]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/collect.rs
Rollup merge of #95979 - lcnr:coherence-docs, r=compiler-errors
[rust.git] / compiler / rustc_typeck / src / collect.rs
1 //! "Collection" is the process of determining the type and other external
2 //! details of each item in Rust. Collection is specifically concerned
3 //! with *inter-procedural* things -- for example, for a function
4 //! definition, collection will figure out the type and signature of the
5 //! function, but it will not visit the *body* of the function in any way,
6 //! nor examine type annotations on local variables (that's the job of
7 //! type *checking*).
8 //!
9 //! Collecting is ultimately defined by a bundle of queries that
10 //! inquire after various facts about the items in the crate (e.g.,
11 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
12 //! for the full set.
13 //!
14 //! At present, however, we do run collection across all items in the
15 //! crate as a kind of pass. This should eventually be factored away.
16
17 use crate::astconv::AstConv;
18 use crate::bounds::Bounds;
19 use crate::check::intrinsic::intrinsic_operation_unsafety;
20 use crate::constrained_generic_params as cgp;
21 use crate::errors;
22 use crate::middle::resolve_lifetime as rl;
23 use rustc_ast as ast;
24 use rustc_ast::{MetaItemKind, NestedMetaItem};
25 use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
26 use rustc_data_structures::captures::Captures;
27 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
28 use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed};
29 use rustc_hir as hir;
30 use rustc_hir::def::{CtorKind, DefKind};
31 use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID, LOCAL_CRATE};
32 use rustc_hir::intravisit::{self, Visitor};
33 use rustc_hir::weak_lang_items;
34 use rustc_hir::{GenericParamKind, HirId, Node};
35 use rustc_middle::hir::nested_filter;
36 use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
37 use rustc_middle::mir::mono::Linkage;
38 use rustc_middle::ty::query::Providers;
39 use rustc_middle::ty::subst::InternalSubsts;
40 use rustc_middle::ty::util::Discr;
41 use rustc_middle::ty::util::IntTypeExt;
42 use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, Ty, TyCtxt};
43 use rustc_middle::ty::{ReprOptions, ToPredicate};
44 use rustc_session::lint;
45 use rustc_session::parse::feature_err;
46 use rustc_span::symbol::{kw, sym, Ident, Symbol};
47 use rustc_span::{Span, DUMMY_SP};
48 use rustc_target::spec::{abi, SanitizerSet};
49 use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
50 use std::iter;
51
52 mod item_bounds;
53 mod type_of;
54
55 #[derive(Debug)]
56 struct OnlySelfBounds(bool);
57
58 ///////////////////////////////////////////////////////////////////////////
59 // Main entry point
60
61 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
62     tcx.hir().deep_visit_item_likes_in_module(module_def_id, &mut CollectItemTypesVisitor { tcx });
63 }
64
65 pub fn provide(providers: &mut Providers) {
66     *providers = Providers {
67         opt_const_param_of: type_of::opt_const_param_of,
68         type_of: type_of::type_of,
69         item_bounds: item_bounds::item_bounds,
70         explicit_item_bounds: item_bounds::explicit_item_bounds,
71         generics_of,
72         predicates_of,
73         predicates_defined_on,
74         explicit_predicates_of,
75         super_predicates_of,
76         super_predicates_that_define_assoc_type,
77         trait_explicit_predicates_and_bounds,
78         type_param_predicates,
79         trait_def,
80         adt_def,
81         fn_sig,
82         impl_trait_ref,
83         impl_polarity,
84         is_foreign_item,
85         generator_kind,
86         codegen_fn_attrs,
87         asm_target_features,
88         collect_mod_item_types,
89         should_inherit_track_caller,
90         ..*providers
91     };
92 }
93
94 ///////////////////////////////////////////////////////////////////////////
95
96 /// Context specific to some particular item. This is what implements
97 /// `AstConv`. It has information about the predicates that are defined
98 /// on the trait. Unfortunately, this predicate information is
99 /// available in various different forms at various points in the
100 /// process. So we can't just store a pointer to e.g., the AST or the
101 /// parsed ty form, we have to be more flexible. To this end, the
102 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
103 /// `get_type_parameter_bounds` requests, drawing the information from
104 /// the AST (`hir::Generics`), recursively.
105 pub struct ItemCtxt<'tcx> {
106     tcx: TyCtxt<'tcx>,
107     item_def_id: DefId,
108 }
109
110 ///////////////////////////////////////////////////////////////////////////
111
112 #[derive(Default)]
113 crate struct HirPlaceholderCollector(crate Vec<Span>);
114
115 impl<'v> Visitor<'v> for HirPlaceholderCollector {
116     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
117         if let hir::TyKind::Infer = t.kind {
118             self.0.push(t.span);
119         }
120         intravisit::walk_ty(self, t)
121     }
122     fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
123         match generic_arg {
124             hir::GenericArg::Infer(inf) => {
125                 self.0.push(inf.span);
126                 intravisit::walk_inf(self, inf);
127             }
128             hir::GenericArg::Type(t) => self.visit_ty(t),
129             _ => {}
130         }
131     }
132     fn visit_array_length(&mut self, length: &'v hir::ArrayLen) {
133         if let &hir::ArrayLen::Infer(_, span) = length {
134             self.0.push(span);
135         }
136         intravisit::walk_array_len(self, length)
137     }
138 }
139
140 struct CollectItemTypesVisitor<'tcx> {
141     tcx: TyCtxt<'tcx>,
142 }
143
144 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
145 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
146 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
147 crate fn placeholder_type_error<'tcx>(
148     tcx: TyCtxt<'tcx>,
149     generics: Option<&hir::Generics<'_>>,
150     placeholder_types: Vec<Span>,
151     suggest: bool,
152     hir_ty: Option<&hir::Ty<'_>>,
153     kind: &'static str,
154 ) {
155     if placeholder_types.is_empty() {
156         return;
157     }
158
159     placeholder_type_error_diag(tcx, generics, placeholder_types, vec![], suggest, hir_ty, kind)
160         .emit();
161 }
162
163 crate fn placeholder_type_error_diag<'tcx>(
164     tcx: TyCtxt<'tcx>,
165     generics: Option<&hir::Generics<'_>>,
166     placeholder_types: Vec<Span>,
167     additional_spans: Vec<Span>,
168     suggest: bool,
169     hir_ty: Option<&hir::Ty<'_>>,
170     kind: &'static str,
171 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
172     if placeholder_types.is_empty() {
173         return bad_placeholder(tcx, additional_spans, kind);
174     }
175
176     let params = generics.map(|g| g.params).unwrap_or_default();
177     let type_name = params.next_type_param_name(None);
178     let mut sugg: Vec<_> =
179         placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
180
181     if let Some(generics) = generics {
182         if let Some(arg) = params.iter().find(|arg| {
183             matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. }))
184         }) {
185             // Account for `_` already present in cases like `struct S<_>(_);` and suggest
186             // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
187             sugg.push((arg.span, (*type_name).to_string()));
188         } else if let Some(span) = generics.span_for_param_suggestion() {
189             // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
190             sugg.push((span, format!(", {}", type_name)));
191         } else {
192             sugg.push((generics.span, format!("<{}>", type_name)));
193         }
194     }
195
196     let mut err =
197         bad_placeholder(tcx, placeholder_types.into_iter().chain(additional_spans).collect(), kind);
198
199     // Suggest, but only if it is not a function in const or static
200     if suggest {
201         let mut is_fn = false;
202         let mut is_const_or_static = false;
203
204         if let Some(hir_ty) = hir_ty && let hir::TyKind::BareFn(_) = hir_ty.kind {
205             is_fn = true;
206
207             // Check if parent is const or static
208             let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
209             let parent_node = tcx.hir().get(parent_id);
210
211             is_const_or_static = matches!(
212                 parent_node,
213                 Node::Item(&hir::Item {
214                     kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
215                     ..
216                 }) | Node::TraitItem(&hir::TraitItem {
217                     kind: hir::TraitItemKind::Const(..),
218                     ..
219                 }) | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
220             );
221         }
222
223         // if function is wrapped around a const or static,
224         // then don't show the suggestion
225         if !(is_fn && is_const_or_static) {
226             err.multipart_suggestion(
227                 "use type parameters instead",
228                 sugg,
229                 Applicability::HasPlaceholders,
230             );
231         }
232     }
233
234     err
235 }
236
237 fn reject_placeholder_type_signatures_in_item<'tcx>(
238     tcx: TyCtxt<'tcx>,
239     item: &'tcx hir::Item<'tcx>,
240 ) {
241     let (generics, suggest) = match &item.kind {
242         hir::ItemKind::Union(_, generics)
243         | hir::ItemKind::Enum(_, generics)
244         | hir::ItemKind::TraitAlias(generics, _)
245         | hir::ItemKind::Trait(_, _, generics, ..)
246         | hir::ItemKind::Impl(hir::Impl { generics, .. })
247         | hir::ItemKind::Struct(_, generics) => (generics, true),
248         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
249         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
250         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
251         _ => return,
252     };
253
254     let mut visitor = HirPlaceholderCollector::default();
255     visitor.visit_item(item);
256
257     placeholder_type_error(tcx, Some(generics), visitor.0, suggest, None, item.kind.descr());
258 }
259
260 impl<'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
261     type NestedFilter = nested_filter::OnlyBodies;
262
263     fn nested_visit_map(&mut self) -> Self::Map {
264         self.tcx.hir()
265     }
266
267     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
268         convert_item(self.tcx, item.item_id());
269         reject_placeholder_type_signatures_in_item(self.tcx, item);
270         intravisit::walk_item(self, item);
271     }
272
273     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
274         for param in generics.params {
275             match param.kind {
276                 hir::GenericParamKind::Lifetime { .. } => {}
277                 hir::GenericParamKind::Type { default: Some(_), .. } => {
278                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
279                     self.tcx.ensure().type_of(def_id);
280                 }
281                 hir::GenericParamKind::Type { .. } => {}
282                 hir::GenericParamKind::Const { default, .. } => {
283                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
284                     self.tcx.ensure().type_of(def_id);
285                     if let Some(default) = default {
286                         let default_def_id = self.tcx.hir().local_def_id(default.hir_id);
287                         // need to store default and type of default
288                         self.tcx.ensure().type_of(default_def_id);
289                         self.tcx.ensure().const_param_default(def_id);
290                     }
291                 }
292             }
293         }
294         intravisit::walk_generics(self, generics);
295     }
296
297     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
298         if let hir::ExprKind::Closure(..) = expr.kind {
299             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
300             self.tcx.ensure().generics_of(def_id);
301             // We do not call `type_of` for closures here as that
302             // depends on typecheck and would therefore hide
303             // any further errors in case one typeck fails.
304         }
305         intravisit::walk_expr(self, expr);
306     }
307
308     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
309         convert_trait_item(self.tcx, trait_item.trait_item_id());
310         intravisit::walk_trait_item(self, trait_item);
311     }
312
313     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
314         convert_impl_item(self.tcx, impl_item.impl_item_id());
315         intravisit::walk_impl_item(self, impl_item);
316     }
317 }
318
319 ///////////////////////////////////////////////////////////////////////////
320 // Utility types and common code for the above passes.
321
322 fn bad_placeholder<'tcx>(
323     tcx: TyCtxt<'tcx>,
324     mut spans: Vec<Span>,
325     kind: &'static str,
326 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
327     let kind = if kind.ends_with('s') { format!("{}es", kind) } else { format!("{}s", kind) };
328
329     spans.sort();
330     let mut err = struct_span_err!(
331         tcx.sess,
332         spans.clone(),
333         E0121,
334         "the placeholder `_` is not allowed within types on item signatures for {}",
335         kind
336     );
337     for span in spans {
338         err.span_label(span, "not allowed in type signatures");
339     }
340     err
341 }
342
343 impl<'tcx> ItemCtxt<'tcx> {
344     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
345         ItemCtxt { tcx, item_def_id }
346     }
347
348     pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
349         <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
350     }
351
352     pub fn hir_id(&self) -> hir::HirId {
353         self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
354     }
355
356     pub fn node(&self) -> hir::Node<'tcx> {
357         self.tcx.hir().get(self.hir_id())
358     }
359 }
360
361 impl<'tcx> AstConv<'tcx> for ItemCtxt<'tcx> {
362     fn tcx(&self) -> TyCtxt<'tcx> {
363         self.tcx
364     }
365
366     fn item_def_id(&self) -> Option<DefId> {
367         Some(self.item_def_id)
368     }
369
370     fn get_type_parameter_bounds(
371         &self,
372         span: Span,
373         def_id: DefId,
374         assoc_name: Ident,
375     ) -> ty::GenericPredicates<'tcx> {
376         self.tcx.at(span).type_param_predicates((
377             self.item_def_id,
378             def_id.expect_local(),
379             assoc_name,
380         ))
381     }
382
383     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
384         None
385     }
386
387     fn allow_ty_infer(&self) -> bool {
388         false
389     }
390
391     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
392         self.tcx().ty_error_with_message(span, "bad placeholder type")
393     }
394
395     fn ct_infer(&self, ty: Ty<'tcx>, _: Option<&ty::GenericParamDef>, span: Span) -> Const<'tcx> {
396         let ty = self.tcx.fold_regions(ty, &mut false, |r, _| match *r {
397             ty::ReErased => self.tcx.lifetimes.re_static,
398             _ => r,
399         });
400         self.tcx().const_error_with_message(ty, span, "bad placeholder constant")
401     }
402
403     fn projected_ty_from_poly_trait_ref(
404         &self,
405         span: Span,
406         item_def_id: DefId,
407         item_segment: &hir::PathSegment<'_>,
408         poly_trait_ref: ty::PolyTraitRef<'tcx>,
409     ) -> Ty<'tcx> {
410         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
411             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
412                 self,
413                 self.tcx,
414                 span,
415                 item_def_id,
416                 item_segment,
417                 trait_ref.substs,
418             );
419             self.tcx().mk_projection(item_def_id, item_substs)
420         } else {
421             // There are no late-bound regions; we can just ignore the binder.
