]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/collect.rs
Auto merge of #79608 - alessandrod:bpf, r=nagisa
[rust.git] / compiler / rustc_typeck / src / collect.rs
1 // ignore-tidy-filelength
2 //! "Collection" is the process of determining the type and other external
3 //! details of each item in Rust. Collection is specifically concerned
4 //! with *inter-procedural* things -- for example, for a function
5 //! definition, collection will figure out the type and signature of the
6 //! function, but it will not visit the *body* of the function in any way,
7 //! nor examine type annotations on local variables (that's the job of
8 //! type *checking*).
9 //!
10 //! Collecting is ultimately defined by a bundle of queries that
11 //! inquire after various facts about the items in the crate (e.g.,
12 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
13 //! for the full set.
14 //!
15 //! At present, however, we do run collection across all items in the
16 //! crate as a kind of pass. This should eventually be factored away.
17
18 // ignore-tidy-filelength
19
20 use crate::astconv::{AstConv, SizedByDefault};
21 use crate::bounds::Bounds;
22 use crate::check::intrinsic::intrinsic_operation_unsafety;
23 use crate::constrained_generic_params as cgp;
24 use crate::errors;
25 use crate::middle::resolve_lifetime as rl;
26 use rustc_ast as ast;
27 use rustc_ast::{MetaItemKind, NestedMetaItem};
28 use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
29 use rustc_data_structures::captures::Captures;
30 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
31 use rustc_errors::{struct_span_err, Applicability};
32 use rustc_hir as hir;
33 use rustc_hir::def::{CtorKind, DefKind, Res};
34 use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE};
35 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
36 use rustc_hir::weak_lang_items;
37 use rustc_hir::{GenericParamKind, HirId, Node};
38 use rustc_middle::hir::map::blocks::FnLikeNode;
39 use rustc_middle::hir::map::Map;
40 use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
41 use rustc_middle::mir::mono::Linkage;
42 use rustc_middle::ty::query::Providers;
43 use rustc_middle::ty::subst::InternalSubsts;
44 use rustc_middle::ty::util::Discr;
45 use rustc_middle::ty::util::IntTypeExt;
46 use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, ToPolyTraitRef, Ty, TyCtxt};
47 use rustc_middle::ty::{ReprOptions, ToPredicate, WithConstness};
48 use rustc_session::lint;
49 use rustc_session::parse::feature_err;
50 use rustc_span::symbol::{kw, sym, Ident, Symbol};
51 use rustc_span::{Span, DUMMY_SP};
52 use rustc_target::spec::{abi, SanitizerSet};
53 use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
54 use std::iter;
55
56 mod item_bounds;
57 mod type_of;
58
59 struct OnlySelfBounds(bool);
60
61 ///////////////////////////////////////////////////////////////////////////
62 // Main entry point
63
64 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
65     tcx.hir().visit_item_likes_in_module(
66         module_def_id,
67         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
68     );
69 }
70
71 pub fn provide(providers: &mut Providers) {
72     *providers = Providers {
73         opt_const_param_of: type_of::opt_const_param_of,
74         type_of: type_of::type_of,
75         item_bounds: item_bounds::item_bounds,
76         explicit_item_bounds: item_bounds::explicit_item_bounds,
77         generics_of,
78         predicates_of,
79         predicates_defined_on,
80         projection_ty_from_predicates,
81         explicit_predicates_of,
82         super_predicates_of,
83         super_predicates_that_define_assoc_type,
84         trait_explicit_predicates_and_bounds,
85         type_param_predicates,
86         trait_def,
87         adt_def,
88         fn_sig,
89         impl_trait_ref,
90         impl_polarity,
91         is_foreign_item,
92         static_mutability,
93         generator_kind,
94         codegen_fn_attrs,
95         collect_mod_item_types,
96         ..*providers
97     };
98 }
99
100 ///////////////////////////////////////////////////////////////////////////
101
102 /// Context specific to some particular item. This is what implements
103 /// `AstConv`. It has information about the predicates that are defined
104 /// on the trait. Unfortunately, this predicate information is
105 /// available in various different forms at various points in the
106 /// process. So we can't just store a pointer to e.g., the AST or the
107 /// parsed ty form, we have to be more flexible. To this end, the
108 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
109 /// `get_type_parameter_bounds` requests, drawing the information from
110 /// the AST (`hir::Generics`), recursively.
111 pub struct ItemCtxt<'tcx> {
112     tcx: TyCtxt<'tcx>,
113     item_def_id: DefId,
114 }
115
116 ///////////////////////////////////////////////////////////////////////////
117
118 #[derive(Default)]
119 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
120
121 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
122     type Map = intravisit::ErasedMap<'v>;
123
124     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
125         NestedVisitorMap::None
126     }
127     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
128         if let hir::TyKind::Infer = t.kind {
129             self.0.push(t.span);
130         }
131         intravisit::walk_ty(self, t)
132     }
133 }
134
135 struct CollectItemTypesVisitor<'tcx> {
136     tcx: TyCtxt<'tcx>,
137 }
138
139 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
140 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
141 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
142 crate fn placeholder_type_error(
143     tcx: TyCtxt<'tcx>,
144     span: Option<Span>,
145     generics: &[hir::GenericParam<'_>],
146     placeholder_types: Vec<Span>,
147     suggest: bool,
148     hir_ty: Option<&hir::Ty<'_>>,
149 ) {
150     if placeholder_types.is_empty() {
151         return;
152     }
153
154     let type_name = generics.next_type_param_name(None);
155     let mut sugg: Vec<_> =
156         placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
157
158     if generics.is_empty() {
159         if let Some(span) = span {
160             sugg.push((span, format!("<{}>", type_name)));
161         }
162     } else if let Some(arg) = generics
163         .iter()
164         .find(|arg| matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. })))
165     {
166         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
167         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
168         sugg.push((arg.span, (*type_name).to_string()));
169     } else {
170         let last = generics.iter().last().unwrap();
171         sugg.push((
172             // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
173             last.bounds_span().unwrap_or(last.span).shrink_to_hi(),
174             format!(", {}", type_name),
175         ));
176     }
177
178     let mut err = bad_placeholder_type(tcx, placeholder_types);
179
180     // Suggest, but only if it is not a function in const or static
181     if suggest {
182         let mut is_fn = false;
183         let mut is_const = false;
184         let mut is_static = false;
185
186         if let Some(hir_ty) = hir_ty {
187             if let hir::TyKind::BareFn(_) = hir_ty.kind {
188                 is_fn = true;
189
190                 // Check if parent is const or static
191                 let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
192                 let parent_node = tcx.hir().get(parent_id);
193
194                 if let hir::Node::Item(item) = parent_node {
195                     if let hir::ItemKind::Const(_, _) = item.kind {
196                         is_const = true;
197                     } else if let hir::ItemKind::Static(_, _, _) = item.kind {
198                         is_static = true;
199                     }
200                 }
201             }
202         }
203
204         // if function is wrapped around a const or static,
205         // then don't show the suggestion
206         if !(is_fn && (is_const || is_static)) {
207             err.multipart_suggestion(
208                 "use type parameters instead",
209                 sugg,
210                 Applicability::HasPlaceholders,
211             );
212         }
213     }
214     err.emit();
215 }
216
217 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
218     let (generics, suggest) = match &item.kind {
219         hir::ItemKind::Union(_, generics)
220         | hir::ItemKind::Enum(_, generics)
221         | hir::ItemKind::TraitAlias(generics, _)
222         | hir::ItemKind::Trait(_, _, generics, ..)
223         | hir::ItemKind::Impl(hir::Impl { generics, .. })
224         | hir::ItemKind::Struct(_, generics) => (generics, true),
225         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
226         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
227         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
228         _ => return,
229     };
230
231     let mut visitor = PlaceholderHirTyCollector::default();
232     visitor.visit_item(item);
233
234     placeholder_type_error(tcx, Some(generics.span), generics.params, visitor.0, suggest, None);
235 }
236
237 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
238     type Map = Map<'tcx>;
239
240     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
241         NestedVisitorMap::OnlyBodies(self.tcx.hir())
242     }
243
244     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
245         convert_item(self.tcx, item.item_id());
246         reject_placeholder_type_signatures_in_item(self.tcx, item);
247         intravisit::walk_item(self, item);
248     }
249
250     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
251         for param in generics.params {
252             match param.kind {
253                 hir::GenericParamKind::Lifetime { .. } => {}
254                 hir::GenericParamKind::Type { default: Some(_), .. } => {
255                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
256                     self.tcx.ensure().type_of(def_id);
257                 }
258                 hir::GenericParamKind::Type { .. } => {}
259                 hir::GenericParamKind::Const { default, .. } => {
260                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
261                     self.tcx.ensure().type_of(def_id);
262                     if let Some(default) = default {
263                         let default_def_id = self.tcx.hir().local_def_id(default.hir_id);
264                         // need to store default and type of default
265                         self.tcx.ensure().type_of(default_def_id);
266                         self.tcx.ensure().const_param_default(def_id);
267                     }
268                 }
269             }
270         }
271         intravisit::walk_generics(self, generics);
272     }
273
274     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
275         if let hir::ExprKind::Closure(..) = expr.kind {
276             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
277             self.tcx.ensure().generics_of(def_id);
278             self.tcx.ensure().type_of(def_id);
279         }
280         intravisit::walk_expr(self, expr);
281     }
282
283     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
284         convert_trait_item(self.tcx, trait_item.trait_item_id());
285         intravisit::walk_trait_item(self, trait_item);
286     }
287
288     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
289         convert_impl_item(self.tcx, impl_item.impl_item_id());
290         intravisit::walk_impl_item(self, impl_item);
291     }
292 }
293
294 ///////////////////////////////////////////////////////////////////////////
295 // Utility types and common code for the above passes.
296
297 fn bad_placeholder_type(
298     tcx: TyCtxt<'tcx>,
299     mut spans: Vec<Span>,
300 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
301     spans.sort();
302     let mut err = struct_span_err!(
303         tcx.sess,
304         spans.clone(),
305         E0121,
306         "the type placeholder `_` is not allowed within types on item signatures",
307     );
308     for span in spans {
309         err.span_label(span, "not allowed in type signatures");
310     }
311     err
312 }
313
314 impl ItemCtxt<'tcx> {
315     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
316         ItemCtxt { tcx, item_def_id }
317     }
318
319     pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
320         <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
321     }
322
323     pub fn hir_id(&self) -> hir::HirId {
324         self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
325     }
326
327     pub fn node(&self) -> hir::Node<'tcx> {
328         self.tcx.hir().get(self.hir_id())
329     }
330 }
331
332 impl AstConv<'tcx> for ItemCtxt<'tcx> {
333     fn tcx(&self) -> TyCtxt<'tcx> {
334         self.tcx
335     }
336
337     fn item_def_id(&self) -> Option<DefId> {
338         Some(self.item_def_id)
339     }
340
341     fn default_constness_for_trait_bounds(&self) -> hir::Constness {
342         if let Some(fn_like) = FnLikeNode::from_node(self.node()) {
343             fn_like.constness()
344         } else {
345             hir::Constness::NotConst
346         }
347     }
348
349     fn get_type_parameter_bounds(
350         &self,
351         span: Span,
352         def_id: DefId,
353         assoc_name: Ident,
354     ) -> ty::GenericPredicates<'tcx> {
355         self.tcx.at(span).type_param_predicates((
356             self.item_def_id,
357             def_id.expect_local(),
358             assoc_name,
359         ))
360     }
361
362     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
363         None
364     }
365
366     fn allow_ty_infer(&self) -> bool {
367         false
368     }
369
370     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
371         self.tcx().ty_error_with_message(span, "bad_placeholder_type")
372     }
373
374     fn ct_infer(
375         &self,
376         ty: Ty<'tcx>,
377         _: Option<&ty::GenericParamDef>,
378         span: Span,
379     ) -> &'tcx Const<'tcx> {
380         bad_placeholder_type(self.tcx(), vec![span]).emit();
381         // Typeck doesn't expect erased regions to be returned from `type_of`.
382         let ty = self.tcx.fold_regions(ty, &mut false, |r, _| match r {
383             ty::ReErased => self.tcx.lifetimes.re_static,
384             _ => r,
385         });
386         self.tcx().const_error(ty)
387     }
388
389     fn projected_ty_from_poly_trait_ref(
390         &self,
391         span: Span,
392         item_def_id: DefId,
393         item_segment: &hir::PathSegment<'_>,
394         poly_trait_ref: ty::PolyTraitRef<'tcx>,
395     ) -> Ty<'tcx> {
396         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
397             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
398                 self,
399                 self.tcx,
400                 span,
401                 item_def_id,
402                 item_segment,
403                 trait_ref.substs,
404             );
405             self.tcx().mk_projection(item_def_id, item_substs)
406         } else {
407             // There are no late-bound regions; we can just ignore the binder.
