }
1654         Node::ImplItem(item) if matches!(item.kind, ImplItemKind::TyAlias(..)) => {
1655             (None, Defaults::Deny)
1656         }
1657
1658         _ => (None, Defaults::FutureCompatDisallowed),
1659     };
1660
1661     let has_self = opt_self.is_some();
1662     let mut parent_has_self = false;
1663     let mut own_start = has_self as u32;
1664     let parent_count = parent_def_id.map_or(0, |def_id| {
1665         let generics = tcx.generics_of(def_id);
1666         assert!(!has_self);
1667         parent_has_self = generics.has_self;
1668         own_start = generics.count() as u32;
1669         generics.parent_count + generics.params.len()
1670     });
1671
1672     let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
1673
1674     if let Some(opt_self) = opt_self {
1675         params.push(opt_self);
1676     }
1677
1678     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1679     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1680         name: param.name.ident().name,
1681         index: own_start + i as u32,
1682         def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1683         pure_wrt_drop: param.pure_wrt_drop,
1684         kind: ty::GenericParamDefKind::Lifetime,
1685     }));
1686
1687     // Now create the real type and const parameters.
1688     let type_start = own_start - has_self as u32 + params.len() as u32;
1689     let mut i = 0;
1690
1691     const TYPE_DEFAULT_NOT_ALLOWED: &'static str = "defaults for type parameters are only allowed in \
1692     `struct`, `enum`, `type`, or `trait` definitions";
1693
1694     params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
1695         GenericParamKind::Lifetime { .. } => None,
1696         GenericParamKind::Type { ref default, synthetic, .. } => {
1697             if default.is_some() {
1698                 match allow_defaults {
1699                     Defaults::Allowed => {}
1700                     Defaults::FutureCompatDisallowed
1701                         if tcx.features().default_type_parameter_fallback => {}
1702                     Defaults::FutureCompatDisallowed => {
1703                         tcx.struct_span_lint_hir(
1704                             lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1705                             param.hir_id,
1706                             param.span,
1707                             |lint| {
1708                                 lint.build(TYPE_DEFAULT_NOT_ALLOWED).emit();
1709                             },
1710                         );
1711                     }
1712                     Defaults::Deny => {
1713                         tcx.sess.span_err(param.span, TYPE_DEFAULT_NOT_ALLOWED);
1714                     }
1715                 }
1716             }
1717
1718             let kind = ty::GenericParamDefKind::Type { has_default: default.is_some(), synthetic };
1719
1720             let param_def = ty::GenericParamDef {
1721                 index: type_start + i as u32,
1722                 name: param.name.ident().name,
1723                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1724                 pure_wrt_drop: param.pure_wrt_drop,
1725                 kind,
1726             };
1727             i += 1;
1728             Some(param_def)
1729         }
1730         GenericParamKind::Const { default, .. } => {
1731             if !matches!(allow_defaults, Defaults::Allowed) && default.is_some() {
1732                 tcx.sess.span_err(
1733                     param.span,
1734                     "defaults for const parameters are only allowed in \
1735                     `struct`, `enum`, `type`, or `trait` definitions",
1736                 );
1737             }
1738
1739             let param_def = ty::GenericParamDef {
1740                 index: type_start + i as u32,
1741                 name: param.name.ident().name,
1742                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1743                 pure_wrt_drop: param.pure_wrt_drop,
1744                 kind: ty::GenericParamDefKind::Const { has_default: default.is_some() },
1745             };
1746             i += 1;
1747             Some(param_def)
1748         }
1749     }));
1750
1751     // provide junk type parameter defs - the only place that
1752     // cares about anything but the length is instantiation,
1753     // and we don't do that for closures.
1754     if let Node::Expr(&hir::Expr {
1755         kind: hir::ExprKind::Closure(hir::Closure { movability: gen, .. }),
1756         ..
1757     }) = node
1758     {
1759         let dummy_args = if gen.is_some() {
1760             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
1761         } else {
1762             &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
1763         };
1764
1765         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1766             index: type_start + i as u32,
1767             name: Symbol::intern(arg),
1768             def_id,
1769             pure_wrt_drop: false,
1770             kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false },
1771         }));
1772     }
1773
1774     // provide junk type parameter defs for const blocks.
1775     if let Node::AnonConst(_) = node {
1776         let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1777         if let Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) = parent_node {
1778             params.push(ty::GenericParamDef {
1779                 index: type_start,
1780                 name: Symbol::intern("<const_ty>"),
1781                 def_id,
1782                 pure_wrt_drop: false,
1783                 kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false },
1784             });
1785         }
1786     }
1787
1788     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1789
1790     ty::Generics {
1791         parent: parent_def_id,
1792         parent_count,
1793         params,
1794         param_def_id_to_index,
1795         has_self: has_self || parent_has_self,
1796         has_late_bound_regions: has_late_bound_regions(tcx, node),
1797     }
1798 }
1799
1800 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1801     generic_args.iter().any(|arg| match arg {
1802         hir::GenericArg::Type(ty) => is_suggestable_infer_ty(ty),
1803         hir::GenericArg::Infer(_) => true,
1804         _ => false,
1805     })
1806 }
1807
1808 /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
1809 /// use inference to provide suggestions for the appropriate type if possible.
1810 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1811     debug!(?ty);
1812     use hir::TyKind::*;
1813     match &ty.kind {
1814         Infer => true,
1815         Slice(ty) => is_suggestable_infer_ty(ty),
1816         Array(ty, length) => {
1817             is_suggestable_infer_ty(ty) || matches!(length, hir::ArrayLen::Infer(_, _))
1818         }
1819         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1820         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1821         OpaqueDef(_, generic_args, _) => are_suggestable_generic_args(generic_args),
1822         Path(hir::QPath::TypeRelative(ty, segment)) => {
1823             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
1824         }
1825         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1826             ty_opt.map_or(false, is_suggestable_infer_ty)
1827                 || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
1828         }
1829         _ => false,
1830     }
1831 }
1832
1833 pub fn get_infer_ret_ty<'hir>(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1834     if let hir::FnRetTy::Return(ty) = output {
1835         if is_suggestable_infer_ty(ty) {
1836             return Some(&*ty);
1837         }
1838     }
1839     None
1840 }
1841
1842 #[instrument(level = "debug", skip(tcx))]
1843 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1844     use rustc_hir::Node::*;
1845     use rustc_hir::*;
1846
1847     let def_id = def_id.expect_local();
1848     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1849
1850     let icx = ItemCtxt::new(tcx, def_id.to_def_id());
1851
1852     match tcx.hir().get(hir_id) {
1853         TraitItem(hir::TraitItem {
1854             kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
1855             generics,
1856             ..
1857         })
1858         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), .. }) => {
1859             infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
1860         }
1861
1862         ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), generics, .. }) => {
1863             // Do not try to inference the return type for a impl method coming from a trait
1864             if let Item(hir::Item { kind: ItemKind::Impl(i), .. }) =
1865                 tcx.hir().get(tcx.hir().get_parent_node(hir_id))
1866                 && i.of_trait.is_some()
1867             {
1868                 <dyn AstConv<'_>>::ty_of_fn(
1869                     &icx,
1870                     hir_id,
1871                     sig.header.unsafety,
1872                     sig.header.abi,
1873                     sig.decl,
1874                     Some(generics),
1875                     None,
1876                 )
1877             } else {
1878                 infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
1879             }
1880         }
1881
1882         TraitItem(hir::TraitItem {
1883             kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
1884             generics,
1885             ..