422             let mut err = struct_span_err!(
423                 self.tcx().sess,
424                 span,
425                 E0212,
426                 "cannot use the associated type of a trait \
427                  with uninferred generic parameters"
428             );
429
430             match self.node() {
431                 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
432                     let item =
433                         self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
434                     match &item.kind {
435                         hir::ItemKind::Enum(_, generics)
436                         | hir::ItemKind::Struct(_, generics)
437                         | hir::ItemKind::Union(_, generics) => {
438                             let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
439                             let (lt_sp, sugg) = match generics.params {
440                                 [] => (generics.span, format!("<{}>", lt_name)),
441                                 [bound, ..] => {
442                                     (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
443                                 }
444                             };
445                             let suggestions = vec![
446                                 (lt_sp, sugg),
447                                 (
448                                     span.with_hi(item_segment.ident.span.lo()),
449                                     format!(
450                                         "{}::",
451                                         // Replace the existing lifetimes with a new named lifetime.
452                                         self.tcx
453                                             .replace_late_bound_regions(poly_trait_ref, |_| {
454                                                 self.tcx.mk_region(ty::ReEarlyBound(
455                                                     ty::EarlyBoundRegion {
456                                                         def_id: item_def_id,
457                                                         index: 0,
458                                                         name: Symbol::intern(&lt_name),
459                                                     },
460                                                 ))
461                                             })
462                                             .0,
463                                     ),
464                                 ),
465                             ];
466                             err.multipart_suggestion(
467                                 "use a fully qualified path with explicit lifetimes",
468                                 suggestions,
469                                 Applicability::MaybeIncorrect,
470                             );
471                         }
472                         _ => {}
473                     }
474                 }
475                 hir::Node::Item(hir::Item {
476                     kind:
477                         hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
478                     ..
479                 }) => {}
480                 hir::Node::Item(_)
481                 | hir::Node::ForeignItem(_)
482                 | hir::Node::TraitItem(_)
483                 | hir::Node::ImplItem(_) => {
484                     err.span_suggestion_verbose(
485                         span.with_hi(item_segment.ident.span.lo()),
486                         "use a fully qualified path with inferred lifetimes",
487                         format!(
488                             "{}::",
489                             // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
490                             self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
491                         ),
492                         Applicability::MaybeIncorrect,
493                     );
494                 }
495                 _ => {}
496             }
497             err.emit();
498             self.tcx().ty_error()
499         }
500     }
501
502     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
503         // Types in item signatures are not normalized to avoid undue dependencies.
504         ty
505     }
506
507     fn set_tainted_by_errors(&self) {
508         // There's no obvious place to track this, so just let it go.
509     }
510
511     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
512         // There's no place to record types from signatures?
513     }
514 }
515
516 /// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
517 fn get_new_lifetime_name<'tcx>(
518     tcx: TyCtxt<'tcx>,
519     poly_trait_ref: ty::PolyTraitRef<'tcx>,
520     generics: &hir::Generics<'tcx>,
521 ) -> String {
522     let existing_lifetimes = tcx
523         .collect_referenced_late_bound_regions(&poly_trait_ref)
524         .into_iter()
525         .filter_map(|lt| {
526             if let ty::BoundRegionKind::BrNamed(_, name) = lt {
527                 Some(name.as_str().to_string())
528             } else {
529                 None
530             }
531         })
532         .chain(generics.params.iter().filter_map(|param| {
533             if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
534                 Some(param.name.ident().as_str().to_string())
535             } else {
536                 None
537             }
538         }))
539         .collect::<FxHashSet<String>>();
540
541     let a_to_z_repeat_n = |n| {
542         (b'a'..=b'z').map(move |c| {
543             let mut s = '\''.to_string();
544             s.extend(std::iter::repeat(char::from(c)).take(n));
545             s
546         })
547     };
548
549     // If all single char lifetime names are present, we wrap around and double the chars.
550     (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
551 }
552
553 /// Returns the predicates defined on `item_def_id` of the form
554 /// `X: Foo` where `X` is the type parameter `def_id`.
555 fn type_param_predicates(
556     tcx: TyCtxt<'_>,
557     (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
558 ) -> ty::GenericPredicates<'_> {
559     use rustc_hir::*;
560
561     // In the AST, bounds can derive from two places. Either
562     // written inline like `<T: Foo>` or in a where-clause like
563     // `where T: Foo`.
564
565     let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
566     let param_owner = tcx.hir().ty_param_owner(def_id);
567     let generics = tcx.generics_of(param_owner);
568     let index = generics.param_def_id_to_index[&def_id.to_def_id()];
569     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(def_id));
570
571     // Don't look for bounds where the type parameter isn't in scope.
572     let parent = if item_def_id == param_owner.to_def_id() {
573         None
574     } else {
575         tcx.generics_of(item_def_id).parent
576     };
577
578     let mut result = parent
579         .map(|parent| {
580             let icx = ItemCtxt::new(tcx, parent);
581             icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
582         })
583         .unwrap_or_default();
584     let mut extend = None;
585
586     let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
587     let ast_generics = match tcx.hir().get(item_hir_id) {
588         Node::TraitItem(item) => &item.generics,
589
590         Node::ImplItem(item) => &item.generics,
591
592         Node::Item(item) => {
593             match item.kind {
594                 ItemKind::Fn(.., ref generics, _)
595                 | ItemKind::Impl(hir::Impl { ref generics, .. })
596                 | ItemKind::TyAlias(_, ref generics)
597                 | ItemKind::OpaqueTy(OpaqueTy {
598                     ref generics,
599                     origin: hir::OpaqueTyOrigin::TyAlias,
600                     ..
601                 })
602                 | ItemKind::Enum(_, ref generics)
603                 | ItemKind::Struct(_, ref generics)
604                 | ItemKind::Union(_, ref generics) => generics,
605                 ItemKind::Trait(_, _, ref generics, ..) => {
606                     // Implied `Self: Trait` and supertrait bounds.
607                     if param_id == item_hir_id {
608                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
609                         extend =
610                             Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
611                     }
612                     generics
613                 }
614                 _ => return result,
615             }
616         }
617
618         Node::ForeignItem(item) => match item.kind {
619             ForeignItemKind::Fn(_, _, ref generics) => generics,
620             _ => return result,
621         },
622
623         _ => return result,
624     };
625
626     let icx = ItemCtxt::new(tcx, item_def_id);
627     let extra_predicates = extend.into_iter().chain(
628         icx.type_parameter_bounds_in_generics(
629             ast_generics,
630             param_id,
631             ty,
632             OnlySelfBounds(true),
633             Some(assoc_name),
634         )
635         .into_iter()
636         .filter(|(predicate, _)| match predicate.kind().skip_binder() {
637             ty::PredicateKind::Trait(data) => data.self_ty().is_param(index),
638             _ => false,
639         }),
640     );
641     result.predicates =
642         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
643     result
644 }
645
646 impl<'tcx> ItemCtxt<'tcx> {
647     /// Finds bounds from `hir::Generics`. This requires scanning through the
648     /// AST. We do this to avoid having to convert *all* the bounds, which
649     /// would create artificial cycles. Instead, we can only convert the
650     /// bounds for a type parameter `X` if `X::Foo` is used.
651     #[instrument(level = "trace", skip(self, ast_generics))]
652     fn type_parameter_bounds_in_generics(
653         &self,
654         ast_generics: &'tcx hir::Generics<'tcx>,
655         param_id: hir::HirId,
656         ty: Ty<'tcx>,
657         only_self_bounds: OnlySelfBounds,
658         assoc_name: Option<Ident>,
659     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
660         let param_def_id = self.tcx.hir().local_def_id(param_id).to_def_id();
661         debug!(?param_def_id);
662         ast_generics
663             .predicates
664             .iter()
665             .filter_map(|wp| match *wp {
666                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
667                 _ => None,
668             })
669             .flat_map(|bp| {
670                 let bt = if bp.is_param_bound(param_def_id) {
671                     Some(ty)
672                 } else if !only_self_bounds.0 {
673                     Some(self.to_ty(bp.bounded_ty))
674                 } else {
675                     None
676                 };
677                 let bvars = self.tcx.late_bound_vars(bp.bounded_ty.hir_id);
678
679                 bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b, bvars))).filter(
680                     |(_, b, _)| match assoc_name {
681                         Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
682                         None => true,
683                     },
684                 )
685             })
686             .flat_map(|(bt, b, bvars)| predicates_from_bound(self, bt, b, bvars))
687             .collect()
688     }
689
690     fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
691         debug!("bound_defines_assoc_item(b={:?}, assoc_name={:?})", b, assoc_name);
692
693         match b {
694             hir::GenericBound::Trait(poly_trait_ref, _) => {
695                 let trait_ref = &poly_trait_ref.trait_ref;
696                 if let Some(trait_did) = trait_ref.trait_def_id() {
697                     self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
698                 } else {
699                     false
700                 }
701             }
702             _ => false,
703         }
704     }
705 }
706
707 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
708     let it = tcx.hir().item(item_id);
709     debug!("convert: item {} with id {}", it.ident, it.hir_id());
710     let def_id = item_id.def_id;
711
712     match it.kind {
713         // These don't define types.
714         hir::ItemKind::ExternCrate(_)
715         | hir::ItemKind::Use(..)
716         | hir::ItemKind::Macro(..)
717         | hir::ItemKind::Mod(_)
718         | hir::ItemKind::GlobalAsm(_) => {}
719         hir::ItemKind::ForeignMod { items, .. } => {
720             for item in items {
721                 let item = tcx.hir().foreign_item(item.id);
722                 tcx.ensure().generics_of(item.def_id);
723                 tcx.ensure().type_of(item.def_id);
724                 tcx.ensure().predicates_of(item.def_id);
725                 match item.kind {
726                     hir::ForeignItemKind::Fn(..) => tcx.ensure().fn_sig(item.def_id),
727                     hir::ForeignItemKind::Static(..) => {
728                         let mut visitor = HirPlaceholderCollector::default();
729                         visitor.visit_foreign_item(item);
730                         placeholder_type_error(
731                             tcx,
732                             None,
733                             visitor.0,
734                             false,
735                             None,
736                             "static variable",
737                         );
738                     }
739                     _ => (),
740                 }
741             }
742         }
743         hir::ItemKind::Enum(ref enum_definition, _) => {
744             tcx.ensure().generics_of(def_id);
745             tcx.ensure().type_of(def_id);
746             tcx.ensure().predicates_of(def_id);
747             convert_enum_variant_types(tcx, def_id.to_def_id(), enum_definition.variants);
748         }
749         hir::ItemKind::Impl { .. } => {
750             tcx.ensure().generics_of(def_id);
751             tcx.ensure().type_of(def_id);
752             tcx.ensure().impl_trait_ref(def_id);
753             tcx.ensure().predicates_of(def_id);
754         }
755         hir::ItemKind::Trait(..) => {
756             tcx.ensure().generics_of(def_id);
757             tcx.ensure().trait_def(def_id);
758             tcx.at(it.span).super_predicates_of(def_id);
759             tcx.ensure().predicates_of(def_id);
760         }
761         hir::ItemKind::TraitAlias(..) => {
762             tcx.ensure().generics_of(def_id);
763             tcx.at(it.span).super_predicates_of(def_id);
764             tcx.ensure().predicates_of(def_id);
765         }
766         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
767             tcx.ensure().generics_of(def_id);
768             tcx.ensure().type_of(def_id);
769             tcx.ensure().predicates_of(def_id);
770
771             for f in struct_def.fields() {
772                 let def_id = tcx.hir().local_def_id(f.hir_id);
773                 tcx.ensure().generics_of(def_id);
774                 tcx.ensure().type_of(def_id);
775                 tcx.ensure().predicates_of(def_id);
776             }
777
778             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
779                 convert_variant_ctor(tcx, ctor_hir_id);
780             }
781         }
782
783         // Desugared from `impl Trait`, so visited by the function's return type.
784         hir::ItemKind::OpaqueTy(hir::OpaqueTy {
785             origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
786             ..
787         }) => {}
788
789         // Don't call `type_of` on opaque types, since that depends on type
790         // checking function bodies. `check_item_type` ensures that it's called
791         // instead.
792         hir::ItemKind::OpaqueTy(..) => {
793             tcx.ensure().generics_of(def_id);
794             tcx.ensure().predicates_of(def_id);
795             tcx.ensure().explicit_item_bounds(def_id);
796         }
797         hir::ItemKind::TyAlias(..)
798         | hir::ItemKind::Static(..)
799         | hir::ItemKind::Const(..)
800         | hir::ItemKind::Fn(..) => {
801             tcx.ensure().generics_of(def_id);
802             tcx.ensure().type_of(def_id);
803             tcx.ensure().predicates_of(def_id);
804             match it.kind {
805                 hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
806                 hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
807                 hir::ItemKind::Const(ty, ..) | hir::ItemKind::Static(ty, ..) => {
808                     // (#75889): Account for `const C: dyn Fn() -> _ = "";`
809                     if let hir::TyKind::TraitObject(..) = ty.kind {
810                         let mut visitor = HirPlaceholderCollector::default();
811                         visitor.visit_item(it);
812                         placeholder_type_error(tcx, None, visitor.0, false, None, it.kind.descr());
813                     }
814                 }
815                 _ => (),
816             }
817         }
818     }
819 }
820
821 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
822     let trait_item = tcx.hir().trait_item(trait_item_id);
823     tcx.ensure().generics_of(trait_item_id.def_id);
824
825     match trait_item.kind {
826         hir::TraitItemKind::Fn(..) => {
827             tcx.ensure().type_of(trait_item_id.def_id);
828             tcx.ensure().fn_sig(trait_item_id.def_id);
829         }
830
831         hir::TraitItemKind::Const(.., Some(_)) => {
832             tcx.ensure().type_of(trait_item_id.def_id);
833         }
834
835         hir::TraitItemKind::Const(..) => {
836             tcx.ensure().type_of(trait_item_id.def_id);
837             // Account for `const C: _;`.
838             let mut visitor = HirPlaceholderCollector::default();
839             visitor.visit_trait_item(trait_item);
840             placeholder_type_error(tcx, None, visitor.0, false, None, "constant");
841         }
842
843         hir::TraitItemKind::Type(_, Some(_)) => {
844             tcx.ensure().item_bounds(trait_item_id.def_id);
845             tcx.ensure().type_of(trait_item_id.def_id);
846             // Account for `type T = _;`.
847             let mut visitor = HirPlaceholderCollector::default();
848             visitor.visit_trait_item(trait_item);
849             placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
850         }
851
852         hir::TraitItemKind::Type(_, None) => {
853             tcx.ensure().item_bounds(trait_item_id.def_id);
854             // #74612: Visit and try to find bad placeholders
855             // even if there is no concrete type.