408             let mut err = struct_span_err!(
409                 self.tcx().sess,
410                 span,
411                 E0212,
412                 "cannot use the associated type of a trait \
413                  with uninferred generic parameters"
414             );
415
416             match self.node() {
417                 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
418                     let item =
419                         self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
420                     match &item.kind {
421                         hir::ItemKind::Enum(_, generics)
422                         | hir::ItemKind::Struct(_, generics)
423                         | hir::ItemKind::Union(_, generics) => {
424                             let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
425                             let (lt_sp, sugg) = match generics.params {
426                                 [] => (generics.span, format!("<{}>", lt_name)),
427                                 [bound, ..] => {
428                                     (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
429                                 }
430                             };
431                             let suggestions = vec![
432                                 (lt_sp, sugg),
433                                 (
434                                     span,
435                                     format!(
436                                         "{}::{}",
437                                         // Replace the existing lifetimes with a new named lifetime.
438                                         self.tcx
439                                             .replace_late_bound_regions(poly_trait_ref, |_| {
440                                                 self.tcx.mk_region(ty::ReEarlyBound(
441                                                     ty::EarlyBoundRegion {
442                                                         def_id: item_def_id,
443                                                         index: 0,
444                                                         name: Symbol::intern(&lt_name),
445                                                     },
446                                                 ))
447                                             })
448                                             .0,
449                                         item_segment.ident
450                                     ),
451                                 ),
452                             ];
453                             err.multipart_suggestion(
454                                 "use a fully qualified path with explicit lifetimes",
455                                 suggestions,
456                                 Applicability::MaybeIncorrect,
457                             );
458                         }
459                         _ => {}
460                     }
461                 }
462                 hir::Node::Item(hir::Item {
463                     kind:
464                         hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
465                     ..
466                 }) => {}
467                 hir::Node::Item(_)
468                 | hir::Node::ForeignItem(_)
469                 | hir::Node::TraitItem(_)
470                 | hir::Node::ImplItem(_) => {
471                     err.span_suggestion(
472                         span,
473                         "use a fully qualified path with inferred lifetimes",
474                         format!(
475                             "{}::{}",
476                             // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
477                             self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
478                             item_segment.ident
479                         ),
480                         Applicability::MaybeIncorrect,
481                     );
482                 }
483                 _ => {}
484             }
485             err.emit();
486             self.tcx().ty_error()
487         }
488     }
489
490     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
491         // Types in item signatures are not normalized to avoid undue dependencies.
492         ty
493     }
494
495     fn set_tainted_by_errors(&self) {
496         // There's no obvious place to track this, so just let it go.
497     }
498
499     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
500         // There's no place to record types from signatures?
501     }
502 }
503
504 /// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
505 fn get_new_lifetime_name<'tcx>(
506     tcx: TyCtxt<'tcx>,
507     poly_trait_ref: ty::PolyTraitRef<'tcx>,
508     generics: &hir::Generics<'tcx>,
509 ) -> String {
510     let existing_lifetimes = tcx
511         .collect_referenced_late_bound_regions(&poly_trait_ref)
512         .into_iter()
513         .filter_map(|lt| {
514             if let ty::BoundRegionKind::BrNamed(_, name) = lt {
515                 Some(name.as_str().to_string())
516             } else {
517                 None
518             }
519         })
520         .chain(generics.params.iter().filter_map(|param| {
521             if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
522                 Some(param.name.ident().as_str().to_string())
523             } else {
524                 None
525             }
526         }))
527         .collect::<FxHashSet<String>>();
528
529     let a_to_z_repeat_n = |n| {
530         (b'a'..=b'z').map(move |c| {
531             let mut s = '\''.to_string();
532             s.extend(std::iter::repeat(char::from(c)).take(n));
533             s
534         })
535     };
536
537     // If all single char lifetime names are present, we wrap around and double the chars.
538     (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
539 }
540
541 /// Returns the predicates defined on `item_def_id` of the form
542 /// `X: Foo` where `X` is the type parameter `def_id`.
543 fn type_param_predicates(
544     tcx: TyCtxt<'_>,
545     (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
546 ) -> ty::GenericPredicates<'_> {
547     use rustc_hir::*;
548
549     // In the AST, bounds can derive from two places. Either
550     // written inline like `<T: Foo>` or in a where-clause like
551     // `where T: Foo`.
552
553     let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
554     let param_owner = tcx.hir().ty_param_owner(param_id);
555     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
556     let generics = tcx.generics_of(param_owner_def_id);
557     let index = generics.param_def_id_to_index[&def_id.to_def_id()];
558     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
559
560     // Don't look for bounds where the type parameter isn't in scope.
561     let parent = if item_def_id == param_owner_def_id.to_def_id() {
562         None
563     } else {
564         tcx.generics_of(item_def_id).parent
565     };
566
567     let mut result = parent
568         .map(|parent| {
569             let icx = ItemCtxt::new(tcx, parent);
570             icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
571         })
572         .unwrap_or_default();
573     let mut extend = None;
574
575     let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
576     let ast_generics = match tcx.hir().get(item_hir_id) {
577         Node::TraitItem(item) => &item.generics,
578
579         Node::ImplItem(item) => &item.generics,
580
581         Node::Item(item) => {
582             match item.kind {
583                 ItemKind::Fn(.., ref generics, _)
584                 | ItemKind::Impl(hir::Impl { ref generics, .. })
585                 | ItemKind::TyAlias(_, ref generics)
586                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
587                 | ItemKind::Enum(_, ref generics)
588                 | ItemKind::Struct(_, ref generics)
589                 | ItemKind::Union(_, ref generics) => generics,
590                 ItemKind::Trait(_, _, ref generics, ..) => {
591                     // Implied `Self: Trait` and supertrait bounds.
592                     if param_id == item_hir_id {
593                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
594                         extend =
595                             Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
596                     }
597                     generics
598                 }
599                 _ => return result,
600             }
601         }
602
603         Node::ForeignItem(item) => match item.kind {
604             ForeignItemKind::Fn(_, _, ref generics) => generics,
605             _ => return result,
606         },
607
608         _ => return result,
609     };
610
611     let icx = ItemCtxt::new(tcx, item_def_id);
612     let extra_predicates = extend.into_iter().chain(
613         icx.type_parameter_bounds_in_generics(
614             ast_generics,
615             param_id,
616             ty,
617             OnlySelfBounds(true),
618             Some(assoc_name),
619         )
620         .into_iter()
621         .filter(|(predicate, _)| match predicate.kind().skip_binder() {
622             ty::PredicateKind::Trait(data, _) => data.self_ty().is_param(index),
623             _ => false,
624         }),
625     );
626     result.predicates =
627         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
628     result
629 }
630
631 impl ItemCtxt<'tcx> {
632     /// Finds bounds from `hir::Generics`. This requires scanning through the
633     /// AST. We do this to avoid having to convert *all* the bounds, which
634     /// would create artificial cycles. Instead, we can only convert the
635     /// bounds for a type parameter `X` if `X::Foo` is used.
636     fn type_parameter_bounds_in_generics(
637         &self,
638         ast_generics: &'tcx hir::Generics<'tcx>,
639         param_id: hir::HirId,
640         ty: Ty<'tcx>,
641         only_self_bounds: OnlySelfBounds,
642         assoc_name: Option<Ident>,
643     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
644         let constness = self.default_constness_for_trait_bounds();
645         let from_ty_params = ast_generics
646             .params
647             .iter()
648             .filter_map(|param| match param.kind {
649                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
650                 _ => None,
651             })
652             .flat_map(|bounds| bounds.iter())
653             .filter(|b| match assoc_name {
654                 Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
655                 None => true,
656             })
657             .flat_map(|b| predicates_from_bound(self, ty, b, constness));
658
659         let from_where_clauses = ast_generics
660             .where_clause
661             .predicates
662             .iter()
663             .filter_map(|wp| match *wp {
664                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
665                 _ => None,
666             })
667             .flat_map(|bp| {
668                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
669                     Some(ty)
670                 } else if !only_self_bounds.0 {
671                     Some(self.to_ty(&bp.bounded_ty))
672                 } else {
673                     None
674                 };
675                 bp.bounds
676                     .iter()
677                     .filter(|b| match assoc_name {
678                         Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
679                         None => true,
680                     })
681                     .filter_map(move |b| bt.map(|bt| (bt, b)))
682             })
683             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b, constness));
684
685         from_ty_params.chain(from_where_clauses).collect()
686     }
687
688     fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
689         debug!("bound_defines_assoc_item(b={:?}, assoc_name={:?})", b, assoc_name);
690
691         match b {
692             hir::GenericBound::Trait(poly_trait_ref, _) => {
693                 let trait_ref = &poly_trait_ref.trait_ref;
694                 if let Some(trait_did) = trait_ref.trait_def_id() {
695                     self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
696                 } else {
697                     false
698                 }
699             }
700             _ => false,
701         }
702     }
703 }
704
705 /// Tests whether this is the AST for a reference to the type
706 /// parameter with ID `param_id`. We use this so as to avoid running
707 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
708 /// conversion of the type to avoid inducing unnecessary cycles.
709 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
710     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
711         match path.res {
712             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
713                 def_id == tcx.hir().local_def_id(param_id).to_def_id()
714             }
715             _ => false,
716         }
717     } else {
718         false
719     }
720 }
721
722 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
723     let it = tcx.hir().item(item_id);
724     debug!("convert: item {} with id {}", it.ident, it.hir_id());
725     let def_id = item_id.def_id;
726
727     match it.kind {
728         // These don't define types.
729         hir::ItemKind::ExternCrate(_)
730         | hir::ItemKind::Use(..)
731         | hir::ItemKind::Mod(_)
732         | hir::ItemKind::GlobalAsm(_) => {}
733         hir::ItemKind::ForeignMod { items, .. } => {
734             for item in items {
735                 let item = tcx.hir().foreign_item(item.id);
736                 tcx.ensure().generics_of(item.def_id);
737                 tcx.ensure().type_of(item.def_id);
738                 tcx.ensure().predicates_of(item.def_id);
739                 match item.kind {
740                     hir::ForeignItemKind::Fn(..) => tcx.ensure().fn_sig(item.def_id),
741                     hir::ForeignItemKind::Static(..) => {
742                         let mut visitor = PlaceholderHirTyCollector::default();
743                         visitor.visit_foreign_item(item);
744                         placeholder_type_error(tcx, None, &[], visitor.0, false, None);
745                     }
746                     _ => (),
747                 }
748             }
749         }
750         hir::ItemKind::Enum(ref enum_definition, _) => {
751             tcx.ensure().generics_of(def_id);
752             tcx.ensure().type_of(def_id);
753             tcx.ensure().predicates_of(def_id);
754             convert_enum_variant_types(tcx, def_id.to_def_id(), &enum_definition.variants);
755         }
756         hir::ItemKind::Impl { .. } => {
757             tcx.ensure().generics_of(def_id);
758             tcx.ensure().type_of(def_id);
759             tcx.ensure().impl_trait_ref(def_id);
760             tcx.ensure().predicates_of(def_id);
761         }
762         hir::ItemKind::Trait(..) => {
763             tcx.ensure().generics_of(def_id);
764             tcx.ensure().trait_def(def_id);
765             tcx.at(it.span).super_predicates_of(def_id);
766             tcx.ensure().predicates_of(def_id);
767         }
768         hir::ItemKind::TraitAlias(..) => {
769             tcx.ensure().generics_of(def_id);
770             tcx.at(it.span).super_predicates_of(def_id);
771             tcx.ensure().predicates_of(def_id);
772         }
773         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
774             tcx.ensure().generics_of(def_id);
775             tcx.ensure().type_of(def_id);
776             tcx.ensure().predicates_of(def_id);
777
778             for f in struct_def.fields() {
779                 let def_id = tcx.hir().local_def_id(f.hir_id);
780                 tcx.ensure().generics_of(def_id);
781                 tcx.ensure().type_of(def_id);
782                 tcx.ensure().predicates_of(def_id);
783             }
784
785             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
786                 convert_variant_ctor(tcx, ctor_hir_id);
787             }
788         }
789
790         // Desugared from `impl Trait`, so visited by the function's return type.
791         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
792
793         // Don't call `type_of` on opaque types, since that depends on type
794         // checking function bodies. `check_item_type` ensures that it's called
795         // instead.
796         hir::ItemKind::OpaqueTy(..) => {
797             tcx.ensure().generics_of(def_id);
798             tcx.ensure().predicates_of(def_id);
799             tcx.ensure().explicit_item_bounds(def_id);
800         }
801         hir::ItemKind::TyAlias(..)
802         | hir::ItemKind::Static(..)
803         | hir::ItemKind::Const(..)