1886         }) => <dyn AstConv<'_>>::ty_of_fn(
1887             &icx,
1888             hir_id,
1889             header.unsafety,
1890             header.abi,
1891             decl,
1892             Some(generics),
1893             None,
1894         ),
1895
1896         ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
1897             let abi = tcx.hir().get_foreign_abi(hir_id);
1898             compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi)
1899         }
1900
1901         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1902             let ty = tcx.type_of(tcx.hir().get_parent_item(hir_id));
1903             let inputs =
1904                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1905             ty::Binder::dummy(tcx.mk_fn_sig(
1906                 inputs,
1907                 ty,
1908                 false,
1909                 hir::Unsafety::Normal,
1910                 abi::Abi::Rust,
1911             ))
1912         }
1913
1914         Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
1915             // Closure signatures are not like other function
1916             // signatures and cannot be accessed through `fn_sig`. For
1917             // example, a closure signature excludes the `self`
1918             // argument. In any case they are embedded within the
1919             // closure type as part of the `ClosureSubsts`.
1920             //
1921             // To get the signature of a closure, you should use the
1922             // `sig` method on the `ClosureSubsts`:
1923             //
1924             //    substs.as_closure().sig(def_id, tcx)
1925             bug!(
1926                 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
1927             );
1928         }
1929
1930         x => {
1931             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1932         }
1933     }
1934 }
1935
1936 fn infer_return_ty_for_fn_sig<'tcx>(
1937     tcx: TyCtxt<'tcx>,
1938     sig: &hir::FnSig<'_>,
1939     generics: &hir::Generics<'_>,
1940     def_id: LocalDefId,
1941     icx: &ItemCtxt<'tcx>,
1942 ) -> ty::PolyFnSig<'tcx> {
1943     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1944
1945     match get_infer_ret_ty(&sig.decl.output) {
1946         Some(ty) => {
1947             let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
1948             // Typeck doesn't expect erased regions to be returned from `type_of`.
1949             let fn_sig = tcx.fold_regions(fn_sig, |r, _| match *r {
1950                 ty::ReErased => tcx.lifetimes.re_static,
1951                 _ => r,
1952             });
1953             let fn_sig = ty::Binder::dummy(fn_sig);
1954
1955             let mut visitor = HirPlaceholderCollector::default();
1956             visitor.visit_ty(ty);
1957             let mut diag = bad_placeholder(tcx, visitor.0, "return type");
1958             let ret_ty = fn_sig.skip_binder().output();
1959             if ret_ty.is_suggestable(tcx, false) {
1960                 diag.span_suggestion(
1961                     ty.span,
1962                     "replace with the correct return type",
1963                     ret_ty,
1964                     Applicability::MachineApplicable,
1965                 );
1966             } else if matches!(ret_ty.kind(), ty::FnDef(..)) {
1967                 let fn_sig = ret_ty.fn_sig(tcx);
1968                 if fn_sig
1969                     .skip_binder()
1970                     .inputs_and_output
1971                     .iter()
1972                     .all(|t| t.is_suggestable(tcx, false))
1973                 {
1974                     diag.span_suggestion(
1975                         ty.span,
1976                         "replace with the correct return type",
1977                         fn_sig,
1978                         Applicability::MachineApplicable,
1979                     );
1980                 }
1981             } else if ret_ty.is_closure() {
1982                 // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
1983                 // to prevent the user from getting a papercut while trying to use the unique closure
1984                 // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
1985                 diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
1986                 diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
1987             }
1988             diag.emit();
1989
1990             fn_sig
1991         }
1992         None => <dyn AstConv<'_>>::ty_of_fn(
1993             icx,
1994             hir_id,
1995             sig.header.unsafety,
1996             sig.header.abi,
1997             sig.decl,
1998             Some(generics),
1999             None,
2000         ),
2001     }
2002 }
2003
2004 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
2005     let icx = ItemCtxt::new(tcx, def_id);
2006     match tcx.hir().expect_item(def_id.expect_local()).kind {
2007         hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
2008             let selfty = tcx.type_of(def_id);
2009             <dyn AstConv<'_>>::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
2010         }),
2011         _ => bug!(),
2012     }
2013 }
2014
2015 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
2016     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
2017     let item = tcx.hir().expect_item(def_id.expect_local());
2018     match &item.kind {
2019         hir::ItemKind::Impl(hir::Impl {
2020             polarity: hir::ImplPolarity::Negative(span),
2021             of_trait,
2022             ..
2023         }) => {
2024             if is_rustc_reservation {
2025                 let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
2026                 tcx.sess.span_err(span, "reservation impls can't be negative");
2027             }
2028             ty::ImplPolarity::Negative
2029         }
2030         hir::ItemKind::Impl(hir::Impl {
2031             polarity: hir::ImplPolarity::Positive,
2032             of_trait: None,
2033             ..
2034         }) => {
2035             if is_rustc_reservation {
2036                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
2037             }
2038             ty::ImplPolarity::Positive
2039         }
2040         hir::ItemKind::Impl(hir::Impl {
2041             polarity: hir::ImplPolarity::Positive,
2042             of_trait: Some(_),
2043             ..
2044         }) => {
2045             if is_rustc_reservation {
2046                 ty::ImplPolarity::Reservation
2047             } else {
2048                 ty::ImplPolarity::Positive
2049             }
2050         }
2051         item => bug!("impl_polarity: {:?} not an impl", item),
2052     }
2053 }
2054
2055 /// Returns the early-bound lifetimes declared in this generics
2056 /// listing. For anything other than fns/methods, this is just all
2057 /// the lifetimes that are declared. For fns or methods, we have to
2058 /// screen out those that do not appear in any where-clauses etc using
2059 /// `resolve_lifetime::early_bound_lifetimes`.
2060 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
2061     tcx: TyCtxt<'tcx>,
2062     generics: &'a hir::Generics<'a>,
2063 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
2064     generics.params.iter().filter(move |param| match param.kind {
2065         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
2066         _ => false,
2067     })
2068 }
2069
2070 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
2071 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
2072 /// inferred constraints concerning which regions outlive other regions.
2073 #[instrument(level = "debug", skip(tcx))]
2074 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2075     let mut result = tcx.explicit_predicates_of(def_id);
2076     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
2077     let inferred_outlives = tcx.inferred_outlives_of(def_id);
2078     if !inferred_outlives.is_empty() {
2079         debug!(
2080             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
2081             def_id, inferred_outlives,
2082         );
2083         if result.predicates.is_empty() {
2084             result.predicates = inferred_outlives;
2085         } else {
2086             result.predicates = tcx
2087                 .arena
2088                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
2089         }
2090     }
2091
2092     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
2093     result
2094 }
2095
2096 /// Returns a list of all type predicates (explicit and implicit) for the definition with
2097 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
2098 /// `Self: Trait` predicates for traits.
2099 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2100     let mut result = tcx.predicates_defined_on(def_id);
2101
2102     if tcx.is_trait(def_id) {
2103         // For traits, add `Self: Trait` predicate. This is
2104         // not part of the predicates that a user writes, but it
2105         // is something that one must prove in order to invoke a
2106         // method or project an associated type.
2107         //
2108         // In the chalk setup, this predicate is not part of the
2109         // "predicates" for a trait item. But it is useful in
2110         // rustc because if you directly (e.g.) invoke a trait
2111         // method like `Trait::method(...)`, you must naturally
2112         // prove that the trait applies to the types that were
2113         // used, and adding the predicate into this list ensures
2114         // that this is done.
2115         //
2116         // We use a DUMMY_SP here as a way to signal trait bounds that come
2117         // from the trait itself that *shouldn't* be shown as the source of
2118         // an obligation and instead be skipped. Otherwise we'd use
2119         // `tcx.def_span(def_id);`
2120
2121         let constness = if tcx.has_attr(def_id, sym::const_trait) {
2122             ty::BoundConstness::ConstIfConst
2123         } else {
2124             ty::BoundConstness::NotConst
2125         };
2126
2127         let span = rustc_span::DUMMY_SP;
2128         result.predicates =
2129             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
2130                 ty::TraitRef::identity(tcx, def_id).with_constness(constness).to_predicate(tcx),
2131                 span,
2132             ))));
2133     }
2134     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2135     result
2136 }
2137
2138 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2139 /// N.B., this does not include any implied/inferred constraints.
