]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/collect.rs
Rollup merge of #83392 - ehuss:w-help-edition, r=varkor
[rust.git] / compiler / rustc_typeck / src / collect.rs
1 // ignore-tidy-filelength
2 //! "Collection" is the process of determining the type and other external
3 //! details of each item in Rust. Collection is specifically concerned
4 //! with *inter-procedural* things -- for example, for a function
5 //! definition, collection will figure out the type and signature of the
6 //! function, but it will not visit the *body* of the function in any way,
7 //! nor examine type annotations on local variables (that's the job of
8 //! type *checking*).
9 //!
10 //! Collecting is ultimately defined by a bundle of queries that
11 //! inquire after various facts about the items in the crate (e.g.,
12 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
13 //! for the full set.
14 //!
15 //! At present, however, we do run collection across all items in the
16 //! crate as a kind of pass. This should eventually be factored away.
17
18 use crate::astconv::{AstConv, SizedByDefault};
19 use crate::bounds::Bounds;
20 use crate::check::intrinsic::intrinsic_operation_unsafety;
21 use crate::constrained_generic_params as cgp;
22 use crate::errors;
23 use crate::middle::resolve_lifetime as rl;
24 use rustc_ast as ast;
25 use rustc_ast::{MetaItemKind, NestedMetaItem};
26 use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
27 use rustc_data_structures::captures::Captures;
28 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
29 use rustc_errors::{struct_span_err, Applicability};
30 use rustc_hir as hir;
31 use rustc_hir::def::{CtorKind, DefKind, Res};
32 use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE};
33 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
34 use rustc_hir::weak_lang_items;
35 use rustc_hir::{GenericParamKind, HirId, Node};
36 use rustc_middle::hir::map::blocks::FnLikeNode;
37 use rustc_middle::hir::map::Map;
38 use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
39 use rustc_middle::mir::mono::Linkage;
40 use rustc_middle::ty::query::Providers;
41 use rustc_middle::ty::subst::InternalSubsts;
42 use rustc_middle::ty::util::Discr;
43 use rustc_middle::ty::util::IntTypeExt;
44 use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, ToPolyTraitRef, Ty, TyCtxt};
45 use rustc_middle::ty::{ReprOptions, ToPredicate, WithConstness};
46 use rustc_session::config::SanitizerSet;
47 use rustc_session::lint;
48 use rustc_session::parse::feature_err;
49 use rustc_span::symbol::{kw, sym, Ident, Symbol};
50 use rustc_span::{Span, DUMMY_SP};
51 use rustc_target::spec::abi;
52 use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
53
54 mod item_bounds;
55 mod type_of;
56
57 struct OnlySelfBounds(bool);
58
59 ///////////////////////////////////////////////////////////////////////////
60 // Main entry point
61
62 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
63     tcx.hir().visit_item_likes_in_module(
64         module_def_id,
65         &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
66     );
67 }
68
69 pub fn provide(providers: &mut Providers) {
70     *providers = Providers {
71         opt_const_param_of: type_of::opt_const_param_of,
72         type_of: type_of::type_of,
73         item_bounds: item_bounds::item_bounds,
74         explicit_item_bounds: item_bounds::explicit_item_bounds,
75         generics_of,
76         predicates_of,
77         predicates_defined_on,
78         projection_ty_from_predicates,
79         explicit_predicates_of,
80         super_predicates_of,
81         super_predicates_that_define_assoc_type,
82         trait_explicit_predicates_and_bounds,
83         type_param_predicates,
84         trait_def,
85         adt_def,
86         fn_sig,
87         impl_trait_ref,
88         impl_polarity,
89         is_foreign_item,
90         static_mutability,
91         generator_kind,
92         codegen_fn_attrs,
93         collect_mod_item_types,
94         ..*providers
95     };
96 }
97
98 ///////////////////////////////////////////////////////////////////////////
99
100 /// Context specific to some particular item. This is what implements
101 /// `AstConv`. It has information about the predicates that are defined
102 /// on the trait. Unfortunately, this predicate information is
103 /// available in various different forms at various points in the
104 /// process. So we can't just store a pointer to e.g., the AST or the
105 /// parsed ty form, we have to be more flexible. To this end, the
106 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
107 /// `get_type_parameter_bounds` requests, drawing the information from
108 /// the AST (`hir::Generics`), recursively.
109 pub struct ItemCtxt<'tcx> {
110     tcx: TyCtxt<'tcx>,
111     item_def_id: DefId,
112 }
113
114 ///////////////////////////////////////////////////////////////////////////
115
116 #[derive(Default)]
117 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
118
119 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
120     type Map = intravisit::ErasedMap<'v>;
121
122     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
123         NestedVisitorMap::None
124     }
125     fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
126         if let hir::TyKind::Infer = t.kind {
127             self.0.push(t.span);
128         }
129         intravisit::walk_ty(self, t)
130     }
131 }
132
133 struct CollectItemTypesVisitor<'tcx> {
134     tcx: TyCtxt<'tcx>,
135 }
136
137 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
138 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
139 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
140 crate fn placeholder_type_error(
141     tcx: TyCtxt<'tcx>,
142     span: Option<Span>,
143     generics: &[hir::GenericParam<'_>],
144     placeholder_types: Vec<Span>,
145     suggest: bool,
146     hir_ty: Option<&hir::Ty<'_>>,
147 ) {
148     if placeholder_types.is_empty() {
149         return;
150     }
151
152     let type_name = generics.next_type_param_name(None);
153     let mut sugg: Vec<_> =
154         placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
155
156     if generics.is_empty() {
157         if let Some(span) = span {
158             sugg.push((span, format!("<{}>", type_name)));
159         }
160     } else if let Some(arg) = generics
161         .iter()
162         .find(|arg| matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. })))
163     {
164         // Account for `_` already present in cases like `struct S<_>(_);` and suggest
165         // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
166         sugg.push((arg.span, (*type_name).to_string()));
167     } else {
168         let last = generics.iter().last().unwrap();
169         sugg.push((
170             // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
171             last.bounds_span().unwrap_or(last.span).shrink_to_hi(),
172             format!(", {}", type_name),
173         ));
174     }
175
176     let mut err = bad_placeholder_type(tcx, placeholder_types);
177
178     // Suggest, but only if it is not a function in const or static
179     if suggest {
180         let mut is_fn = false;
181         let mut is_const = false;
182         let mut is_static = false;
183
184         if let Some(hir_ty) = hir_ty {
185             if let hir::TyKind::BareFn(_) = hir_ty.kind {
186                 is_fn = true;
187
188                 // Check if parent is const or static
189                 let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
190                 let parent_node = tcx.hir().get(parent_id);
191
192                 if let hir::Node::Item(item) = parent_node {
193                     if let hir::ItemKind::Const(_, _) = item.kind {
194                         is_const = true;
195                     } else if let hir::ItemKind::Static(_, _, _) = item.kind {
196                         is_static = true;
197                     }
198                 }
199             }
200         }
201
202         // if function is wrapped around a const or static,
203         // then don't show the suggestion
204         if !(is_fn && (is_const || is_static)) {
205             err.multipart_suggestion(
206                 "use type parameters instead",
207                 sugg,
208                 Applicability::HasPlaceholders,
209             );
210         }
211     }
212     err.emit();
213 }
214
215 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
216     let (generics, suggest) = match &item.kind {
217         hir::ItemKind::Union(_, generics)
218         | hir::ItemKind::Enum(_, generics)
219         | hir::ItemKind::TraitAlias(generics, _)
220         | hir::ItemKind::Trait(_, _, generics, ..)
221         | hir::ItemKind::Impl(hir::Impl { generics, .. })
222         | hir::ItemKind::Struct(_, generics) => (generics, true),
223         hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
224         | hir::ItemKind::TyAlias(_, generics) => (generics, false),
225         // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
226         _ => return,
227     };
228
229     let mut visitor = PlaceholderHirTyCollector::default();
230     visitor.visit_item(item);
231
232     placeholder_type_error(tcx, Some(generics.span), generics.params, visitor.0, suggest, None);
233 }
234
235 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
236     type Map = Map<'tcx>;
237
238     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
239         NestedVisitorMap::OnlyBodies(self.tcx.hir())
240     }
241
242     fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
243         convert_item(self.tcx, item.item_id());
244         reject_placeholder_type_signatures_in_item(self.tcx, item);
245         intravisit::walk_item(self, item);
246     }
247
248     fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
249         for param in generics.params {
250             match param.kind {
251                 hir::GenericParamKind::Lifetime { .. } => {}
252                 hir::GenericParamKind::Type { default: Some(_), .. } => {
253                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
254                     self.tcx.ensure().type_of(def_id);
255                 }
256                 hir::GenericParamKind::Type { .. } => {}
257                 hir::GenericParamKind::Const { .. } => {
258                     let def_id = self.tcx.hir().local_def_id(param.hir_id);
259                     self.tcx.ensure().type_of(def_id);
260                     // FIXME(const_generics_defaults)
261                 }
262             }
263         }
264         intravisit::walk_generics(self, generics);
265     }
266
267     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
268         if let hir::ExprKind::Closure(..) = expr.kind {
269             let def_id = self.tcx.hir().local_def_id(expr.hir_id);
270             self.tcx.ensure().generics_of(def_id);
271             self.tcx.ensure().type_of(def_id);
272         }
273         intravisit::walk_expr(self, expr);
274     }
275
276     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
277         convert_trait_item(self.tcx, trait_item.trait_item_id());
278         intravisit::walk_trait_item(self, trait_item);
279     }
280
281     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
282         convert_impl_item(self.tcx, impl_item.impl_item_id());
283         intravisit::walk_impl_item(self, impl_item);
284     }
285 }
286
287 ///////////////////////////////////////////////////////////////////////////
288 // Utility types and common code for the above passes.
289
290 fn bad_placeholder_type(
291     tcx: TyCtxt<'tcx>,
292     mut spans: Vec<Span>,
293 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
294     spans.sort();
295     let mut err = struct_span_err!(
296         tcx.sess,
297         spans.clone(),
298         E0121,
299         "the type placeholder `_` is not allowed within types on item signatures",
300     );
301     for span in spans {
302         err.span_label(span, "not allowed in type signatures");
303     }
304     err
305 }
306
307 impl ItemCtxt<'tcx> {
308     pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
309         ItemCtxt { tcx, item_def_id }
310     }
311
312     pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
313         <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
314     }
315
316     pub fn hir_id(&self) -> hir::HirId {
317         self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
318     }
319
320     pub fn node(&self) -> hir::Node<'tcx> {
321         self.tcx.hir().get(self.hir_id())
322     }
323 }
324
325 impl AstConv<'tcx> for ItemCtxt<'tcx> {
326     fn tcx(&self) -> TyCtxt<'tcx> {
327         self.tcx
328     }
329
330     fn item_def_id(&self) -> Option<DefId> {
331         Some(self.item_def_id)
332     }
333
334     fn default_constness_for_trait_bounds(&self) -> hir::Constness {
335         if let Some(fn_like) = FnLikeNode::from_node(self.node()) {
336             fn_like.constness()
337         } else {
338             hir::Constness::NotConst
339         }
340     }
341
342     fn get_type_parameter_bounds(
343         &self,
344         span: Span,
345         def_id: DefId,
346         assoc_name: Ident,
347     ) -> ty::GenericPredicates<'tcx> {
348         self.tcx.at(span).type_param_predicates((
349             self.item_def_id,
350             def_id.expect_local(),
351             assoc_name,
352         ))
353     }
354
355     fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
356         None
357     }
358
359     fn allow_ty_infer(&self) -> bool {
360         false
361     }
362
363     fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
364         self.tcx().ty_error_with_message(span, "bad_placeholder_type")
365     }
366
367     fn ct_infer(
368         &self,
369         ty: Ty<'tcx>,
370         _: Option<&ty::GenericParamDef>,
371         span: Span,
372     ) -> &'tcx Const<'tcx> {
373         bad_placeholder_type(self.tcx(), vec![span]).emit();
374         // Typeck doesn't expect erased regions to be returned from `type_of`.
375         let ty = self.tcx.fold_regions(ty, &mut false, |r, _| match r {
376             ty::ReErased => self.tcx.lifetimes.re_static,
377             _ => r,
378         });
379         self.tcx().const_error(ty)
380     }
381
382     fn projected_ty_from_poly_trait_ref(
383         &self,
384         span: Span,
385         item_def_id: DefId,
386         item_segment: &hir::PathSegment<'_>,
387         poly_trait_ref: ty::PolyTraitRef<'tcx>,
388     ) -> Ty<'tcx> {
389         if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
390             let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
391                 self,
392                 self.tcx,
393                 span,
394                 item_def_id,
395                 item_segment,
396                 trait_ref.substs,
397             );
398             self.tcx().mk_projection(item_def_id, item_substs)
399         } else {
400             // There are no late-bound regions; we can just ignore the binder.