804         | hir::ItemKind::Fn(..) => {
805             tcx.ensure().generics_of(def_id);
806             tcx.ensure().type_of(def_id);
807             tcx.ensure().predicates_of(def_id);
808             match it.kind {
809                 hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
810                 hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
811                 _ => (),
812             }
813         }
814     }
815 }
816
817 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
818     let trait_item = tcx.hir().trait_item(trait_item_id);
819     tcx.ensure().generics_of(trait_item_id.def_id);
820
821     match trait_item.kind {
822         hir::TraitItemKind::Fn(..) => {
823             tcx.ensure().type_of(trait_item_id.def_id);
824             tcx.ensure().fn_sig(trait_item_id.def_id);
825         }
826
827         hir::TraitItemKind::Const(.., Some(_)) => {
828             tcx.ensure().type_of(trait_item_id.def_id);
829         }
830
831         hir::TraitItemKind::Const(..) => {
832             tcx.ensure().type_of(trait_item_id.def_id);
833             // Account for `const C: _;`.
834             let mut visitor = PlaceholderHirTyCollector::default();
835             visitor.visit_trait_item(trait_item);
836             placeholder_type_error(tcx, None, &[], visitor.0, false, None);
837         }
838
839         hir::TraitItemKind::Type(_, Some(_)) => {
840             tcx.ensure().item_bounds(trait_item_id.def_id);
841             tcx.ensure().type_of(trait_item_id.def_id);
842             // Account for `type T = _;`.
843             let mut visitor = PlaceholderHirTyCollector::default();
844             visitor.visit_trait_item(trait_item);
845             placeholder_type_error(tcx, None, &[], visitor.0, false, None);
846         }
847
848         hir::TraitItemKind::Type(_, None) => {
849             tcx.ensure().item_bounds(trait_item_id.def_id);
850             // #74612: Visit and try to find bad placeholders
851             // even if there is no concrete type.
852             let mut visitor = PlaceholderHirTyCollector::default();
853             visitor.visit_trait_item(trait_item);
854
855             placeholder_type_error(tcx, None, &[], visitor.0, false, None);
856         }
857     };
858
859     tcx.ensure().predicates_of(trait_item_id.def_id);
860 }
861
862 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
863     let def_id = impl_item_id.def_id;
864     tcx.ensure().generics_of(def_id);
865     tcx.ensure().type_of(def_id);
866     tcx.ensure().predicates_of(def_id);
867     let impl_item = tcx.hir().impl_item(impl_item_id);
868     match impl_item.kind {
869         hir::ImplItemKind::Fn(..) => {
870             tcx.ensure().fn_sig(def_id);
871         }
872         hir::ImplItemKind::TyAlias(_) => {
873             // Account for `type T = _;`
874             let mut visitor = PlaceholderHirTyCollector::default();
875             visitor.visit_impl_item(impl_item);
876
877             placeholder_type_error(tcx, None, &[], visitor.0, false, None);
878         }
879         hir::ImplItemKind::Const(..) => {}
880     }
881 }
882
883 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
884     let def_id = tcx.hir().local_def_id(ctor_id);
885     tcx.ensure().generics_of(def_id);
886     tcx.ensure().type_of(def_id);
887     tcx.ensure().predicates_of(def_id);
888 }
889
890 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
891     let def = tcx.adt_def(def_id);
892     let repr_type = def.repr.discr_type();
893     let initial = repr_type.initial_discriminant(tcx);
894     let mut prev_discr = None::<Discr<'_>>;
895
896     // fill the discriminant values and field types
897     for variant in variants {
898         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
899         prev_discr = Some(
900             if let Some(ref e) = variant.disr_expr {
901                 let expr_did = tcx.hir().local_def_id(e.hir_id);
902                 def.eval_explicit_discr(tcx, expr_did.to_def_id())
903             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
904                 Some(discr)
905             } else {
906                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
907                     .span_label(
908                         variant.span,
909                         format!("overflowed on value after {}", prev_discr.unwrap()),
910                     )
911                     .note(&format!(
912                         "explicitly set `{} = {}` if that is desired outcome",
913                         variant.ident, wrapped_discr
914                     ))
915                     .emit();
916                 None
917             }
918             .unwrap_or(wrapped_discr),
919         );
920
921         for f in variant.data.fields() {
922             let def_id = tcx.hir().local_def_id(f.hir_id);
923             tcx.ensure().generics_of(def_id);
924             tcx.ensure().type_of(def_id);
925             tcx.ensure().predicates_of(def_id);
926         }
927
928         // Convert the ctor, if any. This also registers the variant as
929         // an item.
930         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
931             convert_variant_ctor(tcx, ctor_hir_id);
932         }
933     }
934 }
935
936 fn convert_variant(
937     tcx: TyCtxt<'_>,
938     variant_did: Option<LocalDefId>,
939     ctor_did: Option<LocalDefId>,
940     ident: Ident,
941     discr: ty::VariantDiscr,
942     def: &hir::VariantData<'_>,
943     adt_kind: ty::AdtKind,
944     parent_did: LocalDefId,
945 ) -> ty::VariantDef {
946     let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
947     let fields = def
948         .fields()
949         .iter()
950         .map(|f| {
951             let fid = tcx.hir().local_def_id(f.hir_id);
952             let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
953             if let Some(prev_span) = dup_span {
954                 tcx.sess.emit_err(errors::FieldAlreadyDeclared {
955                     field_name: f.ident,
956                     span: f.span,
957                     prev_span,
958                 });
959             } else {
960                 seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
961             }
962
963             ty::FieldDef { did: fid.to_def_id(), ident: f.ident, vis: tcx.visibility(fid) }
964         })
965         .collect();
966     let recovered = match def {
967         hir::VariantData::Struct(_, r) => *r,
968         _ => false,
969     };
970     ty::VariantDef::new(
971         ident,
972         variant_did.map(LocalDefId::to_def_id),
973         ctor_did.map(LocalDefId::to_def_id),
974         discr,
975         fields,
976         CtorKind::from_hir(def),
977         adt_kind,
978         parent_did.to_def_id(),
979         recovered,
980         adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
981             || variant_did.map_or(false, |variant_did| {
982                 tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
983             }),
984     )
985 }
986
987 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
988     use rustc_hir::*;
989
990     let def_id = def_id.expect_local();
991     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
992     let item = match tcx.hir().get(hir_id) {
993         Node::Item(item) => item,
994         _ => bug!(),
995     };
996
997     let repr = ReprOptions::new(tcx, def_id.to_def_id());
998     let (kind, variants) = match item.kind {
999         ItemKind::Enum(ref def, _) => {
1000             let mut distance_from_explicit = 0;
1001             let variants = def
1002                 .variants
1003                 .iter()
1004                 .map(|v| {
1005                     let variant_did = Some(tcx.hir().local_def_id(v.id));
1006                     let ctor_did =
1007                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1008
1009                     let discr = if let Some(ref e) = v.disr_expr {
1010                         distance_from_explicit = 0;
1011                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
1012                     } else {
1013                         ty::VariantDiscr::Relative(distance_from_explicit)
1014                     };
1015                     distance_from_explicit += 1;
1016
1017                     convert_variant(
1018                         tcx,
1019                         variant_did,
1020                         ctor_did,
1021                         v.ident,
1022                         discr,
1023                         &v.data,
1024                         AdtKind::Enum,
1025                         def_id,
1026                     )
1027                 })
1028                 .collect();
1029
1030             (AdtKind::Enum, variants)
1031         }
1032         ItemKind::Struct(ref def, _) => {
1033             let variant_did = None::<LocalDefId>;
1034             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1035
1036             let variants = std::iter::once(convert_variant(
1037                 tcx,
1038                 variant_did,
1039                 ctor_did,
1040                 item.ident,
1041                 ty::VariantDiscr::Relative(0),
1042                 def,
1043                 AdtKind::Struct,
1044                 def_id,
1045             ))
1046             .collect();
1047
1048             (AdtKind::Struct, variants)
1049         }
1050         ItemKind::Union(ref def, _) => {
1051             let variant_did = None;
1052             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1053
1054             let variants = std::iter::once(convert_variant(
1055                 tcx,
1056                 variant_did,
1057                 ctor_did,
1058                 item.ident,
1059                 ty::VariantDiscr::Relative(0),
1060                 def,
1061                 AdtKind::Union,
1062                 def_id,
1063             ))
1064             .collect();
1065
1066             (AdtKind::Union, variants)
1067         }
1068         _ => bug!(),
1069     };
1070     tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
1071 }
1072
1073 /// Ensures that the super-predicates of the trait with a `DefId`
1074 /// of `trait_def_id` are converted and stored. This also ensures that
1075 /// the transitive super-predicates are converted.
1076 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
1077     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
1078     tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
1079 }
1080
1081 /// Ensures that the super-predicates of the trait with a `DefId`
1082 /// of `trait_def_id` are converted and stored. This also ensures that
1083 /// the transitive super-predicates are converted.
1084 fn super_predicates_that_define_assoc_type(
1085     tcx: TyCtxt<'_>,
1086     (trait_def_id, assoc_name): (DefId, Option<Ident>),
1087 ) -> ty::GenericPredicates<'_> {
1088     debug!(
1089         "super_predicates_that_define_assoc_type(trait_def_id={:?}, assoc_name={:?})",
1090         trait_def_id, assoc_name
1091     );
1092     if trait_def_id.is_local() {
1093         debug!("super_predicates_that_define_assoc_type: local trait_def_id={:?}", trait_def_id);
1094         let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
1095
1096         let item = match tcx.hir().get(trait_hir_id) {
1097             Node::Item(item) => item,
1098             _ => bug!("trait_node_id {} is not an item", trait_hir_id),
1099         };
1100
1101         let (generics, bounds) = match item.kind {
1102             hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
1103             hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
1104             _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
1105         };
1106
1107         let icx = ItemCtxt::new(tcx, trait_def_id);
1108
1109         // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
1110         let self_param_ty = tcx.types.self_param;
1111         let superbounds1 = if let Some(assoc_name) = assoc_name {
1112             <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
1113                 &icx,
1114                 self_param_ty,
1115                 &bounds,
1116                 SizedByDefault::No,
1117                 item.span,
1118                 assoc_name,
1119             )
1120         } else {
1121             <dyn AstConv<'_>>::compute_bounds(
1122                 &icx,
1123                 self_param_ty,
1124                 &bounds,
1125                 SizedByDefault::No,
1126                 item.span,
1127             )
1128         };
1129
1130         let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
1131
1132         // Convert any explicit superbounds in the where-clause,
1133         // e.g., `trait Foo where Self: Bar`.
1134         // In the case of trait aliases, however, we include all bounds in the where-clause,
1135         // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
1136         // as one of its "superpredicates".
1137         let is_trait_alias = tcx.is_trait_alias(trait_def_id);
1138         let superbounds2 = icx.type_parameter_bounds_in_generics(
1139             generics,
1140             item.hir_id(),
1141             self_param_ty,
1142             OnlySelfBounds(!is_trait_alias),
1143             assoc_name,
1144         );
1145
1146         // Combine the two lists to form the complete set of superbounds:
1147         let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
1148
1149         // Now require that immediate supertraits are converted,
1150         // which will, in turn, reach indirect supertraits.
1151         if assoc_name.is_none() {
1152             // Now require that immediate supertraits are converted,
1153             // which will, in turn, reach indirect supertraits.
1154             for &(pred, span) in superbounds {
1155                 debug!("superbound: {:?}", pred);
1156                 if let ty::PredicateKind::Trait(bound, _) = pred.kind().skip_binder() {
1157                     tcx.at(span).super_predicates_of(bound.def_id());
1158                 }
1159             }
1160         }
1161
1162         ty::GenericPredicates { parent: None, predicates: superbounds }
1163     } else {
1164         // if `assoc_name` is None, then the query should've been redirected to an
1165         // external provider
1166         assert!(assoc_name.is_some());
1167         tcx.super_predicates_of(trait_def_id)
1168     }
1169 }
1170
1171 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
1172     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1173     let item = tcx.hir().expect_item(hir_id);
1174
1175     let (is_auto, unsafety) = match item.kind {
1176         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
1177         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
1178         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
1179     };
1180
1181     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
1182     if paren_sugar && !tcx.features().unboxed_closures {
1183         tcx.sess
1184             .struct_span_err(
1185                 item.span,
1186                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1187                  which traits can use parenthetical notation",
1188             )
1189             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
1190             .emit();
1191     }
1192
1193     let is_marker = tcx.has_attr(def_id, sym::marker);
1194     let skip_array_during_method_dispatch =
1195         tcx.has_attr(def_id, sym::rustc_skip_array_during_method_dispatch);
1196     let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
1197         ty::trait_def::TraitSpecializationKind::Marker
1198     } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
1199         ty::trait_def::TraitSpecializationKind::AlwaysApplicable
1200     } else {
1201         ty::trait_def::TraitSpecializationKind::None
1202     };
1203     let def_path_hash = tcx.def_path_hash(def_id);
1204     ty::TraitDef::new(
1205         def_id,
1206         unsafety,
1207         paren_sugar,
1208         is_auto,
1209         is_marker,
1210         skip_array_during_method_dispatch,
1211         spec_kind,
1212         def_path_hash,
1213     )
1214 }
1215
1216 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
1217     struct LateBoundRegionsDetector<'tcx> {
1218         tcx: TyCtxt<'tcx>,
1219         outer_index: ty::DebruijnIndex,
1220         has_late_bound_regions: Option<Span>,
1221     }
1222
1223     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
1224         type Map = intravisit::ErasedMap<'tcx>;
1225
1226         fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1227             NestedVisitorMap::None
1228         }
1229
1230         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
1231             if self.has_late_bound_regions.is_some() {
1232                 return;
1233             }
1234             match ty.kind {
1235                 hir::TyKind::BareFn(..) => {
1236                     self.outer_index.shift_in(1);
1237                     intravisit::walk_ty(self, ty);
1238                     self.outer_index.shift_out(1);
1239                 }
1240                 _ => intravisit::walk_ty(self, ty),
1241             }
1242         }
1243
1244         fn visit_poly_trait_ref(
1245             &mut self,
1246             tr: &'tcx hir::PolyTraitRef<'tcx>,
1247             m: hir::TraitBoundModifier,
1248         ) {
1249             if self.has_late_bound_regions.is_some() {
1250                 return;
1251             }
1252             self.outer_index.shift_in(1);
1253             intravisit::walk_poly_trait_ref(self, tr, m);
1254             self.outer_index.shift_out(1);
1255         }
1256
1257         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1258             if self.has_late_bound_regions.is_some() {
1259                 return;
1260             }
1261
1262             match self.tcx.named_region(lt.hir_id) {
1263                 Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
1264                 Some(
1265                     rl::Region::LateBound(debruijn, _, _, _)
1266                     | rl::Region::LateBoundAnon(debruijn, _, _),
1267                 ) if debruijn < self.outer_index => {}
1268                 Some(
1269                     rl::Region::LateBound(..)