2140 #[instrument(level = "trace", skip(tcx), ret)]
2141 fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2142     use rustc_hir::*;
2143
2144     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2145     let node = tcx.hir().get(hir_id);
2146
2147     let mut is_trait = None;
2148     let mut is_default_impl_trait = None;
2149
2150     let icx = ItemCtxt::new(tcx, def_id);
2151
2152     const NO_GENERICS: &hir::Generics<'_> = hir::Generics::empty();
2153
2154     // We use an `IndexSet` to preserves order of insertion.
2155     // Preserving the order of insertion is important here so as not to break UI tests.
2156     let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
2157
2158     let ast_generics = match node {
2159         Node::TraitItem(item) => item.generics,
2160
2161         Node::ImplItem(item) => item.generics,
2162
2163         Node::Item(item) => {
2164             match item.kind {
2165                 ItemKind::Impl(ref impl_) => {
2166                     if impl_.defaultness.is_default() {
2167                         is_default_impl_trait = tcx.impl_trait_ref(def_id).map(ty::Binder::dummy);
2168                     }
2169                     &impl_.generics
2170                 }
2171                 ItemKind::Fn(.., ref generics, _)
2172                 | ItemKind::TyAlias(_, ref generics)
2173                 | ItemKind::Enum(_, ref generics)
2174                 | ItemKind::Struct(_, ref generics)
2175                 | ItemKind::Union(_, ref generics) => *generics,
2176
2177                 ItemKind::Trait(_, _, ref generics, ..) => {
2178                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
2179                     *generics
2180                 }
2181                 ItemKind::TraitAlias(ref generics, _) => {
2182                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
2183                     *generics
2184                 }
2185                 ItemKind::OpaqueTy(OpaqueTy {
2186                     origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
2187                     ..
2188                 }) => {
2189                     // return-position impl trait
2190                     //
2191                     // We don't inherit predicates from the parent here:
2192                     // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
2193                     // then the return type is `f::<'static, T>::{{opaque}}`.
2194                     //
2195                     // If we inherited the predicates of `f` then we would
2196                     // require that `T: 'static` to show that the return
2197                     // type is well-formed.
2198                     //
2199                     // The only way to have something with this opaque type
2200                     // is from the return type of the containing function,
2201                     // which will ensure that the function's predicates
2202                     // hold.
2203                     return ty::GenericPredicates { parent: None, predicates: &[] };
2204                 }
2205                 ItemKind::OpaqueTy(OpaqueTy {
2206                     ref generics,
2207                     origin: hir::OpaqueTyOrigin::TyAlias,
2208                     ..
2209                 }) => {
2210                     // type-alias impl trait
2211                     generics
2212                 }
2213
2214                 _ => NO_GENERICS,
2215             }
2216         }
2217
2218         Node::ForeignItem(item) => match item.kind {
2219             ForeignItemKind::Static(..) => NO_GENERICS,
2220             ForeignItemKind::Fn(_, _, ref generics) => *generics,
2221             ForeignItemKind::Type => NO_GENERICS,
2222         },
2223
2224         _ => NO_GENERICS,
2225     };
2226
2227     let generics = tcx.generics_of(def_id);
2228     let parent_count = generics.parent_count as u32;
2229     let has_own_self = generics.has_self && parent_count == 0;
2230
2231     // Below we'll consider the bounds on the type parameters (including `Self`)
2232     // and the explicit where-clauses, but to get the full set of predicates
2233     // on a trait we need to add in the supertrait bounds and bounds found on
2234     // associated types.
2235     if let Some(_trait_ref) = is_trait {
2236         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2237     }
2238
2239     // In default impls, we can assume that the self type implements
2240     // the trait. So in:
2241     //
2242     //     default impl Foo for Bar { .. }
2243     //
2244     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2245     // (see below). Recall that a default impl is not itself an impl, but rather a
2246     // set of defaults that can be incorporated into another impl.
2247     if let Some(trait_ref) = is_default_impl_trait {
2248         predicates.insert((trait_ref.without_const().to_predicate(tcx), tcx.def_span(def_id)));
2249     }
2250
2251     // Collect the region predicates that were declared inline as
2252     // well. In the case of parameters declared on a fn or method, we
2253     // have to be careful to only iterate over early-bound regions.
2254     let mut index = parent_count
2255         + has_own_self as u32
2256         + early_bound_lifetimes_from_generics(tcx, ast_generics).count() as u32;
2257
2258     trace!(?predicates);
2259     trace!(?ast_generics);
2260
2261     // Collect the predicates that were written inline by the user on each
2262     // type parameter (e.g., `<T: Foo>`).
2263     for param in ast_generics.params {
2264         match param.kind {
2265             // We already dealt with early bound lifetimes above.
2266             GenericParamKind::Lifetime { .. } => (),
2267             GenericParamKind::Type { .. } => {
2268                 let name = param.name.ident().name;
2269                 let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2270                 index += 1;
2271
2272                 let mut bounds = Bounds::default();
2273                 // Params are implicitly sized unless a `?Sized` bound is found
2274                 <dyn AstConv<'_>>::add_implicitly_sized(
2275                     &icx,
2276                     &mut bounds,
2277                     &[],
2278                     Some((param.hir_id, ast_generics.predicates)),
2279                     param.span,
2280                 );
2281                 trace!(?bounds);
2282                 predicates.extend(bounds.predicates(tcx, param_ty));
2283                 trace!(?predicates);
2284             }
2285             GenericParamKind::Const { .. } => {
2286                 // Bounds on const parameters are currently not possible.
2287                 index += 1;
2288             }
2289         }
2290     }
2291
2292     trace!(?predicates);
2293     // Add in the bounds that appear in the where-clause.
2294     for predicate in ast_generics.predicates {
2295         match predicate {
2296             hir::WherePredicate::BoundPredicate(bound_pred) => {
2297                 let ty = icx.to_ty(bound_pred.bounded_ty);
2298                 let bound_vars = icx.tcx.late_bound_vars(bound_pred.bounded_ty.hir_id);
2299
2300                 // Keep the type around in a dummy predicate, in case of no bounds.
2301                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2302                 // is still checked for WF.
2303                 if bound_pred.bounds.is_empty() {
2304                     if let ty::Param(_) = ty.kind() {
2305                         // This is a `where T:`, which can be in the HIR from the
2306                         // transformation that moves `?Sized` to `T`'s declaration.
2307                         // We can skip the predicate because type parameters are
2308                         // trivially WF, but also we *should*, to avoid exposing
2309                         // users who never wrote `where Type:,` themselves, to
2310                         // compiler/tooling bugs from not handling WF predicates.
2311                     } else {
2312                         let span = bound_pred.bounded_ty.span;
2313                         let predicate = ty::Binder::bind_with_vars(
2314                             ty::PredicateKind::WellFormed(ty.into()),
2315                             bound_vars,
2316                         );
2317                         predicates.insert((predicate.to_predicate(tcx), span));
2318                     }
2319                 }
2320
2321                 let mut bounds = Bounds::default();
2322                 <dyn AstConv<'_>>::add_bounds(
2323                     &icx,
2324                     ty,
2325                     bound_pred.bounds.iter(),
2326                     &mut bounds,
2327                     bound_vars,
2328                 );
2329                 predicates.extend(bounds.predicates(tcx, ty));
2330             }
2331
2332             hir::WherePredicate::RegionPredicate(region_pred) => {
2333                 let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
2334                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2335                     let (r2, span) = match bound {
2336                         hir::GenericBound::Outlives(lt) => {
2337                             (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
2338                         }
2339                         _ => bug!(),
2340                     };
2341                     let pred = ty::Binder::dummy(ty::PredicateKind::RegionOutlives(
2342                         ty::OutlivesPredicate(r1, r2),
2343                     ))
2344                     .to_predicate(icx.tcx);
2345
2346                     (pred, span)
2347                 }))
2348             }
2349
2350             hir::WherePredicate::EqPredicate(..) => {
2351                 // FIXME(#20041)
2352             }
2353         }
2354     }
2355
2356     if tcx.features().generic_const_exprs {
2357         predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
2358     }
2359
2360     let mut predicates: Vec<_> = predicates.into_iter().collect();
2361
2362     // Subtle: before we store the predicates into the tcx, we
2363     // sort them so that predicates like `T: Foo<Item=U>` come
2364     // before uses of `U`.  This avoids false ambiguity errors
2365     // in trait checking. See `setup_constraining_predicates`
2366     // for details.