401             let mut err = struct_span_err!(
402                 self.tcx().sess,
403                 span,
404                 E0212,
405                 "cannot use the associated type of a trait \
406                  with uninferred generic parameters"
407             );
408
409             match self.node() {
410                 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
411                     let item =
412                         self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
413                     match &item.kind {
414                         hir::ItemKind::Enum(_, generics)
415                         | hir::ItemKind::Struct(_, generics)
416                         | hir::ItemKind::Union(_, generics) => {
417                             let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
418                             let (lt_sp, sugg) = match generics.params {
419                                 [] => (generics.span, format!("<{}>", lt_name)),
420                                 [bound, ..] => {
421                                     (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
422                                 }
423                             };
424                             let suggestions = vec![
425                                 (lt_sp, sugg),
426                                 (
427                                     span,
428                                     format!(
429                                         "{}::{}",
430                                         // Replace the existing lifetimes with a new named lifetime.
431                                         self.tcx
432                                             .replace_late_bound_regions(poly_trait_ref, |_| {
433                                                 self.tcx.mk_region(ty::ReEarlyBound(
434                                                     ty::EarlyBoundRegion {
435                                                         def_id: item_def_id,
436                                                         index: 0,
437                                                         name: Symbol::intern(&lt_name),
438                                                     },
439                                                 ))
440                                             })
441                                             .0,
442                                         item_segment.ident
443                                     ),
444                                 ),
445                             ];
446                             err.multipart_suggestion(
447                                 "use a fully qualified path with explicit lifetimes",
448                                 suggestions,
449                                 Applicability::MaybeIncorrect,
450                             );
451                         }
452                         _ => {}
453                     }
454                 }
455                 hir::Node::Item(hir::Item {
456                     kind:
457                         hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
458                     ..
459                 }) => {}
460                 hir::Node::Item(_)
461                 | hir::Node::ForeignItem(_)
462                 | hir::Node::TraitItem(_)
463                 | hir::Node::ImplItem(_) => {
464                     err.span_suggestion(
465                         span,
466                         "use a fully qualified path with inferred lifetimes",
467                         format!(
468                             "{}::{}",
469                             // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
470                             self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
471                             item_segment.ident
472                         ),
473                         Applicability::MaybeIncorrect,
474                     );
475                 }
476                 _ => {}
477             }
478             err.emit();
479             self.tcx().ty_error()
480         }
481     }
482
483     fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
484         // Types in item signatures are not normalized to avoid undue dependencies.
485         ty
486     }
487
488     fn set_tainted_by_errors(&self) {
489         // There's no obvious place to track this, so just let it go.
490     }
491
492     fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
493         // There's no place to record types from signatures?
494     }
495 }
496
497 /// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
498 fn get_new_lifetime_name<'tcx>(
499     tcx: TyCtxt<'tcx>,
500     poly_trait_ref: ty::PolyTraitRef<'tcx>,
501     generics: &hir::Generics<'tcx>,
502 ) -> String {
503     let existing_lifetimes = tcx
504         .collect_referenced_late_bound_regions(&poly_trait_ref)
505         .into_iter()
506         .filter_map(|lt| {
507             if let ty::BoundRegionKind::BrNamed(_, name) = lt {
508                 Some(name.as_str().to_string())
509             } else {
510                 None
511             }
512         })
513         .chain(generics.params.iter().filter_map(|param| {
514             if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
515                 Some(param.name.ident().as_str().to_string())
516             } else {
517                 None
518             }
519         }))
520         .collect::<FxHashSet<String>>();
521
522     let a_to_z_repeat_n = |n| {
523         (b'a'..=b'z').map(move |c| {
524             let mut s = '\''.to_string();
525             s.extend(std::iter::repeat(char::from(c)).take(n));
526             s
527         })
528     };
529
530     // If all single char lifetime names are present, we wrap around and double the chars.
531     (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
532 }
533
534 /// Returns the predicates defined on `item_def_id` of the form
535 /// `X: Foo` where `X` is the type parameter `def_id`.
536 fn type_param_predicates(
537     tcx: TyCtxt<'_>,
538     (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
539 ) -> ty::GenericPredicates<'_> {
540     use rustc_hir::*;
541
542     // In the AST, bounds can derive from two places. Either
543     // written inline like `<T: Foo>` or in a where-clause like
544     // `where T: Foo`.
545
546     let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
547     let param_owner = tcx.hir().ty_param_owner(param_id);
548     let param_owner_def_id = tcx.hir().local_def_id(param_owner);
549     let generics = tcx.generics_of(param_owner_def_id);
550     let index = generics.param_def_id_to_index[&def_id.to_def_id()];
551     let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
552
553     // Don't look for bounds where the type parameter isn't in scope.
554     let parent = if item_def_id == param_owner_def_id.to_def_id() {
555         None
556     } else {
557         tcx.generics_of(item_def_id).parent
558     };
559
560     let mut result = parent
561         .map(|parent| {
562             let icx = ItemCtxt::new(tcx, parent);
563             icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
564         })
565         .unwrap_or_default();
566     let mut extend = None;
567
568     let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
569     let ast_generics = match tcx.hir().get(item_hir_id) {
570         Node::TraitItem(item) => &item.generics,
571
572         Node::ImplItem(item) => &item.generics,
573
574         Node::Item(item) => {
575             match item.kind {
576                 ItemKind::Fn(.., ref generics, _)
577                 | ItemKind::Impl(hir::Impl { ref generics, .. })
578                 | ItemKind::TyAlias(_, ref generics)
579                 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
580                 | ItemKind::Enum(_, ref generics)
581                 | ItemKind::Struct(_, ref generics)
582                 | ItemKind::Union(_, ref generics) => generics,
583                 ItemKind::Trait(_, _, ref generics, ..) => {
584                     // Implied `Self: Trait` and supertrait bounds.
585                     if param_id == item_hir_id {
586                         let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
587                         extend =
588                             Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
589                     }
590                     generics
591                 }
592                 _ => return result,
593             }
594         }
595
596         Node::ForeignItem(item) => match item.kind {
597             ForeignItemKind::Fn(_, _, ref generics) => generics,
598             _ => return result,
599         },
600
601         _ => return result,
602     };
603
604     let icx = ItemCtxt::new(tcx, item_def_id);
605     let extra_predicates = extend.into_iter().chain(
606         icx.type_parameter_bounds_in_generics(
607             ast_generics,
608             param_id,
609             ty,
610             OnlySelfBounds(true),
611             Some(assoc_name),
612         )
613         .into_iter()
614         .filter(|(predicate, _)| match predicate.kind().skip_binder() {
615             ty::PredicateKind::Trait(data, _) => data.self_ty().is_param(index),
616             _ => false,
617         }),
618     );
619     result.predicates =
620         tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
621     result
622 }
623
624 impl ItemCtxt<'tcx> {
625     /// Finds bounds from `hir::Generics`. This requires scanning through the
626     /// AST. We do this to avoid having to convert *all* the bounds, which
627     /// would create artificial cycles. Instead, we can only convert the
628     /// bounds for a type parameter `X` if `X::Foo` is used.
629     fn type_parameter_bounds_in_generics(
630         &self,
631         ast_generics: &'tcx hir::Generics<'tcx>,
632         param_id: hir::HirId,
633         ty: Ty<'tcx>,
634         only_self_bounds: OnlySelfBounds,
635         assoc_name: Option<Ident>,
636     ) -> Vec<(ty::Predicate<'tcx>, Span)> {
637         let constness = self.default_constness_for_trait_bounds();
638         let from_ty_params = ast_generics
639             .params
640             .iter()
641             .filter_map(|param| match param.kind {
642                 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
643                 _ => None,
644             })
645             .flat_map(|bounds| bounds.iter())
646             .filter(|b| match assoc_name {
647                 Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
648                 None => true,
649             })
650             .flat_map(|b| predicates_from_bound(self, ty, b, constness));
651
652         let from_where_clauses = ast_generics
653             .where_clause
654             .predicates
655             .iter()
656             .filter_map(|wp| match *wp {
657                 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
658                 _ => None,
659             })
660             .flat_map(|bp| {
661                 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
662                     Some(ty)
663                 } else if !only_self_bounds.0 {
664                     Some(self.to_ty(&bp.bounded_ty))
665                 } else {
666                     None
667                 };
668                 bp.bounds
669                     .iter()
670                     .filter(|b| match assoc_name {
671                         Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
672                         None => true,
673                     })
674                     .filter_map(move |b| bt.map(|bt| (bt, b)))
675             })
676             .flat_map(|(bt, b)| predicates_from_bound(self, bt, b, constness));
677
678         from_ty_params.chain(from_where_clauses).collect()
679     }
680
681     fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
682         debug!("bound_defines_assoc_item(b={:?}, assoc_name={:?})", b, assoc_name);
683
684         match b {
685             hir::GenericBound::Trait(poly_trait_ref, _) => {
686                 let trait_ref = &poly_trait_ref.trait_ref;
687                 if let Some(trait_did) = trait_ref.trait_def_id() {
688                     self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
689                 } else {
690                     false
691                 }
692             }
693             _ => false,
694         }
695     }
696 }
697
698 /// Tests whether this is the AST for a reference to the type
699 /// parameter with ID `param_id`. We use this so as to avoid running
700 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
701 /// conversion of the type to avoid inducing unnecessary cycles.
702 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
703     if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
704         match path.res {
705             Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
706                 def_id == tcx.hir().local_def_id(param_id).to_def_id()
707             }
708             _ => false,
709         }
710     } else {
711         false
712     }
713 }
714
715 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
716     let it = tcx.hir().item(item_id);
717     debug!("convert: item {} with id {}", it.ident, it.hir_id());
718     let def_id = item_id.def_id;
719
720     match it.kind {
721         // These don't define types.
722         hir::ItemKind::ExternCrate(_)
723         | hir::ItemKind::Use(..)
724         | hir::ItemKind::Mod(_)
725         | hir::ItemKind::GlobalAsm(_) => {}
726         hir::ItemKind::ForeignMod { items, .. } => {
727             for item in items {
728                 let item = tcx.hir().foreign_item(item.id);
729                 tcx.ensure().generics_of(item.def_id);
730                 tcx.ensure().type_of(item.def_id);
731                 tcx.ensure().predicates_of(item.def_id);
732                 if let hir::ForeignItemKind::Fn(..) = item.kind {
733                     tcx.ensure().fn_sig(item.def_id);
734                 }
735             }
736         }
737         hir::ItemKind::Enum(ref enum_definition, _) => {
738             tcx.ensure().generics_of(def_id);
739             tcx.ensure().type_of(def_id);
740             tcx.ensure().predicates_of(def_id);
741             convert_enum_variant_types(tcx, def_id.to_def_id(), &enum_definition.variants);
742         }
743         hir::ItemKind::Impl { .. } => {
744             tcx.ensure().generics_of(def_id);
745             tcx.ensure().type_of(def_id);
746             tcx.ensure().impl_trait_ref(def_id);
747             tcx.ensure().predicates_of(def_id);
748         }
749         hir::ItemKind::Trait(..) => {
750             tcx.ensure().generics_of(def_id);
751             tcx.ensure().trait_def(def_id);
752             tcx.at(it.span).super_predicates_of(def_id);
753             tcx.ensure().predicates_of(def_id);
754         }
755         hir::ItemKind::TraitAlias(..) => {
756             tcx.ensure().generics_of(def_id);
757             tcx.at(it.span).super_predicates_of(def_id);
758             tcx.ensure().predicates_of(def_id);
759         }
760         hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
761             tcx.ensure().generics_of(def_id);
762             tcx.ensure().type_of(def_id);
763             tcx.ensure().predicates_of(def_id);
764
765             for f in struct_def.fields() {
766                 let def_id = tcx.hir().local_def_id(f.hir_id);
767                 tcx.ensure().generics_of(def_id);
768                 tcx.ensure().type_of(def_id);
769                 tcx.ensure().predicates_of(def_id);
770             }
771
772             if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
773                 convert_variant_ctor(tcx, ctor_hir_id);
774             }
775         }
776
777         // Desugared from `impl Trait`, so visited by the function's return type.
778         hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
779
780         // Don't call `type_of` on opaque types, since that depends on type
781         // checking function bodies. `check_item_type` ensures that it's called
782         // instead.
783         hir::ItemKind::OpaqueTy(..) => {
784             tcx.ensure().generics_of(def_id);
785             tcx.ensure().predicates_of(def_id);
786             tcx.ensure().explicit_item_bounds(def_id);
787         }
788         hir::ItemKind::TyAlias(..)
789         | hir::ItemKind::Static(..)
790         | hir::ItemKind::Const(..)