1270                     | rl::Region::LateBoundAnon(..)
1271                     | rl::Region::Free(..),
1272                 )
1273                 | None => {
1274                     self.has_late_bound_regions = Some(lt.span);
1275                 }
1276             }
1277         }
1278     }
1279
1280     fn has_late_bound_regions<'tcx>(
1281         tcx: TyCtxt<'tcx>,
1282         generics: &'tcx hir::Generics<'tcx>,
1283         decl: &'tcx hir::FnDecl<'tcx>,
1284     ) -> Option<Span> {
1285         let mut visitor = LateBoundRegionsDetector {
1286             tcx,
1287             outer_index: ty::INNERMOST,
1288             has_late_bound_regions: None,
1289         };
1290         for param in generics.params {
1291             if let GenericParamKind::Lifetime { .. } = param.kind {
1292                 if tcx.is_late_bound(param.hir_id) {
1293                     return Some(param.span);
1294                 }
1295             }
1296         }
1297         visitor.visit_fn_decl(decl);
1298         visitor.has_late_bound_regions
1299     }
1300
1301     match node {
1302         Node::TraitItem(item) => match item.kind {
1303             hir::TraitItemKind::Fn(ref sig, _) => {
1304                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1305             }
1306             _ => None,
1307         },
1308         Node::ImplItem(item) => match item.kind {
1309             hir::ImplItemKind::Fn(ref sig, _) => {
1310                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1311             }
1312             _ => None,
1313         },
1314         Node::ForeignItem(item) => match item.kind {
1315             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
1316                 has_late_bound_regions(tcx, generics, fn_decl)
1317             }
1318             _ => None,
1319         },
1320         Node::Item(item) => match item.kind {
1321             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1322                 has_late_bound_regions(tcx, generics, &sig.decl)
1323             }
1324             _ => None,
1325         },
1326         _ => None,
1327     }
1328 }
1329
1330 struct AnonConstInParamTyDetector {
1331     in_param_ty: bool,
1332     found_anon_const_in_param_ty: bool,
1333     ct: HirId,
1334 }
1335
1336 impl<'v> Visitor<'v> for AnonConstInParamTyDetector {
1337     type Map = intravisit::ErasedMap<'v>;
1338
1339     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1340         NestedVisitorMap::None
1341     }
1342
1343     fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
1344         if let GenericParamKind::Const { ref ty, default: _ } = p.kind {
1345             let prev = self.in_param_ty;
1346             self.in_param_ty = true;
1347             self.visit_ty(ty);
1348             self.in_param_ty = prev;
1349         }
1350     }
1351
1352     fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
1353         if self.in_param_ty && self.ct == c.hir_id {
1354             self.found_anon_const_in_param_ty = true;
1355         } else {
1356             intravisit::walk_anon_const(self, c)
1357         }
1358     }
1359 }
1360
1361 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
1362     use rustc_hir::*;
1363
1364     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1365
1366     let node = tcx.hir().get(hir_id);
1367     let parent_def_id = match node {
1368         Node::ImplItem(_)
1369         | Node::TraitItem(_)
1370         | Node::Variant(_)
1371         | Node::Ctor(..)
1372         | Node::Field(_) => {
1373             let parent_id = tcx.hir().get_parent_item(hir_id);
1374             Some(tcx.hir().local_def_id(parent_id).to_def_id())
1375         }
1376         // FIXME(#43408) always enable this once `lazy_normalization` is
1377         // stable enough and does not need a feature gate anymore.
1378         Node::AnonConst(_) => {
1379             let parent_id = tcx.hir().get_parent_item(hir_id);
1380             let parent_def_id = tcx.hir().local_def_id(parent_id);
1381
1382             let mut in_param_ty = false;
1383             for (_parent, node) in tcx.hir().parent_iter(hir_id) {
1384                 if let Some(generics) = node.generics() {
1385                     let mut visitor = AnonConstInParamTyDetector {
1386                         in_param_ty: false,
1387                         found_anon_const_in_param_ty: false,
1388                         ct: hir_id,
1389                     };
1390
1391                     visitor.visit_generics(generics);
1392                     in_param_ty = visitor.found_anon_const_in_param_ty;
1393                     break;
1394                 }
1395             }
1396
1397             if in_param_ty {
1398                 // We do not allow generic parameters in anon consts if we are inside
1399                 // of a const parameter type, e.g. `struct Foo<const N: usize, const M: [u8; N]>` is not allowed.
1400                 None
1401             } else if tcx.lazy_normalization() {
1402                 // HACK(eddyb) this provides the correct generics when
1403                 // `feature(const_generics)` is enabled, so that const expressions
1404                 // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1405                 //
1406                 // Note that we do not supply the parent generics when using
1407                 // `min_const_generics`.
1408                 Some(parent_def_id.to_def_id())
1409             } else {
1410                 let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1411                 match parent_node {
1412                     // HACK(eddyb) this provides the correct generics for repeat
1413                     // expressions' count (i.e. `N` in `[x; N]`), and explicit
1414                     // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
1415                     // as they shouldn't be able to cause query cycle errors.
1416                     Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1417                     | Node::Variant(Variant { disr_expr: Some(ref constant), .. })
1418                         if constant.hir_id == hir_id =>
1419                     {
1420                         Some(parent_def_id.to_def_id())
1421                     }
1422
1423                     _ => None,
1424                 }
1425             }
1426         }
1427         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1428             Some(tcx.closure_base_def_id(def_id))
1429         }
1430         Node::Item(item) => match item.kind {
1431             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
1432                 impl_trait_fn.or_else(|| {
1433                     let parent_id = tcx.hir().get_parent_item(hir_id);
1434                     assert!(parent_id != hir_id && parent_id != CRATE_HIR_ID);
1435                     debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1436                     // Opaque types are always nested within another item, and
1437                     // inherit the generics of the item.
1438                     Some(tcx.hir().local_def_id(parent_id).to_def_id())
1439                 })
1440             }
1441             _ => None,
1442         },
1443         _ => None,
1444     };
1445
1446     let mut opt_self = None;
1447     let mut allow_defaults = false;
1448
1449     let no_generics = hir::Generics::empty();
1450     let ast_generics = match node {
1451         Node::TraitItem(item) => &item.generics,
1452
1453         Node::ImplItem(item) => &item.generics,
1454
1455         Node::Item(item) => {
1456             match item.kind {
1457                 ItemKind::Fn(.., ref generics, _)
1458                 | ItemKind::Impl(hir::Impl { ref generics, .. }) => generics,
1459
1460                 ItemKind::TyAlias(_, ref generics)
1461                 | ItemKind::Enum(_, ref generics)
1462                 | ItemKind::Struct(_, ref generics)
1463                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1464                 | ItemKind::Union(_, ref generics) => {
1465                     allow_defaults = true;
1466                     generics
1467                 }
1468
1469                 ItemKind::Trait(_, _, ref generics, ..)
1470                 | ItemKind::TraitAlias(ref generics, ..) => {
1471                     // Add in the self type parameter.
1472                     //
1473                     // Something of a hack: use the node id for the trait, also as
1474                     // the node id for the Self type parameter.
1475                     let param_id = item.def_id;
1476
1477                     opt_self = Some(ty::GenericParamDef {
1478                         index: 0,
1479                         name: kw::SelfUpper,
1480                         def_id: param_id.to_def_id(),
1481                         pure_wrt_drop: false,
1482                         kind: ty::GenericParamDefKind::Type {
1483                             has_default: false,
1484                             object_lifetime_default: rl::Set1::Empty,
1485                             synthetic: None,
1486                         },
1487                     });
1488
1489                     allow_defaults = true;
1490                     generics
1491                 }
1492
1493                 _ => &no_generics,
1494             }
1495         }
1496
1497         Node::ForeignItem(item) => match item.kind {
1498             ForeignItemKind::Static(..) => &no_generics,
1499             ForeignItemKind::Fn(_, _, ref generics) => generics,
1500             ForeignItemKind::Type => &no_generics,
1501         },
1502
1503         _ => &no_generics,
1504     };
1505
1506     let has_self = opt_self.is_some();
1507     let mut parent_has_self = false;
1508     let mut own_start = has_self as u32;
1509     let parent_count = parent_def_id.map_or(0, |def_id| {
1510         let generics = tcx.generics_of(def_id);
1511         assert_eq!(has_self, false);
1512         parent_has_self = generics.has_self;
1513         own_start = generics.count() as u32;
1514         generics.parent_count + generics.params.len()
1515     });
1516
1517     let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
1518
1519     if let Some(opt_self) = opt_self {
1520         params.push(opt_self);
1521     }
1522
1523     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1524     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1525         name: param.name.ident().name,
1526         index: own_start + i as u32,
1527         def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1528         pure_wrt_drop: param.pure_wrt_drop,
1529         kind: ty::GenericParamDefKind::Lifetime,
1530     }));
1531
1532     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1533
1534     // Now create the real type and const parameters.
1535     let type_start = own_start - has_self as u32 + params.len() as u32;
1536     let mut i = 0;
1537
1538     params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
1539         GenericParamKind::Lifetime { .. } => None,
1540         GenericParamKind::Type { ref default, synthetic, .. } => {
1541             if !allow_defaults && default.is_some() {
1542                 if !tcx.features().default_type_parameter_fallback {
1543                     tcx.struct_span_lint_hir(
1544                         lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1545                         param.hir_id,
1546                         param.span,
1547                         |lint| {
1548                             lint.build(
1549                                 "defaults for type parameters are only allowed in \
1550                                  `struct`, `enum`, `type`, or `trait` definitions",
1551                             )
1552                             .emit();
1553                         },
1554                     );
1555                 }
1556             }
1557
1558             let kind = ty::GenericParamDefKind::Type {
1559                 has_default: default.is_some(),
1560                 object_lifetime_default: object_lifetime_defaults
1561                     .as_ref()
1562                     .map_or(rl::Set1::Empty, |o| o[i]),
1563                 synthetic,
1564             };
1565
1566             let param_def = ty::GenericParamDef {
1567                 index: type_start + i as u32,
1568                 name: param.name.ident().name,
1569                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1570                 pure_wrt_drop: param.pure_wrt_drop,
1571                 kind,
1572             };
1573             i += 1;
1574             Some(param_def)
1575         }
1576         GenericParamKind::Const { default, .. } => {
1577             if !allow_defaults && default.is_some() {
1578                 tcx.sess.span_err(
1579                     param.span,
1580                     "defaults for const parameters are only allowed in \
1581                     `struct`, `enum`, `type`, or `trait` definitions",
1582                 );
1583             }
1584
1585             let param_def = ty::GenericParamDef {
1586                 index: type_start + i as u32,
1587                 name: param.name.ident().name,
1588                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1589                 pure_wrt_drop: param.pure_wrt_drop,
1590                 kind: ty::GenericParamDefKind::Const { has_default: default.is_some() },
1591             };
1592             i += 1;
1593             Some(param_def)
1594         }
1595     }));
1596
1597     // provide junk type parameter defs - the only place that
1598     // cares about anything but the length is instantiation,
1599     // and we don't do that for closures.