2367     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2368         let self_ty = tcx.type_of(def_id);
2369         let trait_ref = tcx.impl_trait_ref(def_id);
2370         cgp::setup_constraining_predicates(
2371             tcx,
2372             &mut predicates,
2373             trait_ref,
2374             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2375         );
2376     }
2377
2378     ty::GenericPredicates {
2379         parent: generics.parent,
2380         predicates: tcx.arena.alloc_from_iter(predicates),
2381     }
2382 }
2383
2384 fn const_evaluatable_predicates_of<'tcx>(
2385     tcx: TyCtxt<'tcx>,
2386     def_id: LocalDefId,
2387 ) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
2388     struct ConstCollector<'tcx> {
2389         tcx: TyCtxt<'tcx>,
2390         preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
2391     }
2392
2393     impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
2394         fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
2395             let def_id = self.tcx.hir().local_def_id(c.hir_id);
2396             let ct = ty::Const::from_anon_const(self.tcx, def_id);
2397             if let ty::ConstKind::Unevaluated(uv) = ct.kind() {
2398                 let span = self.tcx.hir().span(c.hir_id);
2399                 self.preds.insert((
2400                     ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(uv))
2401                         .to_predicate(self.tcx),
2402                     span,
2403                 ));
2404             }
2405         }
2406
2407         fn visit_const_param_default(&mut self, _param: HirId, _ct: &'tcx hir::AnonConst) {
2408             // Do not look into const param defaults,
2409             // these get checked when they are actually instantiated.
2410             //
2411             // We do not want the following to error:
2412             //
2413             //     struct Foo<const N: usize, const M: usize = { N + 1 }>;
2414             //     struct Bar<const N: usize>(Foo<N, 3>);
2415         }
2416     }
2417
2418     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
2419     let node = tcx.hir().get(hir_id);
2420
2421     let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
2422     if let hir::Node::Item(item) = node && let hir::ItemKind::Impl(ref impl_) = item.kind {
2423         if let Some(of_trait) = &impl_.of_trait {
2424             debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
2425             collector.visit_trait_ref(of_trait);
2426         }
2427
2428         debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
2429         collector.visit_ty(impl_.self_ty);
2430     }
2431
2432     if let Some(generics) = node.generics() {
2433         debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
2434         collector.visit_generics(generics);
2435     }
2436
2437     if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
2438         debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
2439         collector.visit_fn_decl(fn_sig.decl);
2440     }
2441     debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
2442
2443     collector.preds
2444 }
2445
2446 fn trait_explicit_predicates_and_bounds(
2447     tcx: TyCtxt<'_>,
2448     def_id: LocalDefId,
2449 ) -> ty::GenericPredicates<'_> {
2450     assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
2451     gather_explicit_predicates_of(tcx, def_id.to_def_id())
2452 }
2453
2454 fn explicit_predicates_of<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::GenericPredicates<'tcx> {
2455     let def_kind = tcx.def_kind(def_id);
2456     if let DefKind::Trait = def_kind {
2457         // Remove bounds on associated types from the predicates, they will be
2458         // returned by `explicit_item_bounds`.
2459         let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
2460         let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
2461
2462         let is_assoc_item_ty = |ty: Ty<'tcx>| {
2463             // For a predicate from a where clause to become a bound on an
2464             // associated type:
2465             // * It must use the identity substs of the item.
2466             //     * Since any generic parameters on the item are not in scope,
2467             //       this means that the item is not a GAT, and its identity
2468             //       substs are the same as the trait's.
2469             // * It must be an associated type for this trait (*not* a
2470             //   supertrait).
2471             if let ty::Projection(projection) = ty.kind() {
2472                 projection.substs == trait_identity_substs
2473                     && tcx.associated_item(projection.item_def_id).container_id(tcx) == def_id
2474             } else {
2475                 false
2476             }
2477         };
2478
2479         let predicates: Vec<_> = predicates_and_bounds
2480             .predicates
2481             .iter()
2482             .copied()
2483             .filter(|(pred, _)| match pred.kind().skip_binder() {
2484                 ty::PredicateKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
2485                 ty::PredicateKind::Projection(proj) => {
2486                     !is_assoc_item_ty(proj.projection_ty.self_ty())
2487                 }
2488                 ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
2489                 _ => true,
2490             })
2491             .collect();
2492         if predicates.len() == predicates_and_bounds.predicates.len() {
2493             predicates_and_bounds
2494         } else {
2495             ty::GenericPredicates {
2496                 parent: predicates_and_bounds.parent,
2497                 predicates: tcx.arena.alloc_slice(&predicates),
2498             }
2499         }
2500     } else {
2501         if matches!(def_kind, DefKind::AnonConst) && tcx.lazy_normalization() {
2502             let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2503             if tcx.hir().opt_const_param_default_param_hir_id(hir_id).is_some() {
2504                 // In `generics_of` we set the generics' parent to be our parent's parent which means that
2505                 // we lose out on the predicates of our actual parent if we dont return those predicates here.
2506                 // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
2507                 //
2508                 // struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
2509                 //        ^^^                     ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
2510                 //        ^^^                                             explicit_predicates_of on
2511                 //        parent item we dont have set as the
2512                 //        parent of generics returned by `generics_of`
2513                 //
2514                 // In the above code we want the anon const to have predicates in its param env for `T: Trait`
2515                 let item_def_id = tcx.hir().get_parent_item(hir_id);
2516                 // In the above code example we would be calling `explicit_predicates_of(Foo)` here
2517                 return tcx.explicit_predicates_of(item_def_id);
2518             }
2519         }
2520         gather_explicit_predicates_of(tcx, def_id)
2521     }
2522 }
2523
2524 /// Converts a specific `GenericBound` from the AST into a set of
2525 /// predicates that apply to the self type. A vector is returned
2526 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2527 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2528 /// and `<T as Bar>::X == i32`).