791         | hir::ItemKind::Fn(..) => {
792             tcx.ensure().generics_of(def_id);
793             tcx.ensure().type_of(def_id);
794             tcx.ensure().predicates_of(def_id);
795             match it.kind {
796                 hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
797                 hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
798                 _ => (),
799             }
800         }
801     }
802 }
803
804 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
805     let trait_item = tcx.hir().trait_item(trait_item_id);
806     tcx.ensure().generics_of(trait_item_id.def_id);
807
808     match trait_item.kind {
809         hir::TraitItemKind::Fn(..) => {
810             tcx.ensure().type_of(trait_item_id.def_id);
811             tcx.ensure().fn_sig(trait_item_id.def_id);
812         }
813
814         hir::TraitItemKind::Const(.., Some(_)) => {
815             tcx.ensure().type_of(trait_item_id.def_id);
816         }
817
818         hir::TraitItemKind::Const(..) => {
819             tcx.ensure().type_of(trait_item_id.def_id);
820             // Account for `const C: _;`.
821             let mut visitor = PlaceholderHirTyCollector::default();
822             visitor.visit_trait_item(trait_item);
823             placeholder_type_error(tcx, None, &[], visitor.0, false, None);
824         }
825
826         hir::TraitItemKind::Type(_, Some(_)) => {
827             tcx.ensure().item_bounds(trait_item_id.def_id);
828             tcx.ensure().type_of(trait_item_id.def_id);
829             // Account for `type T = _;`.
830             let mut visitor = PlaceholderHirTyCollector::default();
831             visitor.visit_trait_item(trait_item);
832             placeholder_type_error(tcx, None, &[], visitor.0, false, None);
833         }
834
835         hir::TraitItemKind::Type(_, None) => {
836             tcx.ensure().item_bounds(trait_item_id.def_id);
837             // #74612: Visit and try to find bad placeholders
838             // even if there is no concrete type.
839             let mut visitor = PlaceholderHirTyCollector::default();
840             visitor.visit_trait_item(trait_item);
841
842             placeholder_type_error(tcx, None, &[], visitor.0, false, None);
843         }
844     };
845
846     tcx.ensure().predicates_of(trait_item_id.def_id);
847 }
848
849 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
850     let def_id = impl_item_id.def_id;
851     tcx.ensure().generics_of(def_id);
852     tcx.ensure().type_of(def_id);
853     tcx.ensure().predicates_of(def_id);
854     let impl_item = tcx.hir().impl_item(impl_item_id);
855     match impl_item.kind {
856         hir::ImplItemKind::Fn(..) => {
857             tcx.ensure().fn_sig(def_id);
858         }
859         hir::ImplItemKind::TyAlias(_) => {
860             // Account for `type T = _;`
861             let mut visitor = PlaceholderHirTyCollector::default();
862             visitor.visit_impl_item(impl_item);
863
864             placeholder_type_error(tcx, None, &[], visitor.0, false, None);
865         }
866         hir::ImplItemKind::Const(..) => {}
867     }
868 }
869
870 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
871     let def_id = tcx.hir().local_def_id(ctor_id);
872     tcx.ensure().generics_of(def_id);
873     tcx.ensure().type_of(def_id);
874     tcx.ensure().predicates_of(def_id);
875 }
876
877 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
878     let def = tcx.adt_def(def_id);
879     let repr_type = def.repr.discr_type();
880     let initial = repr_type.initial_discriminant(tcx);
881     let mut prev_discr = None::<Discr<'_>>;
882
883     // fill the discriminant values and field types
884     for variant in variants {
885         let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
886         prev_discr = Some(
887             if let Some(ref e) = variant.disr_expr {
888                 let expr_did = tcx.hir().local_def_id(e.hir_id);
889                 def.eval_explicit_discr(tcx, expr_did.to_def_id())
890             } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
891                 Some(discr)
892             } else {
893                 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
894                     .span_label(
895                         variant.span,
896                         format!("overflowed on value after {}", prev_discr.unwrap()),
897                     )
898                     .note(&format!(
899                         "explicitly set `{} = {}` if that is desired outcome",
900                         variant.ident, wrapped_discr
901                     ))
902                     .emit();
903                 None
904             }
905             .unwrap_or(wrapped_discr),
906         );
907
908         for f in variant.data.fields() {
909             let def_id = tcx.hir().local_def_id(f.hir_id);
910             tcx.ensure().generics_of(def_id);
911             tcx.ensure().type_of(def_id);
912             tcx.ensure().predicates_of(def_id);
913         }
914
915         // Convert the ctor, if any. This also registers the variant as
916         // an item.
917         if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
918             convert_variant_ctor(tcx, ctor_hir_id);
919         }
920     }
921 }
922
923 fn convert_variant(
924     tcx: TyCtxt<'_>,
925     variant_did: Option<LocalDefId>,
926     ctor_did: Option<LocalDefId>,
927     ident: Ident,
928     discr: ty::VariantDiscr,
929     def: &hir::VariantData<'_>,
930     adt_kind: ty::AdtKind,
931     parent_did: LocalDefId,
932 ) -> ty::VariantDef {
933     let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
934     let fields = def
935         .fields()
936         .iter()
937         .map(|f| {
938             let fid = tcx.hir().local_def_id(f.hir_id);
939             let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
940             if let Some(prev_span) = dup_span {
941                 tcx.sess.emit_err(errors::FieldAlreadyDeclared {
942                     field_name: f.ident,
943                     span: f.span,
944                     prev_span,
945                 });
946             } else {
947                 seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
948             }
949
950             ty::FieldDef { did: fid.to_def_id(), ident: f.ident, vis: tcx.visibility(fid) }
951         })
952         .collect();
953     let recovered = match def {
954         hir::VariantData::Struct(_, r) => *r,
955         _ => false,
956     };
957     ty::VariantDef::new(
958         ident,
959         variant_did.map(LocalDefId::to_def_id),
960         ctor_did.map(LocalDefId::to_def_id),
961         discr,
962         fields,
963         CtorKind::from_hir(def),
964         adt_kind,
965         parent_did.to_def_id(),
966         recovered,
967         adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
968             || variant_did.map_or(false, |variant_did| {
969                 tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
970             }),
971     )
972 }
973
974 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
975     use rustc_hir::*;
976
977     let def_id = def_id.expect_local();
978     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
979     let item = match tcx.hir().get(hir_id) {
980         Node::Item(item) => item,
981         _ => bug!(),
982     };
983
984     let repr = ReprOptions::new(tcx, def_id.to_def_id());
985     let (kind, variants) = match item.kind {
986         ItemKind::Enum(ref def, _) => {
987             let mut distance_from_explicit = 0;
988             let variants = def
989                 .variants
990                 .iter()
991                 .map(|v| {
992                     let variant_did = Some(tcx.hir().local_def_id(v.id));
993                     let ctor_did =
994                         v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
995
996                     let discr = if let Some(ref e) = v.disr_expr {
997                         distance_from_explicit = 0;
998                         ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
999                     } else {
1000                         ty::VariantDiscr::Relative(distance_from_explicit)
1001                     };
1002                     distance_from_explicit += 1;
1003
1004                     convert_variant(
1005                         tcx,
1006                         variant_did,
1007                         ctor_did,
1008                         v.ident,
1009                         discr,
1010                         &v.data,
1011                         AdtKind::Enum,
1012                         def_id,
1013                     )
1014                 })
1015                 .collect();
1016
1017             (AdtKind::Enum, variants)
1018         }
1019         ItemKind::Struct(ref def, _) => {
1020             let variant_did = None::<LocalDefId>;
1021             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1022
1023             let variants = std::iter::once(convert_variant(
1024                 tcx,
1025                 variant_did,
1026                 ctor_did,
1027                 item.ident,
1028                 ty::VariantDiscr::Relative(0),
1029                 def,
1030                 AdtKind::Struct,
1031                 def_id,
1032             ))
1033             .collect();
1034
1035             (AdtKind::Struct, variants)
1036         }
1037         ItemKind::Union(ref def, _) => {
1038             let variant_did = None;
1039             let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1040
1041             let variants = std::iter::once(convert_variant(
1042                 tcx,
1043                 variant_did,
1044                 ctor_did,
1045                 item.ident,
1046                 ty::VariantDiscr::Relative(0),
1047                 def,
1048                 AdtKind::Union,
1049                 def_id,
1050             ))
1051             .collect();
1052
1053             (AdtKind::Union, variants)
1054         }
1055         _ => bug!(),
1056     };
1057     tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
1058 }
1059
1060 /// Ensures that the super-predicates of the trait with a `DefId`
1061 /// of `trait_def_id` are converted and stored. This also ensures that
1062 /// the transitive super-predicates are converted.
1063 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
1064     debug!("super_predicates(trait_def_id={:?})", trait_def_id);
1065     tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
1066 }
1067
1068 /// Ensures that the super-predicates of the trait with a `DefId`
1069 /// of `trait_def_id` are converted and stored. This also ensures that
1070 /// the transitive super-predicates are converted.
1071 fn super_predicates_that_define_assoc_type(
1072     tcx: TyCtxt<'_>,
1073     (trait_def_id, assoc_name): (DefId, Option<Ident>),
1074 ) -> ty::GenericPredicates<'_> {
1075     debug!(
1076         "super_predicates_that_define_assoc_type(trait_def_id={:?}, assoc_name={:?})",
1077         trait_def_id, assoc_name
1078     );
1079     if trait_def_id.is_local() {
1080         debug!("super_predicates_that_define_assoc_type: local trait_def_id={:?}", trait_def_id);
1081         let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
1082
1083         let item = match tcx.hir().get(trait_hir_id) {
1084             Node::Item(item) => item,
1085             _ => bug!("trait_node_id {} is not an item", trait_hir_id),
1086         };
1087
1088         let (generics, bounds) = match item.kind {
1089             hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
1090             hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
1091             _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
1092         };
1093
1094         let icx = ItemCtxt::new(tcx, trait_def_id);
1095
1096         // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
1097         let self_param_ty = tcx.types.self_param;
1098         let superbounds1 = if let Some(assoc_name) = assoc_name {
1099             <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
1100                 &icx,
1101                 self_param_ty,
1102                 &bounds,
1103                 SizedByDefault::No,
1104                 item.span,
1105                 assoc_name,
1106             )
1107         } else {
1108             <dyn AstConv<'_>>::compute_bounds(
1109                 &icx,
1110                 self_param_ty,
1111                 &bounds,
1112                 SizedByDefault::No,
1113                 item.span,
1114             )
1115         };
1116
1117         let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
1118
1119         // Convert any explicit superbounds in the where-clause,
1120         // e.g., `trait Foo where Self: Bar`.
1121         // In the case of trait aliases, however, we include all bounds in the where-clause,
1122         // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
1123         // as one of its "superpredicates".
1124         let is_trait_alias = tcx.is_trait_alias(trait_def_id);
1125         let superbounds2 = icx.type_parameter_bounds_in_generics(
1126             generics,
1127             item.hir_id(),
1128             self_param_ty,
1129             OnlySelfBounds(!is_trait_alias),
1130             assoc_name,
1131         );
1132
1133         // Combine the two lists to form the complete set of superbounds:
1134         let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
1135
1136         // Now require that immediate supertraits are converted,
1137         // which will, in turn, reach indirect supertraits.
1138         if assoc_name.is_none() {
1139             // Now require that immediate supertraits are converted,
1140             // which will, in turn, reach indirect supertraits.