856             let mut visitor = HirPlaceholderCollector::default();
857             visitor.visit_trait_item(trait_item);
858
859             placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
860         }
861     };
862
863     tcx.ensure().predicates_of(trait_item_id.def_id);
864 }
865
866 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
867     let def_id = impl_item_id.def_id;
868     tcx.ensure().generics_of(def_id);
869     tcx.ensure().type_of(def_id);
870     tcx.ensure().predicates_of(def_id);
871     let impl_item = tcx.hir().impl_item(impl_item_id);
872     match impl_item.kind {
873         hir::ImplItemKind::Fn(..) => {
874             tcx.ensure().fn_sig(def_id);
875         }
876         hir::ImplItemKind::TyAlias(_) => {
877             // Account for `type T = _;`
878             let mut visitor = HirPlaceholderCollector::default();
879             visitor.visit_impl_item(impl_item);
880
881             placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
882         }
883         hir::ImplItemKind::Const(..) => {}
884     }
885 }
886
887 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
888     let def_id = tcx.hir().local_def_id(ctor_id);
889     tcx.ensure().generics_of(def_id);
890     tcx.ensure().type_of(def_id);
891     tcx.ensure().predicates_of(def_id);
892 }
893
894 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
895     let def = tcx.adt_def(def_id);
896     let repr_type = def.repr().discr_type();
897     let initial = repr_type.initial_discriminant(tcx);
898     let mut prev_discr = None::<Discr<'_>>;
899
900     // fill the discriminant values and field types
901     for variant in variants {
902         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
903         prev_discr = Some(
904             if let Some(ref e) = variant.disr_expr {
905                 let expr_did = tcx.hir().local_def_id(e.hir_id);
906                 def.eval_explicit_discr(tcx, expr_did.to_def_id())
907             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
908                 Some(discr)
909             } else {
910                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
911                     .span_label(
912                         variant.span,
913                         format!("overflowed on value after {}", prev_discr.unwrap()),
914                     )
915                     .note(&format!(
916                         "explicitly set `{} = {}` if that is desired outcome",
917                         variant.ident, wrapped_discr
918                     ))
919                     .emit();
920                 None
921             }
922             .unwrap_or(wrapped_discr),
923         );
924
925         for f in variant.data.fields() {
926             let def_id = tcx.hir().local_def_id(f.hir_id);
927             tcx.ensure().generics_of(def_id);
928             tcx.ensure().type_of(def_id);
929             tcx.ensure().predicates_of(def_id);
930         }
931
932         // Convert the ctor, if any. This also registers the variant as
933         // an item.
934         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
935             convert_variant_ctor(tcx, ctor_hir_id);
936         }
937     }
938 }
939
940 fn convert_variant(
941     tcx: TyCtxt<'_>,
942     variant_did: Option<LocalDefId>,
943     ctor_did: Option<LocalDefId>,
944     ident: Ident,
945     discr: ty::VariantDiscr,
946     def: &hir::VariantData<'_>,
947     adt_kind: ty::AdtKind,
948     parent_did: LocalDefId,
949 ) -> ty::VariantDef {
950     let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
951     let fields = def
952         .fields()
953         .iter()
954         .map(|f| {
955             let fid = tcx.hir().local_def_id(f.hir_id);
956             let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
957             if let Some(prev_span) = dup_span {
958                 tcx.sess.emit_err(errors::FieldAlreadyDeclared {
959                     field_name: f.ident,
960                     span: f.span,
961                     prev_span,
962                 });
963             } else {
964                 seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
965             }
966
967             ty::FieldDef { did: fid.to_def_id(), name: f.ident.name, vis: tcx.visibility(fid) }
968         })
969         .collect();
970     let recovered = match def {
971         hir::VariantData::Struct(_, r) => *r,
972         _ => false,
973     };
974     ty::VariantDef::new(
975         ident.name,
976         variant_did.map(LocalDefId::to_def_id),
977         ctor_did.map(LocalDefId::to_def_id),
978         discr,
979         fields,
980         CtorKind::from_hir(def),
981         adt_kind,
982         parent_did.to_def_id(),
983         recovered,
984         adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
985             || variant_did.map_or(false, |variant_did| {
986                 tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
987             }),
988     )
989 }
990
991 fn adt_def<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::AdtDef<'tcx> {
992     use rustc_hir::*;
993
994     let def_id = def_id.expect_local();
995     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
996     let Node::Item(item) = tcx.hir().get(hir_id) else {
997         bug!();
998     };
999
1000     let repr = ReprOptions::new(tcx, def_id.to_def_id());
1001     let (kind, variants) = match item.kind {
1002         ItemKind::Enum(ref def, _) => {
1003             let mut distance_from_explicit = 0;
1004             let variants = def
1005                 .variants
1006                 .iter()
1007                 .map(|v| {
1008                     let variant_did = Some(tcx.hir().local_def_id(v.id));
1009                     let ctor_did =
1010                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1011
1012                     let discr = if let Some(ref e) = v.disr_expr {
1013                         distance_from_explicit = 0;
1014                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
1015                     } else {
1016                         ty::VariantDiscr::Relative(distance_from_explicit)
1017                     };
1018                     distance_from_explicit += 1;
1019
1020                     convert_variant(
1021                         tcx,
1022                         variant_did,
1023                         ctor_did,
1024                         v.ident,
1025                         discr,
1026                         &v.data,
1027                         AdtKind::Enum,
1028                         def_id,
1029                     )
1030                 })
1031                 .collect();
1032
1033             (AdtKind::Enum, variants)
1034         }
1035         ItemKind::Struct(ref def, _) => {
1036             let variant_did = None::<LocalDefId>;
1037             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1038
1039             let variants = std::iter::once(convert_variant(
1040                 tcx,
1041                 variant_did,
1042                 ctor_did,
1043                 item.ident,
1044                 ty::VariantDiscr::Relative(0),
1045                 def,
1046                 AdtKind::Struct,
1047                 def_id,
1048             ))
1049             .collect();
1050
1051             (AdtKind::Struct, variants)
1052         }
1053         ItemKind::Union(ref def, _) => {
1054             let variant_did = None;
1055             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1056
1057             let variants = std::iter::once(convert_variant(
1058                 tcx,
1059                 variant_did,
1060                 ctor_did,
1061                 item.ident,
1062                 ty::VariantDiscr::Relative(0),
1063                 def,
1064                 AdtKind::Union,
1065                 def_id,
1066             ))
1067             .collect();
1068
1069             (AdtKind::Union, variants)
1070         }
1071         _ => bug!(),
1072     };
1073     tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
1074 }
1075
1076 /// Ensures that the super-predicates of the trait with a `DefId`
1077 /// of `trait_def_id` are converted and stored. This also ensures that
1078 /// the transitive super-predicates are converted.
1079 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
1080     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
1081     tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
1082 }
1083
1084 /// Ensures that the super-predicates of the trait with a `DefId`
1085 /// of `trait_def_id` are converted and stored. This also ensures that
1086 /// the transitive super-predicates are converted.
1087 fn super_predicates_that_define_assoc_type(
1088     tcx: TyCtxt<'_>,
1089     (trait_def_id, assoc_name): (DefId, Option<Ident>),
1090 ) -> ty::GenericPredicates<'_> {
1091     debug!(
1092         "super_predicates_that_define_assoc_type(trait_def_id={:?}, assoc_name={:?})",
1093         trait_def_id, assoc_name
1094     );
1095     if trait_def_id.is_local() {
1096         debug!("super_predicates_that_define_assoc_type: local trait_def_id={:?}", trait_def_id);
1097         let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
1098
1099         let Node::Item(item) = tcx.hir().get(trait_hir_id) else {
1100             bug!("trait_node_id {} is not an item", trait_hir_id);
1101         };
1102
1103         let (generics, bounds) = match item.kind {
1104             hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
1105             hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
1106             _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
1107         };
1108
1109         let icx = ItemCtxt::new(tcx, trait_def_id);
1110
1111         // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
1112         let self_param_ty = tcx.types.self_param;
1113         let superbounds1 = if let Some(assoc_name) = assoc_name {
1114             <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
1115                 &icx,
1116                 self_param_ty,
1117                 bounds,
1118                 assoc_name,
1119             )
1120         } else {
1121             <dyn AstConv<'_>>::compute_bounds(&icx, self_param_ty, bounds)
1122         };
1123
1124         let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
1125
1126         // Convert any explicit superbounds in the where-clause,
1127         // e.g., `trait Foo where Self: Bar`.
1128         // In the case of trait aliases, however, we include all bounds in the where-clause,
1129         // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
1130         // as one of its "superpredicates".
1131         let is_trait_alias = tcx.is_trait_alias(trait_def_id);
1132         let superbounds2 = icx.type_parameter_bounds_in_generics(
1133             generics,
1134             item.hir_id(),
1135             self_param_ty,
1136             OnlySelfBounds(!is_trait_alias),
1137             assoc_name,
1138         );
1139
1140         // Combine the two lists to form the complete set of superbounds:
1141         let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
1142         debug!(?superbounds);
1143
1144         // Now require that immediate supertraits are converted,
1145         // which will, in turn, reach indirect supertraits.
1146         if assoc_name.is_none() {
1147             // Now require that immediate supertraits are converted,
1148             // which will, in turn, reach indirect supertraits.
1149             for &(pred, span) in superbounds {
1150                 debug!("superbound: {:?}", pred);
1151                 if let ty::PredicateKind::Trait(bound) = pred.kind().skip_binder() {
1152                     tcx.at(span).super_predicates_of(bound.def_id());
1153                 }
1154             }
1155         }
1156
1157         ty::GenericPredicates { parent: None, predicates: superbounds }
1158     } else {
1159         // if `assoc_name` is None, then the query should've been redirected to an
1160         // external provider
1161         assert!(assoc_name.is_some());
1162         tcx.super_predicates_of(trait_def_id)
1163     }
1164 }
1165
1166 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
1167     let item = tcx.hir().expect_item(def_id.expect_local());
1168
1169     let (is_auto, unsafety, items) = match item.kind {
1170         hir::ItemKind::Trait(is_auto, unsafety, .., items) => {
1171             (is_auto == hir::IsAuto::Yes, unsafety, items)
1172         }
1173         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal, &[][..]),
1174         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
1175     };
1176
1177     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
1178     if paren_sugar && !tcx.features().unboxed_closures {
1179         tcx.sess
1180             .struct_span_err(
1181                 item.span,
1182                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1183                  which traits can use parenthetical notation",
1184             )
1185             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
1186             .emit();
1187     }
1188
1189     let is_marker = tcx.has_attr(def_id, sym::marker);
1190     let skip_array_during_method_dispatch =
1191         tcx.has_attr(def_id, sym::rustc_skip_array_during_method_dispatch);
1192     let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
1193         ty::trait_def::TraitSpecializationKind::Marker
1194     } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
1195         ty::trait_def::TraitSpecializationKind::AlwaysApplicable
1196     } else {
1197         ty::trait_def::TraitSpecializationKind::None
1198     };
1199     let must_implement_one_of = tcx
1200         .get_attr(def_id, sym::rustc_must_implement_one_of)
1201         // Check that there are at least 2 arguments of `#[rustc_must_implement_one_of]`
1202         // and that they are all identifiers
1203         .and_then(|attr| match attr.meta_item_list() {
1204             Some(items) if items.len() < 2 => {
1205                 tcx.sess
1206                     .struct_span_err(
1207                         attr.span,
1208                         "the `#[rustc_must_implement_one_of]` attribute must be \
1209                         used with at least 2 args",
1210                     )
1211                     .emit();
1212
1213                 None
1214             }
1215             Some(items) => items
1216                 .into_iter()
1217                 .map(|item| item.ident().ok_or(item.span()))
1218                 .collect::<Result<Box<[_]>, _>>()
1219                 .map_err(|span| {
1220                     tcx.sess
1221                         .struct_span_err(span, "must be a name of an associated function")
1222                         .emit();
1223                 })
1224                 .ok()
1225                 .zip(Some(attr.span)),
1226             // Error is reported by `rustc_attr!`
1227             None => None,
1228         })
1229         // Check that all arguments of `#[rustc_must_implement_one_of]` reference
1230         // functions in the trait with default implementations
1231         .and_then(|(list, attr_span)| {
1232             let errors = list.iter().filter_map(|ident| {
1233                 let item = items.iter().find(|item| item.ident == *ident);
1234
1235                 match item {
1236                     Some(item) if matches!(item.kind, hir::AssocItemKind::Fn { .. }) => {
1237                         if !item.defaultness.has_value() {
1238                             tcx.sess
1239                                 .struct_span_err(
1240                                     item.span,
1241                                     "This function doesn't have a default implementation",
1242                                 )
1243                                 .span_note(attr_span, "required by this annotation")
1244                                 .emit();
1245
1246                             return Some(());
1247                         }
1248
1249                         return None;
1250                     }
1251                     Some(item) => {
1252                         tcx.sess
1253                             .struct_span_err(item.span, "Not a function")
1254                             .span_note(attr_span, "required by this annotation")
1255                             .note(
1256                                 "All `#[rustc_must_implement_one_of]` arguments \
1257                             must be associated function names",
1258                             )
1259                             .emit();
1260                     }
1261                     None => {
1262                         tcx.sess
1263                             .struct_span_err(ident.span, "Function not found in this trait")
1264                             .emit();
1265                     }
1266                 }
1267
1268                 Some(())
1269             });
1270
1271             (errors.count() == 0).then_some(list)
1272         })
1273         // Check for duplicates
1274         .and_then(|list| {
1275             let mut set: FxHashMap<Symbol, Span> = FxHashMap::default();
1276             let mut no_dups = true;
1277
1278             for ident in &*list {
1279                 if let Some(dup) = set.insert(ident.name, ident.span) {
1280                     tcx.sess
1281                         .struct_span_err(vec![dup, ident.span], "Functions names are duplicated")
1282                         .note(
1283                             "All `#[rustc_must_implement_one_of]` arguments \
1284                             must be unique",
1285                         )
1286                         .emit();
1287
1288                     no_dups = false;
1289                 }
1290             }
1291
1292             no_dups.then_some(list)
1293         });
1294
1295     ty::TraitDef::new(
1296         def_id,
1297         unsafety,
1298         paren_sugar,
1299         is_auto,
1300         is_marker,
1301         skip_array_during_method_dispatch,
1302         spec_kind,
1303         must_implement_one_of,
1304     )
1305 }
1306
1307 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
1308     struct LateBoundRegionsDetector<'tcx> {
1309         tcx: TyCtxt<'tcx>,
1310         outer_index: ty::DebruijnIndex,
1311         has_late_bound_regions: Option<Span>,
1312     }
1313
1314     impl<'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
1315         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
1316             if self.has_late_bound_regions.is_some() {
1317                 return;
1318             }
1319             match ty.kind {
1320                 hir::TyKind::BareFn(..) => {
1321                     self.outer_index.shift_in(1);
1322                     intravisit::walk_ty(self, ty);
1323                     self.outer_index.shift_out(1);
1324                 }
1325                 _ => intravisit::walk_ty(self, ty),
1326             }
1327         }
1328
1329         fn visit_poly_trait_ref(
1330             &mut self,
1331             tr: &'tcx hir::PolyTraitRef<'tcx>,
1332             m: hir::TraitBoundModifier,
1333         ) {
1334             if self.has_late_bound_regions.is_some() {
1335                 return;
1336             }
1337             self.outer_index.shift_in(1);
1338             intravisit::walk_poly_trait_ref(self, tr, m);
1339             self.outer_index.shift_out(1);
1340         }
1341
1342         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1343             if self.has_late_bound_regions.is_some() {
1344                 return;
1345             }
1346
1347             match self.tcx.named_region(lt.hir_id) {
1348                 Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
1349                 Some(
1350                     rl::Region::LateBound(debruijn, _, _)
1351                     | rl::Region::LateBoundAnon(debruijn, _, _),
1352                 ) if debruijn < self.outer_index => {}
1353                 Some(
1354                     rl::Region::LateBound(..)