1600     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1601         let dummy_args = if gen.is_some() {
1602             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
1603         } else {
1604             &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
1605         };
1606
1607         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1608             index: type_start + i as u32,
1609             name: Symbol::intern(arg),
1610             def_id,
1611             pure_wrt_drop: false,
1612             kind: ty::GenericParamDefKind::Type {
1613                 has_default: false,
1614                 object_lifetime_default: rl::Set1::Empty,
1615                 synthetic: None,
1616             },
1617         }));
1618     }
1619
1620     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1621
1622     ty::Generics {
1623         parent: parent_def_id,
1624         parent_count,
1625         params,
1626         param_def_id_to_index,
1627         has_self: has_self || parent_has_self,
1628         has_late_bound_regions: has_late_bound_regions(tcx, node),
1629     }
1630 }
1631
1632 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1633     generic_args
1634         .iter()
1635         .filter_map(|arg| match arg {
1636             hir::GenericArg::Type(ty) => Some(ty),
1637             _ => None,
1638         })
1639         .any(is_suggestable_infer_ty)
1640 }
1641
1642 /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
1643 /// use inference to provide suggestions for the appropriate type if possible.
1644 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1645     use hir::TyKind::*;
1646     match &ty.kind {
1647         Infer => true,
1648         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1649         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1650         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1651         OpaqueDef(_, generic_args) => are_suggestable_generic_args(generic_args),
1652         Path(hir::QPath::TypeRelative(ty, segment)) => {
1653             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
1654         }
1655         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1656             ty_opt.map_or(false, is_suggestable_infer_ty)
1657                 || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
1658         }
1659         _ => false,
1660     }
1661 }
1662
1663 pub fn get_infer_ret_ty(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1664     if let hir::FnRetTy::Return(ref ty) = output {
1665         if is_suggestable_infer_ty(ty) {
1666             return Some(&**ty);
1667         }
1668     }
1669     None
1670 }
1671
1672 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1673     use rustc_hir::Node::*;
1674     use rustc_hir::*;
1675
1676     let def_id = def_id.expect_local();
1677     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1678
1679     let icx = ItemCtxt::new(tcx, def_id.to_def_id());
1680
1681     match tcx.hir().get(hir_id) {
1682         TraitItem(hir::TraitItem {
1683             kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
1684             ident,
1685             generics,
1686             ..
1687         })
1688         | ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), ident, generics, .. })
1689         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1690             match get_infer_ret_ty(&sig.decl.output) {
1691                 Some(ty) => {
1692                     let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
1693                     // Typeck doesn't expect erased regions to be returned from `type_of`.
1694                     let fn_sig = tcx.fold_regions(fn_sig, &mut false, |r, _| match r {
1695                         ty::ReErased => tcx.lifetimes.re_static,
1696                         _ => r,
1697                     });
1698
1699                     let mut visitor = PlaceholderHirTyCollector::default();
1700                     visitor.visit_ty(ty);
1701                     let mut diag = bad_placeholder_type(tcx, visitor.0);
1702                     let ret_ty = fn_sig.output();
1703                     if ret_ty != tcx.ty_error() {
1704                         if !ret_ty.is_closure() {
1705                             let ret_ty_str = match ret_ty.kind() {
1706                                 // Suggest a function pointer return type instead of a unique function definition
1707                                 // (e.g. `fn() -> i32` instead of `fn() -> i32 { f }`, the latter of which is invalid
1708                                 // syntax)
1709                                 ty::FnDef(..) => ret_ty.fn_sig(tcx).to_string(),
1710                                 _ => ret_ty.to_string(),
1711                             };
1712                             diag.span_suggestion(
1713                                 ty.span,
1714                                 "replace with the correct return type",
1715                                 ret_ty_str,
1716                                 Applicability::MaybeIncorrect,
1717                             );
1718                         } else {
1719                             // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
1720                             // to prevent the user from getting a papercut while trying to use the unique closure
1721                             // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
1722                             diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
1723                             diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
1724                         }
1725                     }
1726                     diag.emit();
1727
1728                     ty::Binder::bind(fn_sig, tcx)
1729                 }
1730                 None => <dyn AstConv<'_>>::ty_of_fn(
1731                     &icx,
1732                     hir_id,
1733                     sig.header.unsafety,
1734                     sig.header.abi,
1735                     &sig.decl,
1736                     &generics,
1737                     Some(ident.span),
1738                     None,
1739                 ),
1740             }
1741         }
1742
1743         TraitItem(hir::TraitItem {
1744             kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
1745             ident,
1746             generics,
1747             ..
1748         }) => <dyn AstConv<'_>>::ty_of_fn(
1749             &icx,
1750             hir_id,
1751             header.unsafety,
1752             header.abi,
1753             decl,
1754             &generics,
1755             Some(ident.span),
1756             None,
1757         ),
1758
1759         ForeignItem(&hir::ForeignItem {
1760             kind: ForeignItemKind::Fn(ref fn_decl, _, _),
1761             ident,
1762             ..
1763         }) => {
1764             let abi = tcx.hir().get_foreign_abi(hir_id);
1765             compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi, ident)
1766         }
1767
1768         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1769             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id).to_def_id());
1770             let inputs =
1771                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1772             ty::Binder::bind(
1773                 tcx.mk_fn_sig(inputs, ty, false, hir::Unsafety::Normal, abi::Abi::Rust),
1774                 tcx,
1775             )
1776         }
1777
1778         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1779             // Closure signatures are not like other function
1780             // signatures and cannot be accessed through `fn_sig`. For
1781             // example, a closure signature excludes the `self`
1782             // argument. In any case they are embedded within the
1783             // closure type as part of the `ClosureSubsts`.
1784             //
1785             // To get the signature of a closure, you should use the
1786             // `sig` method on the `ClosureSubsts`:
1787             //
1788             //    substs.as_closure().sig(def_id, tcx)
1789             bug!(
1790                 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
1791             );
1792         }
1793
1794         x => {
1795             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1796         }
1797     }
1798 }
1799
1800 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1801     let icx = ItemCtxt::new(tcx, def_id);
1802
1803     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1804     match tcx.hir().expect_item(hir_id).kind {
1805         hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
1806             let selfty = tcx.type_of(def_id);
1807             <dyn AstConv<'_>>::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1808         }),
1809         _ => bug!(),
1810     }
1811 }
1812
1813 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1814     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1815     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1816     let item = tcx.hir().expect_item(hir_id);
1817     match &item.kind {
1818         hir::ItemKind::Impl(hir::Impl {
1819             polarity: hir::ImplPolarity::Negative(span),
1820             of_trait,
1821             ..
1822         }) => {
1823             if is_rustc_reservation {
1824                 let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
1825                 tcx.sess.span_err(span, "reservation impls can't be negative");
1826             }
1827             ty::ImplPolarity::Negative
1828         }
1829         hir::ItemKind::Impl(hir::Impl {
1830             polarity: hir::ImplPolarity::Positive,
1831             of_trait: None,
1832             ..
1833         }) => {
1834             if is_rustc_reservation {
1835                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1836             }
1837             ty::ImplPolarity::Positive
1838         }
1839         hir::ItemKind::Impl(hir::Impl {
1840             polarity: hir::ImplPolarity::Positive,
1841             of_trait: Some(_),
1842             ..
1843         }) => {
1844             if is_rustc_reservation {
1845                 ty::ImplPolarity::Reservation
1846             } else {
1847                 ty::ImplPolarity::Positive
1848             }
1849         }
1850         item => bug!("impl_polarity: {:?} not an impl", item),
1851     }
1852 }
1853
1854 /// Returns the early-bound lifetimes declared in this generics
1855 /// listing. For anything other than fns/methods, this is just all
1856 /// the lifetimes that are declared. For fns or methods, we have to
1857 /// screen out those that do not appear in any where-clauses etc using
1858 /// `resolve_lifetime::early_bound_lifetimes`.
1859 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1860     tcx: TyCtxt<'tcx>,
1861     generics: &'a hir::Generics<'a>,
1862 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
1863     generics.params.iter().filter(move |param| match param.kind {
1864         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
1865         _ => false,
1866     })
1867 }
1868
1869 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1870 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1871 /// inferred constraints concerning which regions outlive other regions.
1872 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1873     debug!("predicates_defined_on({:?})", def_id);
1874     let mut result = tcx.explicit_predicates_of(def_id);
1875     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
1876     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1877     if !inferred_outlives.is_empty() {
1878         debug!(
1879             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1880             def_id, inferred_outlives,
1881         );
1882         if result.predicates.is_empty() {
1883             result.predicates = inferred_outlives;
1884         } else {
1885             result.predicates = tcx
1886                 .arena
1887                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
1888         }
1889     }
1890
1891     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1892     result
1893 }
1894
1895 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1896 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1897 /// `Self: Trait` predicates for traits.
1898 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1899     let mut result = tcx.predicates_defined_on(def_id);
1900
1901     if tcx.is_trait(def_id) {
1902         // For traits, add `Self: Trait` predicate. This is
1903         // not part of the predicates that a user writes, but it
1904         // is something that one must prove in order to invoke a
1905         // method or project an associated type.
1906         //
1907         // In the chalk setup, this predicate is not part of the
1908         // "predicates" for a trait item. But it is useful in
1909         // rustc because if you directly (e.g.) invoke a trait
1910         // method like `Trait::method(...)`, you must naturally
1911         // prove that the trait applies to the types that were
1912         // used, and adding the predicate into this list ensures
1913         // that this is done.
1914         let span = tcx.sess.source_map().guess_head_span(tcx.def_span(def_id));
1915         result.predicates =
1916             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
1917                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(tcx),
1918                 span,
1919             ))));
1920     }
1921     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1922     result
1923 }
1924
1925 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1926 /// N.B., this does not include any implied/inferred constraints.
1927 fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1928     use rustc_hir::*;
1929
1930     debug!("explicit_predicates_of(def_id={:?})", def_id);
1931
1932     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1933     let node = tcx.hir().get(hir_id);
1934
1935     let mut is_trait = None;
1936     let mut is_default_impl_trait = None;
1937
1938     let icx = ItemCtxt::new(tcx, def_id);
1939     let constness = icx.default_constness_for_trait_bounds();
1940
1941     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
1942
1943     // We use an `IndexSet` to preserves order of insertion.
1944     // Preserving the order of insertion is important here so as not to break UI tests.
1945     let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
1946
1947     let ast_generics = match node {
1948         Node::TraitItem(item) => &item.generics,
1949
1950         Node::ImplItem(item) => &item.generics,
1951
1952         Node::Item(item) => {
1953             match item.kind {
1954                 ItemKind::Impl(ref impl_) => {
1955                     if impl_.defaultness.is_default() {
1956                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1957                     }
1958                     &impl_.generics
1959                 }
1960                 ItemKind::Fn(.., ref generics, _)
1961                 | ItemKind::TyAlias(_, ref generics)
1962                 | ItemKind::Enum(_, ref generics)
1963                 | ItemKind::Struct(_, ref generics)
1964                 | ItemKind::Union(_, ref generics) => generics,
1965
1966                 ItemKind::Trait(_, _, ref generics, ..) => {
1967                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
1968                     generics
1969                 }
1970                 ItemKind::TraitAlias(ref generics, _) => {
1971                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
1972                     generics
1973                 }
1974                 ItemKind::OpaqueTy(OpaqueTy {
1975                     bounds: _,
1976                     impl_trait_fn,
1977                     ref generics,
1978                     origin: _,
1979                 }) => {
1980                     if impl_trait_fn.is_some() {
1981                         // return-position impl trait
1982                         //
1983                         // We don't inherit predicates from the parent here:
1984                         // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
1985                         // then the return type is `f::<'static, T>::{{opaque}}`.
1986                         //
1987                         // If we inherited the predicates of `f` then we would
1988                         // require that `T: 'static` to show that the return
1989                         // type is well-formed.
1990                         //
1991                         // The only way to have something with this opaque type
1992                         // is from the return type of the containing function,
1993                         // which will ensure that the function's predicates
1994                         // hold.
1995                         return ty::GenericPredicates { parent: None, predicates: &[] };
1996                     } else {
1997                         // type-alias impl trait
1998                         generics
1999                     }
2000                 }
2001
2002                 _ => NO_GENERICS,
2003             }
2004         }
2005
2006         Node::ForeignItem(item) => match item.kind {
2007             ForeignItemKind::Static(..) => NO_GENERICS,
2008             ForeignItemKind::Fn(_, _, ref generics) => generics,
2009             ForeignItemKind::Type => NO_GENERICS,
2010         },
2011
2012         _ => NO_GENERICS,
2013     };
2014
2015     let generics = tcx.generics_of(def_id);
2016     let parent_count = generics.parent_count as u32;
2017     let has_own_self = generics.has_self && parent_count == 0;
2018
2019     // Below we'll consider the bounds on the type parameters (including `Self`)
2020     // and the explicit where-clauses, but to get the full set of predicates
2021     // on a trait we need to add in the supertrait bounds and bounds found on
2022     // associated types.
2023     if let Some(_trait_ref) = is_trait {
2024         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
2025     }
2026
2027     // In default impls, we can assume that the self type implements
2028     // the trait. So in:
2029     //
2030     //     default impl Foo for Bar { .. }
2031     //
2032     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2033     // (see below). Recall that a default impl is not itself an impl, but rather a
2034     // set of defaults that can be incorporated into another impl.