1141             for &(pred, span) in superbounds {
1142                 debug!("superbound: {:?}", pred);
1143                 if let ty::PredicateKind::Trait(bound, _) = pred.kind().skip_binder() {
1144                     tcx.at(span).super_predicates_of(bound.def_id());
1145                 }
1146             }
1147         }
1148
1149         ty::GenericPredicates { parent: None, predicates: superbounds }
1150     } else {
1151         // if `assoc_name` is None, then the query should've been redirected to an
1152         // external provider
1153         assert!(assoc_name.is_some());
1154         tcx.super_predicates_of(trait_def_id)
1155     }
1156 }
1157
1158 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
1159     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1160     let item = tcx.hir().expect_item(hir_id);
1161
1162     let (is_auto, unsafety) = match item.kind {
1163         hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
1164         hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
1165         _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
1166     };
1167
1168     let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
1169     if paren_sugar && !tcx.features().unboxed_closures {
1170         tcx.sess
1171             .struct_span_err(
1172                 item.span,
1173                 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1174                  which traits can use parenthetical notation",
1175             )
1176             .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
1177             .emit();
1178     }
1179
1180     let is_marker = tcx.has_attr(def_id, sym::marker);
1181     let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
1182         ty::trait_def::TraitSpecializationKind::Marker
1183     } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
1184         ty::trait_def::TraitSpecializationKind::AlwaysApplicable
1185     } else {
1186         ty::trait_def::TraitSpecializationKind::None
1187     };
1188     let def_path_hash = tcx.def_path_hash(def_id);
1189     ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, spec_kind, def_path_hash)
1190 }
1191
1192 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
1193     struct LateBoundRegionsDetector<'tcx> {
1194         tcx: TyCtxt<'tcx>,
1195         outer_index: ty::DebruijnIndex,
1196         has_late_bound_regions: Option<Span>,
1197     }
1198
1199     impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
1200         type Map = intravisit::ErasedMap<'tcx>;
1201
1202         fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1203             NestedVisitorMap::None
1204         }
1205
1206         fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
1207             if self.has_late_bound_regions.is_some() {
1208                 return;
1209             }
1210             match ty.kind {
1211                 hir::TyKind::BareFn(..) => {
1212                     self.outer_index.shift_in(1);
1213                     intravisit::walk_ty(self, ty);
1214                     self.outer_index.shift_out(1);
1215                 }
1216                 _ => intravisit::walk_ty(self, ty),
1217             }
1218         }
1219
1220         fn visit_poly_trait_ref(
1221             &mut self,
1222             tr: &'tcx hir::PolyTraitRef<'tcx>,
1223             m: hir::TraitBoundModifier,
1224         ) {
1225             if self.has_late_bound_regions.is_some() {
1226                 return;
1227             }
1228             self.outer_index.shift_in(1);
1229             intravisit::walk_poly_trait_ref(self, tr, m);
1230             self.outer_index.shift_out(1);
1231         }
1232
1233         fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1234             if self.has_late_bound_regions.is_some() {
1235                 return;
1236             }
1237
1238             match self.tcx.named_region(lt.hir_id) {
1239                 Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
1240                 Some(
1241                     rl::Region::LateBound(debruijn, _, _) | rl::Region::LateBoundAnon(debruijn, _),
1242                 ) if debruijn < self.outer_index => {}
1243                 Some(
1244                     rl::Region::LateBound(..)
1245                     | rl::Region::LateBoundAnon(..)
1246                     | rl::Region::Free(..),
1247                 )
1248                 | None => {
1249                     self.has_late_bound_regions = Some(lt.span);
1250                 }
1251             }
1252         }
1253     }
1254
1255     fn has_late_bound_regions<'tcx>(
1256         tcx: TyCtxt<'tcx>,
1257         generics: &'tcx hir::Generics<'tcx>,
1258         decl: &'tcx hir::FnDecl<'tcx>,
1259     ) -> Option<Span> {
1260         let mut visitor = LateBoundRegionsDetector {
1261             tcx,
1262             outer_index: ty::INNERMOST,
1263             has_late_bound_regions: None,
1264         };
1265         for param in generics.params {
1266             if let GenericParamKind::Lifetime { .. } = param.kind {
1267                 if tcx.is_late_bound(param.hir_id) {
1268                     return Some(param.span);
1269                 }
1270             }
1271         }
1272         visitor.visit_fn_decl(decl);
1273         visitor.has_late_bound_regions
1274     }
1275
1276     match node {
1277         Node::TraitItem(item) => match item.kind {
1278             hir::TraitItemKind::Fn(ref sig, _) => {
1279                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1280             }
1281             _ => None,
1282         },
1283         Node::ImplItem(item) => match item.kind {
1284             hir::ImplItemKind::Fn(ref sig, _) => {
1285                 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1286             }
1287             _ => None,
1288         },
1289         Node::ForeignItem(item) => match item.kind {
1290             hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
1291                 has_late_bound_regions(tcx, generics, fn_decl)
1292             }
1293             _ => None,
1294         },
1295         Node::Item(item) => match item.kind {
1296             hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1297                 has_late_bound_regions(tcx, generics, &sig.decl)
1298             }
1299             _ => None,
1300         },
1301         _ => None,
1302     }
1303 }
1304
1305 struct AnonConstInParamListDetector {
1306     in_param_list: bool,
1307     found_anon_const_in_list: bool,
1308     ct: HirId,
1309 }
1310
1311 impl<'v> Visitor<'v> for AnonConstInParamListDetector {
1312     type Map = intravisit::ErasedMap<'v>;
1313
1314     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1315         NestedVisitorMap::None
1316     }
1317
1318     fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
1319         let prev = self.in_param_list;
1320         self.in_param_list = true;
1321         intravisit::walk_generic_param(self, p);
1322         self.in_param_list = prev;
1323     }
1324
1325     fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
1326         if self.in_param_list && self.ct == c.hir_id {
1327             self.found_anon_const_in_list = true;
1328         } else {
1329             intravisit::walk_anon_const(self, c)
1330         }
1331     }
1332 }
1333
1334 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
1335     use rustc_hir::*;
1336
1337     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1338
1339     let node = tcx.hir().get(hir_id);
1340     let parent_def_id = match node {
1341         Node::ImplItem(_)
1342         | Node::TraitItem(_)
1343         | Node::Variant(_)
1344         | Node::Ctor(..)
1345         | Node::Field(_) => {
1346             let parent_id = tcx.hir().get_parent_item(hir_id);
1347             Some(tcx.hir().local_def_id(parent_id).to_def_id())
1348         }
1349         // FIXME(#43408) always enable this once `lazy_normalization` is
1350         // stable enough and does not need a feature gate anymore.
1351         Node::AnonConst(_) => {
1352             let parent_id = tcx.hir().get_parent_item(hir_id);
1353             let parent_def_id = tcx.hir().local_def_id(parent_id);
1354
1355             let mut in_param_list = false;
1356             for (_parent, node) in tcx.hir().parent_iter(hir_id) {
1357                 if let Some(generics) = node.generics() {
1358                     let mut visitor = AnonConstInParamListDetector {
1359                         in_param_list: false,
1360                         found_anon_const_in_list: false,
1361                         ct: hir_id,
1362                     };
1363
1364                     visitor.visit_generics(generics);
1365                     in_param_list = visitor.found_anon_const_in_list;
1366                     break;
1367                 }
1368             }
1369
1370             if in_param_list {
1371                 // We do not allow generic parameters in anon consts if we are inside
1372                 // of a param list.
1373                 //
1374                 // This affects both default type bindings, e.g. `struct<T, U = [u8; std::mem::size_of::<T>()]>(T, U)`,
1375                 // and the types of const parameters, e.g. `struct V<const N: usize, const M: [u8; N]>();`.
1376                 None
1377             } else if tcx.lazy_normalization() {
1378                 // HACK(eddyb) this provides the correct generics when
1379                 // `feature(const_generics)` is enabled, so that const expressions
1380                 // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1381                 //
1382                 // Note that we do not supply the parent generics when using
1383                 // `min_const_generics`.
1384                 Some(parent_def_id.to_def_id())
1385             } else {
1386                 let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1387                 match parent_node {
1388                     // HACK(eddyb) this provides the correct generics for repeat
1389                     // expressions' count (i.e. `N` in `[x; N]`), and explicit
1390                     // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
1391                     // as they shouldn't be able to cause query cycle errors.
1392                     Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1393                     | Node::Variant(Variant { disr_expr: Some(ref constant), .. })
1394                         if constant.hir_id == hir_id =>
1395                     {
1396                         Some(parent_def_id.to_def_id())
1397                     }
1398
1399                     _ => None,
1400                 }
1401             }
1402         }
1403         Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1404             Some(tcx.closure_base_def_id(def_id))
1405         }
1406         Node::Item(item) => match item.kind {
1407             ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
1408                 impl_trait_fn.or_else(|| {
1409                     let parent_id = tcx.hir().get_parent_item(hir_id);
1410                     assert!(parent_id != hir_id && parent_id != CRATE_HIR_ID);
1411                     debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1412                     // Opaque types are always nested within another item, and
1413                     // inherit the generics of the item.
1414                     Some(tcx.hir().local_def_id(parent_id).to_def_id())
1415                 })
1416             }
1417             _ => None,
1418         },
1419         _ => None,
1420     };
1421
1422     let mut opt_self = None;
1423     let mut allow_defaults = false;
1424
1425     let no_generics = hir::Generics::empty();
1426     let ast_generics = match node {
1427         Node::TraitItem(item) => &item.generics,
1428
1429         Node::ImplItem(item) => &item.generics,
1430
1431         Node::Item(item) => {
1432             match item.kind {
1433                 ItemKind::Fn(.., ref generics, _)
1434                 | ItemKind::Impl(hir::Impl { ref generics, .. }) => generics,
1435
1436                 ItemKind::TyAlias(_, ref generics)
1437                 | ItemKind::Enum(_, ref generics)
1438                 | ItemKind::Struct(_, ref generics)
1439                 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1440                 | ItemKind::Union(_, ref generics) => {
1441                     allow_defaults = true;
1442                     generics
1443                 }
1444
1445                 ItemKind::Trait(_, _, ref generics, ..)
1446                 | ItemKind::TraitAlias(ref generics, ..) => {
1447                     // Add in the self type parameter.
1448                     //
1449                     // Something of a hack: use the node id for the trait, also as
1450                     // the node id for the Self type parameter.
1451                     let param_id = item.def_id;
1452
1453                     opt_self = Some(ty::GenericParamDef {
1454                         index: 0,
1455                         name: kw::SelfUpper,
1456                         def_id: param_id.to_def_id(),
1457                         pure_wrt_drop: false,
1458                         kind: ty::GenericParamDefKind::Type {
1459                             has_default: false,
1460                             object_lifetime_default: rl::Set1::Empty,
1461                             synthetic: None,
1462                         },
1463                     });
1464
1465                     allow_defaults = true;
1466                     generics
1467                 }
1468
1469                 _ => &no_generics,
1470             }
1471         }
1472
1473         Node::ForeignItem(item) => match item.kind {
1474             ForeignItemKind::Static(..) => &no_generics,
1475             ForeignItemKind::Fn(_, _, ref generics) => generics,
1476             ForeignItemKind::Type => &no_generics,
1477         },
1478
1479         _ => &no_generics,
1480     };
1481
1482     let has_self = opt_self.is_some();
1483     let mut parent_has_self = false;
1484     let mut own_start = has_self as u32;
1485     let parent_count = parent_def_id.map_or(0, |def_id| {
1486         let generics = tcx.generics_of(def_id);
1487         assert_eq!(has_self, false);
1488         parent_has_self = generics.has_self;
1489         own_start = generics.count() as u32;
1490         generics.parent_count + generics.params.len()
1491     });
1492
1493     let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
1494
1495     if let Some(opt_self) = opt_self {
1496         params.push(opt_self);
1497     }
1498
1499     let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1500     params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1501         name: param.name.ident().name,
1502         index: own_start + i as u32,
1503         def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1504         pure_wrt_drop: param.pure_wrt_drop,
1505         kind: ty::GenericParamDefKind::Lifetime,
1506     }));
1507
1508     let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1509
1510     // Now create the real type and const parameters.
1511     let type_start = own_start - has_self as u32 + params.len() as u32;
1512     let mut i = 0;
1513
1514     params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
1515         GenericParamKind::Lifetime { .. } => None,
1516         GenericParamKind::Type { ref default, synthetic, .. } => {
1517             if !allow_defaults && default.is_some() {
1518                 if !tcx.features().default_type_parameter_fallback {
1519                     tcx.struct_span_lint_hir(
1520                         lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1521                         param.hir_id,
1522                         param.span,
1523                         |lint| {
1524                             lint.build(
1525                                 "defaults for type parameters are only allowed in \
1526                                  `struct`, `enum`, `type`, or `trait` definitions.",
1527                             )
1528                             .emit();
1529                         },
1530                     );
1531                 }
1532             }
1533
1534             let kind = ty::GenericParamDefKind::Type {
1535                 has_default: default.is_some(),
1536                 object_lifetime_default: object_lifetime_defaults
1537                     .as_ref()
1538                     .map_or(rl::Set1::Empty, |o| o[i]),
1539                 synthetic,
1540             };
1541
1542             let param_def = ty::GenericParamDef {
1543                 index: type_start + i as u32,
1544                 name: param.name.ident().name,
1545                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1546                 pure_wrt_drop: param.pure_wrt_drop,
1547                 kind,
1548             };
1549             i += 1;
1550             Some(param_def)
1551         }
1552         GenericParamKind::Const { .. } => {
1553             let param_def = ty::GenericParamDef {
1554                 index: type_start + i as u32,
1555                 name: param.name.ident().name,
1556                 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1557                 pure_wrt_drop: param.pure_wrt_drop,
1558                 kind: ty::GenericParamDefKind::Const,
1559             };
1560             i += 1;
1561             Some(param_def)
1562         }
1563     }));
1564
1565     // provide junk type parameter defs - the only place that
1566     // cares about anything but the length is instantiation,
1567     // and we don't do that for closures.