1355                     | rl::Region::LateBoundAnon(..)
1356                     | rl::Region::Free(..),
1357                 )
1358                 | None => {
1359                     self.has_late_bound_regions = Some(lt.span);
1360                 }
1361             }
1362         }
1363     }
1364
1365     fn has_late_bound_regions<'tcx>(
1366         tcx: TyCtxt<'tcx>,
1367         def_id: LocalDefId,
1368         generics: &'tcx hir::Generics<'tcx>,
1369         decl: &'tcx hir::FnDecl<'tcx>,
1370     ) -> Option<Span> {
1371         let mut visitor = LateBoundRegionsDetector {
1372             tcx,
1373             outer_index: ty::INNERMOST,
1374             has_late_bound_regions: None,
1375         };
1376         let late_bound_map = tcx.is_late_bound_map(def_id);
1377         let is_late_bound = |id| {
1378             let id = tcx.hir().local_def_id(id);
1379             late_bound_map.map_or(false, |(_, set)| set.contains(&id))
1380         };
1381         for param in generics.params {
1382             if let GenericParamKind::Lifetime { .. } = param.kind {
1383                 if is_late_bound(param.hir_id) {
1384                     return Some(param.span);
1385                 }
1386             }
1387         }
1388         visitor.visit_fn_decl(decl);
1389         visitor.has_late_bound_regions
1390     }
1391
1392     match node {
1393         Node::TraitItem(item) => match item.kind {
1394             hir::TraitItemKind::Fn(ref sig, _) => {
1395                 has_late_bound_regions(tcx, item.def_id, &item.generics, sig.decl)
1396             }
1397             _ => None,
1398         },
1399         Node::ImplItem(item) => match item.kind {
1400             hir::ImplItemKind::Fn(ref sig, _) => {
1401                 has_late_bound_regions(tcx, item.def_id, &item.generics, sig.decl)
1402             }
1403             _ => None,
1404         },
1405         Node::ForeignItem(item) => match item.kind {
1406             hir::ForeignItemKind::Fn(fn_decl, _, ref generics) => {
1407                 has_late_bound_regions(tcx, item.def_id, generics, fn_decl)
1408             }
1409             _ => None,
1410         },
1411         Node::Item(item) => match item.kind {
1412             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1413                 has_late_bound_regions(tcx, item.def_id, generics, sig.decl)
1414             }
1415             _ => None,
1416         },
1417         _ => None,
1418     }
1419 }
1420
1421 struct AnonConstInParamTyDetector {
1422     in_param_ty: bool,
1423     found_anon_const_in_param_ty: bool,
1424     ct: HirId,
1425 }
1426
1427 impl<'v> Visitor<'v> for AnonConstInParamTyDetector {
1428     fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
1429         if let GenericParamKind::Const { ty, default: _ } = p.kind {
1430             let prev = self.in_param_ty;
1431             self.in_param_ty = true;
1432             self.visit_ty(ty);
1433             self.in_param_ty = prev;
1434         }
1435     }
1436
1437     fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
1438         if self.in_param_ty && self.ct == c.hir_id {
1439             self.found_anon_const_in_param_ty = true;
1440         } else {
1441             intravisit::walk_anon_const(self, c)
1442         }
1443     }
1444 }
1445
1446 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
1447     use rustc_hir::*;
1448
1449     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1450
1451     let node = tcx.hir().get(hir_id);
1452     let parent_def_id = match node {
1453         Node::ImplItem(_)
1454         | Node::TraitItem(_)
1455         | Node::Variant(_)
1456         | Node::Ctor(..)
1457         | Node::Field(_) => {
1458             let parent_id = tcx.hir().get_parent_item(hir_id);
1459             Some(parent_id.to_def_id())
1460         }
1461         // FIXME(#43408) always enable this once `lazy_normalization` is
1462         // stable enough and does not need a feature gate anymore.
1463         Node::AnonConst(_) => {
1464             let parent_def_id = tcx.hir().get_parent_item(hir_id);
1465
1466             let mut in_param_ty = false;
1467             for (_parent, node) in tcx.hir().parent_iter(hir_id) {
1468                 if let Some(generics) = node.generics() {
1469                     let mut visitor = AnonConstInParamTyDetector {
1470                         in_param_ty: false,
1471                         found_anon_const_in_param_ty: false,
1472                         ct: hir_id,
1473                     };
1474
1475                     visitor.visit_generics(generics);
1476                     in_param_ty = visitor.found_anon_const_in_param_ty;
1477                     break;
1478                 }
1479             }
1480
1481             if in_param_ty {
1482                 // We do not allow generic parameters in anon consts if we are inside
1483                 // of a const parameter type, e.g. `struct Foo<const N: usize, const M: [u8; N]>` is not allowed.
1484                 None
1485             } else if tcx.lazy_normalization() {
1486                 if let Some(param_id) = tcx.hir().opt_const_param_default_param_hir_id(hir_id) {
1487                     // If the def_id we are calling generics_of on is an anon ct default i.e:
1488                     //
1489                     // struct Foo<const N: usize = { .. }>;
1490                     //        ^^^       ^          ^^^^^^ def id of this anon const
1491                     //        ^         ^ param_id
1492                     //        ^ parent_def_id
1493                     //
1494                     // then we only want to return generics for params to the left of `N`. If we don't do that we
1495                     // end up with that const looking like: `ty::ConstKind::Unevaluated(def_id, substs: [N#0])`.
1496                     //
1497                     // This causes ICEs (#86580) when building the substs for Foo in `fn foo() -> Foo { .. }` as
1498                     // we substitute the defaults with the partially built substs when we build the substs. Subst'ing
1499                     // the `N#0` on the unevaluated const indexes into the empty substs we're in the process of building.
1500                     //
1501                     // We fix this by having this function return the parent's generics ourselves and truncating the
1502                     // generics to only include non-forward declared params (with the exception of the `Self` ty)
1503                     //
1504                     // For the above code example that means we want `substs: []`
1505                     // For the following struct def we want `substs: [N#0]` when generics_of is called on
1506                     // the def id of the `{ N + 1 }` anon const
1507                     // struct Foo<const N: usize, const M: usize = { N + 1 }>;
1508                     //
1509                     // This has some implications for how we get the predicates available to the anon const
1510                     // see `explicit_predicates_of` for more information on this
1511                     let generics = tcx.generics_of(parent_def_id.to_def_id());
1512                     let param_def = tcx.hir().local_def_id(param_id).to_def_id();
1513                     let param_def_idx = generics.param_def_id_to_index[&param_def];
1514                     // In the above example this would be .params[..N#0]
1515                     let params = generics.params[..param_def_idx as usize].to_owned();
1516                     let param_def_id_to_index =
1517                         params.iter().map(|param| (param.def_id, param.index)).collect();
1518
1519                     return ty::Generics {
1520                         // we set the parent of these generics to be our parent's parent so that we
1521                         // dont end up with substs: [N, M, N] for the const default on a struct like this:
1522                         // struct Foo<const N: usize, const M: usize = { ... }>;
1523                         parent: generics.parent,
1524                         parent_count: generics.parent_count,
1525                         params,
1526                         param_def_id_to_index,
1527                         has_self: generics.has_self,
1528                         has_late_bound_regions: generics.has_late_bound_regions,
1529                     };
1530                 }
1531
1532                 // HACK(eddyb) this provides the correct generics when
1533                 // `feature(generic_const_expressions)` is enabled, so that const expressions
1534                 // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1535                 //
1536                 // Note that we do not supply the parent generics when using
1537                 // `min_const_generics`.
1538                 Some(parent_def_id.to_def_id())
1539             } else {
1540                 let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1541                 match parent_node {
1542                     // HACK(eddyb) this provides the correct generics for repeat
1543                     // expressions' count (i.e. `N` in `[x; N]`), and explicit
1544                     // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
1545                     // as they shouldn't be able to cause query cycle errors.
1546                     Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1547                         if constant.hir_id() == hir_id =>
1548                     {
1549                         Some(parent_def_id.to_def_id())
1550                     }
1551                     Node::Variant(Variant { disr_expr: Some(ref constant), .. })
1552                         if constant.hir_id == hir_id =>
1553                     {
1554                         Some(parent_def_id.to_def_id())
1555                     }
1556                     Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) => {
1557                         Some(tcx.typeck_root_def_id(def_id))
1558                     }
1559                     _ => None,
1560                 }
1561             }
1562         }
1563         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1564             Some(tcx.typeck_root_def_id(def_id))
1565         }
1566         Node::Item(item) => match item.kind {
1567             ItemKind::OpaqueTy(hir::OpaqueTy {
1568                 origin:
1569                     hir::OpaqueTyOrigin::FnReturn(fn_def_id) | hir::OpaqueTyOrigin::AsyncFn(fn_def_id),
1570                 ..
1571             }) => Some(fn_def_id.to_def_id()),
1572             ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias, .. }) => {
1573                 let parent_id = tcx.hir().get_parent_item(hir_id);
1574                 assert_ne!(parent_id, CRATE_DEF_ID);
1575                 debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1576                 // Opaque types are always nested within another item, and
1577                 // inherit the generics of the item.
1578                 Some(parent_id.to_def_id())
1579             }
1580             _ => None,
1581         },
1582         _ => None,
1583     };
1584
1585     let mut opt_self = None;
1586     let mut allow_defaults = false;
1587
1588     let no_generics = hir::Generics::empty();
1589     let ast_generics = match node {
1590         Node::TraitItem(item) => &item.generics,
1591
1592         Node::ImplItem(item) => &item.generics,
1593
1594         Node::Item(item) => {
1595             match item.kind {
1596                 ItemKind::Fn(.., ref generics, _)
1597                 | ItemKind::Impl(hir::Impl { ref generics, .. }) => generics,
1598
1599                 ItemKind::TyAlias(_, ref generics)
1600                 | ItemKind::Enum(_, ref generics)
1601                 | ItemKind::Struct(_, ref generics)
1602                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1603                 | ItemKind::Union(_, ref generics) => {
1604                     allow_defaults = true;
1605                     generics
1606                 }
1607
1608                 ItemKind::Trait(_, _, ref generics, ..)
1609                 | ItemKind::TraitAlias(ref generics, ..) => {
1610                     // Add in the self type parameter.
1611                     //
1612                     // Something of a hack: use the node id for the trait, also as
1613                     // the node id for the Self type parameter.
1614                     let param_id = item.def_id;
1615
1616                     opt_self = Some(ty::GenericParamDef {
1617                         index: 0,
1618                         name: kw::SelfUpper,
1619                         def_id: param_id.to_def_id(),
1620                         pure_wrt_drop: false,
1621                         kind: ty::GenericParamDefKind::Type {
1622                             has_default: false,
1623                             object_lifetime_default: rl::Set1::Empty,
1624                             synthetic: false,
1625                         },
1626                     });
1627
1628                     allow_defaults = true;
1629                     generics
1630                 }
1631
1632                 _ => &no_generics,
1633             }
1634         }
1635
1636         Node::ForeignItem(item) => match item.kind {
1637             ForeignItemKind::Static(..) => &no_generics,
1638             ForeignItemKind::Fn(_, _, ref generics) => generics,
1639             ForeignItemKind::Type => &no_generics,
1640         },
1641
1642         _ => &no_generics,
1643     };
1644
1645     let has_self = opt_self.is_some();
1646     let mut parent_has_self = false;
1647     let mut own_start = has_self as u32;
1648     let parent_count = parent_def_id.map_or(0, |def_id| {
1649         let generics = tcx.generics_of(def_id);
1650         assert!(!has_self);
1651         parent_has_self = generics.has_self;
1652         own_start = generics.count() as u32;
1653         generics.parent_count + generics.params.len()
1654     });
1655
1656     let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
1657
1658     if let Some(opt_self) = opt_self {
1659         params.push(opt_self);
1660     }
1661
1662     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, hir_id.owner, ast_generics);
1663     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1664         name: param.name.ident().name,
1665         index: own_start + i as u32,
1666         def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1667         pure_wrt_drop: param.pure_wrt_drop,
1668         kind: ty::GenericParamDefKind::Lifetime,
1669     }));
1670
1671     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id.owner);
1672
1673     // Now create the real type and const parameters.