2529 fn predicates_from_bound<'tcx>(
2530     astconv: &dyn AstConv<'tcx>,
2531     param_ty: Ty<'tcx>,
2532     bound: &'tcx hir::GenericBound<'tcx>,
2533     bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
2534 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2535     let mut bounds = Bounds::default();
2536     astconv.add_bounds(param_ty, [bound].into_iter(), &mut bounds, bound_vars);
2537     bounds.predicates(astconv.tcx(), param_ty).collect()
2538 }
2539
2540 fn compute_sig_of_foreign_fn_decl<'tcx>(
2541     tcx: TyCtxt<'tcx>,
2542     def_id: DefId,
2543     decl: &'tcx hir::FnDecl<'tcx>,
2544     abi: abi::Abi,
2545 ) -> ty::PolyFnSig<'tcx> {
2546     let unsafety = if abi == abi::Abi::RustIntrinsic {
2547         intrinsic_operation_unsafety(tcx.item_name(def_id))
2548     } else {
2549         hir::Unsafety::Unsafe
2550     };
2551     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2552     let fty = <dyn AstConv<'_>>::ty_of_fn(
2553         &ItemCtxt::new(tcx, def_id),
2554         hir_id,
2555         unsafety,
2556         abi,
2557         decl,
2558         None,
2559         None,
2560     );
2561
2562     // Feature gate SIMD types in FFI, since I am not sure that the
2563     // ABIs are handled at all correctly. -huonw
2564     if abi != abi::Abi::RustIntrinsic
2565         && abi != abi::Abi::PlatformIntrinsic
2566         && !tcx.features().simd_ffi
2567     {
2568         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2569             if ty.is_simd() {
2570                 let snip = tcx
2571                     .sess
2572                     .source_map()
2573                     .span_to_snippet(ast_ty.span)
2574                     .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
2575                 tcx.sess
2576                     .struct_span_err(
2577                         ast_ty.span,
2578                         &format!(
2579                             "use of SIMD type{} in FFI is highly experimental and \
2580                              may result in invalid code",
2581                             snip
2582                         ),
2583                     )
2584                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2585                     .emit();
2586             }
2587         };
2588         for (input, ty) in iter::zip(decl.inputs, fty.inputs().skip_binder()) {
2589             check(input, *ty)
2590         }
2591         if let hir::FnRetTy::Return(ref ty) = decl.output {
2592             check(ty, fty.output().skip_binder())
2593         }
2594     }
2595
2596     fty
2597 }
2598
2599 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2600     match tcx.hir().get_if_local(def_id) {
2601         Some(Node::ForeignItem(..)) => true,
2602         Some(_) => false,
2603         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2604     }
2605 }
2606
2607 fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
2608     match tcx.hir().get_if_local(def_id) {
2609         Some(Node::Expr(&rustc_hir::Expr {
2610             kind: rustc_hir::ExprKind::Closure(&rustc_hir::Closure { body, .. }),
2611             ..
2612         })) => tcx.hir().body(body).generator_kind(),
2613         Some(_) => None,
2614         _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
2615     }
2616 }
2617
2618 fn from_target_feature(
2619     tcx: TyCtxt<'_>,
2620     attr: &ast::Attribute,
2621     supported_target_features: &FxHashMap<String, Option<Symbol>>,
2622     target_features: &mut Vec<Symbol>,
2623 ) {
2624     let Some(list) = attr.meta_item_list() else { return };
2625     let bad_item = |span| {
2626         let msg = "malformed `target_feature` attribute input";
2627         let code = "enable = \"..\"";
2628         tcx.sess
2629             .struct_span_err(span, msg)
2630             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2631             .emit();
2632     };
2633     let rust_features = tcx.features();
2634     for item in list {
2635         // Only `enable = ...` is accepted in the meta-item list.
2636         if !item.has_name(sym::enable) {
2637             bad_item(item.span());
2638             continue;
2639         }
2640
2641         // Must be of the form `enable = "..."` (a string).
2642         let Some(value) = item.value_str() else {
2643             bad_item(item.span());
2644             continue;
2645         };
2646
2647         // We allow comma separation to enable multiple features.
2648         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2649             let Some(feature_gate) = supported_target_features.get(feature) else {
2650                 let msg =
2651                     format!("the feature named `{}` is not valid for this target", feature);
2652                 let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2653                 err.span_label(
2654                     item.span(),
2655                     format!("`{}` is not valid for this target", feature),
2656                 );
2657                 if let Some(stripped) = feature.strip_prefix('+') {
2658                     let valid = supported_target_features.contains_key(stripped);
2659                     if valid {
2660                         err.help("consider removing the leading `+` in the feature name");
2661                     }
2662                 }
2663                 err.emit();
2664                 return None;
2665             };
2666
2667             // Only allow features whose feature gates have been enabled.
2668             let allowed = match feature_gate.as_ref().copied() {
2669                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2670                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2671                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2672                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2673                 Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
2674                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2675                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2676                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2677                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2678                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2679                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2680                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2681                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2682                 Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
2683                 Some(sym::bpf_target_feature) => rust_features.bpf_target_feature,
2684                 Some(sym::aarch64_ver_target_feature) => rust_features.aarch64_ver_target_feature,
2685                 Some(name) => bug!("unknown target feature gate {}", name),
2686                 None => true,
2687             };
2688             if !allowed {
2689                 feature_err(
2690                     &tcx.sess.parse_sess,
2691                     feature_gate.unwrap(),
2692                     item.span(),
2693                     &format!("the target feature `{}` is currently unstable", feature),
2694                 )
2695                 .emit();
2696             }
2697             Some(Symbol::intern(feature))
2698         }));
2699     }
2700 }
2701
2702 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: LocalDefId, name: &str) -> Linkage {
2703     use rustc_middle::mir::mono::Linkage::*;
2704
2705     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2706     // applicable to variable declarations and may not really make sense for
2707     // Rust code in the first place but allow them anyway and trust that the
2708     // user knows what they're doing. Who knows, unanticipated use cases may pop
2709     // up in the future.
2710     //
2711     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2712     // and don't have to be, LLVM treats them as no-ops.
2713     match name {
2714         "appending" => Appending,
2715         "available_externally" => AvailableExternally,
2716         "common" => Common,
2717         "extern_weak" => ExternalWeak,
2718         "external" => External,
2719         "internal" => Internal,
2720         "linkonce" => LinkOnceAny,
2721         "linkonce_odr" => LinkOnceODR,
2722         "private" => Private,
2723         "weak" => WeakAny,
2724         "weak_odr" => WeakODR,
2725         _ => tcx.sess.span_fatal(tcx.def_span(def_id), "invalid linkage specified"),
2726     }
2727 }
2728
2729 fn codegen_fn_attrs(tcx: TyCtxt<'_>, did: DefId) -> CodegenFnAttrs {
2730     if cfg!(debug_assertions) {
2731         let def_kind = tcx.def_kind(did);
2732         assert!(
2733             def_kind.has_codegen_attrs(),
2734             "unexpected `def_kind` in `codegen_fn_attrs`: {def_kind:?}",
2735         );
2736     }
2737
2738     let did = did.expect_local();
2739     let attrs = tcx.hir().attrs(tcx.hir().local_def_id_to_hir_id(did));
2740     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2741     if tcx.should_inherit_track_caller(did) {
2742         codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2743     }
2744
2745     // The panic_no_unwind function called by TerminatorKind::Abort will never
2746     // unwind. If the panic handler that it invokes unwind then it will simply
2747     // call the panic handler again.