1568     if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1569         let dummy_args = if gen.is_some() {
1570             &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
1571         } else {
1572             &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
1573         };
1574
1575         params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1576             index: type_start + i as u32,
1577             name: Symbol::intern(arg),
1578             def_id,
1579             pure_wrt_drop: false,
1580             kind: ty::GenericParamDefKind::Type {
1581                 has_default: false,
1582                 object_lifetime_default: rl::Set1::Empty,
1583                 synthetic: None,
1584             },
1585         }));
1586     }
1587
1588     let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1589
1590     ty::Generics {
1591         parent: parent_def_id,
1592         parent_count,
1593         params,
1594         param_def_id_to_index,
1595         has_self: has_self || parent_has_self,
1596         has_late_bound_regions: has_late_bound_regions(tcx, node),
1597     }
1598 }
1599
1600 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1601     generic_args
1602         .iter()
1603         .filter_map(|arg| match arg {
1604             hir::GenericArg::Type(ty) => Some(ty),
1605             _ => None,
1606         })
1607         .any(is_suggestable_infer_ty)
1608 }
1609
1610 /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
1611 /// use inference to provide suggestions for the appropriate type if possible.
1612 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1613     use hir::TyKind::*;
1614     match &ty.kind {
1615         Infer => true,
1616         Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1617         Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1618         Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1619         OpaqueDef(_, generic_args) => are_suggestable_generic_args(generic_args),
1620         Path(hir::QPath::TypeRelative(ty, segment)) => {
1621             is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
1622         }
1623         Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1624             ty_opt.map_or(false, is_suggestable_infer_ty)
1625                 || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
1626         }
1627         _ => false,
1628     }
1629 }
1630
1631 pub fn get_infer_ret_ty(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1632     if let hir::FnRetTy::Return(ref ty) = output {
1633         if is_suggestable_infer_ty(ty) {
1634             return Some(&**ty);
1635         }
1636     }
1637     None
1638 }
1639
1640 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1641     use rustc_hir::Node::*;
1642     use rustc_hir::*;
1643
1644     let def_id = def_id.expect_local();
1645     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1646
1647     let icx = ItemCtxt::new(tcx, def_id.to_def_id());
1648
1649     match tcx.hir().get(hir_id) {
1650         TraitItem(hir::TraitItem {
1651             kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
1652             ident,
1653             generics,
1654             ..
1655         })
1656         | ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), ident, generics, .. })
1657         | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1658             match get_infer_ret_ty(&sig.decl.output) {
1659                 Some(ty) => {
1660                     let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
1661                     // Typeck doesn't expect erased regions to be returned from `type_of`.
1662                     let fn_sig = tcx.fold_regions(fn_sig, &mut false, |r, _| match r {
1663                         ty::ReErased => tcx.lifetimes.re_static,
1664                         _ => r,
1665                     });
1666
1667                     let mut visitor = PlaceholderHirTyCollector::default();
1668                     visitor.visit_ty(ty);
1669                     let mut diag = bad_placeholder_type(tcx, visitor.0);
1670                     let ret_ty = fn_sig.output();
1671                     if ret_ty != tcx.ty_error() {
1672                         if !ret_ty.is_closure() {
1673                             let ret_ty_str = match ret_ty.kind() {
1674                                 // Suggest a function pointer return type instead of a unique function definition
1675                                 // (e.g. `fn() -> i32` instead of `fn() -> i32 { f }`, the latter of which is invalid
1676                                 // syntax)
1677                                 ty::FnDef(..) => ret_ty.fn_sig(tcx).to_string(),
1678                                 _ => ret_ty.to_string(),
1679                             };
1680                             diag.span_suggestion(
1681                                 ty.span,
1682                                 "replace with the correct return type",
1683                                 ret_ty_str,
1684                                 Applicability::MaybeIncorrect,
1685                             );
1686                         } else {
1687                             // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
1688                             // to prevent the user from getting a papercut while trying to use the unique closure
1689                             // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
1690                             diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
1691                             diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
1692                         }
1693                     }
1694                     diag.emit();
1695
1696                     ty::Binder::bind(fn_sig)
1697                 }
1698                 None => <dyn AstConv<'_>>::ty_of_fn(
1699                     &icx,
1700                     sig.header.unsafety,
1701                     sig.header.abi,
1702                     &sig.decl,
1703                     &generics,
1704                     Some(ident.span),
1705                     None,
1706                 ),
1707             }
1708         }
1709
1710         TraitItem(hir::TraitItem {
1711             kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
1712             ident,
1713             generics,
1714             ..
1715         }) => <dyn AstConv<'_>>::ty_of_fn(
1716             &icx,
1717             header.unsafety,
1718             header.abi,
1719             decl,
1720             &generics,
1721             Some(ident.span),
1722             None,
1723         ),
1724
1725         ForeignItem(&hir::ForeignItem {
1726             kind: ForeignItemKind::Fn(ref fn_decl, _, _),
1727             ident,
1728             ..
1729         }) => {
1730             let abi = tcx.hir().get_foreign_abi(hir_id);
1731             compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi, ident)
1732         }
1733
1734         Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1735             let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id).to_def_id());
1736             let inputs =
1737                 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1738             ty::Binder::bind(tcx.mk_fn_sig(
1739                 inputs,
1740                 ty,
1741                 false,
1742                 hir::Unsafety::Normal,
1743                 abi::Abi::Rust,
1744             ))
1745         }
1746
1747         Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1748             // Closure signatures are not like other function
1749             // signatures and cannot be accessed through `fn_sig`. For
1750             // example, a closure signature excludes the `self`
1751             // argument. In any case they are embedded within the
1752             // closure type as part of the `ClosureSubsts`.
1753             //
1754             // To get the signature of a closure, you should use the
1755             // `sig` method on the `ClosureSubsts`:
1756             //
1757             //    substs.as_closure().sig(def_id, tcx)
1758             bug!(
1759                 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
1760             );
1761         }
1762
1763         x => {
1764             bug!("unexpected sort of node in fn_sig(): {:?}", x);
1765         }
1766     }
1767 }
1768
1769 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1770     let icx = ItemCtxt::new(tcx, def_id);
1771
1772     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1773     match tcx.hir().expect_item(hir_id).kind {
1774         hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
1775             let selfty = tcx.type_of(def_id);
1776             <dyn AstConv<'_>>::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1777         }),
1778         _ => bug!(),
1779     }
1780 }
1781
1782 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1783     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1784     let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1785     let item = tcx.hir().expect_item(hir_id);
1786     match &item.kind {
1787         hir::ItemKind::Impl(hir::Impl {
1788             polarity: hir::ImplPolarity::Negative(span),
1789             of_trait,
1790             ..
1791         }) => {
1792             if is_rustc_reservation {
1793                 let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
1794                 tcx.sess.span_err(span, "reservation impls can't be negative");
1795             }
1796             ty::ImplPolarity::Negative
1797         }
1798         hir::ItemKind::Impl(hir::Impl {
1799             polarity: hir::ImplPolarity::Positive,
1800             of_trait: None,
1801             ..
1802         }) => {
1803             if is_rustc_reservation {
1804                 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1805             }
1806             ty::ImplPolarity::Positive
1807         }
1808         hir::ItemKind::Impl(hir::Impl {
1809             polarity: hir::ImplPolarity::Positive,
1810             of_trait: Some(_),
1811             ..
1812         }) => {
1813             if is_rustc_reservation {
1814                 ty::ImplPolarity::Reservation
1815             } else {
1816                 ty::ImplPolarity::Positive
1817             }
1818         }
1819         item => bug!("impl_polarity: {:?} not an impl", item),
1820     }
1821 }
1822
1823 /// Returns the early-bound lifetimes declared in this generics
1824 /// listing. For anything other than fns/methods, this is just all
1825 /// the lifetimes that are declared. For fns or methods, we have to
1826 /// screen out those that do not appear in any where-clauses etc using
1827 /// `resolve_lifetime::early_bound_lifetimes`.
1828 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1829     tcx: TyCtxt<'tcx>,
1830     generics: &'a hir::Generics<'a>,
1831 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
1832     generics.params.iter().filter(move |param| match param.kind {
1833         GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
1834         _ => false,
1835     })
1836 }
1837
1838 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1839 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1840 /// inferred constraints concerning which regions outlive other regions.
1841 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1842     debug!("predicates_defined_on({:?})", def_id);
1843     let mut result = tcx.explicit_predicates_of(def_id);
1844     debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
1845     let inferred_outlives = tcx.inferred_outlives_of(def_id);
1846     if !inferred_outlives.is_empty() {
1847         debug!(
1848             "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1849             def_id, inferred_outlives,
1850         );
1851         if result.predicates.is_empty() {
1852             result.predicates = inferred_outlives;
1853         } else {
1854             result.predicates = tcx
1855                 .arena
1856                 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
1857         }
1858     }
1859
1860     debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1861     result
1862 }
1863
1864 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1865 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1866 /// `Self: Trait` predicates for traits.
1867 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1868     let mut result = tcx.predicates_defined_on(def_id);
1869
1870     if tcx.is_trait(def_id) {
1871         // For traits, add `Self: Trait` predicate. This is
1872         // not part of the predicates that a user writes, but it
1873         // is something that one must prove in order to invoke a
1874         // method or project an associated type.
1875         //
1876         // In the chalk setup, this predicate is not part of the
1877         // "predicates" for a trait item. But it is useful in
1878         // rustc because if you directly (e.g.) invoke a trait
1879         // method like `Trait::method(...)`, you must naturally
1880         // prove that the trait applies to the types that were
1881         // used, and adding the predicate into this list ensures
1882         // that this is done.
1883         let span = tcx.sess.source_map().guess_head_span(tcx.def_span(def_id));
1884         result.predicates =
1885             tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
1886                 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(tcx),
1887                 span,
1888             ))));
1889     }
1890     debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1891     result
1892 }
1893
1894 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1895 /// N.B., this does not include any implied/inferred constraints.
1896 fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1897     use rustc_hir::*;
1898
1899     debug!("explicit_predicates_of(def_id={:?})", def_id);
1900
1901     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1902     let node = tcx.hir().get(hir_id);
1903
1904     let mut is_trait = None;
1905     let mut is_default_impl_trait = None;
1906
1907     let icx = ItemCtxt::new(tcx, def_id);
1908     let constness = icx.default_constness_for_trait_bounds();
1909
1910     const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
1911
1912     // We use an `IndexSet` to preserves order of insertion.
1913     // Preserving the order of insertion is important here so as not to break UI tests.
1914     let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
1915
1916     let ast_generics = match node {
1917         Node::TraitItem(item) => &item.generics,
1918
1919         Node::ImplItem(item) => &item.generics,
1920
1921         Node::Item(item) => {
1922             match item.kind {
1923                 ItemKind::Impl(ref impl_) => {
1924                     if impl_.defaultness.is_default() {
1925                         is_default_impl_trait = tcx.impl_trait_ref(def_id);
1926                     }
1927                     &impl_.generics
1928                 }
1929                 ItemKind::Fn(.., ref generics, _)
1930                 | ItemKind::TyAlias(_, ref generics)
1931                 | ItemKind::Enum(_, ref generics)
1932                 | ItemKind::Struct(_, ref generics)
1933                 | ItemKind::Union(_, ref generics) => generics,
1934
1935                 ItemKind::Trait(_, _, ref generics, ..) => {
1936                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
1937                     generics
1938                 }
1939                 ItemKind::TraitAlias(ref generics, _) => {
1940                     is_trait = Some(ty::TraitRef::identity(tcx, def_id));
1941                     generics
1942                 }
1943                 ItemKind::OpaqueTy(OpaqueTy {
1944                     bounds: _,
1945                     impl_trait_fn,
1946                     ref generics,
1947                     origin: _,
1948                 }) => {
1949                     if impl_trait_fn.is_some() {
1950                         // return-position impl trait
1951                         //
1952                         // We don't inherit predicates from the parent here:
1953                         // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
1954                         // then the return type is `f::<'static, T>::{{opaque}}`.
1955                         //
1956                         // If we inherited the predicates of `f` then we would
1957                         // require that `T: 'static` to show that the return
1958                         // type is well-formed.
1959                         //
1960                         // The only way to have something with this opaque type
1961                         // is from the return type of the containing function,
1962                         // which will ensure that the function's predicates
1963                         // hold.
