]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/wfcheck.rs
Refactor `FulfillmentError` to track less data
[rust.git] / compiler / rustc_typeck / src / check / wfcheck.rs
1 use crate::check::{FnCtxt, Inherited};
2 use crate::constrained_generic_params::{identify_constrained_generic_params, Parameter};
3
4 use rustc_ast as ast;
5 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
6 use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder};
7 use rustc_hir as hir;
8 use rustc_hir::def_id::{DefId, LocalDefId};
9 use rustc_hir::intravisit as hir_visit;
10 use rustc_hir::intravisit::Visitor;
11 use rustc_hir::itemlikevisit::ParItemLikeVisitor;
12 use rustc_hir::lang_items::LangItem;
13 use rustc_hir::ItemKind;
14 use rustc_middle::hir::map as hir_map;
15 use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts, Subst};
16 use rustc_middle::ty::trait_def::TraitSpecializationKind;
17 use rustc_middle::ty::{
18     self, AdtKind, GenericParamDefKind, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness,
19 };
20 use rustc_session::parse::feature_err;
21 use rustc_span::symbol::{sym, Ident, Symbol};
22 use rustc_span::Span;
23 use rustc_trait_selection::opaque_types::may_define_opaque_type;
24 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
25 use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode, WellFormedLoc};
26
27 use std::convert::TryInto;
28 use std::iter;
29 use std::ops::ControlFlow;
30
31 /// Helper type of a temporary returned by `.for_item(...)`.
32 /// This is necessary because we can't write the following bound:
33 ///
34 /// ```rust
35 /// F: for<'b, 'tcx> where 'tcx FnOnce(FnCtxt<'b, 'tcx>)
36 /// ```
37 struct CheckWfFcxBuilder<'tcx> {
38     inherited: super::InheritedBuilder<'tcx>,
39     id: hir::HirId,
40     span: Span,
41     param_env: ty::ParamEnv<'tcx>,
42 }
43
44 impl<'tcx> CheckWfFcxBuilder<'tcx> {
45     fn with_fcx<F>(&mut self, f: F)
46     where
47         F: for<'b> FnOnce(&FnCtxt<'b, 'tcx>) -> FxHashSet<Ty<'tcx>>,
48     {
49         let id = self.id;
50         let span = self.span;
51         let param_env = self.param_env;
52         self.inherited.enter(|inh| {
53             let fcx = FnCtxt::new(&inh, param_env, id);
54             if !inh.tcx.features().trivial_bounds {
55                 // As predicates are cached rather than obligations, this
56                 // needs to be called first so that they are checked with an
57                 // empty `param_env`.
58                 check_false_global_bounds(&fcx, span, id);
59             }
60             let wf_tys = f(&fcx);
61             fcx.select_all_obligations_or_error();
62             fcx.regionck_item(id, span, wf_tys);
63         });
64     }
65 }
66
67 /// Checks that the field types (in a struct def'n) or argument types (in an enum def'n) are
68 /// well-formed, meaning that they do not require any constraints not declared in the struct
69 /// definition itself. For example, this definition would be illegal:
70 ///
71 /// ```rust
72 /// struct Ref<'a, T> { x: &'a T }
73 /// ```
74 ///
75 /// because the type did not declare that `T:'a`.
76 ///
77 /// We do this check as a pre-pass before checking fn bodies because if these constraints are
78 /// not included it frequently leads to confusing errors in fn bodies. So it's better to check
79 /// the types first.
80 pub fn check_item_well_formed(tcx: TyCtxt<'_>, def_id: LocalDefId) {
81     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
82     let item = tcx.hir().expect_item(hir_id);
83
84     debug!(
85         "check_item_well_formed(it.def_id={:?}, it.name={})",
86         item.def_id,
87         tcx.def_path_str(def_id.to_def_id())
88     );
89
90     match item.kind {
91         // Right now we check that every default trait implementation
92         // has an implementation of itself. Basically, a case like:
93         //
94         //     impl Trait for T {}
95         //
96         // has a requirement of `T: Trait` which was required for default
97         // method implementations. Although this could be improved now that
98         // there's a better infrastructure in place for this, it's being left
99         // for a follow-up work.