2748     if Some(did.to_def_id()) == tcx.lang_items().panic_no_unwind() {
2749         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
2750     }
2751
2752     let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
2753
2754     let mut inline_span = None;
2755     let mut link_ordinal_span = None;
2756     let mut no_sanitize_span = None;
2757     for attr in attrs.iter() {
2758         if attr.has_name(sym::cold) {
2759             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2760         } else if attr.has_name(sym::rustc_allocator) {
2761             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2762         } else if attr.has_name(sym::ffi_returns_twice) {
2763             if tcx.is_foreign_item(did) {
2764                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2765             } else {
2766                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2767                 struct_span_err!(
2768                     tcx.sess,
2769                     attr.span,
2770                     E0724,
2771                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2772                 )
2773                 .emit();
2774             }
2775         } else if attr.has_name(sym::ffi_pure) {
2776             if tcx.is_foreign_item(did) {
2777                 if attrs.iter().any(|a| a.has_name(sym::ffi_const)) {
2778                     // `#[ffi_const]` functions cannot be `#[ffi_pure]`
2779                     struct_span_err!(
2780                         tcx.sess,
2781                         attr.span,
2782                         E0757,
2783                         "`#[ffi_const]` function cannot be `#[ffi_pure]`"
2784                     )
2785                     .emit();
2786                 } else {
2787                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
2788                 }
2789             } else {
2790                 // `#[ffi_pure]` is only allowed on foreign functions
2791                 struct_span_err!(
2792                     tcx.sess,
2793                     attr.span,
2794                     E0755,
2795                     "`#[ffi_pure]` may only be used on foreign functions"
2796                 )
2797                 .emit();
2798             }
2799         } else if attr.has_name(sym::ffi_const) {
2800             if tcx.is_foreign_item(did) {
2801                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
2802             } else {
2803                 // `#[ffi_const]` is only allowed on foreign functions
2804                 struct_span_err!(
2805                     tcx.sess,
2806                     attr.span,
2807                     E0756,
2808                     "`#[ffi_const]` may only be used on foreign functions"
2809                 )
2810                 .emit();
2811             }
2812         } else if attr.has_name(sym::rustc_allocator_nounwind) {
2813             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
2814         } else if attr.has_name(sym::rustc_reallocator) {
2815             codegen_fn_attrs.flags |= CodegenFnAttrFlags::REALLOCATOR;
2816         } else if attr.has_name(sym::rustc_deallocator) {
2817             codegen_fn_attrs.flags |= CodegenFnAttrFlags::DEALLOCATOR;
2818         } else if attr.has_name(sym::rustc_allocator_zeroed) {
2819             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR_ZEROED;
2820         } else if attr.has_name(sym::naked) {
2821             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2822         } else if attr.has_name(sym::no_mangle) {
2823             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2824         } else if attr.has_name(sym::no_coverage) {
2825             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_COVERAGE;
2826         } else if attr.has_name(sym::rustc_std_internal_symbol) {
2827             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2828         } else if attr.has_name(sym::used) {
2829             let inner = attr.meta_item_list();
2830             match inner.as_deref() {
2831                 Some([item]) if item.has_name(sym::linker) => {
2832                     if !tcx.features().used_with_arg {
2833                         feature_err(
2834                             &tcx.sess.parse_sess,
2835                             sym::used_with_arg,
2836                             attr.span,
2837                             "`#[used(linker)]` is currently unstable",
2838                         )
2839                         .emit();
2840                     }
2841                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED_LINKER;
2842                 }
2843                 Some([item]) if item.has_name(sym::compiler) => {
2844                     if !tcx.features().used_with_arg {
2845                         feature_err(
2846                             &tcx.sess.parse_sess,
2847                             sym::used_with_arg,
2848                             attr.span,
2849                             "`#[used(compiler)]` is currently unstable",
2850                         )
2851                         .emit();
2852                     }
2853                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2854                 }
2855                 Some(_) => {
2856                     tcx.sess.emit_err(errors::ExpectedUsedSymbol { span: attr.span });
2857                 }
2858                 None => {
2859                     // Unfortunately, unconditionally using `llvm.used` causes
2860                     // issues in handling `.init_array` with the gold linker,
2861                     // but using `llvm.compiler.used` caused a nontrival amount
2862                     // of unintentional ecosystem breakage -- particularly on
2863                     // Mach-O targets.
2864                     //
2865                     // As a result, we emit `llvm.compiler.used` only on ELF
2866                     // targets. This is somewhat ad-hoc, but actually follows
2867                     // our pre-LLVM 13 behavior (prior to the ecosystem
2868                     // breakage), and seems to match `clang`'s behavior as well
2869                     // (both before and after LLVM 13), possibly because they
2870                     // have similar compatibility concerns to us. See
2871                     // https://github.com/rust-lang/rust/issues/47384#issuecomment-1019080146
2872                     // and following comments for some discussion of this, as
2873                     // well as the comments in `rustc_codegen_llvm` where these
2874                     // flags are handled.
2875                     //
2876                     // Anyway, to be clear: this is still up in the air
2877                     // somewhat, and is subject to change in the future (which
2878                     // is a good thing, because this would ideally be a bit
2879                     // more firmed up).
2880                     let is_like_elf = !(tcx.sess.target.is_like_osx
2881                         || tcx.sess.target.is_like_windows
2882                         || tcx.sess.target.is_like_wasm);
2883                     codegen_fn_attrs.flags |= if is_like_elf {
2884                         CodegenFnAttrFlags::USED
2885                     } else {
2886                         CodegenFnAttrFlags::USED_LINKER
2887                     };
2888                 }
2889             }
2890         } else if attr.has_name(sym::cmse_nonsecure_entry) {
2891             if !matches!(tcx.fn_sig(did).abi(), abi::Abi::C { .. }) {
2892                 struct_span_err!(
2893                     tcx.sess,
2894                     attr.span,
2895                     E0776,
2896                     "`#[cmse_nonsecure_entry]` requires C ABI"
2897                 )
2898                 .emit();
2899             }
2900             if !tcx.sess.target.llvm_target.contains("thumbv8m") {
2901                 struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
2902                     .emit();
2903             }
2904             codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
2905         } else if attr.has_name(sym::thread_local) {
2906             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2907         } else if attr.has_name(sym::track_caller) {
2908             if !tcx.is_closure(did.to_def_id()) && tcx.fn_sig(did).abi() != abi::Abi::Rust {
2909                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2910                     .emit();
2911             }
2912             if tcx.is_closure(did.to_def_id()) && !tcx.features().closure_track_caller {
2913                 feature_err(
2914                     &tcx.sess.parse_sess,
2915                     sym::closure_track_caller,
2916                     attr.span,
2917                     "`#[track_caller]` on closures is currently unstable",
2918                 )
2919                 .emit();
2920             }
2921             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2922         } else if attr.has_name(sym::export_name) {
2923             if let Some(s) = attr.value_str() {
2924                 if s.as_str().contains('\0') {
2925                     // `#[export_name = ...]` will be converted to a null-terminated string,
2926                     // so it may not contain any null characters.
2927                     struct_span_err!(
2928                         tcx.sess,
2929                         attr.span,
2930                         E0648,
2931                         "`export_name` may not contain null characters"
2932                     )
2933                     .emit();
2934                 }
2935                 codegen_fn_attrs.export_name = Some(s);
2936             }
2937         } else if attr.has_name(sym::target_feature) {
2938             if !tcx.is_closure(did.to_def_id())
2939                 && tcx.fn_sig(did).unsafety() == hir::Unsafety::Normal
2940             {
2941                 if tcx.sess.target.is_like_wasm || tcx.sess.opts.actually_rustdoc {
2942                     // The `#[target_feature]` attribute is allowed on
2943                     // WebAssembly targets on all functions, including safe
2944                     // ones. Other targets require that `#[target_feature]` is
2945                     // only applied to unsafe functions (pending the
2946                     // `target_feature_11` feature) because on most targets
2947                     // execution of instructions that are not supported is
2948                     // considered undefined behavior. For WebAssembly which is a
2949                     // 100% safe target at execution time it's not possible to
2950                     // execute undefined instructions, and even if a future
2951                     // feature was added in some form for this it would be a
2952                     // deterministic trap. There is no undefined behavior when
2953                     // executing WebAssembly so `#[target_feature]` is allowed
2954                     // on safe functions (but again, only for WebAssembly)
2955                     //
2956                     // Note that this is also allowed if `actually_rustdoc` so
2957                     // if a target is documenting some wasm-specific code then
2958                     // it's not spuriously denied.