1964                         return ty::GenericPredicates { parent: None, predicates: &[] };
1965                     } else {
1966                         // type-alias impl trait
1967                         generics
1968                     }
1969                 }
1970
1971                 _ => NO_GENERICS,
1972             }
1973         }
1974
1975         Node::ForeignItem(item) => match item.kind {
1976             ForeignItemKind::Static(..) => NO_GENERICS,
1977             ForeignItemKind::Fn(_, _, ref generics) => generics,
1978             ForeignItemKind::Type => NO_GENERICS,
1979         },
1980
1981         _ => NO_GENERICS,
1982     };
1983
1984     let generics = tcx.generics_of(def_id);
1985     let parent_count = generics.parent_count as u32;
1986     let has_own_self = generics.has_self && parent_count == 0;
1987
1988     // Below we'll consider the bounds on the type parameters (including `Self`)
1989     // and the explicit where-clauses, but to get the full set of predicates
1990     // on a trait we need to add in the supertrait bounds and bounds found on
1991     // associated types.
1992     if let Some(_trait_ref) = is_trait {
1993         predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
1994     }
1995
1996     // In default impls, we can assume that the self type implements
1997     // the trait. So in:
1998     //
1999     //     default impl Foo for Bar { .. }
2000     //
2001     // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2002     // (see below). Recall that a default impl is not itself an impl, but rather a
2003     // set of defaults that can be incorporated into another impl.
2004     if let Some(trait_ref) = is_default_impl_trait {
2005         predicates.insert((
2006             trait_ref.to_poly_trait_ref().without_const().to_predicate(tcx),
2007             tcx.def_span(def_id),
2008         ));
2009     }
2010
2011     // Collect the region predicates that were declared inline as
2012     // well. In the case of parameters declared on a fn or method, we
2013     // have to be careful to only iterate over early-bound regions.
2014     let mut index = parent_count + has_own_self as u32;
2015     for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2016         let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2017             def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
2018             index,
2019             name: param.name.ident().name,
2020         }));
2021         index += 1;
2022
2023         match param.kind {
2024             GenericParamKind::Lifetime { .. } => {
2025                 param.bounds.iter().for_each(|bound| match bound {
2026                     hir::GenericBound::Outlives(lt) => {
2027                         let bound = <dyn AstConv<'_>>::ast_region_to_region(&icx, &lt, None);
2028                         let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2029                         predicates.insert((outlives.to_predicate(tcx), lt.span));
2030                     }
2031                     _ => bug!(),
2032                 });
2033             }
2034             _ => bug!(),
2035         }
2036     }
2037
2038     // Collect the predicates that were written inline by the user on each
2039     // type parameter (e.g., `<T: Foo>`).
2040     for param in ast_generics.params {
2041         match param.kind {
2042             // We already dealt with early bound lifetimes above.
2043             GenericParamKind::Lifetime { .. } => (),
2044             GenericParamKind::Type { .. } => {
2045                 let name = param.name.ident().name;
2046                 let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2047                 index += 1;
2048
2049                 let sized = SizedByDefault::Yes;
2050                 let bounds = <dyn AstConv<'_>>::compute_bounds(
2051                     &icx,
2052                     param_ty,
2053                     &param.bounds,
2054                     sized,
2055                     param.span,
2056                 );
2057                 predicates.extend(bounds.predicates(tcx, param_ty));
2058             }
2059             GenericParamKind::Const { .. } => {
2060                 // Bounds on const parameters are currently not possible.
2061                 debug_assert!(param.bounds.is_empty());
2062                 index += 1;
2063             }
2064         }
2065     }
2066
2067     // Add in the bounds that appear in the where-clause.
2068     let where_clause = &ast_generics.where_clause;
2069     for predicate in where_clause.predicates {
2070         match predicate {
2071             hir::WherePredicate::BoundPredicate(bound_pred) => {
2072                 let ty = icx.to_ty(&bound_pred.bounded_ty);
2073
2074                 // Keep the type around in a dummy predicate, in case of no bounds.
2075                 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2076                 // is still checked for WF.
2077                 if bound_pred.bounds.is_empty() {
2078                     if let ty::Param(_) = ty.kind() {
2079                         // This is a `where T:`, which can be in the HIR from the
2080                         // transformation that moves `?Sized` to `T`'s declaration.
2081                         // We can skip the predicate because type parameters are
2082                         // trivially WF, but also we *should*, to avoid exposing
2083                         // users who never wrote `where Type:,` themselves, to
2084                         // compiler/tooling bugs from not handling WF predicates.
2085                     } else {
2086                         let span = bound_pred.bounded_ty.span;
2087                         let re_root_empty = tcx.lifetimes.re_root_empty;
2088                         let predicate = ty::Binder::bind(ty::PredicateKind::TypeOutlives(
2089                             ty::OutlivesPredicate(ty, re_root_empty),
2090                         ));
2091                         predicates.insert((predicate.to_predicate(tcx), span));
2092                     }
2093                 }
2094
2095                 for bound in bound_pred.bounds.iter() {
2096                     match bound {
2097                         hir::GenericBound::Trait(poly_trait_ref, modifier) => {
2098                             let constness = match modifier {
2099                                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2100                                 hir::TraitBoundModifier::None => constness,
2101                                 hir::TraitBoundModifier::Maybe => bug!("this wasn't handled"),
2102                             };
2103
2104                             let mut bounds = Bounds::default();
2105                             let _ = <dyn AstConv<'_>>::instantiate_poly_trait_ref(
2106                                 &icx,
2107                                 &poly_trait_ref,
2108                                 constness,
2109                                 ty,
2110                                 &mut bounds,
2111                             );
2112                             predicates.extend(bounds.predicates(tcx, ty));
2113                         }
2114
2115                         &hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
2116                             let mut bounds = Bounds::default();
2117                             <dyn AstConv<'_>>::instantiate_lang_item_trait_ref(
2118                                 &icx,
2119                                 lang_item,
2120                                 span,
2121                                 hir_id,
2122                                 args,
2123                                 ty,
2124                                 &mut bounds,
2125                             );
2126                             predicates.extend(bounds.predicates(tcx, ty));
2127                         }
2128
2129                         hir::GenericBound::Outlives(lifetime) => {
2130                             let region =
2131                                 <dyn AstConv<'_>>::ast_region_to_region(&icx, lifetime, None);
2132                             predicates.insert((
2133                                 ty::Binder::bind(ty::PredicateKind::TypeOutlives(
2134                                     ty::OutlivesPredicate(ty, region),
2135                                 ))
2136                                 .to_predicate(tcx),
2137                                 lifetime.span,
2138                             ));
2139                         }
2140                     }
2141                 }
2142             }
2143
2144             hir::WherePredicate::RegionPredicate(region_pred) => {
2145                 let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
2146                 predicates.extend(region_pred.bounds.iter().map(|bound| {
2147                     let (r2, span) = match bound {
2148                         hir::GenericBound::Outlives(lt) => {
2149                             (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
2150                         }
2151                         _ => bug!(),
2152                     };
2153                     let pred = ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(r1, r2))
2154                         .to_predicate(icx.tcx);
2155
2156                     (pred, span)
2157                 }))
2158             }
2159
2160             hir::WherePredicate::EqPredicate(..) => {
2161                 // FIXME(#20041)
2162             }
2163         }
2164     }
2165
2166     if tcx.features().const_evaluatable_checked {
2167         predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
2168     }
2169
2170     let mut predicates: Vec<_> = predicates.into_iter().collect();
2171
2172     // Subtle: before we store the predicates into the tcx, we
2173     // sort them so that predicates like `T: Foo<Item=U>` come
2174     // before uses of `U`.  This avoids false ambiguity errors
2175     // in trait checking. See `setup_constraining_predicates`
2176     // for details.
2177     if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2178         let self_ty = tcx.type_of(def_id);
2179         let trait_ref = tcx.impl_trait_ref(def_id);
2180         cgp::setup_constraining_predicates(
2181             tcx,
2182             &mut predicates,
2183             trait_ref,
2184             &mut cgp::parameters_for_impl(self_ty, trait_ref),
2185         );
2186     }
2187
2188     let result = ty::GenericPredicates {
2189         parent: generics.parent,
2190         predicates: tcx.arena.alloc_from_iter(predicates),
2191     };
2192     debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2193     result
2194 }
2195
2196 fn const_evaluatable_predicates_of<'tcx>(
2197     tcx: TyCtxt<'tcx>,
2198     def_id: LocalDefId,
2199 ) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
2200     struct ConstCollector<'tcx> {
2201         tcx: TyCtxt<'tcx>,
2202         preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
2203     }
2204
2205     impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
2206         type Map = Map<'tcx>;
2207
2208         fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
2209             intravisit::NestedVisitorMap::None
2210         }
2211
2212         fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
2213             let def_id = self.tcx.hir().local_def_id(c.hir_id);
2214             let ct = ty::Const::from_anon_const(self.tcx, def_id);
2215             if let ty::ConstKind::Unevaluated(uv) = ct.val {
2216                 assert_eq!(uv.promoted, None);
2217                 let span = self.tcx.hir().span(c.hir_id);
2218                 self.preds.insert((
2219                     ty::PredicateKind::ConstEvaluatable(uv.def, uv.substs).to_predicate(self.tcx),
2220                     span,
2221                 ));
2222             }
2223         }
2224     }
2225
2226     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
2227     let node = tcx.hir().get(hir_id);
2228
2229     let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
2230     if let hir::Node::Item(item) = node {
2231         if let hir::ItemKind::Impl(ref impl_) = item.kind {
2232             if let Some(of_trait) = &impl_.of_trait {
2233                 debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
2234                 collector.visit_trait_ref(of_trait);
2235             }
2236
2237             debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
2238             collector.visit_ty(impl_.self_ty);
2239         }
2240     }
2241
2242     if let Some(generics) = node.generics() {
2243         debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
2244         collector.visit_generics(generics);
2245     }
2246
2247     if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
2248         debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
2249         collector.visit_fn_decl(fn_sig.decl);
2250     }
2251     debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
2252
2253     collector.preds
2254 }
2255
2256 fn trait_explicit_predicates_and_bounds(
2257     tcx: TyCtxt<'_>,
2258     def_id: LocalDefId,
2259 ) -> ty::GenericPredicates<'_> {
2260     assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
2261     gather_explicit_predicates_of(tcx, def_id.to_def_id())
2262 }
2263
2264 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2265     if let DefKind::Trait = tcx.def_kind(def_id) {
2266         // Remove bounds on associated types from the predicates, they will be
2267         // returned by `explicit_item_bounds`.
2268         let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
2269         let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
2270
2271         let is_assoc_item_ty = |ty: Ty<'_>| {
2272             // For a predicate from a where clause to become a bound on an
2273             // associated type:
2274             // * It must use the identity substs of the item.
2275             //     * Since any generic parameters on the item are not in scope,
2276             //       this means that the item is not a GAT, and its identity
2277             //       substs are the same as the trait's.
2278             // * It must be an associated type for this trait (*not* a
2279             //   supertrait).
2280             if let ty::Projection(projection) = ty.kind() {
2281                 projection.substs == trait_identity_substs
2282                     && tcx.associated_item(projection.item_def_id).container.id() == def_id
2283             } else {
2284                 false
2285             }
2286         };
2287
2288         let predicates: Vec<_> = predicates_and_bounds
2289             .predicates
2290             .iter()
2291             .copied()
2292             .filter(|(pred, _)| match pred.kind().skip_binder() {
2293                 ty::PredicateKind::Trait(tr, _) => !is_assoc_item_ty(tr.self_ty()),
2294                 ty::PredicateKind::Projection(proj) => {
2295                     !is_assoc_item_ty(proj.projection_ty.self_ty())
2296                 }
2297                 ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
2298                 _ => true,
2299             })
2300             .collect();
2301         if predicates.len() == predicates_and_bounds.predicates.len() {
2302             predicates_and_bounds
2303         } else {
2304             ty::GenericPredicates {
2305                 parent: predicates_and_bounds.parent,
2306                 predicates: tcx.arena.alloc_slice(&predicates),
2307             }
2308         }
2309     } else {
2310         gather_explicit_predicates_of(tcx, def_id)
2311     }
2312 }
2313
2314 fn projection_ty_from_predicates(
2315     tcx: TyCtxt<'tcx>,
2316     key: (
2317         // ty_def_id
2318         DefId,
2319         // def_id of `N` in `<T as Trait>::N`
2320         DefId,
2321     ),
2322 ) -> Option<ty::ProjectionTy<'tcx>> {
2323     let (ty_def_id, item_def_id) = key;
2324     let mut projection_ty = None;
2325     for (predicate, _) in tcx.predicates_of(ty_def_id).predicates {
2326         if let ty::PredicateKind::Projection(projection_predicate) = predicate.kind().skip_binder()
2327         {
2328             if item_def_id == projection_predicate.projection_ty.item_def_id {
2329                 projection_ty = Some(projection_predicate.projection_ty);
2330                 break;
2331             }
2332         }
2333     }
2334     projection_ty
2335 }
2336
2337 /// Converts a specific `GenericBound` from the AST into a set of
2338 /// predicates that apply to the self type. A vector is returned
2339 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2340 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2341 /// and `<T as Bar>::X == i32`).