100         //
101         // Since there's such a requirement, we need to check *just* positive
102         // implementations, otherwise things like:
103         //
104         //     impl !Send for T {}
105         //
106         // won't be allowed unless there's an *explicit* implementation of `Send`
107         // for `T`
108         hir::ItemKind::Impl(ref impl_) => {
109             let is_auto = tcx
110                 .impl_trait_ref(item.def_id)
111                 .map_or(false, |trait_ref| tcx.trait_is_auto(trait_ref.def_id));
112             if let (hir::Defaultness::Default { .. }, true) = (impl_.defaultness, is_auto) {
113                 let sp = impl_.of_trait.as_ref().map_or(item.span, |t| t.path.span);
114                 let mut err =
115                     tcx.sess.struct_span_err(sp, "impls of auto traits cannot be default");
116                 err.span_labels(impl_.defaultness_span, "default because of this");
117                 err.span_label(sp, "auto trait");
118                 err.emit();
119             }
120             // We match on both `ty::ImplPolarity` and `ast::ImplPolarity` just to get the `!` span.
121             match (tcx.impl_polarity(def_id), impl_.polarity) {
122                 (ty::ImplPolarity::Positive, _) => {
123                     check_impl(tcx, item, impl_.self_ty, &impl_.of_trait);
124                 }
125                 (ty::ImplPolarity::Negative, ast::ImplPolarity::Negative(span)) => {
126                     // FIXME(#27579): what amount of WF checking do we need for neg impls?
127                     if let hir::Defaultness::Default { .. } = impl_.defaultness {
128                         let mut spans = vec![span];
129                         spans.extend(impl_.defaultness_span);
130                         struct_span_err!(
131                             tcx.sess,
132                             spans,
133                             E0750,
134                             "negative impls cannot be default impls"
135                         )
136                         .emit();
137                     }
138                 }
139                 (ty::ImplPolarity::Reservation, _) => {
140                     // FIXME: what amount of WF checking do we need for reservation impls?
141                 }
142                 _ => unreachable!(),
143             }
144         }
145         hir::ItemKind::Fn(ref sig, ..) => {
146             check_item_fn(tcx, item.hir_id(), item.ident, item.span, sig.decl);
147         }
148         hir::ItemKind::Static(ref ty, ..) => {
149             check_item_type(tcx, item.hir_id(), ty.span, false);
150         }
151         hir::ItemKind::Const(ref ty, ..) => {
152             check_item_type(tcx, item.hir_id(), ty.span, false);
153         }
154         hir::ItemKind::ForeignMod { items, .. } => {
155             for it in items.iter() {
156                 let it = tcx.hir().foreign_item(it.id);
157                 match it.kind {
158                     hir::ForeignItemKind::Fn(ref decl, ..) => {
159                         check_item_fn(tcx, it.hir_id(), it.ident, it.span, decl)
160                     }
161                     hir::ForeignItemKind::Static(ref ty, ..) => {
162                         check_item_type(tcx, it.hir_id(), ty.span, true)
163                     }
164                     hir::ForeignItemKind::Type => (),
165                 }
166             }
167         }
168         hir::ItemKind::Struct(ref struct_def, ref ast_generics) => {
169             check_type_defn(tcx, item, false, |fcx| vec![fcx.non_enum_variant(struct_def)]);
170
171             check_variances_for_type_defn(tcx, item, ast_generics);
172         }
173         hir::ItemKind::Union(ref struct_def, ref ast_generics) => {
174             check_type_defn(tcx, item, true, |fcx| vec![fcx.non_enum_variant(struct_def)]);
175
176             check_variances_for_type_defn(tcx, item, ast_generics);
177         }
178         hir::ItemKind::Enum(ref enum_def, ref ast_generics) => {
179             check_type_defn(tcx, item, true, |fcx| fcx.enum_variants(enum_def));
180
181             check_variances_for_type_defn(tcx, item, ast_generics);
182         }
183         hir::ItemKind::Trait(..) => {