2959                 } else if !tcx.features().target_feature_11 {
2960                     let mut err = feature_err(
2961                         &tcx.sess.parse_sess,
2962                         sym::target_feature_11,
2963                         attr.span,
2964                         "`#[target_feature(..)]` can only be applied to `unsafe` functions",
2965                     );
2966                     err.span_label(tcx.def_span(did), "not an `unsafe` function");
2967                     err.emit();
2968                 } else {
2969                     check_target_feature_trait_unsafe(tcx, did, attr.span);
2970                 }
2971             }
2972             from_target_feature(
2973                 tcx,
2974                 attr,
2975                 supported_target_features,
2976                 &mut codegen_fn_attrs.target_features,
2977             );
2978         } else if attr.has_name(sym::linkage) {
2979             if let Some(val) = attr.value_str() {
2980                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, did, val.as_str()));
2981             }
2982         } else if attr.has_name(sym::link_section) {
2983             if let Some(val) = attr.value_str() {
2984                 if val.as_str().bytes().any(|b| b == 0) {
2985                     let msg = format!(
2986                         "illegal null byte in link_section \
2987                          value: `{}`",
2988                         &val
2989                     );
2990                     tcx.sess.span_err(attr.span, &msg);
2991                 } else {
2992                     codegen_fn_attrs.link_section = Some(val);
2993                 }
2994             }
2995         } else if attr.has_name(sym::link_name) {
2996             codegen_fn_attrs.link_name = attr.value_str();
2997         } else if attr.has_name(sym::link_ordinal) {
2998             link_ordinal_span = Some(attr.span);
2999             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
3000                 codegen_fn_attrs.link_ordinal = ordinal;
3001             }
3002         } else if attr.has_name(sym::no_sanitize) {
3003             no_sanitize_span = Some(attr.span);
3004             if let Some(list) = attr.meta_item_list() {
3005                 for item in list.iter() {
3006                     if item.has_name(sym::address) {
3007                         codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
3008                     } else if item.has_name(sym::cfi) {
3009                         codegen_fn_attrs.no_sanitize |= SanitizerSet::CFI;
3010                     } else if item.has_name(sym::memory) {
3011                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
3012                     } else if item.has_name(sym::memtag) {
3013                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMTAG;
3014                     } else if item.has_name(sym::shadow_call_stack) {
3015                         codegen_fn_attrs.no_sanitize |= SanitizerSet::SHADOWCALLSTACK;
3016                     } else if item.has_name(sym::thread) {
3017                         codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
3018                     } else if item.has_name(sym::hwaddress) {
3019                         codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
3020                     } else {
3021                         tcx.sess
3022                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
3023                             .note("expected one of: `address`, `cfi`, `hwaddress`, `memory`, `memtag`, `shadow-call-stack`, or `thread`")
3024                             .emit();
3025                     }
3026                 }
3027             }
3028         } else if attr.has_name(sym::instruction_set) {
3029             codegen_fn_attrs.instruction_set = match attr.meta_kind() {
3030                 Some(MetaItemKind::List(ref items)) => match items.as_slice() {
3031                     [NestedMetaItem::MetaItem(set)] => {
3032                         let segments =
3033                             set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
3034                         match segments.as_slice() {
3035                             [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
3036                                 if !tcx.sess.target.has_thumb_interworking {
3037                                     struct_span_err!(
3038                                         tcx.sess.diagnostic(),
3039                                         attr.span,
3040                                         E0779,
3041                                         "target does not support `#[instruction_set]`"
3042                                     )
3043                                     .emit();
3044                                     None
3045                                 } else if segments[1] == sym::a32 {
3046                                     Some(InstructionSetAttr::ArmA32)
3047                                 } else if segments[1] == sym::t32 {
3048                                     Some(InstructionSetAttr::ArmT32)
3049                                 } else {
3050                                     unreachable!()
3051                                 }
3052                             }
3053                             _ => {
3054                                 struct_span_err!(
3055                                     tcx.sess.diagnostic(),
3056                                     attr.span,
3057                                     E0779,
3058                                     "invalid instruction set specified",
3059                                 )
3060                                 .emit();
3061                                 None
3062                             }
3063                         }
3064                     }
3065                     [] => {
3066                         struct_span_err!(
3067                             tcx.sess.diagnostic(),
3068                             attr.span,
3069                             E0778,
3070                             "`#[instruction_set]` requires an argument"
3071                         )
3072                         .emit();
3073                         None
3074                     }
3075                     _ => {
3076                         struct_span_err!(
3077                             tcx.sess.diagnostic(),
3078                             attr.span,
3079                             E0779,
3080                             "cannot specify more than one instruction set"
3081                         )
3082                         .emit();
3083                         None
3084                     }
3085                 },
3086                 _ => {
3087                     struct_span_err!(
3088                         tcx.sess.diagnostic(),
3089                         attr.span,
3090                         E0778,
3091                         "must specify an instruction set"
3092                     )
3093                     .emit();
3094                     None
3095                 }
3096             };
3097         } else if attr.has_name(sym::repr) {
3098             codegen_fn_attrs.alignment = match attr.meta_item_list() {
3099                 Some(items) => match items.as_slice() {
3100                     [item] => match item.name_value_literal() {
3101                         Some((sym::align, literal)) => {
3102                             let alignment = rustc_attr::parse_alignment(&literal.kind);
3103
3104                             match alignment {
3105                                 Ok(align) => Some(align),
3106                                 Err(msg) => {
3107                                     struct_span_err!(
3108                                         tcx.sess.diagnostic(),
3109                                         attr.span,
3110                                         E0589,
3111                                         "invalid `repr(align)` attribute: {}",
3112                                         msg
3113                                     )
3114                                     .emit();
3115
3116                                     None
3117                                 }
3118                             }
3119                         }
3120                         _ => None,
3121                     },
3122                     [] => None,
3123                     _ => None,
3124                 },
3125                 None => None,
3126             };
3127         }
3128     }
3129
3130     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
3131         if !attr.has_name(sym::inline) {
3132             return ia;
3133         }
3134         match attr.meta_kind() {
3135             Some(MetaItemKind::Word) => InlineAttr::Hint,
3136             Some(MetaItemKind::List(ref items)) => {
3137                 inline_span = Some(attr.span);
3138                 if items.len() != 1 {
3139                     struct_span_err!(
3140                         tcx.sess.diagnostic(),
3141                         attr.span,
3142                         E0534,
3143                         "expected one argument"
3144                     )
3145                     .emit();
3146                     InlineAttr::None
3147                 } else if list_contains_name(&items, sym::always) {
3148                     InlineAttr::Always
3149                 } else if list_contains_name(&items, sym::never) {
3150                     InlineAttr::Never
3151                 } else {
3152                     struct_span_err!(
3153                         tcx.sess.diagnostic(),
3154                         items[0].span(),
3155                         E0535,
3156                         "invalid argument"
3157                     )
3158                     .help("valid inline arguments are `always` and `never`")
3159                     .emit();
3160
3161                     InlineAttr::None
3162                 }
3163             }
3164             Some(MetaItemKind::NameValue(_)) => ia,
3165             None => ia,
3166         }
3167     });
3168
3169     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
3170         if !attr.has_name(sym::optimize) {
3171             return ia;
3172         }
3173         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
3174         match attr.meta_kind() {
3175             Some(MetaItemKind::Word) => {
3176                 err(attr.span, "expected one argument");
3177                 ia
3178             }
3179             Some(MetaItemKind::List(ref items)) => {
3180                 inline_span = Some(attr.span);
3181                 if items.len() != 1 {
3182                     err(attr.span, "expected one argument");
3183                     OptimizeAttr::None
3184                 } else if list_contains_name(&items, sym::size) {
3185                     OptimizeAttr::Size
3186                 } else if list_contains_name(&items, sym::speed) {
3187                     OptimizeAttr::Speed
3188                 } else {
3189                     err(items[0].span(), "invalid argument");
3190                     OptimizeAttr::None
3191                 }
3192             }
3193             Some(MetaItemKind::NameValue(_)) => ia,
3194             None => ia,
3195         }
3196     });
3197
3198     // #73631: closures inherit `#[target_feature]` annotations
3199     if tcx.features().target_feature_11 && tcx.is_closure(did.to_def_id()) {
3200         let owner_id = tcx.parent(did.to_def_id());
3201         if tcx.def_kind(owner_id).has_codegen_attrs() {
3202             codegen_fn_attrs
3203                 .target_features
3204                 .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied());
3205         }
3206     }
3207
3208     // If a function uses #[target_feature] it can't be inlined into general
3209     // purpose functions as they wouldn't have the right target features
3210     // enabled. For that reason we also forbid #[inline(always)] as it can't be
3211     // respected.