2342 fn predicates_from_bound<'tcx>(
2343     astconv: &dyn AstConv<'tcx>,
2344     param_ty: Ty<'tcx>,
2345     bound: &'tcx hir::GenericBound<'tcx>,
2346     constness: hir::Constness,
2347 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2348     match *bound {
2349         hir::GenericBound::Trait(ref tr, modifier) => {
2350             let constness = match modifier {
2351                 hir::TraitBoundModifier::Maybe => return vec![],
2352                 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2353                 hir::TraitBoundModifier::None => constness,
2354             };
2355
2356             let mut bounds = Bounds::default();
2357             let _ = astconv.instantiate_poly_trait_ref(tr, constness, param_ty, &mut bounds);
2358             bounds.predicates(astconv.tcx(), param_ty)
2359         }
2360         hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
2361             let mut bounds = Bounds::default();
2362             astconv.instantiate_lang_item_trait_ref(
2363                 lang_item,
2364                 span,
2365                 hir_id,
2366                 args,
2367                 param_ty,
2368                 &mut bounds,
2369             );
2370             bounds.predicates(astconv.tcx(), param_ty)
2371         }
2372         hir::GenericBound::Outlives(ref lifetime) => {
2373             let region = astconv.ast_region_to_region(lifetime, None);
2374             let pred = ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(param_ty, region))
2375                 .to_predicate(astconv.tcx());
2376             vec![(pred, lifetime.span)]
2377         }
2378     }
2379 }
2380
2381 fn compute_sig_of_foreign_fn_decl<'tcx>(
2382     tcx: TyCtxt<'tcx>,
2383     def_id: DefId,
2384     decl: &'tcx hir::FnDecl<'tcx>,
2385     abi: abi::Abi,
2386     ident: Ident,
2387 ) -> ty::PolyFnSig<'tcx> {
2388     let unsafety = if abi == abi::Abi::RustIntrinsic {
2389         intrinsic_operation_unsafety(tcx.item_name(def_id))
2390     } else {
2391         hir::Unsafety::Unsafe
2392     };
2393     let fty = <dyn AstConv<'_>>::ty_of_fn(
2394         &ItemCtxt::new(tcx, def_id),
2395         unsafety,
2396         abi,
2397         decl,
2398         &hir::Generics::empty(),
2399         Some(ident.span),
2400         None,
2401     );
2402
2403     // Feature gate SIMD types in FFI, since I am not sure that the
2404     // ABIs are handled at all correctly. -huonw
2405     if abi != abi::Abi::RustIntrinsic
2406         && abi != abi::Abi::PlatformIntrinsic
2407         && !tcx.features().simd_ffi
2408     {
2409         let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2410             if ty.is_simd() {
2411                 let snip = tcx
2412                     .sess
2413                     .source_map()
2414                     .span_to_snippet(ast_ty.span)
2415                     .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
2416                 tcx.sess
2417                     .struct_span_err(
2418                         ast_ty.span,
2419                         &format!(
2420                             "use of SIMD type{} in FFI is highly experimental and \
2421                              may result in invalid code",
2422                             snip
2423                         ),
2424                     )
2425                     .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2426                     .emit();
2427             }
2428         };
2429         for (input, ty) in decl.inputs.iter().zip(fty.inputs().skip_binder()) {
2430             check(&input, ty)
2431         }
2432         if let hir::FnRetTy::Return(ref ty) = decl.output {
2433             check(&ty, fty.output().skip_binder())
2434         }
2435     }
2436
2437     fty
2438 }
2439
2440 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2441     match tcx.hir().get_if_local(def_id) {
2442         Some(Node::ForeignItem(..)) => true,
2443         Some(_) => false,
2444         _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2445     }
2446 }
2447
2448 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2449     match tcx.hir().get_if_local(def_id) {
2450         Some(
2451             Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. })
2452             | Node::ForeignItem(&hir::ForeignItem {
2453                 kind: hir::ForeignItemKind::Static(_, mutbl),
2454                 ..
2455             }),
2456         ) => Some(mutbl),
2457         Some(_) => None,
2458         _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2459     }
2460 }
2461
2462 fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
2463     match tcx.hir().get_if_local(def_id) {
2464         Some(Node::Expr(&rustc_hir::Expr {
2465             kind: rustc_hir::ExprKind::Closure(_, _, body_id, _, _),
2466             ..
2467         })) => tcx.hir().body(body_id).generator_kind(),
2468         Some(_) => None,
2469         _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
2470     }
2471 }
2472
2473 fn from_target_feature(
2474     tcx: TyCtxt<'_>,
2475     id: DefId,
2476     attr: &ast::Attribute,
2477     supported_target_features: &FxHashMap<String, Option<Symbol>>,
2478     target_features: &mut Vec<Symbol>,
2479 ) {
2480     let list = match attr.meta_item_list() {
2481         Some(list) => list,
2482         None => return,
2483     };
2484     let bad_item = |span| {
2485         let msg = "malformed `target_feature` attribute input";
2486         let code = "enable = \"..\"".to_owned();
2487         tcx.sess
2488             .struct_span_err(span, &msg)
2489             .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2490             .emit();
2491     };
2492     let rust_features = tcx.features();
2493     for item in list {
2494         // Only `enable = ...` is accepted in the meta-item list.
2495         if !item.has_name(sym::enable) {
2496             bad_item(item.span());
2497             continue;
2498         }
2499
2500         // Must be of the form `enable = "..."` (a string).
2501         let value = match item.value_str() {
2502             Some(value) => value,
2503             None => {
2504                 bad_item(item.span());
2505                 continue;
2506             }
2507         };
2508
2509         // We allow comma separation to enable multiple features.
2510         target_features.extend(value.as_str().split(',').filter_map(|feature| {
2511             let feature_gate = match supported_target_features.get(feature) {
2512                 Some(g) => g,
2513                 None => {
2514                     let msg =
2515                         format!("the feature named `{}` is not valid for this target", feature);
2516                     let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2517                     err.span_label(
2518                         item.span(),
2519                         format!("`{}` is not valid for this target", feature),
2520                     );
2521                     if let Some(stripped) = feature.strip_prefix('+') {
2522                         let valid = supported_target_features.contains_key(stripped);
2523                         if valid {
2524                             err.help("consider removing the leading `+` in the feature name");
2525                         }
2526                     }
2527                     err.emit();
2528                     return None;
2529                 }
2530             };
2531
2532             // Only allow features whose feature gates have been enabled.
2533             let allowed = match feature_gate.as_ref().copied() {
2534                 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2535                 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2536                 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2537                 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2538                 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2539                 Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
2540                 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2541                 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2542                 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2543                 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2544                 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2545                 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2546                 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2547                 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2548                 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2549                 Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
2550                 Some(name) => bug!("unknown target feature gate {}", name),
2551                 None => true,
2552             };
2553             if !allowed && id.is_local() {
2554                 feature_err(
2555                     &tcx.sess.parse_sess,
2556                     feature_gate.unwrap(),
2557                     item.span(),
2558                     &format!("the target feature `{}` is currently unstable", feature),
2559                 )
2560                 .emit();
2561             }
2562             Some(Symbol::intern(feature))
2563         }));
2564     }
2565 }
2566
2567 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2568     use rustc_middle::mir::mono::Linkage::*;
2569
2570     // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2571     // applicable to variable declarations and may not really make sense for
2572     // Rust code in the first place but allow them anyway and trust that the
2573     // user knows what s/he's doing. Who knows, unanticipated use cases may pop
2574     // up in the future.
2575     //
2576     // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2577     // and don't have to be, LLVM treats them as no-ops.
2578     match name {
2579         "appending" => Appending,
2580         "available_externally" => AvailableExternally,
2581         "common" => Common,
2582         "extern_weak" => ExternalWeak,
2583         "external" => External,
2584         "internal" => Internal,
2585         "linkonce" => LinkOnceAny,
2586         "linkonce_odr" => LinkOnceODR,
2587         "private" => Private,
2588         "weak" => WeakAny,
2589         "weak_odr" => WeakODR,
2590         _ => {
2591             let span = tcx.hir().span_if_local(def_id);
2592             if let Some(span) = span {
2593                 tcx.sess.span_fatal(span, "invalid linkage specified")
2594             } else {
2595                 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2596             }
2597         }
2598     }
2599 }
2600
2601 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2602     let attrs = tcx.get_attrs(id);
2603
2604     let mut codegen_fn_attrs = CodegenFnAttrs::new();
2605     if should_inherit_track_caller(tcx, id) {
2606         codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2607     }
2608
2609     let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
2610
2611     let mut inline_span = None;
2612     let mut link_ordinal_span = None;
2613     let mut no_sanitize_span = None;
2614     for attr in attrs.iter() {
2615         if tcx.sess.check_name(attr, sym::cold) {
2616             codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2617         } else if tcx.sess.check_name(attr, sym::rustc_allocator) {
2618             codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2619         } else if tcx.sess.check_name(attr, sym::unwind) {
2620             codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2621         } else if tcx.sess.check_name(attr, sym::ffi_returns_twice) {
2622             if tcx.is_foreign_item(id) {
2623                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2624             } else {
2625                 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2626                 struct_span_err!(
2627                     tcx.sess,
2628                     attr.span,
2629                     E0724,
2630                     "`#[ffi_returns_twice]` may only be used on foreign functions"
2631                 )
2632                 .emit();
2633             }
2634         } else if tcx.sess.check_name(attr, sym::ffi_pure) {
2635             if tcx.is_foreign_item(id) {
2636                 if attrs.iter().any(|a| tcx.sess.check_name(a, sym::ffi_const)) {
2637                     // `#[ffi_const]` functions cannot be `#[ffi_pure]`
2638                     struct_span_err!(
2639                         tcx.sess,
2640                         attr.span,
2641                         E0757,
2642                         "`#[ffi_const]` function cannot be `#[ffi_pure]`"
2643                     )
2644                     .emit();
2645                 } else {
2646                     codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
2647                 }
2648             } else {
2649                 // `#[ffi_pure]` is only allowed on foreign functions
2650                 struct_span_err!(
2651                     tcx.sess,
2652                     attr.span,
2653                     E0755,
2654                     "`#[ffi_pure]` may only be used on foreign functions"
2655                 )
2656                 .emit();
2657             }
2658         } else if tcx.sess.check_name(attr, sym::ffi_const) {
2659             if tcx.is_foreign_item(id) {
2660                 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
2661             } else {
2662                 // `#[ffi_const]` is only allowed on foreign functions
2663                 struct_span_err!(
2664                     tcx.sess,
2665                     attr.span,
2666                     E0756,
2667                     "`#[ffi_const]` may only be used on foreign functions"
2668                 )
2669                 .emit();
2670             }
2671         } else if tcx.sess.check_name(attr, sym::rustc_allocator_nounwind) {
2672             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2673         } else if tcx.sess.check_name(attr, sym::naked) {
2674             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2675         } else if tcx.sess.check_name(attr, sym::no_mangle) {
2676             codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2677         } else if tcx.sess.check_name(attr, sym::rustc_std_internal_symbol) {
2678             codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2679         } else if tcx.sess.check_name(attr, sym::used) {
2680             codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2681         } else if tcx.sess.check_name(attr, sym::cmse_nonsecure_entry) {
2682             if !matches!(tcx.fn_sig(id).abi(), abi::Abi::C { .. }) {
2683                 struct_span_err!(
2684                     tcx.sess,
2685                     attr.span,
2686                     E0776,
2687                     "`#[cmse_nonsecure_entry]` requires C ABI"
2688                 )
2689                 .emit();
2690             }
2691             if !tcx.sess.target.llvm_target.contains("thumbv8m") {
2692                 struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
2693                     .emit();
2694             }
2695             codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
2696         } else if tcx.sess.check_name(attr, sym::thread_local) {
2697             codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2698         } else if tcx.sess.check_name(attr, sym::track_caller) {
2699             if tcx.is_closure(id) || tcx.fn_sig(id).abi() != abi::Abi::Rust {
2700                 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2701                     .emit();
2702             }
2703             codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2704         } else if tcx.sess.check_name(attr, sym::export_name) {
2705             if let Some(s) = attr.value_str() {
2706                 if s.as_str().contains('\0') {
2707                     // `#[export_name = ...]` will be converted to a null-terminated string,
2708                     // so it may not contain any null characters.