184             check_trait(tcx, item);
185         }
186         hir::ItemKind::TraitAlias(..) => {
187             check_trait(tcx, item);
188         }
189         _ => {}
190     }
191 }
192
193 pub fn check_trait_item(tcx: TyCtxt<'_>, def_id: LocalDefId) {
194     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
195     let trait_item = tcx.hir().expect_trait_item(hir_id);
196
197     let (method_sig, span) = match trait_item.kind {
198         hir::TraitItemKind::Fn(ref sig, _) => (Some(sig), trait_item.span),
199         hir::TraitItemKind::Type(_bounds, Some(ty)) => (None, ty.span),
200         _ => (None, trait_item.span),
201     };
202     check_object_unsafe_self_trait_by_name(tcx, &trait_item);
203     check_associated_item(tcx, trait_item.hir_id(), span, method_sig);
204 }
205
206 fn could_be_self(trait_def_id: LocalDefId, ty: &hir::Ty<'_>) -> bool {
207     match ty.kind {
208         hir::TyKind::TraitObject([trait_ref], ..) => match trait_ref.trait_ref.path.segments {
209             [s] => s.res.and_then(|r| r.opt_def_id()) == Some(trait_def_id.to_def_id()),
210             _ => false,
211         },
212         _ => false,
213     }
214 }
215
216 /// Detect when an object unsafe trait is referring to itself in one of its associated items.
217 /// When this is done, suggest using `Self` instead.
218 fn check_object_unsafe_self_trait_by_name(tcx: TyCtxt<'_>, item: &hir::TraitItem<'_>) {
219     let (trait_name, trait_def_id) = match tcx.hir().get(tcx.hir().get_parent_item(item.hir_id())) {
220         hir::Node::Item(item) => match item.kind {
221             hir::ItemKind::Trait(..) => (item.ident, item.def_id),
222             _ => return,
223         },
224         _ => return,
225     };
226     let mut trait_should_be_self = vec![];
227     match &item.kind {
228         hir::TraitItemKind::Const(ty, _) | hir::TraitItemKind::Type(_, Some(ty))
229             if could_be_self(trait_def_id, ty) =>
230         {
231             trait_should_be_self.push(ty.span)
232         }
233         hir::TraitItemKind::Fn(sig, _) => {
234             for ty in sig.decl.inputs {
235                 if could_be_self(trait_def_id, ty) {
236                     trait_should_be_self.push(ty.span);
237                 }
238             }
239             match sig.decl.output {
240                 hir::FnRetTy::Return(ty) if could_be_self(trait_def_id, ty) => {
241                     trait_should_be_self.push(ty.span);
242                 }
243                 _ => {}
244             }
245         }
246         _ => {}
247     }
248     if !trait_should_be_self.is_empty() {
249         if tcx.object_safety_violations(trait_def_id).is_empty() {
250             return;
251         }
252         let sugg = trait_should_be_self.iter().map(|span| (*span, "Self".to_string())).collect();
253         tcx.sess
254             .struct_span_err(
255                 trait_should_be_self,
256                 "associated item referring to unboxed trait object for its own trait",
257             )
258             .span_label(trait_name.span, "in this trait")
259             .multipart_suggestion(
260                 "you might have meant to use `Self` to refer to the implementing type",
261                 sugg,
262                 Applicability::MachineApplicable,
263             )
264             .emit();
265     }
266 }
267
268 pub fn check_impl_item(tcx: TyCtxt<'_>, def_id: LocalDefId) {
269     let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
270     let impl_item = tcx.hir().expect_impl_item(hir_id);
271
272     let (method_sig, span) = match impl_item.kind {
273         hir::ImplItemKind::Fn(ref sig, _) => (Some(sig), impl_item.span),
274         hir::ImplItemKind::TyAlias(ty) => (None, ty.span),
275         _ => (None, impl_item.span),
276     };
277
278     check_associated_item(tcx, impl_item.hir_id(), span, method_sig);
279 }
280
281 fn check_param_wf(tcx: TyCtxt<'_>, param: &hir::GenericParam<'_>) {
282     match param.kind {
283         // We currently only check wf of const params here.
284         hir::GenericParamKind::Lifetime { .. } | hir::GenericParamKind::Type { .. } => (),
285
286         // Const parameters are well formed if their type is structural match.