2035     if let Some(trait_ref) = is_default_impl_trait {
2036         predicates.insert((
2037             trait_ref.to_poly_trait_ref().without_const().to_predicate(tcx),
2038             tcx.def_span(def_id),
2039         ));
2040     }
2041
2042     // Collect the region predicates that were declared inline as
2043     // well. In the case of parameters declared on a fn or method, we
2044     // have to be careful to only iterate over early-bound regions.
2045     let mut index = parent_count + has_own_self as u32;
2046     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2047         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2048             def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
2049             index,
2050             name: param.name.ident().name,
2051         }));
2052         index += 1;
2053
2054         match param.kind {
2055             GenericParamKind::Lifetime { .. } => {
2056                 param.bounds.iter().for_each(|bound| match bound {
2057                     hir::GenericBound::Outlives(lt) => {
2058                         let bound = <dyn AstConv<'_>>::ast_region_to_region(&icx, &lt, None);
2059                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound), tcx);
2060                         predicates.insert((outlives.to_predicate(tcx), lt.span));
2061                     }
2062                     _ => bug!(),
2063                 });
2064             }
2065             _ => bug!(),
2066         }
2067     }
2068
2069     // Collect the predicates that were written inline by the user on each
2070     // type parameter (e.g., `<T: Foo>`).
2071     for param in ast_generics.params {
2072         match param.kind {
2073             // We already dealt with early bound lifetimes above.
2074             GenericParamKind::Lifetime { .. } => (),
2075             GenericParamKind::Type { .. } => {
2076                 let name = param.name.ident().name;
2077                 let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2078                 index += 1;
2079
2080                 let sized = SizedByDefault::Yes;
2081                 let bounds = <dyn AstConv<'_>>::compute_bounds(
2082                     &icx,
2083                     param_ty,
2084                     &param.bounds,
2085                     sized,
2086                     param.span,
2087                 );
2088                 predicates.extend(bounds.predicates(tcx, param_ty));
2089             }
2090             GenericParamKind::Const { .. } => {
2091                 // Bounds on const parameters are currently not possible.
2092                 debug_assert!(param.bounds.is_empty());
2093                 index += 1;
2094             }
2095         }
2096     }
2097
2098     // Add in the bounds that appear in the where-clause.
2099     let where_clause = &ast_generics.where_clause;
2100     for predicate in where_clause.predicates {
2101         match predicate {
2102             hir::WherePredicate::BoundPredicate(bound_pred) => {
2103                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2104                 let bound_vars = icx.tcx.late_bound_vars(bound_pred.bounded_ty.hir_id);
2105
2106                 // Keep the type around in a dummy predicate, in case of no bounds.
2107                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2108                 // is still checked for WF.
2109                 if bound_pred.bounds.is_empty() {
2110                     if let ty::Param(_) = ty.kind() {
2111                         // This is a `where T:`, which can be in the HIR from the
2112                         // transformation that moves `?Sized` to `T`'s declaration.
2113                         // We can skip the predicate because type parameters are
2114                         // trivially WF, but also we *should*, to avoid exposing
2115                         // users who never wrote `where Type:,` themselves, to
2116                         // compiler/tooling bugs from not handling WF predicates.
2117                     } else {
2118                         let span = bound_pred.bounded_ty.span;
2119                         let re_root_empty = tcx.lifetimes.re_root_empty;
2120                         let predicate = ty::Binder::bind_with_vars(
2121                             ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(
2122                                 ty,
2123                                 re_root_empty,
2124                             )),
2125                             bound_vars,
2126                         );
2127                         predicates.insert((predicate.to_predicate(tcx), span));
2128                     }
2129                 }
2130
2131                 for bound in bound_pred.bounds.iter() {
2132                     match bound {
2133                         hir::GenericBound::Trait(poly_trait_ref, modifier) => {
2134                             let constness = match modifier {
2135                                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2136                                 hir::TraitBoundModifier::None => constness,
2137                                 hir::TraitBoundModifier::Maybe => bug!("this wasn't handled"),
2138                             };
2139
2140                             let mut bounds = Bounds::default();
2141                             let _ = <dyn AstConv<'_>>::instantiate_poly_trait_ref(
2142                                 &icx,
2143                                 &poly_trait_ref.trait_ref,
2144                                 poly_trait_ref.span,
2145                                 constness,
2146                                 ty,
2147                                 &mut bounds,
2148                                 false,
2149                             );
2150                             predicates.extend(bounds.predicates(tcx, ty));
2151                         }
2152
2153                         &hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
2154                             let mut bounds = Bounds::default();
2155                             <dyn AstConv<'_>>::instantiate_lang_item_trait_ref(
2156                                 &icx,
2157                                 lang_item,
2158                                 span,
2159                                 hir_id,
2160                                 args,
2161                                 ty,
2162                                 &mut bounds,
2163                             );
2164                             predicates.extend(bounds.predicates(tcx, ty));
2165                         }
2166
2167                         hir::GenericBound::Outlives(lifetime) => {
2168                             let region =
2169                                 <dyn AstConv<'_>>::ast_region_to_region(&icx, lifetime, None);
2170                             predicates.insert((
2171                                 ty::Binder::bind_with_vars(
2172                                     ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(
2173                                         ty, region,
2174                                     )),
2175                                     bound_vars,
2176                                 )
2177                                 .to_predicate(tcx),
2178                                 lifetime.span,
2179                             ));
2180                         }
2181                     }
2182                 }
2183             }
2184
2185             hir::WherePredicate::RegionPredicate(region_pred) => {
2186                 let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
2187                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2188                     let (r2, span) = match bound {
2189                         hir::GenericBound::Outlives(lt) => {
2190                             (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
2191                         }
2192                         _ => bug!(),
2193                     };
2194                     let pred = ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(r1, r2))
2195                         .to_predicate(icx.tcx);
2196
2197                     (pred, span)
2198                 }))
2199             }
2200
2201             hir::WherePredicate::EqPredicate(..) => {
2202                 // FIXME(#20041)
2203             }
2204         }
2205     }
2206
2207     if tcx.features().const_evaluatable_checked {
2208         predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
2209     }
2210
2211     let mut predicates: Vec<_> = predicates.into_iter().collect();
2212
2213     // Subtle: before we store the predicates into the tcx, we
2214     // sort them so that predicates like `T: Foo<Item=U>` come
2215     // before uses of `U`.  This avoids false ambiguity errors
2216     // in trait checking. See `setup_constraining_predicates`
2217     // for details.
2218     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2219         let self_ty = tcx.type_of(def_id);
2220         let trait_ref = tcx.impl_trait_ref(def_id);
2221         cgp::setup_constraining_predicates(
2222             tcx,
2223             &mut predicates,
2224             trait_ref,
2225             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2226         );
2227     }
2228
2229     let result = ty::GenericPredicates {
2230         parent: generics.parent,
2231         predicates: tcx.arena.alloc_from_iter(predicates),
2232     };
2233     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2234     result
2235 }
2236
2237 fn const_evaluatable_predicates_of<'tcx>(
2238     tcx: TyCtxt<'tcx>,
2239     def_id: LocalDefId,
2240 ) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
2241     struct ConstCollector<'tcx> {
2242         tcx: TyCtxt<'tcx>,
2243         preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
2244     }
2245
2246     impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
2247         type Map = Map<'tcx>;
2248
2249         fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
2250             intravisit::NestedVisitorMap::None
2251         }
2252
2253         fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
2254             let def_id = self.tcx.hir().local_def_id(c.hir_id);
2255             let ct = ty::Const::from_anon_const(self.tcx, def_id);
2256             if let ty::ConstKind::Unevaluated(uv) = ct.val {
2257                 assert_eq!(uv.promoted, None);
2258                 let span = self.tcx.hir().span(c.hir_id);
2259                 self.preds.insert((
2260                     ty::PredicateKind::ConstEvaluatable(uv.def, uv.substs).to_predicate(self.tcx),
2261                     span,
2262                 ));
2263             }
2264         }
2265     }
2266
2267     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
2268     let node = tcx.hir().get(hir_id);
2269
2270     let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
2271     if let hir::Node::Item(item) = node {
2272         if let hir::ItemKind::Impl(ref impl_) = item.kind {
2273             if let Some(of_trait) = &impl_.of_trait {
2274                 debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
2275                 collector.visit_trait_ref(of_trait);
2276             }
2277
2278             debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
2279             collector.visit_ty(impl_.self_ty);
2280         }
2281     }
2282
2283     if let Some(generics) = node.generics() {
2284         debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
2285         collector.visit_generics(generics);
2286     }
2287
2288     if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
2289         debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
2290         collector.visit_fn_decl(fn_sig.decl);
2291     }
2292     debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
2293
2294     collector.preds
2295 }
2296
2297 fn trait_explicit_predicates_and_bounds(
2298     tcx: TyCtxt<'_>,
2299     def_id: LocalDefId,
2300 ) -> ty::GenericPredicates<'_> {
2301     assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
2302     gather_explicit_predicates_of(tcx, def_id.to_def_id())
2303 }
2304
2305 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2306     if let DefKind::Trait = tcx.def_kind(def_id) {
2307         // Remove bounds on associated types from the predicates, they will be
2308         // returned by `explicit_item_bounds`.
2309         let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
2310         let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
2311
2312         let is_assoc_item_ty = |ty: Ty<'_>| {
2313             // For a predicate from a where clause to become a bound on an
2314             // associated type:
2315             // * It must use the identity substs of the item.
2316             //     * Since any generic parameters on the item are not in scope,
2317             //       this means that the item is not a GAT, and its identity
2318             //       substs are the same as the trait's.
2319             // * It must be an associated type for this trait (*not* a
2320             //   supertrait).
2321             if let ty::Projection(projection) = ty.kind() {
2322                 projection.substs == trait_identity_substs
2323                     && tcx.associated_item(projection.item_def_id).container.id() == def_id
2324             } else {
2325                 false
2326             }
2327         };
2328
2329         let predicates: Vec<_> = predicates_and_bounds
2330             .predicates
2331             .iter()
2332             .copied()
2333             .filter(|(pred, _)| match pred.kind().skip_binder() {
2334                 ty::PredicateKind::Trait(tr, _) => !is_assoc_item_ty(tr.self_ty()),
2335                 ty::PredicateKind::Projection(proj) => {
2336                     !is_assoc_item_ty(proj.projection_ty.self_ty())
2337                 }
2338                 ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
2339                 _ => true,
2340             })
2341             .collect();
2342         if predicates.len() == predicates_and_bounds.predicates.len() {
2343             predicates_and_bounds
2344         } else {
2345             ty::GenericPredicates {
2346                 parent: predicates_and_bounds.parent,
2347                 predicates: tcx.arena.alloc_slice(&predicates),
2348             }
2349         }
2350     } else {
2351         gather_explicit_predicates_of(tcx, def_id)
2352     }
2353 }
2354
2355 fn projection_ty_from_predicates(
2356     tcx: TyCtxt<'tcx>,
2357     key: (
2358         // ty_def_id
2359         DefId,
2360         // def_id of `N` in `<T as Trait>::N`
2361         DefId,
2362     ),
2363 ) -> Option<ty::ProjectionTy<'tcx>> {
2364     let (ty_def_id, item_def_id) = key;
2365     let mut projection_ty = None;
2366     for (predicate, _) in tcx.predicates_of(ty_def_id).predicates {
2367         if let ty::PredicateKind::Projection(projection_predicate) = predicate.kind().skip_binder()
2368         {
2369             if item_def_id == projection_predicate.projection_ty.item_def_id {
2370                 projection_ty = Some(projection_predicate.projection_ty);
2371                 break;
2372             }
2373         }
2374     }
2375     projection_ty
2376 }
2377
2378 /// Converts a specific `GenericBound` from the AST into a set of
2379 /// predicates that apply to the self type. A vector is returned
2380 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2381 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2382 /// and `<T as Bar>::X == i32`).