1674     let type_start = own_start - has_self as u32 + params.len() as u32;
1675     let mut i = 0;
1676
1677     params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
1678         GenericParamKind::Lifetime { .. } => None,
1679         GenericParamKind::Type { ref default, synthetic, .. } => {
1680             if !allow_defaults && default.is_some() {
1681                 if !tcx.features().default_type_parameter_fallback {
1682                     tcx.struct_span_lint_hir(
1683                         lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1684                         param.hir_id,
1685                         param.span,
1686                         |lint| {
1687                             lint.build(
1688                                 "defaults for type parameters are only allowed in \
1689                                  `struct`, `enum`, `type`, or `trait` definitions",
1690                             )
1691                             .emit();
1692                         },
1693                     );
1694                 }
1695             }
1696
1697             let kind = ty::GenericParamDefKind::Type {
1698                 has_default: default.is_some(),
1699                 object_lifetime_default: object_lifetime_defaults
1700                     .as_ref()
1701                     .map_or(rl::Set1::Empty, |o| o[i]),
1702                 synthetic,
1703             };
1704
1705             let param_def = ty::GenericParamDef {
1706                 index: type_start + i as u32,
1707                 name: param.name.ident().name,
1708                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1709                 pure_wrt_drop: param.pure_wrt_drop,
1710                 kind,
1711             };
1712             i += 1;
1713             Some(param_def)
1714         }
1715         GenericParamKind::Const { default, .. } => {
1716             if !allow_defaults && default.is_some() {
1717                 tcx.sess.span_err(
1718                     param.span,
1719                     "defaults for const parameters are only allowed in \
1720                     `struct`, `enum`, `type`, or `trait` definitions",
1721                 );
1722             }
1723
1724             let param_def = ty::GenericParamDef {
1725                 index: type_start + i as u32,
1726                 name: param.name.ident().name,
1727                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1728                 pure_wrt_drop: param.pure_wrt_drop,
1729                 kind: ty::GenericParamDefKind::Const { has_default: default.is_some() },
1730             };
1731             i += 1;
1732             Some(param_def)
1733         }
1734     }));
1735
1736     // provide junk type parameter defs - the only place that
1737     // cares about anything but the length is instantiation,
1738     // and we don't do that for closures.
1739     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1740         let dummy_args = if gen.is_some() {
1741             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
1742         } else {
1743             &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
1744         };
1745
1746         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1747             index: type_start + i as u32,
1748             name: Symbol::intern(arg),
1749             def_id,
1750             pure_wrt_drop: false,
1751             kind: ty::GenericParamDefKind::Type {
1752                 has_default: false,
1753                 object_lifetime_default: rl::Set1::Empty,
1754                 synthetic: false,
1755             },
1756         }));
1757     }
1758
1759     // provide junk type parameter defs for const blocks.
1760     if let Node::AnonConst(_) = node {
1761         let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1762         if let Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) = parent_node {
1763             params.push(ty::GenericParamDef {
1764                 index: type_start,
1765                 name: Symbol::intern("<const_ty>"),
1766                 def_id,
1767                 pure_wrt_drop: false,
1768                 kind: ty::GenericParamDefKind::Type {
1769                     has_default: false,
1770                     object_lifetime_default: rl::Set1::Empty,
1771                     synthetic: false,
1772                 },
1773             });
1774         }
1775     }
1776
1777     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1778
1779     ty::Generics {
1780         parent: parent_def_id,
1781         parent_count,
1782         params,
1783         param_def_id_to_index,
1784         has_self: has_self || parent_has_self,
1785         has_late_bound_regions: has_late_bound_regions(tcx, node),
1786     }
1787 }
1788
1789 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1790     generic_args.iter().any(|arg| match arg {
1791         hir::GenericArg::Type(ty) => is_suggestable_infer_ty(ty),
1792         hir::GenericArg::Infer(_) => true,
1793         _ => false,
1794     })
1795 }
1796
1797 /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
1798 /// use inference to provide suggestions for the appropriate type if possible.
1799 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1800     debug!(?ty);
1801     use hir::TyKind::*;
1802     match &ty.kind {
1803         Infer => true,
1804         Slice(ty) => is_suggestable_infer_ty(ty),
1805         Array(ty, length) => {
1806             is_suggestable_infer_ty(ty) || matches!(length, hir::ArrayLen::Infer(_, _))
1807         }
1808         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1809         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1810         OpaqueDef(_, generic_args) => are_suggestable_generic_args(generic_args),
1811         Path(hir::QPath::TypeRelative(ty, segment)) => {
1812             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
1813         }
1814         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1815             ty_opt.map_or(false, is_suggestable_infer_ty)
1816                 || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
1817         }
1818         _ => false,
1819     }
1820 }
1821
1822 pub fn get_infer_ret_ty<'hir>(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1823     if let hir::FnRetTy::Return(ty) = output {
1824         if is_suggestable_infer_ty(ty) {
1825             return Some(&*ty);
1826         }
1827     }
1828     None
1829 }
1830
1831 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1832     use rustc_hir::Node::*;
1833     use rustc_hir::*;
1834
1835     let def_id = def_id.expect_local();
1836     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1837
1838     let icx = ItemCtxt::new(tcx, def_id.to_def_id());
1839
1840     match tcx.hir().get(hir_id) {
1841         TraitItem(hir::TraitItem {
1842             kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
1843             generics,
1844             ..
1845         })
1846         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), .. }) => {
1847             infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
1848         }
1849
1850         ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), generics, .. }) => {
1851             // Do not try to inference the return type for a impl method coming from a trait
1852             if let Item(hir::Item { kind: ItemKind::Impl(i), .. }) =
1853                 tcx.hir().get(tcx.hir().get_parent_node(hir_id))
1854                 && i.of_trait.is_some()
1855             {
1856                 <dyn AstConv<'_>>::ty_of_fn(
1857                     &icx,
1858                     hir_id,
1859                     sig.header.unsafety,
1860                     sig.header.abi,
1861                     sig.decl,
1862                     Some(generics),
1863                     None,
1864                 )
1865             } else {
1866                 infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
1867             }
1868         }
1869
1870         TraitItem(hir::TraitItem {
1871             kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
1872             generics,
1873             ..
1874         }) => <dyn AstConv<'_>>::ty_of_fn(
1875             &icx,
1876             hir_id,
1877             header.unsafety,
1878             header.abi,
1879             decl,
1880             Some(generics),
1881             None,
1882         ),
1883
1884         ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
1885             let abi = tcx.hir().get_foreign_abi(hir_id);
1886             compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi)
1887         }
1888
1889         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1890             let ty = tcx.type_of(tcx.hir().get_parent_item(hir_id));
1891             let inputs =
1892                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1893             ty::Binder::dummy(tcx.mk_fn_sig(
1894                 inputs,
1895                 ty,
1896                 false,
1897                 hir::Unsafety::Normal,
1898                 abi::Abi::Rust,
1899             ))
1900         }
1901
1902         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1903             // Closure signatures are not like other function
1904             // signatures and cannot be accessed through `fn_sig`. For
1905             // example, a closure signature excludes the `self`
1906             // argument. In any case they are embedded within the
1907             // closure type as part of the `ClosureSubsts`.
1908             //
1909             // To get the signature of a closure, you should use the
1910             // `sig` method on the `ClosureSubsts`:
1911             //
1912             //    substs.as_closure().sig(def_id, tcx)
1913             bug!(
1914                 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
1915             );
1916         }
1917
1918         x => {
1919             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1920         }
1921     }
1922 }
1923
1924 fn infer_return_ty_for_fn_sig<'tcx>(
1925     tcx: TyCtxt<'tcx>,
1926     sig: &hir::FnSig<'_>,
1927     generics: &hir::Generics<'_>,
1928     def_id: LocalDefId,
1929     icx: &ItemCtxt<'tcx>,
1930 ) -> ty::PolyFnSig<'tcx> {
1931     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1932
1933     match get_infer_ret_ty(&sig.decl.output) {
1934         Some(ty) => {
1935             let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
1936             // Typeck doesn't expect erased regions to be returned from `type_of`.
1937             let fn_sig = tcx.fold_regions(fn_sig, &mut false, |r, _| match *r {
1938                 ty::ReErased => tcx.lifetimes.re_static,
1939                 _ => r,
1940             });
1941             let fn_sig = ty::Binder::dummy(fn_sig);
1942
1943             let mut visitor = HirPlaceholderCollector::default();
1944             visitor.visit_ty(ty);
1945             let mut diag = bad_placeholder(tcx, visitor.0, "return type");
1946             let ret_ty = fn_sig.skip_binder().output();
1947             if ret_ty.is_suggestable(tcx) {
1948                 diag.span_suggestion(
1949                     ty.span,
1950                     "replace with the correct return type",
1951                     ret_ty.to_string(),
1952                     Applicability::MachineApplicable,
1953                 );
1954             } else if matches!(ret_ty.kind(), ty::FnDef(..)) {
1955                 let fn_sig = ret_ty.fn_sig(tcx);
1956                 if fn_sig.skip_binder().inputs_and_output.iter().all(|t| t.is_suggestable(tcx)) {
1957                     diag.span_suggestion(
1958                         ty.span,
1959                         "replace with the correct return type",
1960                         fn_sig.to_string(),
1961                         Applicability::MachineApplicable,
1962                     );
1963                 }
1964             } else if ret_ty.is_closure() {
1965                 // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
1966                 // to prevent the user from getting a papercut while trying to use the unique closure
1967                 // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
1968                 diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
1969                 diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
1970             }
1971             diag.emit();
1972
1973             fn_sig
1974         }
1975         None => <dyn AstConv<'_>>::ty_of_fn(
1976             icx,
1977             hir_id,
1978             sig.header.unsafety,
1979             sig.header.abi,
1980             sig.decl,
1981             Some(generics),
1982             None,
1983         ),
1984     }
1985 }
1986
1987 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1988     let icx = ItemCtxt::new(tcx, def_id);
1989     match tcx.hir().expect_item(def_id.expect_local()).kind {
1990         hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
1991             let selfty = tcx.type_of(def_id);
1992             <dyn AstConv<'_>>::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1993         }),
1994         _ => bug!(),
1995     }
1996 }
1997
1998 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1999     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
2000     let item = tcx.hir().expect_item(def_id.expect_local());
2001     match &item.kind {
2002         hir::ItemKind::Impl(hir::Impl {
2003             polarity: hir::ImplPolarity::Negative(span),
2004             of_trait,
2005             ..
2006         }) => {
2007             if is_rustc_reservation {
2008                 let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
2009                 tcx.sess.span_err(span, "reservation impls can't be negative");
2010             }
2011             ty::ImplPolarity::Negative
2012         }
2013         hir::ItemKind::Impl(hir::Impl {
2014             polarity: hir::ImplPolarity::Positive,
2015             of_trait: None,
2016             ..
2017         }) => {
2018             if is_rustc_reservation {
2019                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
2020             }
2021             ty::ImplPolarity::Positive
2022         }
2023         hir::ItemKind::Impl(hir::Impl {
2024             polarity: hir::ImplPolarity::Positive,
2025             of_trait: Some(_),
2026             ..
2027         }) => {
2028             if is_rustc_reservation {
2029                 ty::ImplPolarity::Reservation
2030             } else {
2031                 ty::ImplPolarity::Positive
2032             }
2033         }
2034         item => bug!("impl_polarity: {:?} not an impl", item),
2035     }
2036 }
2037
2038 /// Returns the early-bound lifetimes declared in this generics
2039 /// listing. For anything other than fns/methods, this is just all
2040 /// the lifetimes that are declared. For fns or methods, we have to
2041 /// screen out those that do not appear in any where-clauses etc using
2042 /// `resolve_lifetime::early_bound_lifetimes`.
2043 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
2044     tcx: TyCtxt<'tcx>,
2045     def_id: LocalDefId,
2046     generics: &'a hir::Generics<'a>,
2047 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
2048     let late_bound_map = if generics.params.is_empty() {
2049         // This function may be called on `def_id == CRATE_DEF_ID`,
2050         // which makes `is_late_bound_map` ICE.  Don't even try if there
2051         // is no generic parameter.
2052         None
2053     } else {
2054         tcx.is_late_bound_map(def_id)
2055     };
2056     let is_late_bound = move |hir_id| {
2057         let id = tcx.hir().local_def_id(hir_id);
2058         late_bound_map.map_or(false, |(_, set)| set.contains(&id))
2059     };
2060     generics.params.iter().filter(move |param| match param.kind {
2061         GenericParamKind::Lifetime { .. } => !is_late_bound(param.hir_id),
2062         _ => false,
2063     })
2064 }
2065
2066 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
2067 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
2068 /// inferred constraints concerning which regions outlive other regions.
2069 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2070     debug!("predicates_defined_on({:?})", def_id);
2071     let mut result = tcx.explicit_predicates_of(def_id);
2072     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
2073     let inferred_outlives = tcx.inferred_outlives_of(def_id);
2074     if !inferred_outlives.is_empty() {
2075         debug!(
2076             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
2077             def_id, inferred_outlives,
2078         );
2079         if result.predicates.is_empty() {
2080             result.predicates = inferred_outlives;
2081         } else {
2082             result.predicates = tcx
2083                 .arena
2084                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
2085         }
2086     }
2087
2088     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
2089     result
2090 }
2091
2092 /// Returns a list of all type predicates (explicit and implicit) for the definition with
2093 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
2094 /// `Self: Trait` predicates for traits.
2095 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2096     let mut result = tcx.predicates_defined_on(def_id);
2097
2098     if tcx.is_trait(def_id) {
2099         // For traits, add `Self: Trait` predicate. This is
2100         // not part of the predicates that a user writes, but it
2101         // is something that one must prove in order to invoke a
2102         // method or project an associated type.
2103         //
2104         // In the chalk setup, this predicate is not part of the
2105         // "predicates" for a trait item. But it is useful in
2106         // rustc because if you directly (e.g.) invoke a trait
2107         // method like `Trait::method(...)`, you must naturally
2108         // prove that the trait applies to the types that were
2109         // used, and adding the predicate into this list ensures
2110         // that this is done.
2111         //
2112         // We use a DUMMY_SP here as a way to signal trait bounds that come
2113         // from the trait itself that *shouldn't* be shown as the source of
2114         // an obligation and instead be skipped. Otherwise we'd use
2115         // `tcx.def_span(def_id);`
2116         let span = rustc_span::DUMMY_SP;
2117         result.predicates =
2118             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
2119                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(tcx),
2120                 span,
2121             ))));
2122     }
2123     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
2124     result
2125 }
2126
2127 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
2128 /// N.B., this does not include any implied/inferred constraints.