287         // FIXME(const_generics_defaults): we also need to check that the `default` is wf.
288         hir::GenericParamKind::Const { ty: hir_ty, default: _ } => {
289             let ty = tcx.type_of(tcx.hir().local_def_id(param.hir_id));
290
291             let err_ty_str;
292             let mut is_ptr = true;
293             let err = if tcx.features().adt_const_params {
294                 match ty.peel_refs().kind() {
295                     ty::FnPtr(_) => Some("function pointers"),
296                     ty::RawPtr(_) => Some("raw pointers"),
297                     _ => None,
298                 }
299             } else {
300                 match ty.kind() {
301                     ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Error(_) => None,
302                     ty::FnPtr(_) => Some("function pointers"),
303                     ty::RawPtr(_) => Some("raw pointers"),
304                     _ => {
305                         is_ptr = false;
306                         err_ty_str = format!("`{}`", ty);
307                         Some(err_ty_str.as_str())
308                     }
309                 }
310             };
311             if let Some(unsupported_type) = err {
312                 if is_ptr {
313                     tcx.sess.span_err(
314                         hir_ty.span,
315                         &format!(
316                             "using {} as const generic parameters is forbidden",
317                             unsupported_type
318                         ),
319                     )
320                 } else {
321                     let mut err = tcx.sess.struct_span_err(
322                         hir_ty.span,
323                         &format!(
324                             "{} is forbidden as the type of a const generic parameter",
325                             unsupported_type
326                         ),
327                     );
328                     err.note("the only supported types are integers, `bool` and `char`");
329                     if tcx.sess.is_nightly_build() {
330                         err.help(
331                             "more complex types are supported with `#![feature(adt_const_params)]`",
332                         );
333                     }
334                     err.emit()
335                 }
336             };
337
338             if traits::search_for_structural_match_violation(param.hir_id, param.span, tcx, ty)
339                 .is_some()
340             {
341                 // We use the same error code in both branches, because this is really the same
342                 // issue: we just special-case the message for type parameters to make it
343                 // clearer.
344                 if let ty::Param(_) = ty.peel_refs().kind() {
345                     // Const parameters may not have type parameters as their types,
346                     // because we cannot be sure that the type parameter derives `PartialEq`
347                     // and `Eq` (just implementing them is not enough for `structural_match`).
348                     struct_span_err!(
349                         tcx.sess,
350                         hir_ty.span,
351                         E0741,
352                         "`{}` is not guaranteed to `#[derive(PartialEq, Eq)]`, so may not be \
353                             used as the type of a const parameter",
354                         ty,
355                     )
356                     .span_label(
357                         hir_ty.span,
358                         format!("`{}` may not derive both `PartialEq` and `Eq`", ty),
359                     )
360                     .note(
361                         "it is not currently possible to use a type parameter as the type of a \
362                             const parameter",
363                     )
364                     .emit();
365                 } else {
366                     struct_span_err!(
367                         tcx.sess,
368                         hir_ty.span,
369                         E0741,
370                         "`{}` must be annotated with `#[derive(PartialEq, Eq)]` to be used as \
371                             the type of a const parameter",
372                         ty,
373                     )
374                     .span_label(
375                         hir_ty.span,
376                         format!("`{}` doesn't derive both `PartialEq` and `Eq`", ty),
377                     )
378                     .emit();