3212     if !codegen_fn_attrs.target_features.is_empty() {
3213         if codegen_fn_attrs.inline == InlineAttr::Always {
3214             if let Some(span) = inline_span {
3215                 tcx.sess.span_err(
3216                     span,
3217                     "cannot use `#[inline(always)]` with \
3218                      `#[target_feature]`",
3219                 );
3220             }
3221         }
3222     }
3223
3224     if !codegen_fn_attrs.no_sanitize.is_empty() {
3225         if codegen_fn_attrs.inline == InlineAttr::Always {
3226             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
3227                 let hir_id = tcx.hir().local_def_id_to_hir_id(did);
3228                 tcx.struct_span_lint_hir(
3229                     lint::builtin::INLINE_NO_SANITIZE,
3230                     hir_id,
3231                     no_sanitize_span,
3232                     |lint| {
3233                         lint.build("`no_sanitize` will have no effect after inlining")
3234                             .span_note(inline_span, "inlining requested here")
3235                             .emit();
3236                     },
3237                 )
3238             }
3239         }
3240     }
3241
3242     // Weak lang items have the same semantics as "std internal" symbols in the
3243     // sense that they're preserved through all our LTO passes and only
3244     // strippable by the linker.
3245     //
3246     // Additionally weak lang items have predetermined symbol names.
3247     if tcx.is_weak_lang_item(did.to_def_id()) {
3248         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
3249     }
3250     if let Some(name) = weak_lang_items::link_name(attrs) {
3251         codegen_fn_attrs.export_name = Some(name);
3252         codegen_fn_attrs.link_name = Some(name);
3253     }
3254     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
3255
3256     // Internal symbols to the standard library all have no_mangle semantics in
3257     // that they have defined symbol names present in the function name. This
3258     // also applies to weak symbols where they all have known symbol names.
3259     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
3260         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
3261     }
3262
3263     // Any linkage to LLVM intrinsics for now forcibly marks them all as never
3264     // unwinds since LLVM sometimes can't handle codegen which `invoke`s
3265     // intrinsic functions.
3266     if let Some(name) = &codegen_fn_attrs.link_name {
3267         if name.as_str().starts_with("llvm.") {
3268             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
3269         }
3270     }
3271
3272     codegen_fn_attrs
3273 }
3274
3275 /// Computes the set of target features used in a function for the purposes of
3276 /// inline assembly.
3277 fn asm_target_features<'tcx>(tcx: TyCtxt<'tcx>, did: DefId) -> &'tcx FxHashSet<Symbol> {
3278     let mut target_features = tcx.sess.unstable_target_features.clone();
3279     if tcx.def_kind(did).has_codegen_attrs() {
3280         let attrs = tcx.codegen_fn_attrs(did);
3281         target_features.extend(&attrs.target_features);
3282         match attrs.instruction_set {
3283             None => {}
3284             Some(InstructionSetAttr::ArmA32) => {
3285                 target_features.remove(&sym::thumb_mode);
3286             }
3287             Some(InstructionSetAttr::ArmT32) => {
3288                 target_features.insert(sym::thumb_mode);
3289             }
3290         }
3291     }
3292
3293     tcx.arena.alloc(target_features)
3294 }
3295
3296 /// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
3297 /// applied to the method prototype.
3298 fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
3299     if let Some(impl_item) = tcx.opt_associated_item(def_id)
3300         && let ty::AssocItemContainer::ImplContainer = impl_item.container
3301         && let Some(trait_item) = impl_item.trait_item_def_id
3302     {
3303         return tcx
3304             .codegen_fn_attrs(trait_item)
3305             .flags
3306             .intersects(CodegenFnAttrFlags::TRACK_CALLER);
3307     }
3308
3309     false
3310 }
3311
3312 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<u16> {
3313     use rustc_ast::{Lit, LitIntType, LitKind};
3314     if !tcx.features().raw_dylib && tcx.sess.target.arch == "x86" {
3315         feature_err(
3316             &tcx.sess.parse_sess,
3317             sym::raw_dylib,
3318             attr.span,
3319             "`#[link_ordinal]` is unstable on x86",
3320         )
3321         .emit();
3322     }
3323     let meta_item_list = attr.meta_item_list();
3324     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
3325     let sole_meta_list = match meta_item_list {
3326         Some([item]) => item.literal(),
3327         Some(_) => {
3328             tcx.sess
3329                 .struct_span_err(attr.span, "incorrect number of arguments to `#[link_ordinal]`")
3330                 .note("the attribute requires exactly one argument")
3331                 .emit();
3332             return None;
3333         }
3334         _ => None,
3335     };
3336     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
3337         // According to the table at https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-header,
3338         // the ordinal must fit into 16 bits.  Similarly, the Ordinal field in COFFShortExport (defined
3339         // in llvm/include/llvm/Object/COFFImportFile.h), which we use to communicate import information
3340         // to LLVM for `#[link(kind = "raw-dylib"_])`, is also defined to be uint16_t.
3341         //
3342         // FIXME: should we allow an ordinal of 0?  The MSVC toolchain has inconsistent support for this:
3343         // both LINK.EXE and LIB.EXE signal errors and abort when given a .DEF file that specifies
3344         // a zero ordinal.  However, llvm-dlltool is perfectly happy to generate an import library
3345         // for such a .DEF file, and MSVC's LINK.EXE is also perfectly happy to consume an import
3346         // library produced by LLVM with an ordinal of 0, and it generates an .EXE.  (I don't know yet
3347         // if the resulting EXE runs, as I haven't yet built the necessary DLL -- see earlier comment
3348         // about LINK.EXE failing.)
3349         if *ordinal <= u16::MAX as u128 {
3350             Some(*ordinal as u16)
3351         } else {
3352             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
3353             tcx.sess
3354                 .struct_span_err(attr.span, &msg)
3355                 .note("the value may not exceed `u16::MAX`")
3356                 .emit();
3357             None
3358         }
3359     } else {
3360         tcx.sess
3361             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
3362             .note("an unsuffixed integer value, e.g., `1`, is expected")
3363             .emit();
3364         None
3365     }
3366 }
3367
3368 fn check_link_name_xor_ordinal(
3369     tcx: TyCtxt<'_>,
3370     codegen_fn_attrs: &CodegenFnAttrs,
3371     inline_span: Option<Span>,
3372 ) {
3373     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
3374         return;
3375     }
3376     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
3377     if let Some(span) = inline_span {
3378         tcx.sess.span_err(span, msg);
3379     } else {
3380         tcx.sess.err(msg);
3381     }
3382 }
3383
3384 /// Checks the function annotated with `#[target_feature]` is not a safe
3385 /// trait method implementation, reporting an error if it is.
3386 fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
3387     let hir_id = tcx.hir().local_def_id_to_hir_id(id);
3388     let node = tcx.hir().get(hir_id);
3389     if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
3390         let parent_id = tcx.hir().get_parent_item(hir_id);
3391         let parent_item = tcx.hir().expect_item(parent_id.def_id);
3392         if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
3393             tcx.sess
3394                 .struct_span_err(
3395                     attr_span,
3396                     "`#[target_feature(..)]` cannot be applied to safe trait method",
3397                 )
3398                 .span_label(attr_span, "cannot be applied to safe trait method")
3399                 .span_label(tcx.def_span(id), "not an `unsafe` function")
3400                 .emit();
3401         }
3402     }
3403 }