2129 fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2130     use rustc_hir::*;
2131
2132     debug!("explicit_predicates_of(def_id={:?})", def_id);
2133
2134     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2135     let node = tcx.hir().get(hir_id);
2136
2137     let mut is_trait = None;
2138     let mut is_default_impl_trait = None;
2139
2140     let icx = ItemCtxt::new(tcx, def_id);
2141
2142     const NO_GENERICS: &hir::Generics<'_> = hir::Generics::empty();
2143
2144     // We use an `IndexSet` to preserves order of insertion.
2145     // Preserving the order of insertion is important here so as not to break UI tests.
2146     let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
2147
2148     let ast_generics = match node {
2149         Node::TraitItem(item) => item.generics,
2150
2151         Node::ImplItem(item) => item.generics,
2152
2153         Node::Item(item) => {
2154             match item.kind {
2155                 ItemKind::Impl(ref impl_) => {
2156                     if impl_.defaultness.is_default() {
2157                         is_default_impl_trait = tcx.impl_trait_ref(def_id).map(ty::Binder::dummy);
2158                     }
2159                     &impl_.generics
2160                 }
2161                 ItemKind::Fn(.., ref generics, _)
2162                 | ItemKind::TyAlias(_, ref generics)
2163                 | ItemKind::Enum(_, ref generics)
2164                 | ItemKind::Struct(_, ref generics)
2165                 | ItemKind::Union(_, ref generics) => *generics,
2166
2167                 ItemKind::Trait(_, _, ref generics, ..) => {
2168                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
2169                     *generics
2170                 }
2171                 ItemKind::TraitAlias(ref generics, _) => {
2172                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
2173                     *generics
2174                 }
2175                 ItemKind::OpaqueTy(OpaqueTy {
2176                     origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
2177                     ..
2178                 }) => {
2179                     // return-position impl trait
2180                     //
2181                     // We don't inherit predicates from the parent here:
2182                     // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
2183                     // then the return type is `f::<'static, T>::{{opaque}}`.
2184                     //
2185                     // If we inherited the predicates of `f` then we would
2186                     // require that `T: 'static` to show that the return
2187                     // type is well-formed.
2188                     //
2189                     // The only way to have something with this opaque type
2190                     // is from the return type of the containing function,
2191                     // which will ensure that the function's predicates
2192                     // hold.
2193                     return ty::GenericPredicates { parent: None, predicates: &[] };
2194                 }
2195                 ItemKind::OpaqueTy(OpaqueTy {
2196                     ref generics,
2197                     origin: hir::OpaqueTyOrigin::TyAlias,
2198                     ..
2199                 }) => {
2200                     // type-alias impl trait
2201                     generics
2202                 }
2203
2204                 _ => NO_GENERICS,
2205             }
2206         }
2207
2208         Node::ForeignItem(item) => match item.kind {
2209             ForeignItemKind::Static(..) => NO_GENERICS,
2210             ForeignItemKind::Fn(_, _, ref generics) => *generics,
2211             ForeignItemKind::Type => NO_GENERICS,
2212         },
2213
2214         _ => NO_GENERICS,
2215     };
2216
2217     let generics = tcx.generics_of(def_id);
2218     let parent_count = generics.parent_count as u32;
2219     let has_own_self = generics.has_self && parent_count == 0;
2220
2221     // Below we'll consider the bounds on the type parameters (including `Self`)
2222     // and the explicit where-clauses, but to get the full set of predicates
2223     // on a trait we need to add in the supertrait bounds and bounds found on
2224     // associated types.
2225     if let Some(_trait_ref) = is_trait {
2226         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2227     }
2228
2229     // In default impls, we can assume that the self type implements
2230     // the trait. So in:
2231     //
2232     //     default impl Foo for Bar { .. }
2233     //
2234     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2235     // (see below). Recall that a default impl is not itself an impl, but rather a
2236     // set of defaults that can be incorporated into another impl.
2237     if let Some(trait_ref) = is_default_impl_trait {
2238         predicates.insert((trait_ref.without_const().to_predicate(tcx), tcx.def_span(def_id)));
2239     }
2240
2241     // Collect the region predicates that were declared inline as
2242     // well. In the case of parameters declared on a fn or method, we
2243     // have to be careful to only iterate over early-bound regions.
2244     let mut index = parent_count
2245         + has_own_self as u32
2246         + early_bound_lifetimes_from_generics(tcx, hir_id.owner, ast_generics).count() as u32;
2247
2248     // Collect the predicates that were written inline by the user on each
2249     // type parameter (e.g., `<T: Foo>`).
2250     for param in ast_generics.params {
2251         match param.kind {
2252             // We already dealt with early bound lifetimes above.
2253             GenericParamKind::Lifetime { .. } => (),
2254             GenericParamKind::Type { .. } => {
2255                 let name = param.name.ident().name;
2256                 let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2257                 index += 1;
2258
2259                 let mut bounds = Bounds::default();
2260                 // Params are implicitly sized unless a `?Sized` bound is found
2261                 <dyn AstConv<'_>>::add_implicitly_sized(
2262                     &icx,
2263                     &mut bounds,
2264                     &[],
2265                     Some((param.hir_id, ast_generics.predicates)),
2266                     param.span,
2267                 );
2268                 predicates.extend(bounds.predicates(tcx, param_ty));
2269             }
2270             GenericParamKind::Const { .. } => {
2271                 // Bounds on const parameters are currently not possible.
2272                 index += 1;
2273             }
2274         }
2275     }
2276
2277     // Add in the bounds that appear in the where-clause.
2278     for predicate in ast_generics.predicates {
2279         match predicate {
2280             hir::WherePredicate::BoundPredicate(bound_pred) => {
2281                 let ty = icx.to_ty(bound_pred.bounded_ty);
2282                 let bound_vars = icx.tcx.late_bound_vars(bound_pred.bounded_ty.hir_id);
2283
2284                 // Keep the type around in a dummy predicate, in case of no bounds.
2285                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2286                 // is still checked for WF.
2287                 if bound_pred.bounds.is_empty() {
2288                     if let ty::Param(_) = ty.kind() {
2289                         // This is a `where T:`, which can be in the HIR from the
2290                         // transformation that moves `?Sized` to `T`'s declaration.
2291                         // We can skip the predicate because type parameters are
2292                         // trivially WF, but also we *should*, to avoid exposing
2293                         // users who never wrote `where Type:,` themselves, to
2294                         // compiler/tooling bugs from not handling WF predicates.
2295                     } else {
2296                         let span = bound_pred.bounded_ty.span;
2297                         let re_root_empty = tcx.lifetimes.re_root_empty;
2298                         let predicate = ty::Binder::bind_with_vars(
2299                             ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(
2300                                 ty,
2301                                 re_root_empty,
2302                             )),
2303                             bound_vars,
2304                         );
2305                         predicates.insert((predicate.to_predicate(tcx), span));
2306                     }
2307                 }
2308
2309                 let mut bounds = Bounds::default();
2310                 <dyn AstConv<'_>>::add_bounds(
2311                     &icx,
2312                     ty,
2313                     bound_pred.bounds.iter(),
2314                     &mut bounds,
2315                     bound_vars,
2316                 );
2317                 predicates.extend(bounds.predicates(tcx, ty));
2318             }
2319
2320             hir::WherePredicate::RegionPredicate(region_pred) => {
2321                 let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
2322                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2323                     let (r2, span) = match bound {
2324                         hir::GenericBound::Outlives(lt) => {
2325                             (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
2326                         }
2327                         _ => bug!(),
2328                     };
2329                     let pred = ty::Binder::dummy(ty::PredicateKind::RegionOutlives(
2330                         ty::OutlivesPredicate(r1, r2),
2331                     ))
2332                     .to_predicate(icx.tcx);
2333
2334                     (pred, span)
2335                 }))
2336             }
2337
2338             hir::WherePredicate::EqPredicate(..) => {
2339                 // FIXME(#20041)
2340             }
2341         }
2342     }
2343
2344     if tcx.features().generic_const_exprs {
2345         predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
2346     }
2347
2348     let mut predicates: Vec<_> = predicates.into_iter().collect();
2349
2350     // Subtle: before we store the predicates into the tcx, we
2351     // sort them so that predicates like `T: Foo<Item=U>` come
2352     // before uses of `U`.  This avoids false ambiguity errors
2353     // in trait checking. See `setup_constraining_predicates`
2354     // for details.
2355     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2356         let self_ty = tcx.type_of(def_id);
2357         let trait_ref = tcx.impl_trait_ref(def_id);
2358         cgp::setup_constraining_predicates(
2359             tcx,
2360             &mut predicates,
2361             trait_ref,
2362             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2363         );
2364     }
2365
2366     let result = ty::GenericPredicates {
2367         parent: generics.parent,
2368         predicates: tcx.arena.alloc_from_iter(predicates),
2369     };
2370     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2371     result
2372 }
2373
2374 fn const_evaluatable_predicates_of<'tcx>(
2375     tcx: TyCtxt<'tcx>,
2376     def_id: LocalDefId,
2377 ) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
2378     struct ConstCollector<'tcx> {
2379         tcx: TyCtxt<'tcx>,
2380         preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
2381     }
2382
2383     impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
2384         fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
2385             let def_id = self.tcx.hir().local_def_id(c.hir_id);
2386             let ct = ty::Const::from_anon_const(self.tcx, def_id);
2387             if let ty::ConstKind::Unevaluated(uv) = ct.val() {
2388                 assert_eq!(uv.promoted, None);
2389                 let span = self.tcx.hir().span(c.hir_id);
2390                 self.preds.insert((
2391                     ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(uv.shrink()))
2392                         .to_predicate(self.tcx),
2393                     span,
2394                 ));
2395             }
2396         }
2397
2398         fn visit_const_param_default(&mut self, _param: HirId, _ct: &'tcx hir::AnonConst) {
2399             // Do not look into const param defaults,
2400             // these get checked when they are actually instantiated.
2401             //
2402             // We do not want the following to error:
2403             //
2404             //     struct Foo<const N: usize, const M: usize = { N + 1 }>;
2405             //     struct Bar<const N: usize>(Foo<N, 3>);
2406         }
2407     }
2408
2409     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
2410     let node = tcx.hir().get(hir_id);
2411
2412     let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
2413     if let hir::Node::Item(item) = node && let hir::ItemKind::Impl(ref impl_) = item.kind {
2414         if let Some(of_trait) = &impl_.of_trait {
2415             debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
2416             collector.visit_trait_ref(of_trait);
2417         }
2418
2419         debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
2420         collector.visit_ty(impl_.self_ty);
2421     }
2422
2423     if let Some(generics) = node.generics() {
2424         debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
2425         collector.visit_generics(generics);
2426     }
2427
2428     if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
2429         debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
2430         collector.visit_fn_decl(fn_sig.decl);
2431     }
2432     debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
2433
2434     collector.preds
2435 }
2436
2437 fn trait_explicit_predicates_and_bounds(
2438     tcx: TyCtxt<'_>,
2439     def_id: LocalDefId,
2440 ) -> ty::GenericPredicates<'_> {
2441     assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
2442     gather_explicit_predicates_of(tcx, def_id.to_def_id())
2443 }
2444
2445 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2446     let def_kind = tcx.def_kind(def_id);
2447     if let DefKind::Trait = def_kind {
2448         // Remove bounds on associated types from the predicates, they will be
2449         // returned by `explicit_item_bounds`.
2450         let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
2451         let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
2452
2453         let is_assoc_item_ty = |ty: Ty<'_>| {
2454             // For a predicate from a where clause to become a bound on an
2455             // associated type:
2456             // * It must use the identity substs of the item.
2457             //     * Since any generic parameters on the item are not in scope,
2458             //       this means that the item is not a GAT, and its identity
2459             //       substs are the same as the trait's.
2460             // * It must be an associated type for this trait (*not* a
2461             //   supertrait).
2462             if let ty::Projection(projection) = ty.kind() {
2463                 projection.substs == trait_identity_substs
2464                     && tcx.associated_item(projection.item_def_id).container.id() == def_id
2465             } else {
2466                 false
2467             }
2468         };
2469
2470         let predicates: Vec<_> = predicates_and_bounds
2471             .predicates
2472             .iter()
2473             .copied()
2474             .filter(|(pred, _)| match pred.kind().skip_binder() {
2475                 ty::PredicateKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
2476                 ty::PredicateKind::Projection(proj) => {
2477                     !is_assoc_item_ty(proj.projection_ty.self_ty())
2478                 }
2479                 ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
2480                 _ => true,
2481             })
2482             .collect();
2483         if predicates.len() == predicates_and_bounds.predicates.len() {
2484             predicates_and_bounds
2485         } else {
2486             ty::GenericPredicates {
2487                 parent: predicates_and_bounds.parent,
2488                 predicates: tcx.arena.alloc_slice(&predicates),
2489             }
2490         }
2491     } else {
2492         if matches!(def_kind, DefKind::AnonConst) && tcx.lazy_normalization() {
2493             let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2494             if tcx.hir().opt_const_param_default_param_hir_id(hir_id).is_some() {
2495                 // In `generics_of` we set the generics' parent to be our parent's parent which means that
2496                 // we lose out on the predicates of our actual parent if we dont return those predicates here.
2497                 // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
2498                 //
2499                 // struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
2500                 //        ^^^                     ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
2501                 //        ^^^                                             explicit_predicates_of on
2502                 //        parent item we dont have set as the
2503                 //        parent of generics returned by `generics_of`
2504                 //
2505                 // In the above code we want the anon const to have predicates in its param env for `T: Trait`
2506                 let item_def_id = tcx.hir().get_parent_item(hir_id);
2507                 // In the above code example we would be calling `explicit_predicates_of(Foo)` here
2508                 return tcx.explicit_predicates_of(item_def_id);
2509             }
2510         }
2511         gather_explicit_predicates_of(tcx, def_id)
2512     }
2513 }
2514
2515 /// Converts a specific `GenericBound` from the AST into a set of
2516 /// predicates that apply to the self type. A vector is returned
2517 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2518 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2519 /// and `<T as Bar>::X == i32`).