379                 }
380             }
381         }
382     }
383 }
384
385 #[tracing::instrument(level = "debug", skip(tcx, span, sig_if_method))]
386 fn check_associated_item(
387     tcx: TyCtxt<'_>,
388     item_id: hir::HirId,
389     span: Span,
390     sig_if_method: Option<&hir::FnSig<'_>>,
391 ) {
392     let code = ObligationCauseCode::WellFormed(Some(WellFormedLoc::Ty(item_id.expect_owner())));
393     for_id(tcx, item_id, span).with_fcx(|fcx| {
394         let item = fcx.tcx.associated_item(fcx.tcx.hir().local_def_id(item_id));
395
396         let (mut implied_bounds, self_ty) = match item.container {
397             ty::TraitContainer(_) => (FxHashSet::default(), fcx.tcx.types.self_param),
398             ty::ImplContainer(def_id) => {
399                 (fcx.impl_implied_bounds(def_id, span), fcx.tcx.type_of(def_id))
400             }
401         };
402
403         match item.kind {
404             ty::AssocKind::Const => {
405                 let ty = fcx.tcx.type_of(item.def_id);
406                 let ty = fcx.normalize_associated_types_in_wf(
407                     span,
408                     ty,
409                     WellFormedLoc::Ty(item_id.expect_owner()),
410                 );
411                 fcx.register_wf_obligation(ty.into(), span, code.clone());
412             }
413             ty::AssocKind::Fn => {
414                 let sig = fcx.tcx.fn_sig(item.def_id);
415                 let hir_sig = sig_if_method.expect("bad signature for method");
416                 check_fn_or_method(
417                     fcx,
418                     item.ident.span,
419                     sig,
420                     hir_sig.decl,
421                     item.def_id,
422                     &mut implied_bounds,
423                 );
424                 check_method_receiver(fcx, hir_sig, &item, self_ty);
425             }
426             ty::AssocKind::Type => {
427                 if let ty::AssocItemContainer::TraitContainer(_) = item.container {
428                     check_associated_type_bounds(fcx, item, span)
429                 }
430                 if item.defaultness.has_value() {
431                     let ty = fcx.tcx.type_of(item.def_id);
432                     let ty = fcx.normalize_associated_types_in_wf(
433                         span,
434                         ty,
435                         WellFormedLoc::Ty(item_id.expect_owner()),
436                     );
437                     fcx.register_wf_obligation(ty.into(), span, code.clone());
438                 }
439             }
440         }
441
442         implied_bounds
443     })
444 }
445
446 fn for_item<'tcx>(tcx: TyCtxt<'tcx>, item: &hir::Item<'_>) -> CheckWfFcxBuilder<'tcx> {
447     for_id(tcx, item.hir_id(), item.span)
448 }
449
450 fn for_id(tcx: TyCtxt<'_>, id: hir::HirId, span: Span) -> CheckWfFcxBuilder<'_> {
451     let def_id = tcx.hir().local_def_id(id);
452     CheckWfFcxBuilder {
453         inherited: Inherited::build(tcx, def_id),
454         id,
455         span,
456         param_env: tcx.param_env(def_id),
457     }
458 }
459
460 fn item_adt_kind(kind: &ItemKind<'_>) -> Option<AdtKind> {
461     match kind {
462         ItemKind::Struct(..) => Some(AdtKind::Struct),
463         ItemKind::Union(..) => Some(AdtKind::Union),
464         ItemKind::Enum(..) => Some(AdtKind::Enum),
465         _ => None,
466     }
467 }
468
469 /// In a type definition, we check that to ensure that the types of the fields are well-formed.
470 fn check_type_defn<'tcx, F>(
471     tcx: TyCtxt<'tcx>,
472     item: &hir::Item<'tcx>,
473     all_sized: bool,
474     mut lookup_fields: F,
475 ) where
476     F: for<'fcx> FnMut(&FnCtxt<'fcx, 'tcx>) -> Vec<AdtVariant<'tcx>>,
477 {
478     for_item(tcx, item).with_fcx(|fcx| {
479         let variants = lookup_fields(fcx);
480         let packed = tcx.adt_def(item.def_id).repr.packed();
481
482         for variant in &variants {
483             // For DST, or when drop needs to copy things around, all
484             // intermediate types must be sized.
485             let needs_drop_copy = || {
486                 packed && {
487                     let ty = variant.fields.last().unwrap().ty;
488                     let ty = tcx.erase_regions(ty);
489                     if ty.needs_infer() {
490                         tcx.sess
491                             .delay_span_bug(item.span, &format!("inference variables in {:?}", ty));
492                         // Just treat unresolved type expression as if it needs drop.