2709                     struct_span_err!(
2710                         tcx.sess,
2711                         attr.span,
2712                         E0648,
2713                         "`export_name` may not contain null characters"
2714                     )
2715                     .emit();
2716                 }
2717                 codegen_fn_attrs.export_name = Some(s);
2718             }
2719         } else if tcx.sess.check_name(attr, sym::target_feature) {
2720             if !tcx.is_closure(id) && tcx.fn_sig(id).unsafety() == hir::Unsafety::Normal {
2721                 if !tcx.features().target_feature_11 {
2722                     let mut err = feature_err(
2723                         &tcx.sess.parse_sess,
2724                         sym::target_feature_11,
2725                         attr.span,
2726                         "`#[target_feature(..)]` can only be applied to `unsafe` functions",
2727                     );
2728                     err.span_label(tcx.def_span(id), "not an `unsafe` function");
2729                     err.emit();
2730                 } else if let Some(local_id) = id.as_local() {
2731                     check_target_feature_trait_unsafe(tcx, local_id, attr.span);
2732                 }
2733             }
2734             from_target_feature(
2735                 tcx,
2736                 id,
2737                 attr,
2738                 &supported_target_features,
2739                 &mut codegen_fn_attrs.target_features,
2740             );
2741         } else if tcx.sess.check_name(attr, sym::linkage) {
2742             if let Some(val) = attr.value_str() {
2743                 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2744             }
2745         } else if tcx.sess.check_name(attr, sym::link_section) {
2746             if let Some(val) = attr.value_str() {
2747                 if val.as_str().bytes().any(|b| b == 0) {
2748                     let msg = format!(
2749                         "illegal null byte in link_section \
2750                          value: `{}`",
2751                         &val
2752                     );
2753                     tcx.sess.span_err(attr.span, &msg);
2754                 } else {
2755                     codegen_fn_attrs.link_section = Some(val);
2756                 }
2757             }
2758         } else if tcx.sess.check_name(attr, sym::link_name) {
2759             codegen_fn_attrs.link_name = attr.value_str();
2760         } else if tcx.sess.check_name(attr, sym::link_ordinal) {
2761             link_ordinal_span = Some(attr.span);
2762             if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2763                 codegen_fn_attrs.link_ordinal = ordinal;
2764             }
2765         } else if tcx.sess.check_name(attr, sym::no_sanitize) {
2766             no_sanitize_span = Some(attr.span);
2767             if let Some(list) = attr.meta_item_list() {
2768                 for item in list.iter() {
2769                     if item.has_name(sym::address) {
2770                         codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
2771                     } else if item.has_name(sym::memory) {
2772                         codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
2773                     } else if item.has_name(sym::thread) {
2774                         codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
2775                     } else if item.has_name(sym::hwaddress) {
2776                         codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
2777                     } else {
2778                         tcx.sess
2779                             .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
2780                             .note("expected one of: `address`, `hwaddress`, `memory` or `thread`")
2781                             .emit();
2782                     }
2783                 }
2784             }
2785         } else if tcx.sess.check_name(attr, sym::instruction_set) {
2786             codegen_fn_attrs.instruction_set = match attr.meta().map(|i| i.kind) {
2787                 Some(MetaItemKind::List(ref items)) => match items.as_slice() {
2788                     [NestedMetaItem::MetaItem(set)] => {
2789                         let segments =
2790                             set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
2791                         match segments.as_slice() {
2792                             [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
2793                                 if !tcx.sess.target.has_thumb_interworking {
2794                                     struct_span_err!(
2795                                         tcx.sess.diagnostic(),
2796                                         attr.span,
2797                                         E0779,
2798                                         "target does not support `#[instruction_set]`"
2799                                     )
2800                                     .emit();
2801                                     None
2802                                 } else if segments[1] == sym::a32 {
2803                                     Some(InstructionSetAttr::ArmA32)
2804                                 } else if segments[1] == sym::t32 {
2805                                     Some(InstructionSetAttr::ArmT32)
2806                                 } else {
2807                                     unreachable!()
2808                                 }
2809                             }
2810                             _ => {
2811                                 struct_span_err!(
2812                                     tcx.sess.diagnostic(),
2813                                     attr.span,
2814                                     E0779,
2815                                     "invalid instruction set specified",
2816                                 )
2817                                 .emit();
2818                                 None
2819                             }
2820                         }
2821                     }
2822                     [] => {
2823                         struct_span_err!(
2824                             tcx.sess.diagnostic(),
2825                             attr.span,
2826                             E0778,
2827                             "`#[instruction_set]` requires an argument"
2828                         )
2829                         .emit();
2830                         None
2831                     }
2832                     _ => {
2833                         struct_span_err!(
2834                             tcx.sess.diagnostic(),
2835                             attr.span,
2836                             E0779,
2837                             "cannot specify more than one instruction set"
2838                         )
2839                         .emit();
2840                         None
2841                     }
2842                 },
2843                 _ => {
2844                     struct_span_err!(
2845                         tcx.sess.diagnostic(),
2846                         attr.span,
2847                         E0778,
2848                         "must specify an instruction set"
2849                     )
2850                     .emit();
2851                     None
2852                 }
2853             };
2854         }
2855     }
2856
2857     codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2858         if !attr.has_name(sym::inline) {
2859             return ia;
2860         }
2861         match attr.meta().map(|i| i.kind) {
2862             Some(MetaItemKind::Word) => {
2863                 tcx.sess.mark_attr_used(attr);
2864                 InlineAttr::Hint
2865             }
2866             Some(MetaItemKind::List(ref items)) => {
2867                 tcx.sess.mark_attr_used(attr);
2868                 inline_span = Some(attr.span);
2869                 if items.len() != 1 {
2870                     struct_span_err!(
2871                         tcx.sess.diagnostic(),
2872                         attr.span,
2873                         E0534,
2874                         "expected one argument"
2875                     )
2876                     .emit();
2877                     InlineAttr::None
2878                 } else if list_contains_name(&items[..], sym::always) {
2879                     InlineAttr::Always
2880                 } else if list_contains_name(&items[..], sym::never) {
2881                     InlineAttr::Never
2882                 } else {
2883                     struct_span_err!(
2884                         tcx.sess.diagnostic(),
2885                         items[0].span(),
2886                         E0535,
2887                         "invalid argument"
2888                     )
2889                     .emit();
2890
2891                     InlineAttr::None
2892                 }
2893             }
2894             Some(MetaItemKind::NameValue(_)) => ia,
2895             None => ia,
2896         }
2897     });
2898
2899     codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2900         if !attr.has_name(sym::optimize) {
2901             return ia;
2902         }
2903         let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
2904         match attr.meta().map(|i| i.kind) {
2905             Some(MetaItemKind::Word) => {
2906                 err(attr.span, "expected one argument");
2907                 ia
2908             }
2909             Some(MetaItemKind::List(ref items)) => {
2910                 tcx.sess.mark_attr_used(attr);
2911                 inline_span = Some(attr.span);
2912                 if items.len() != 1 {
2913                     err(attr.span, "expected one argument");
2914                     OptimizeAttr::None
2915                 } else if list_contains_name(&items[..], sym::size) {
2916                     OptimizeAttr::Size
2917                 } else if list_contains_name(&items[..], sym::speed) {
2918                     OptimizeAttr::Speed
2919                 } else {
2920                     err(items[0].span(), "invalid argument");
2921                     OptimizeAttr::None
2922                 }
2923             }
2924             Some(MetaItemKind::NameValue(_)) => ia,
2925             None => ia,
2926         }
2927     });
2928
2929     // #73631: closures inherit `#[target_feature]` annotations
2930     if tcx.features().target_feature_11 && tcx.is_closure(id) {
2931         let owner_id = tcx.parent(id).expect("closure should have a parent");
2932         codegen_fn_attrs
2933             .target_features
2934             .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied())
2935     }
2936
2937     // If a function uses #[target_feature] it can't be inlined into general
2938     // purpose functions as they wouldn't have the right target features
2939     // enabled. For that reason we also forbid #[inline(always)] as it can't be
2940     // respected.
2941     if !codegen_fn_attrs.target_features.is_empty() {
2942         if codegen_fn_attrs.inline == InlineAttr::Always {
2943             if let Some(span) = inline_span {
2944                 tcx.sess.span_err(
2945                     span,
2946                     "cannot use `#[inline(always)]` with \
2947                      `#[target_feature]`",
2948                 );
2949             }
2950         }
2951     }
2952
2953     if !codegen_fn_attrs.no_sanitize.is_empty() {
2954         if codegen_fn_attrs.inline == InlineAttr::Always {
2955             if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
2956                 let hir_id = tcx.hir().local_def_id_to_hir_id(id.expect_local());
2957                 tcx.struct_span_lint_hir(
2958                     lint::builtin::INLINE_NO_SANITIZE,
2959                     hir_id,
2960                     no_sanitize_span,
2961                     |lint| {
2962                         lint.build("`no_sanitize` will have no effect after inlining")
2963                             .span_note(inline_span, "inlining requested here")
2964                             .emit();
2965                     },
2966                 )
2967             }
2968         }
2969     }
2970
2971     // Weak lang items have the same semantics as "std internal" symbols in the
2972     // sense that they're preserved through all our LTO passes and only
2973     // strippable by the linker.
2974     //
2975     // Additionally weak lang items have predetermined symbol names.
2976     if tcx.is_weak_lang_item(id) {
2977         codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2978     }
2979     let check_name = |attr, sym| tcx.sess.check_name(attr, sym);
2980     if let Some(name) = weak_lang_items::link_name(check_name, &attrs) {
2981         codegen_fn_attrs.export_name = Some(name);
2982         codegen_fn_attrs.link_name = Some(name);
2983     }
2984     check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2985
2986     // Internal symbols to the standard library all have no_mangle semantics in
2987     // that they have defined symbol names present in the function name. This
2988     // also applies to weak symbols where they all have known symbol names.
2989     if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2990         codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2991     }
2992
2993     codegen_fn_attrs
2994 }
2995
2996 /// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
2997 /// applied to the method prototype.
2998 fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2999     if let Some(impl_item) = tcx.opt_associated_item(def_id) {
3000         if let ty::AssocItemContainer::ImplContainer(impl_def_id) = impl_item.container {
3001             if let Some(trait_def_id) = tcx.trait_id_of_impl(impl_def_id) {
3002                 if let Some(trait_item) = tcx
3003                     .associated_items(trait_def_id)
3004                     .filter_by_name_unhygienic(impl_item.ident.name)
3005                     .find(move |trait_item| {
3006                         trait_item.kind == ty::AssocKind::Fn
3007                             && tcx.hygienic_eq(impl_item.ident, trait_item.ident, trait_def_id)
3008                     })
3009                 {
3010                     return tcx
3011                         .codegen_fn_attrs(trait_item.def_id)
3012                         .flags
3013                         .intersects(CodegenFnAttrFlags::TRACK_CALLER);
3014                 }
3015             }
3016         }
3017     }
3018
3019     false
3020 }
3021
3022 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
3023     use rustc_ast::{Lit, LitIntType, LitKind};
3024     let meta_item_list = attr.meta_item_list();
3025     let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
3026     let sole_meta_list = match meta_item_list {
3027         Some([item]) => item.literal(),
3028         _ => None,
3029     };
3030     if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
3031         if *ordinal <= usize::MAX as u128 {
3032             Some(*ordinal as usize)
3033         } else {
3034             let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
3035             tcx.sess
3036                 .struct_span_err(attr.span, &msg)
3037                 .note("the value may not exceed `usize::MAX`")
3038                 .emit();
3039             None
3040         }
3041     } else {
3042         tcx.sess
3043             .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
3044             .note("an unsuffixed integer value, e.g., `1`, is expected")
3045             .emit();
3046         None
3047     }
3048 }
3049
3050 fn check_link_name_xor_ordinal(
3051     tcx: TyCtxt<'_>,
3052     codegen_fn_attrs: &CodegenFnAttrs,
3053     inline_span: Option<Span>,
3054 ) {
3055     if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
3056         return;
3057     }
3058     let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
3059     if let Some(span) = inline_span {
3060         tcx.sess.span_err(span, msg);
3061     } else {
3062         tcx.sess.err(msg);
3063     }
3064 }
3065
3066 /// Checks the function annotated with `#[target_feature]` is not a safe
3067 /// trait method implementation, reporting an error if it is.
3068 fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
3069     let hir_id = tcx.hir().local_def_id_to_hir_id(id);
3070     let node = tcx.hir().get(hir_id);
3071     if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
3072         let parent_id = tcx.hir().get_parent_item(hir_id);
3073         let parent_item = tcx.hir().expect_item(parent_id);
3074         if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
3075             tcx.sess
3076                 .struct_span_err(
3077                     attr_span,
3078                     "`#[target_feature(..)]` cannot be applied to safe trait method",
3079                 )
3080                 .span_label(attr_span, "cannot be applied to safe trait method")
3081                 .span_label(tcx.def_span(id), "not an `unsafe` function")
3082                 .emit();
3083         }
3084     }
3085 }