2520 fn predicates_from_bound<'tcx>(
2521     astconv: &dyn AstConv<'tcx>,
2522     param_ty: Ty<'tcx>,
2523     bound: &'tcx hir::GenericBound<'tcx>,
2524     bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
2525 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2526     let mut bounds = Bounds::default();
2527     astconv.add_bounds(param_ty, [bound].into_iter(), &mut bounds, bound_vars);
2528     bounds.predicates(astconv.tcx(), param_ty).collect()
2529 }
2530
2531 fn compute_sig_of_foreign_fn_decl<'tcx>(
2532     tcx: TyCtxt<'tcx>,
2533     def_id: DefId,
2534     decl: &'tcx hir::FnDecl<'tcx>,
2535     abi: abi::Abi,
2536 ) -> ty::PolyFnSig<'tcx> {
2537     let unsafety = if abi == abi::Abi::RustIntrinsic {
2538         intrinsic_operation_unsafety(tcx.item_name(def_id))
2539     } else {
2540         hir::Unsafety::Unsafe
2541     };
2542     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2543     let fty = <dyn AstConv<'_>>::ty_of_fn(
2544         &ItemCtxt::new(tcx, def_id),
2545         hir_id,
2546         unsafety,
2547         abi,
2548         decl,
2549         None,
2550         None,
2551     );
2552
2553     // Feature gate SIMD types in FFI, since I am not sure that the
2554     // ABIs are handled at all correctly. -huonw
2555     if abi != abi::Abi::RustIntrinsic
2556         && abi != abi::Abi::PlatformIntrinsic
2557         && !tcx.features().simd_ffi
2558     {
2559         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2560             if ty.is_simd() {
2561                 let snip = tcx
2562                     .sess
2563                     .source_map()
2564                     .span_to_snippet(ast_ty.span)
2565                     .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
2566                 tcx.sess
2567                     .struct_span_err(
2568                         ast_ty.span,
2569                         &format!(
2570                             "use of SIMD type{} in FFI is highly experimental and \
2571                              may result in invalid code",
2572                             snip
2573                         ),
2574                     )
2575                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2576                     .emit();
2577             }
2578         };
2579         for (input, ty) in iter::zip(decl.inputs, fty.inputs().skip_binder()) {
2580             check(input, *ty)
2581         }
2582         if let hir::FnRetTy::Return(ref ty) = decl.output {
2583             check(ty, fty.output().skip_binder())
2584         }
2585     }
2586
2587     fty
2588 }
2589
2590 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2591     match tcx.hir().get_if_local(def_id) {
2592         Some(Node::ForeignItem(..)) => true,
2593         Some(_) => false,
2594         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2595     }
2596 }
2597
2598 fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
2599     match tcx.hir().get_if_local(def_id) {
2600         Some(Node::Expr(&rustc_hir::Expr {
2601             kind: rustc_hir::ExprKind::Closure(_, _, body_id, _, _),
2602             ..
2603         })) => tcx.hir().body(body_id).generator_kind(),
2604         Some(_) => None,
2605         _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
2606     }
2607 }
2608
2609 fn from_target_feature(
2610     tcx: TyCtxt<'_>,
2611     attr: &ast::Attribute,
2612     supported_target_features: &FxHashMap<String, Option<Symbol>>,
2613     target_features: &mut Vec<Symbol>,
2614 ) {
2615     let Some(list) = attr.meta_item_list() else { return };
2616     let bad_item = |span| {
2617         let msg = "malformed `target_feature` attribute input";
2618         let code = "enable = \"..\"".to_owned();
2619         tcx.sess
2620             .struct_span_err(span, msg)
2621             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2622             .emit();
2623     };
2624     let rust_features = tcx.features();
2625     for item in list {
2626         // Only `enable = ...` is accepted in the meta-item list.
2627         if !item.has_name(sym::enable) {
2628             bad_item(item.span());
2629             continue;
2630         }
2631
2632         // Must be of the form `enable = "..."` (a string).
2633         let Some(value) = item.value_str() else {
2634             bad_item(item.span());
2635             continue;
2636         };
2637
2638         // We allow comma separation to enable multiple features.
2639         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2640             let Some(feature_gate) = supported_target_features.get(feature) else {
2641                 let msg =
2642                     format!("the feature named `{}` is not valid for this target", feature);
2643                 let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2644                 err.span_label(
2645                     item.span(),
2646                     format!("`{}` is not valid for this target", feature),
2647                 );
2648                 if let Some(stripped) = feature.strip_prefix('+') {
2649                     let valid = supported_target_features.contains_key(stripped);
2650                     if valid {
2651                         err.help("consider removing the leading `+` in the feature name");
2652                     }
2653                 }
2654                 err.emit();
2655                 return None;
2656             };
2657
2658             // Only allow features whose feature gates have been enabled.
2659             let allowed = match feature_gate.as_ref().copied() {
2660                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2661                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2662                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2663                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2664                 Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
2665                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2666                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2667                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2668                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2669                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2670                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2671                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2672                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2673                 Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
2674                 Some(sym::bpf_target_feature) => rust_features.bpf_target_feature,
2675                 Some(sym::aarch64_ver_target_feature) => rust_features.aarch64_ver_target_feature,
2676                 Some(name) => bug!("unknown target feature gate {}", name),
2677                 None => true,
2678             };
2679             if !allowed {
2680                 feature_err(
2681                     &tcx.sess.parse_sess,
2682                     feature_gate.unwrap(),
2683                     item.span(),
2684                     &format!("the target feature `{}` is currently unstable", feature),
2685                 )
2686                 .emit();
2687             }
2688             Some(Symbol::intern(feature))
2689         }));
2690     }
2691 }
2692
2693 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: LocalDefId, name: &str) -> Linkage {
2694     use rustc_middle::mir::mono::Linkage::*;
2695
2696     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2697     // applicable to variable declarations and may not really make sense for
2698     // Rust code in the first place but allow them anyway and trust that the
2699     // user knows what they're doing. Who knows, unanticipated use cases may pop
2700     // up in the future.
2701     //
2702     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2703     // and don't have to be, LLVM treats them as no-ops.
2704     match name {
2705         "appending" => Appending,
2706         "available_externally" => AvailableExternally,
2707         "common" => Common,
2708         "extern_weak" => ExternalWeak,
2709         "external" => External,
2710         "internal" => Internal,
2711         "linkonce" => LinkOnceAny,
2712         "linkonce_odr" => LinkOnceODR,
2713         "private" => Private,
2714         "weak" => WeakAny,
2715         "weak_odr" => WeakODR,
2716         _ => tcx.sess.span_fatal(tcx.def_span(def_id), "invalid linkage specified"),
2717     }
2718 }
2719
2720 fn codegen_fn_attrs(tcx: TyCtxt<'_>, did: DefId) -> CodegenFnAttrs {
2721     if cfg!(debug_assertions) {
2722         let def_kind = tcx.def_kind(did);
2723         assert!(
2724             def_kind.has_codegen_attrs(),
2725             "unexpected `def_kind` in `codegen_fn_attrs`: {def_kind:?}",
2726         );
2727     }
2728
2729     let did = did.expect_local();
2730     let attrs = tcx.hir().attrs(tcx.hir().local_def_id_to_hir_id(did));
2731     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2732     if tcx.should_inherit_track_caller(did) {
2733         codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2734     }
2735
2736     // The panic_no_unwind function called by TerminatorKind::Abort will never
2737     // unwind. If the panic handler that it invokes unwind then it will simply
2738     // call the panic handler again.
2739     if Some(did.to_def_id()) == tcx.lang_items().panic_no_unwind() {
2740         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
2741     }
2742
2743     let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
2744
2745     let mut inline_span = None;
2746     let mut link_ordinal_span = None;
2747     let mut no_sanitize_span = None;
2748     for attr in attrs.iter() {
2749         if attr.has_name(sym::cold) {
2750             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2751         } else if attr.has_name(sym::rustc_allocator) {
2752             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2753         } else if attr.has_name(sym::ffi_returns_twice) {
2754             if tcx.is_foreign_item(did) {
2755                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2756             } else {
2757                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2758                 struct_span_err!(
2759                     tcx.sess,
2760                     attr.span,
2761                     E0724,
2762                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2763                 )
2764                 .emit();
2765             }
2766         } else if attr.has_name(sym::ffi_pure) {
2767             if tcx.is_foreign_item(did) {
2768                 if attrs.iter().any(|a| a.has_name(sym::ffi_const)) {
2769                     // `#[ffi_const]` functions cannot be `#[ffi_pure]`
2770                     struct_span_err!(
2771                         tcx.sess,
2772                         attr.span,
2773                         E0757,
2774                         "`#[ffi_const]` function cannot be `#[ffi_pure]`"
2775                     )
2776                     .emit();
2777                 } else {
2778                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
2779                 }
2780             } else {
2781                 // `#[ffi_pure]` is only allowed on foreign functions
2782                 struct_span_err!(
2783                     tcx.sess,
2784                     attr.span,
2785                     E0755,
2786                     "`#[ffi_pure]` may only be used on foreign functions"
2787                 )
2788                 .emit();
2789             }
2790         } else if attr.has_name(sym::ffi_const) {
2791             if tcx.is_foreign_item(did) {
2792                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
2793             } else {
2794                 // `#[ffi_const]` is only allowed on foreign functions
2795                 struct_span_err!(
2796                     tcx.sess,
2797                     attr.span,
2798                     E0756,
2799                     "`#[ffi_const]` may only be used on foreign functions"
2800                 )
2801                 .emit();
2802             }
2803         } else if attr.has_name(sym::rustc_allocator_nounwind) {
2804             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
2805         } else if attr.has_name(sym::naked) {
2806             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2807         } else if attr.has_name(sym::no_mangle) {
2808             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2809         } else if attr.has_name(sym::no_coverage) {
2810             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_COVERAGE;
2811         } else if attr.has_name(sym::rustc_std_internal_symbol) {
2812             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2813         } else if attr.has_name(sym::used) {
2814             let inner = attr.meta_item_list();
2815             match inner.as_deref() {
2816                 Some([item]) if item.has_name(sym::linker) => {
2817                     if !tcx.features().used_with_arg {
2818                         feature_err(
2819                             &tcx.sess.parse_sess,
2820                             sym::used_with_arg,
2821                             attr.span,
2822                             "`#[used(linker)]` is currently unstable",
2823                         )
2824                         .emit();
2825                     }
2826                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED_LINKER;
2827                 }
2828                 Some([item]) if item.has_name(sym::compiler) => {
2829                     if !tcx.features().used_with_arg {
2830                         feature_err(
2831                             &tcx.sess.parse_sess,
2832                             sym::used_with_arg,
2833                             attr.span,
2834                             "`#[used(compiler)]` is currently unstable",
2835                         )
2836                         .emit();
2837                     }
2838                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2839                 }
2840                 Some(_) => {
2841                     tcx.sess
2842                         .struct_span_err(
2843                             attr.span,
2844                             "expected `used`, `used(compiler)` or `used(linker)`",
2845                         )
2846                         .emit();
2847                 }
2848                 None => codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED,
2849             }
2850         } else if attr.has_name(sym::cmse_nonsecure_entry) {
2851             if !matches!(tcx.fn_sig(did).abi(), abi::Abi::C { .. }) {
2852                 struct_span_err!(
2853                     tcx.sess,
2854                     attr.span,
2855                     E0776,
2856                     "`#[cmse_nonsecure_entry]` requires C ABI"
2857                 )
2858                 .emit();
2859             }
2860             if !tcx.sess.target.llvm_target.contains("thumbv8m") {
2861                 struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
2862                     .emit();
2863             }
2864             codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
2865         } else if attr.has_name(sym::thread_local) {
2866             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2867         } else if attr.has_name(sym::track_caller) {
2868             if !tcx.is_closure(did.to_def_id()) && tcx.fn_sig(did).abi() != abi::Abi::Rust {
2869                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2870                     .emit();
2871             }
2872             if tcx.is_closure(did.to_def_id()) && !tcx.features().closure_track_caller {
2873                 feature_err(
2874                     &tcx.sess.parse_sess,
2875                     sym::closure_track_caller,
2876                     attr.span,
2877                     "`#[track_caller]` on closures is currently unstable",
2878                 )
2879                 .emit();
2880             }
2881             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2882         } else if attr.has_name(sym::export_name) {
2883             if let Some(s) = attr.value_str() {
2884                 if s.as_str().contains('\0') {
2885                     // `#[export_name = ...]` will be converted to a null-terminated string,
2886                     // so it may not contain any null characters.
2887                     struct_span_err!(
2888                         tcx.sess,
2889                         attr.span,
2890                         E0648,
2891                         "`export_name` may not contain null characters"
2892                     )
2893                     .emit();
2894                 }
2895                 codegen_fn_attrs.export_name = Some(s);
2896             }
2897         } else if attr.has_name(sym::target_feature) {
2898             if !tcx.is_closure(did.to_def_id())
2899                 && tcx.fn_sig(did).unsafety() == hir::Unsafety::Normal
2900             {
2901                 if tcx.sess.target.is_like_wasm || tcx.sess.opts.actually_rustdoc {
2902                     // The `#[target_feature]` attribute is allowed on
2903                     // WebAssembly targets on all functions, including safe
2904                     // ones. Other targets require that `#[target_feature]` is
2905                     // only applied to unsafe functions (pending the
2906                     // `target_feature_11` feature) because on most targets
2907                     // execution of instructions that are not supported is
2908                     // considered undefined behavior. For WebAssembly which is a
2909                     // 100% safe target at execution time it's not possible to
2910                     // execute undefined instructions, and even if a future
2911                     // feature was added in some form for this it would be a
2912                     // deterministic trap. There is no undefined behavior when
2913                     // executing WebAssembly so `#[target_feature]` is allowed
2914                     // on safe functions (but again, only for WebAssembly)
2915                     //
2916                     // Note that this is also allowed if `actually_rustdoc` so
2917                     // if a target is documenting some wasm-specific code then
2918                     // it's not spuriously denied.