2383 fn predicates_from_bound<'tcx>(
2384     astconv: &dyn AstConv<'tcx>,
2385     param_ty: Ty<'tcx>,
2386     bound: &'tcx hir::GenericBound<'tcx>,
2387     constness: hir::Constness,
2388 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2389     match *bound {
2390         hir::GenericBound::Trait(ref tr, modifier) => {
2391             let constness = match modifier {
2392                 hir::TraitBoundModifier::Maybe => return vec![],
2393                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2394                 hir::TraitBoundModifier::None => constness,
2395             };
2396
2397             let mut bounds = Bounds::default();
2398             let _ = astconv.instantiate_poly_trait_ref(
2399                 &tr.trait_ref,
2400                 tr.span,
2401                 constness,
2402                 param_ty,
2403                 &mut bounds,
2404                 false,
2405             );
2406             bounds.predicates(astconv.tcx(), param_ty)
2407         }
2408         hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
2409             let mut bounds = Bounds::default();
2410             astconv.instantiate_lang_item_trait_ref(
2411                 lang_item,
2412                 span,
2413                 hir_id,
2414                 args,
2415                 param_ty,
2416                 &mut bounds,
2417             );
2418             bounds.predicates(astconv.tcx(), param_ty)
2419         }
2420         hir::GenericBound::Outlives(ref lifetime) => {
2421             let region = astconv.ast_region_to_region(lifetime, None);
2422             let pred = ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(param_ty, region))
2423                 .to_predicate(astconv.tcx());
2424             vec![(pred, lifetime.span)]
2425         }
2426     }
2427 }
2428
2429 fn compute_sig_of_foreign_fn_decl<'tcx>(
2430     tcx: TyCtxt<'tcx>,
2431     def_id: DefId,
2432     decl: &'tcx hir::FnDecl<'tcx>,
2433     abi: abi::Abi,
2434     ident: Ident,
2435 ) -> ty::PolyFnSig<'tcx> {
2436     let unsafety = if abi == abi::Abi::RustIntrinsic {
2437         intrinsic_operation_unsafety(tcx.item_name(def_id))
2438     } else {
2439         hir::Unsafety::Unsafe
2440     };
2441     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2442     let fty = <dyn AstConv<'_>>::ty_of_fn(
2443         &ItemCtxt::new(tcx, def_id),
2444         hir_id,
2445         unsafety,
2446         abi,
2447         decl,
2448         &hir::Generics::empty(),
2449         Some(ident.span),
2450         None,
2451     );
2452
2453     // Feature gate SIMD types in FFI, since I am not sure that the
2454     // ABIs are handled at all correctly. -huonw
2455     if abi != abi::Abi::RustIntrinsic
2456         && abi != abi::Abi::PlatformIntrinsic
2457         && !tcx.features().simd_ffi
2458     {
2459         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2460             if ty.is_simd() {
2461                 let snip = tcx
2462                     .sess
2463                     .source_map()
2464                     .span_to_snippet(ast_ty.span)
2465                     .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
2466                 tcx.sess
2467                     .struct_span_err(
2468                         ast_ty.span,
2469                         &format!(
2470                             "use of SIMD type{} in FFI is highly experimental and \
2471                              may result in invalid code",
2472                             snip
2473                         ),
2474                     )
2475                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2476                     .emit();
2477             }
2478         };
2479         for (input, ty) in iter::zip(decl.inputs, fty.inputs().skip_binder()) {
2480             check(&input, ty)
2481         }
2482         if let hir::FnRetTy::Return(ref ty) = decl.output {
2483             check(&ty, fty.output().skip_binder())
2484         }
2485     }
2486
2487     fty
2488 }
2489
2490 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2491     match tcx.hir().get_if_local(def_id) {
2492         Some(Node::ForeignItem(..)) => true,
2493         Some(_) => false,
2494         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2495     }
2496 }
2497
2498 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2499     match tcx.hir().get_if_local(def_id) {
2500         Some(
2501             Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. })
2502             | Node::ForeignItem(&hir::ForeignItem {
2503                 kind: hir::ForeignItemKind::Static(_, mutbl),
2504                 ..
2505             }),
2506         ) => Some(mutbl),
2507         Some(_) => None,
2508         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2509     }
2510 }
2511
2512 fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
2513     match tcx.hir().get_if_local(def_id) {
2514         Some(Node::Expr(&rustc_hir::Expr {
2515             kind: rustc_hir::ExprKind::Closure(_, _, body_id, _, _),
2516             ..
2517         })) => tcx.hir().body(body_id).generator_kind(),
2518         Some(_) => None,
2519         _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
2520     }
2521 }
2522
2523 fn from_target_feature(
2524     tcx: TyCtxt<'_>,
2525     id: DefId,
2526     attr: &ast::Attribute,
2527     supported_target_features: &FxHashMap<String, Option<Symbol>>,
2528     target_features: &mut Vec<Symbol>,
2529 ) {
2530     let list = match attr.meta_item_list() {
2531         Some(list) => list,
2532         None => return,
2533     };
2534     let bad_item = |span| {
2535         let msg = "malformed `target_feature` attribute input";
2536         let code = "enable = \"..\"".to_owned();
2537         tcx.sess
2538             .struct_span_err(span, &msg)
2539             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2540             .emit();
2541     };
2542     let rust_features = tcx.features();
2543     for item in list {
2544         // Only `enable = ...` is accepted in the meta-item list.
2545         if !item.has_name(sym::enable) {
2546             bad_item(item.span());
2547             continue;
2548         }
2549
2550         // Must be of the form `enable = "..."` (a string).
2551         let value = match item.value_str() {
2552             Some(value) => value,
2553             None => {
2554                 bad_item(item.span());
2555                 continue;
2556             }
2557         };
2558
2559         // We allow comma separation to enable multiple features.
2560         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2561             let feature_gate = match supported_target_features.get(feature) {
2562                 Some(g) => g,
2563                 None => {
2564                     let msg =
2565                         format!("the feature named `{}` is not valid for this target", feature);
2566                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2567                     err.span_label(
2568                         item.span(),
2569                         format!("`{}` is not valid for this target", feature),
2570                     );
2571                     if let Some(stripped) = feature.strip_prefix('+') {
2572                         let valid = supported_target_features.contains_key(stripped);
2573                         if valid {
2574                             err.help("consider removing the leading `+` in the feature name");
2575                         }
2576                     }
2577                     err.emit();
2578                     return None;
2579                 }
2580             };
2581
2582             // Only allow features whose feature gates have been enabled.
2583             let allowed = match feature_gate.as_ref().copied() {
2584                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2585                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2586                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2587                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2588                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2589                 Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
2590                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2591                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2592                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2593                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2594                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2595                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2596                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2597                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2598                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2599                 Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
2600                 Some(sym::bpf_target_feature) => rust_features.bpf_target_feature,
2601                 Some(name) => bug!("unknown target feature gate {}", name),
2602                 None => true,
2603             };
2604             if !allowed && id.is_local() {
2605                 feature_err(
2606                     &tcx.sess.parse_sess,
2607                     feature_gate.unwrap(),
2608                     item.span(),
2609                     &format!("the target feature `{}` is currently unstable", feature),
2610                 )
2611                 .emit();
2612             }
2613             Some(Symbol::intern(feature))
2614         }));
2615     }
2616 }
2617
2618 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2619     use rustc_middle::mir::mono::Linkage::*;
2620
2621     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2622     // applicable to variable declarations and may not really make sense for
2623     // Rust code in the first place but allow them anyway and trust that the
2624     // user knows what s/he's doing. Who knows, unanticipated use cases may pop
2625     // up in the future.
2626     //
2627     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2628     // and don't have to be, LLVM treats them as no-ops.
2629     match name {
2630         "appending" => Appending,
2631         "available_externally" => AvailableExternally,
2632         "common" => Common,
2633         "extern_weak" => ExternalWeak,
2634         "external" => External,
2635         "internal" => Internal,
2636         "linkonce" => LinkOnceAny,
2637         "linkonce_odr" => LinkOnceODR,
2638         "private" => Private,
2639         "weak" => WeakAny,
2640         "weak_odr" => WeakODR,
2641         _ => {
2642             let span = tcx.hir().span_if_local(def_id);
2643             if let Some(span) = span {
2644                 tcx.sess.span_fatal(span, "invalid linkage specified")
2645             } else {
2646                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2647             }
2648         }
2649     }
2650 }
2651
2652 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2653     let attrs = tcx.get_attrs(id);
2654
2655     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2656     if should_inherit_track_caller(tcx, id) {
2657         codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2658     }
2659
2660     let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
2661
2662     let mut inline_span = None;
2663     let mut link_ordinal_span = None;
2664     let mut no_sanitize_span = None;
2665     for attr in attrs.iter() {
2666         if tcx.sess.check_name(attr, sym::cold) {
2667             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2668         } else if tcx.sess.check_name(attr, sym::rustc_allocator) {
2669             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2670         } else if tcx.sess.check_name(attr, sym::unwind) {
2671             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2672         } else if tcx.sess.check_name(attr, sym::ffi_returns_twice) {
2673             if tcx.is_foreign_item(id) {
2674                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2675             } else {
2676                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2677                 struct_span_err!(
2678                     tcx.sess,
2679                     attr.span,
2680                     E0724,
2681                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2682                 )
2683                 .emit();
2684             }
2685         } else if tcx.sess.check_name(attr, sym::ffi_pure) {
2686             if tcx.is_foreign_item(id) {
2687                 if attrs.iter().any(|a| tcx.sess.check_name(a, sym::ffi_const)) {
2688                     // `#[ffi_const]` functions cannot be `#[ffi_pure]`
2689                     struct_span_err!(
2690                         tcx.sess,
2691                         attr.span,
2692                         E0757,
2693                         "`#[ffi_const]` function cannot be `#[ffi_pure]`"
2694                     )
2695                     .emit();
2696                 } else {
2697                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
2698                 }
2699             } else {
2700                 // `#[ffi_pure]` is only allowed on foreign functions
2701                 struct_span_err!(
2702                     tcx.sess,
2703                     attr.span,
2704                     E0755,
2705                     "`#[ffi_pure]` may only be used on foreign functions"
2706                 )
2707                 .emit();
2708             }
2709         } else if tcx.sess.check_name(attr, sym::ffi_const) {
2710             if tcx.is_foreign_item(id) {
2711                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
2712             } else {
2713                 // `#[ffi_const]` is only allowed on foreign functions
2714                 struct_span_err!(
2715                     tcx.sess,
2716                     attr.span,
2717                     E0756,
2718                     "`#[ffi_const]` may only be used on foreign functions"
2719                 )
2720                 .emit();
2721             }
2722         } else if tcx.sess.check_name(attr, sym::rustc_allocator_nounwind) {
2723             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2724         } else if tcx.sess.check_name(attr, sym::naked) {
2725             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2726         } else if tcx.sess.check_name(attr, sym::no_mangle) {
2727             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2728         } else if tcx.sess.check_name(attr, sym::no_coverage) {
2729             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_COVERAGE;
2730         } else if tcx.sess.check_name(attr, sym::rustc_std_internal_symbol) {
2731             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2732         } else if tcx.sess.check_name(attr, sym::used) {
2733             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2734         } else if tcx.sess.check_name(attr, sym::cmse_nonsecure_entry) {
2735             if !matches!(tcx.fn_sig(id).abi(), abi::Abi::C { .. }) {
2736                 struct_span_err!(
2737                     tcx.sess,
2738                     attr.span,
2739                     E0776,
2740                     "`#[cmse_nonsecure_entry]` requires C ABI"
2741                 )
2742                 .emit();
2743             }
2744             if !tcx.sess.target.llvm_target.contains("thumbv8m") {
2745                 struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
2746                     .emit();
2747             }
2748             codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
2749         } else if tcx.sess.check_name(attr, sym::thread_local) {
2750             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2751         } else if tcx.sess.check_name(attr, sym::track_caller) {
2752             if tcx.is_closure(id) || tcx.fn_sig(id).abi() != abi::Abi::Rust {
2753                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2754                     .emit();
2755             }
2756             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2757         } else if tcx.sess.check_name(attr, sym::export_name) {
2758             if let Some(s) = attr.value_str() {
2759                 if s.as_str().contains('\0') {
2760                     // `#[export_name = ...]` will be converted to a null-terminated string,
2761                     // so it may not contain any null characters.