2919                 } else if !tcx.features().target_feature_11 {
2920                     let mut err = feature_err(
2921                         &tcx.sess.parse_sess,
2922                         sym::target_feature_11,
2923                         attr.span,
2924                         "`#[target_feature(..)]` can only be applied to `unsafe` functions",
2925                     );
2926                     err.span_label(tcx.def_span(did), "not an `unsafe` function");
2927                     err.emit();
2928                 } else {
2929                     check_target_feature_trait_unsafe(tcx, did, attr.span);
2930                 }
2931             }
2932             from_target_feature(
2933                 tcx,
2934                 attr,
2935                 supported_target_features,
2936                 &mut codegen_fn_attrs.target_features,
2937             );
2938         } else if attr.has_name(sym::linkage) {
2939             if let Some(val) = attr.value_str() {
2940                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, did, val.as_str()));
2941             }
2942         } else if attr.has_name(sym::link_section) {
2943             if let Some(val) = attr.value_str() {
2944                 if val.as_str().bytes().any(|b| b == 0) {
2945                     let msg = format!(
2946                         "illegal null byte in link_section \
2947                          value: `{}`",
2948                         &val
2949                     );
2950                     tcx.sess.span_err(attr.span, &msg);
2951                 } else {
2952                     codegen_fn_attrs.link_section = Some(val);
2953                 }
2954             }
2955         } else if attr.has_name(sym::link_name) {
2956             codegen_fn_attrs.link_name = attr.value_str();
2957         } else if attr.has_name(sym::link_ordinal) {
2958             link_ordinal_span = Some(attr.span);
2959             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2960                 codegen_fn_attrs.link_ordinal = ordinal;
2961             }
2962         } else if attr.has_name(sym::no_sanitize) {
2963             no_sanitize_span = Some(attr.span);
2964             if let Some(list) = attr.meta_item_list() {
2965                 for item in list.iter() {
2966                     if item.has_name(sym::address) {
2967                         codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
2968                     } else if item.has_name(sym::cfi) {
2969                         codegen_fn_attrs.no_sanitize |= SanitizerSet::CFI;
2970                     } else if item.has_name(sym::memory) {
2971                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
2972                     } else if item.has_name(sym::memtag) {
2973                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMTAG;
2974                     } else if item.has_name(sym::thread) {
2975                         codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
2976                     } else if item.has_name(sym::hwaddress) {
2977                         codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
2978                     } else {
2979                         tcx.sess
2980                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
2981                             .note("expected one of: `address`, `cfi`, `hwaddress`, `memory`, `memtag`, or `thread`")
2982                             .emit();
2983                     }
2984                 }
2985             }
2986         } else if attr.has_name(sym::instruction_set) {
2987             codegen_fn_attrs.instruction_set = match attr.meta_kind() {
2988                 Some(MetaItemKind::List(ref items)) => match items.as_slice() {
2989                     [NestedMetaItem::MetaItem(set)] => {
2990                         let segments =
2991                             set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
2992                         match segments.as_slice() {
2993                             [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
2994                                 if !tcx.sess.target.has_thumb_interworking {
2995                                     struct_span_err!(
2996                                         tcx.sess.diagnostic(),
2997                                         attr.span,
2998                                         E0779,
2999                                         "target does not support `#[instruction_set]`"
3000                                     )
3001                                     .emit();
3002                                     None
3003                                 } else if segments[1] == sym::a32 {
3004                                     Some(InstructionSetAttr::ArmA32)
3005                                 } else if segments[1] == sym::t32 {
3006                                     Some(InstructionSetAttr::ArmT32)
3007                                 } else {
3008                                     unreachable!()
3009                                 }
3010                             }
3011                             _ => {
3012                                 struct_span_err!(
3013                                     tcx.sess.diagnostic(),
3014                                     attr.span,
3015                                     E0779,
3016                                     "invalid instruction set specified",
3017                                 )
3018                                 .emit();
3019                                 None
3020                             }
3021                         }
3022                     }
3023                     [] => {
3024                         struct_span_err!(
3025                             tcx.sess.diagnostic(),
3026                             attr.span,
3027                             E0778,
3028                             "`#[instruction_set]` requires an argument"
3029                         )
3030                         .emit();
3031                         None
3032                     }
3033                     _ => {
3034                         struct_span_err!(
3035                             tcx.sess.diagnostic(),
3036                             attr.span,
3037                             E0779,
3038                             "cannot specify more than one instruction set"
3039                         )
3040                         .emit();
3041                         None
3042                     }
3043                 },
3044                 _ => {
3045                     struct_span_err!(
3046                         tcx.sess.diagnostic(),
3047                         attr.span,
3048                         E0778,
3049                         "must specify an instruction set"
3050                     )
3051                     .emit();
3052                     None
3053                 }
3054             };
3055         } else if attr.has_name(sym::repr) {
3056             codegen_fn_attrs.alignment = match attr.meta_item_list() {
3057                 Some(items) => match items.as_slice() {
3058                     [item] => match item.name_value_literal() {
3059                         Some((sym::align, literal)) => {
3060                             let alignment = rustc_attr::parse_alignment(&literal.kind);
3061
3062                             match alignment {
3063                                 Ok(align) => Some(align),
3064                                 Err(msg) => {
3065                                     struct_span_err!(
3066                                         tcx.sess.diagnostic(),
3067                                         attr.span,
3068                                         E0589,
3069                                         "invalid `repr(align)` attribute: {}",
3070                                         msg
3071                                     )
3072                                     .emit();
3073
3074                                     None
3075                                 }
3076                             }
3077                         }
3078                         _ => None,
3079                     },
3080                     [] => None,
3081                     _ => None,
3082                 },
3083                 None => None,
3084             };
3085         }
3086     }
3087
3088     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
3089         if !attr.has_name(sym::inline) {
3090             return ia;
3091         }
3092         match attr.meta_kind() {
3093             Some(MetaItemKind::Word) => InlineAttr::Hint,
3094             Some(MetaItemKind::List(ref items)) => {
3095                 inline_span = Some(attr.span);
3096                 if items.len() != 1 {
3097                     struct_span_err!(
3098                         tcx.sess.diagnostic(),
3099                         attr.span,
3100                         E0534,
3101                         "expected one argument"
3102                     )
3103                     .emit();
3104                     InlineAttr::None
3105                 } else if list_contains_name(&items, sym::always) {
3106                     InlineAttr::Always
3107                 } else if list_contains_name(&items, sym::never) {
3108                     InlineAttr::Never
3109                 } else {
3110                     struct_span_err!(
3111                         tcx.sess.diagnostic(),
3112                         items[0].span(),
3113                         E0535,
3114                         "invalid argument"
3115                     )
3116                     .emit();
3117
3118                     InlineAttr::None
3119                 }
3120             }
3121             Some(MetaItemKind::NameValue(_)) => ia,
3122             None => ia,
3123         }
3124     });
3125
3126     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
3127         if !attr.has_name(sym::optimize) {
3128             return ia;
3129         }
3130         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
3131         match attr.meta_kind() {
3132             Some(MetaItemKind::Word) => {
3133                 err(attr.span, "expected one argument");
3134                 ia
3135             }
3136             Some(MetaItemKind::List(ref items)) => {
3137                 inline_span = Some(attr.span);
3138                 if items.len() != 1 {
3139                     err(attr.span, "expected one argument");
3140                     OptimizeAttr::None
3141                 } else if list_contains_name(&items, sym::size) {
3142                     OptimizeAttr::Size
3143                 } else if list_contains_name(&items, sym::speed) {
3144                     OptimizeAttr::Speed
3145                 } else {
3146                     err(items[0].span(), "invalid argument");
3147                     OptimizeAttr::None
3148                 }
3149             }
3150             Some(MetaItemKind::NameValue(_)) => ia,
3151             None => ia,
3152         }
3153     });
3154
3155     // #73631: closures inherit `#[target_feature]` annotations
3156     if tcx.features().target_feature_11 && tcx.is_closure(did.to_def_id()) {
3157         let owner_id = tcx.parent(did.to_def_id());
3158         codegen_fn_attrs
3159             .target_features
3160             .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied())
3161     }
3162
3163     // If a function uses #[target_feature] it can't be inlined into general
3164     // purpose functions as they wouldn't have the right target features
3165     // enabled. For that reason we also forbid #[inline(always)] as it can't be
3166     // respected.
3167     if !codegen_fn_attrs.target_features.is_empty() {
3168         if codegen_fn_attrs.inline == InlineAttr::Always {
3169             if let Some(span) = inline_span {
3170                 tcx.sess.span_err(
3171                     span,
3172                     "cannot use `#[inline(always)]` with \
3173                      `#[target_feature]`",
3174                 );
3175             }
3176         }
3177     }
3178
3179     if !codegen_fn_attrs.no_sanitize.is_empty() {
3180         if codegen_fn_attrs.inline == InlineAttr::Always {
3181             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
3182                 let hir_id = tcx.hir().local_def_id_to_hir_id(did);
3183                 tcx.struct_span_lint_hir(
3184                     lint::builtin::INLINE_NO_SANITIZE,
3185                     hir_id,
3186                     no_sanitize_span,
3187                     |lint| {
3188                         lint.build("`no_sanitize` will have no effect after inlining")
3189                             .span_note(inline_span, "inlining requested here")
3190                             .emit();
3191                     },
3192                 )
3193             }
3194         }
3195     }
3196
3197     // Weak lang items have the same semantics as "std internal" symbols in the
3198     // sense that they're preserved through all our LTO passes and only
3199     // strippable by the linker.
3200     //
3201     // Additionally weak lang items have predetermined symbol names.
3202     if tcx.is_weak_lang_item(did.to_def_id()) {
3203         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
3204     }
3205     if let Some(name) = weak_lang_items::link_name(attrs) {
3206         codegen_fn_attrs.export_name = Some(name);
3207         codegen_fn_attrs.link_name = Some(name);
3208     }
3209     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
3210
3211     // Internal symbols to the standard library all have no_mangle semantics in
3212     // that they have defined symbol names present in the function name. This
3213     // also applies to weak symbols where they all have known symbol names.
3214     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
3215         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
3216     }
3217
3218     // Any linkage to LLVM intrinsics for now forcibly marks them all as never
3219     // unwinds since LLVM sometimes can't handle codegen which `invoke`s
3220     // intrinsic functions.
3221     if let Some(name) = &codegen_fn_attrs.link_name {
3222         if name.as_str().starts_with("llvm.") {
3223             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
3224         }
3225     }
3226
3227     codegen_fn_attrs
3228 }
3229
3230 /// Computes the set of target features used in a function for the purposes of
3231 /// inline assembly.
3232 fn asm_target_features<'tcx>(tcx: TyCtxt<'tcx>, did: DefId) -> &'tcx FxHashSet<Symbol> {
3233     let mut target_features = tcx.sess.target_features.clone();
3234     if tcx.def_kind(did).has_codegen_attrs() {
3235         let attrs = tcx.codegen_fn_attrs(did);
3236         target_features.extend(&attrs.target_features);
3237         match attrs.instruction_set {
3238             None => {}
3239             Some(InstructionSetAttr::ArmA32) => {
3240                 target_features.remove(&sym::thumb_mode);
3241             }
3242             Some(InstructionSetAttr::ArmT32) => {
3243                 target_features.insert(sym::thumb_mode);
3244             }
3245         }
3246     }
3247
3248     tcx.arena.alloc(target_features)
3249 }
3250
3251 /// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
3252 /// applied to the method prototype.
3253 fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
3254     if let Some(impl_item) = tcx.opt_associated_item(def_id)
3255         && let ty::AssocItemContainer::ImplContainer(_) = impl_item.container
3256         && let Some(trait_item) = impl_item.trait_item_def_id
3257     {
3258         return tcx
3259             .codegen_fn_attrs(trait_item)
3260             .flags
3261             .intersects(CodegenFnAttrFlags::TRACK_CALLER);
3262     }
3263
3264     false
3265 }
3266
3267 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<u16> {
3268     use rustc_ast::{Lit, LitIntType, LitKind};
3269     let meta_item_list = attr.meta_item_list();
3270     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
3271     let sole_meta_list = match meta_item_list {
3272         Some([item]) => item.literal(),
3273         Some(_) => {
3274             tcx.sess
3275                 .struct_span_err(attr.span, "incorrect number of arguments to `#[link_ordinal]`")
3276                 .note("the attribute requires exactly one argument")
3277                 .emit();
3278             return None;
3279         }
3280         _ => None,
3281     };
3282     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
3283         // According to the table at https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-header,
3284         // the ordinal must fit into 16 bits.  Similarly, the Ordinal field in COFFShortExport (defined
3285         // in llvm/include/llvm/Object/COFFImportFile.h), which we use to communicate import information
3286         // to LLVM for `#[link(kind = "raw-dylib"_])`, is also defined to be uint16_t.
3287         //
3288         // FIXME: should we allow an ordinal of 0?  The MSVC toolchain has inconsistent support for this:
3289         // both LINK.EXE and LIB.EXE signal errors and abort when given a .DEF file that specifies
3290         // a zero ordinal.  However, llvm-dlltool is perfectly happy to generate an import library
3291         // for such a .DEF file, and MSVC's LINK.EXE is also perfectly happy to consume an import
3292         // library produced by LLVM with an ordinal of 0, and it generates an .EXE.  (I don't know yet
3293         // if the resulting EXE runs, as I haven't yet built the necessary DLL -- see earlier comment
3294         // about LINK.EXE failing.)
3295         if *ordinal <= u16::MAX as u128 {
3296             Some(*ordinal as u16)
3297         } else {
3298             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
3299             tcx.sess
3300                 .struct_span_err(attr.span, &msg)
3301                 .note("the value may not exceed `u16::MAX`")
3302                 .emit();
3303             None
3304         }
3305     } else {
3306         tcx.sess
3307             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
3308             .note("an unsuffixed integer value, e.g., `1`, is expected")
3309             .emit();
3310         None
3311     }
3312 }
3313
3314 fn check_link_name_xor_ordinal(
3315     tcx: TyCtxt<'_>,
3316     codegen_fn_attrs: &CodegenFnAttrs,
3317     inline_span: Option<Span>,
3318 ) {
3319     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
3320         return;
3321     }
3322     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
3323     if let Some(span) = inline_span {
3324         tcx.sess.span_err(span, msg);
3325     } else {
3326         tcx.sess.err(msg);
3327     }
3328 }
3329
3330 /// Checks the function annotated with `#[target_feature]` is not a safe
3331 /// trait method implementation, reporting an error if it is.
3332 fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
3333     let hir_id = tcx.hir().local_def_id_to_hir_id(id);
3334     let node = tcx.hir().get(hir_id);
3335     if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
3336         let parent_id = tcx.hir().get_parent_item(hir_id);
3337         let parent_item = tcx.hir().expect_item(parent_id);
3338         if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
3339             tcx.sess
3340                 .struct_span_err(
3341                     attr_span,
3342                     "`#[target_feature(..)]` cannot be applied to safe trait method",
3343                 )
3344                 .span_label(attr_span, "cannot be applied to safe trait method")
3345                 .span_label(tcx.def_span(id), "not an `unsafe` function")
3346                 .emit();
3347         }
3348     }
3349 }