2762                     struct_span_err!(
2763                         tcx.sess,
2764                         attr.span,
2765                         E0648,
2766                         "`export_name` may not contain null characters"
2767                     )
2768                     .emit();
2769                 }
2770                 codegen_fn_attrs.export_name = Some(s);
2771             }
2772         } else if tcx.sess.check_name(attr, sym::target_feature) {
2773             if !tcx.is_closure(id) && tcx.fn_sig(id).unsafety() == hir::Unsafety::Normal {
2774                 if tcx.sess.target.is_like_wasm {
2775                     // The `#[target_feature]` attribute is allowed on
2776                     // WebAssembly targets on all functions, including safe
2777                     // ones. Other targets require that `#[target_feature]` is
2778                     // only applied to unsafe funtions (pending the
2779                     // `target_feature_11` feature) because on most targets
2780                     // execution of instructions that are not supported is
2781                     // considered undefined behavior. For WebAssembly which is a
2782                     // 100% safe target at execution time it's not possible to
2783                     // execute undefined instructions, and even if a future
2784                     // feature was added in some form for this it would be a
2785                     // deterministic trap. There is no undefined behavior when
2786                     // executing WebAssembly so `#[target_feature]` is allowed
2787                     // on safe functions (but again, only for WebAssembly)
2788                 } else if !tcx.features().target_feature_11 {
2789                     let mut err = feature_err(
2790                         &tcx.sess.parse_sess,
2791                         sym::target_feature_11,
2792                         attr.span,
2793                         "`#[target_feature(..)]` can only be applied to `unsafe` functions",
2794                     );
2795                     err.span_label(tcx.def_span(id), "not an `unsafe` function");
2796                     err.emit();
2797                 } else if let Some(local_id) = id.as_local() {
2798                     check_target_feature_trait_unsafe(tcx, local_id, attr.span);
2799                 }
2800             }
2801             from_target_feature(
2802                 tcx,
2803                 id,
2804                 attr,
2805                 &supported_target_features,
2806                 &mut codegen_fn_attrs.target_features,
2807             );
2808         } else if tcx.sess.check_name(attr, sym::linkage) {
2809             if let Some(val) = attr.value_str() {
2810                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2811             }
2812         } else if tcx.sess.check_name(attr, sym::link_section) {
2813             if let Some(val) = attr.value_str() {
2814                 if val.as_str().bytes().any(|b| b == 0) {
2815                     let msg = format!(
2816                         "illegal null byte in link_section \
2817                          value: `{}`",
2818                         &val
2819                     );
2820                     tcx.sess.span_err(attr.span, &msg);
2821                 } else {
2822                     codegen_fn_attrs.link_section = Some(val);
2823                 }
2824             }
2825         } else if tcx.sess.check_name(attr, sym::link_name) {
2826             codegen_fn_attrs.link_name = attr.value_str();
2827         } else if tcx.sess.check_name(attr, sym::link_ordinal) {
2828             link_ordinal_span = Some(attr.span);
2829             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2830                 codegen_fn_attrs.link_ordinal = ordinal;
2831             }
2832         } else if tcx.sess.check_name(attr, sym::no_sanitize) {
2833             no_sanitize_span = Some(attr.span);
2834             if let Some(list) = attr.meta_item_list() {
2835                 for item in list.iter() {
2836                     if item.has_name(sym::address) {
2837                         codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
2838                     } else if item.has_name(sym::memory) {
2839                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
2840                     } else if item.has_name(sym::thread) {
2841                         codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
2842                     } else if item.has_name(sym::hwaddress) {
2843                         codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
2844                     } else {
2845                         tcx.sess
2846                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
2847                             .note("expected one of: `address`, `hwaddress`, `memory` or `thread`")
2848                             .emit();
2849                     }
2850                 }
2851             }
2852         } else if tcx.sess.check_name(attr, sym::instruction_set) {
2853             codegen_fn_attrs.instruction_set = match attr.meta().map(|i| i.kind) {
2854                 Some(MetaItemKind::List(ref items)) => match items.as_slice() {
2855                     [NestedMetaItem::MetaItem(set)] => {
2856                         let segments =
2857                             set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
2858                         match segments.as_slice() {
2859                             [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
2860                                 if !tcx.sess.target.has_thumb_interworking {
2861                                     struct_span_err!(
2862                                         tcx.sess.diagnostic(),
2863                                         attr.span,
2864                                         E0779,
2865                                         "target does not support `#[instruction_set]`"
2866                                     )
2867                                     .emit();
2868                                     None
2869                                 } else if segments[1] == sym::a32 {
2870                                     Some(InstructionSetAttr::ArmA32)
2871                                 } else if segments[1] == sym::t32 {
2872                                     Some(InstructionSetAttr::ArmT32)
2873                                 } else {
2874                                     unreachable!()
2875                                 }
2876                             }
2877                             _ => {
2878                                 struct_span_err!(
2879                                     tcx.sess.diagnostic(),
2880                                     attr.span,
2881                                     E0779,
2882                                     "invalid instruction set specified",
2883                                 )
2884                                 .emit();
2885                                 None
2886                             }
2887                         }
2888                     }
2889                     [] => {
2890                         struct_span_err!(
2891                             tcx.sess.diagnostic(),
2892                             attr.span,
2893                             E0778,
2894                             "`#[instruction_set]` requires an argument"
2895                         )
2896                         .emit();
2897                         None
2898                     }
2899                     _ => {
2900                         struct_span_err!(
2901                             tcx.sess.diagnostic(),
2902                             attr.span,
2903                             E0779,
2904                             "cannot specify more than one instruction set"
2905                         )
2906                         .emit();
2907                         None
2908                     }
2909                 },
2910                 _ => {
2911                     struct_span_err!(
2912                         tcx.sess.diagnostic(),
2913                         attr.span,
2914                         E0778,
2915                         "must specify an instruction set"
2916                     )
2917                     .emit();
2918                     None
2919                 }
2920             };
2921         } else if tcx.sess.check_name(attr, sym::repr) {
2922             codegen_fn_attrs.alignment = match attr.meta_item_list() {
2923                 Some(items) => match items.as_slice() {
2924                     [item] => match item.name_value_literal() {
2925                         Some((sym::align, literal)) => {
2926                             let alignment = rustc_attr::parse_alignment(&literal.kind);
2927
2928                             match alignment {
2929                                 Ok(align) => Some(align),
2930                                 Err(msg) => {
2931                                     struct_span_err!(
2932                                         tcx.sess.diagnostic(),
2933                                         attr.span,
2934                                         E0589,
2935                                         "invalid `repr(align)` attribute: {}",
2936                                         msg
2937                                     )
2938                                     .emit();
2939
2940                                     None
2941                                 }
2942                             }
2943                         }
2944                         _ => None,
2945                     },
2946                     [] => None,
2947                     _ => None,
2948                 },
2949                 None => None,
2950             };
2951         }
2952     }
2953
2954     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2955         if !attr.has_name(sym::inline) {
2956             return ia;
2957         }
2958         match attr.meta().map(|i| i.kind) {
2959             Some(MetaItemKind::Word) => {
2960                 tcx.sess.mark_attr_used(attr);
2961                 InlineAttr::Hint
2962             }
2963             Some(MetaItemKind::List(ref items)) => {
2964                 tcx.sess.mark_attr_used(attr);
2965                 inline_span = Some(attr.span);
2966                 if items.len() != 1 {
2967                     struct_span_err!(
2968                         tcx.sess.diagnostic(),
2969                         attr.span,
2970                         E0534,
2971                         "expected one argument"
2972                     )
2973                     .emit();
2974                     InlineAttr::None
2975                 } else if list_contains_name(&items[..], sym::always) {
2976                     InlineAttr::Always
2977                 } else if list_contains_name(&items[..], sym::never) {
2978                     InlineAttr::Never
2979                 } else {
2980                     struct_span_err!(
2981                         tcx.sess.diagnostic(),
2982                         items[0].span(),
2983                         E0535,
2984                         "invalid argument"
2985                     )
2986                     .emit();
2987
2988                     InlineAttr::None
2989                 }
2990             }
2991             Some(MetaItemKind::NameValue(_)) => ia,
2992             None => ia,
2993         }
2994     });
2995
2996     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2997         if !attr.has_name(sym::optimize) {
2998             return ia;
2999         }
3000         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
3001         match attr.meta().map(|i| i.kind) {
3002             Some(MetaItemKind::Word) => {
3003                 err(attr.span, "expected one argument");
3004                 ia
3005             }
3006             Some(MetaItemKind::List(ref items)) => {
3007                 tcx.sess.mark_attr_used(attr);
3008                 inline_span = Some(attr.span);
3009                 if items.len() != 1 {
3010                     err(attr.span, "expected one argument");
3011                     OptimizeAttr::None
3012                 } else if list_contains_name(&items[..], sym::size) {
3013                     OptimizeAttr::Size
3014                 } else if list_contains_name(&items[..], sym::speed) {
3015                     OptimizeAttr::Speed
3016                 } else {
3017                     err(items[0].span(), "invalid argument");
3018                     OptimizeAttr::None
3019                 }
3020             }
3021             Some(MetaItemKind::NameValue(_)) => ia,
3022             None => ia,
3023         }
3024     });
3025
3026     // #73631: closures inherit `#[target_feature]` annotations
3027     if tcx.features().target_feature_11 && tcx.is_closure(id) {
3028         let owner_id = tcx.parent(id).expect("closure should have a parent");
3029         codegen_fn_attrs
3030             .target_features
3031             .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied())
3032     }
3033
3034     // If a function uses #[target_feature] it can't be inlined into general
3035     // purpose functions as they wouldn't have the right target features
3036     // enabled. For that reason we also forbid #[inline(always)] as it can't be
3037     // respected.
3038     if !codegen_fn_attrs.target_features.is_empty() {
3039         if codegen_fn_attrs.inline == InlineAttr::Always {
3040             if let Some(span) = inline_span {
3041                 tcx.sess.span_err(
3042                     span,
3043                     "cannot use `#[inline(always)]` with \
3044                      `#[target_feature]`",
3045                 );
3046             }
3047         }
3048     }
3049
3050     if !codegen_fn_attrs.no_sanitize.is_empty() {
3051         if codegen_fn_attrs.inline == InlineAttr::Always {
3052             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
3053                 let hir_id = tcx.hir().local_def_id_to_hir_id(id.expect_local());
3054                 tcx.struct_span_lint_hir(
3055                     lint::builtin::INLINE_NO_SANITIZE,
3056                     hir_id,
3057                     no_sanitize_span,
3058                     |lint| {
3059                         lint.build("`no_sanitize` will have no effect after inlining")
3060                             .span_note(inline_span, "inlining requested here")
3061                             .emit();
3062                     },
3063                 )
3064             }
3065         }
3066     }
3067
3068     // Weak lang items have the same semantics as "std internal" symbols in the
3069     // sense that they're preserved through all our LTO passes and only
3070     // strippable by the linker.
3071     //
3072     // Additionally weak lang items have predetermined symbol names.
3073     if tcx.is_weak_lang_item(id) {
3074         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
3075     }
3076     let check_name = |attr, sym| tcx.sess.check_name(attr, sym);
3077     if let Some(name) = weak_lang_items::link_name(check_name, &attrs) {
3078         codegen_fn_attrs.export_name = Some(name);
3079         codegen_fn_attrs.link_name = Some(name);
3080     }
3081     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
3082
3083     // Internal symbols to the standard library all have no_mangle semantics in
3084     // that they have defined symbol names present in the function name. This
3085     // also applies to weak symbols where they all have known symbol names.
3086     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
3087         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
3088     }
3089
3090     codegen_fn_attrs
3091 }
3092
3093 /// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
3094 /// applied to the method prototype.
3095 fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
3096     if let Some(impl_item) = tcx.opt_associated_item(def_id) {
3097         if let ty::AssocItemContainer::ImplContainer(impl_def_id) = impl_item.container {
3098             if let Some(trait_def_id) = tcx.trait_id_of_impl(impl_def_id) {
3099                 if let Some(trait_item) = tcx
3100                     .associated_items(trait_def_id)
3101                     .filter_by_name_unhygienic(impl_item.ident.name)
3102                     .find(move |trait_item| {
3103                         trait_item.kind == ty::AssocKind::Fn
3104                             && tcx.hygienic_eq(impl_item.ident, trait_item.ident, trait_def_id)
3105                     })
3106                 {
3107                     return tcx
3108                         .codegen_fn_attrs(trait_item.def_id)
3109                         .flags
3110                         .intersects(CodegenFnAttrFlags::TRACK_CALLER);
3111                 }
3112             }
3113         }
3114     }
3115
3116     false
3117 }
3118
3119 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
3120     use rustc_ast::{Lit, LitIntType, LitKind};
3121     let meta_item_list = attr.meta_item_list();
3122     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
3123     let sole_meta_list = match meta_item_list {
3124         Some([item]) => item.literal(),
3125         _ => None,
3126     };
3127     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
3128         if *ordinal <= usize::MAX as u128 {
3129             Some(*ordinal as usize)
3130         } else {
3131             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
3132             tcx.sess
3133                 .struct_span_err(attr.span, &msg)
3134                 .note("the value may not exceed `usize::MAX`")
3135                 .emit();
3136             None
3137         }
3138     } else {
3139         tcx.sess
3140             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
3141             .note("an unsuffixed integer value, e.g., `1`, is expected")
3142             .emit();
3143         None
3144     }
3145 }
3146
3147 fn check_link_name_xor_ordinal(
3148     tcx: TyCtxt<'_>,
3149     codegen_fn_attrs: &CodegenFnAttrs,
3150     inline_span: Option<Span>,
3151 ) {
3152     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
3153         return;
3154     }
3155     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
3156     if let Some(span) = inline_span {
3157         tcx.sess.span_err(span, msg);
3158     } else {
3159         tcx.sess.err(msg);
3160     }
3161 }
3162
3163 /// Checks the function annotated with `#[target_feature]` is not a safe
3164 /// trait method implementation, reporting an error if it is.
3165 fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
3166     let hir_id = tcx.hir().local_def_id_to_hir_id(id);
3167     let node = tcx.hir().get(hir_id);
3168     if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
3169         let parent_id = tcx.hir().get_parent_item(hir_id);
3170         let parent_item = tcx.hir().expect_item(parent_id);
3171         if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
3172             tcx.sess
3173                 .struct_span_err(
3174                     attr_span,
3175                     "`#[target_feature(..)]` cannot be applied to safe trait method",
3176                 )
3177                 .span_label(attr_span, "cannot be applied to safe trait method")
3178                 .span_label(tcx.def_span(id), "not an `unsafe` function")
3179                 .emit();
3180         }
3181     }
3182 }