493                         true
494                     } else {
495                         ty.needs_drop(tcx, tcx.param_env(item.def_id))
496                     }
497                 }
498             };
499             let all_sized = all_sized || variant.fields.is_empty() || needs_drop_copy();
500             let unsized_len = if all_sized { 0 } else { 1 };
501             for (idx, field) in
502                 variant.fields[..variant.fields.len() - unsized_len].iter().enumerate()
503             {
504                 let last = idx == variant.fields.len() - 1;
505                 fcx.register_bound(
506                     field.ty,
507                     tcx.require_lang_item(LangItem::Sized, None),
508                     traits::ObligationCause::new(
509                         field.span,
510                         fcx.body_id,
511                         traits::FieldSized {
512                             adt_kind: match item_adt_kind(&item.kind) {
513                                 Some(i) => i,
514                                 None => bug!(),
515                             },
516                             span: field.span,
517                             last,
518                         },
519                     ),
520                 );
521             }
522
523             // All field types must be well-formed.
524             for field in &variant.fields {
525                 fcx.register_wf_obligation(
526                     field.ty.into(),
527                     field.span,
528                     ObligationCauseCode::WellFormed(Some(WellFormedLoc::Ty(field.def_id))),
529                 )
530             }
531
532             // Explicit `enum` discriminant values must const-evaluate successfully.
533             if let Some(discr_def_id) = variant.explicit_discr {
534                 let discr_substs = InternalSubsts::identity_for_item(tcx, discr_def_id.to_def_id());
535
536                 let cause = traits::ObligationCause::new(
537                     tcx.def_span(discr_def_id),
538                     fcx.body_id,
539                     traits::MiscObligation,
540                 );
541                 fcx.register_predicate(traits::Obligation::new(
542                     cause,
543                     fcx.param_env,
544                     ty::PredicateKind::ConstEvaluatable(ty::Unevaluated::new(
545                         ty::WithOptConstParam::unknown(discr_def_id.to_def_id()),
546                         discr_substs,
547                     ))
548                     .to_predicate(tcx),
549                 ));
550             }
551         }
552
553         check_where_clauses(fcx, item.span, item.def_id.to_def_id(), None);
554
555         // No implied bounds in a struct definition.
556         FxHashSet::default()
557     });
558 }
559
560 fn check_trait(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
561     debug!("check_trait: {:?}", item.def_id);
562
563     let trait_def = tcx.trait_def(item.def_id);
564     if trait_def.is_marker
565         || matches!(trait_def.specialization_kind, TraitSpecializationKind::Marker)
566     {
567         for associated_def_id in &*tcx.associated_item_def_ids(item.def_id) {
568             struct_span_err!(
569                 tcx.sess,
570                 tcx.def_span(*associated_def_id),
571                 E0714,
572                 "marker traits cannot have associated items",
573             )
574             .emit();
575         }
576     }
577
578     // FIXME: this shouldn't use an `FnCtxt` at all.
579     for_item(tcx, item).with_fcx(|fcx| {
580         check_where_clauses(fcx, item.span, item.def_id.to_def_id(), None);
581
582         FxHashSet::default()
583     });
584 }
585
586 /// Checks all associated type defaults of trait `trait_def_id`.
587 ///
588 /// Assuming the defaults are used, check that all predicates (bounds on the
589 /// assoc type and where clauses on the trait) hold.
590 fn check_associated_type_bounds(fcx: &FnCtxt<'_, '_>, item: &ty::AssocItem, span: Span) {
591     let tcx = fcx.tcx;
592
593     let bounds = tcx.explicit_item_bounds(item.def_id);
594
595     debug!("check_associated_type_bounds: bounds={:?}", bounds);
596     let wf_obligations = bounds.iter().flat_map(|&(bound, bound_span)| {
597         let normalized_bound = fcx.normalize_associated_types_in(span, bound);
598         traits::wf::predicate_obligations(
599             fcx,
600             fcx.param_env,
601             fcx.body_id,
602             normalized_bound,
603             bound_span,
604         )
605     });
606
607     for obligation in wf_obligations {
608         debug!("next obligation cause: {:?}", obligation.cause);
609         fcx.register_predicate(obligation);
610     }
611 }
612
613 fn check_item_fn(
614     tcx: TyCtxt<'_>,
615     item_id: hir::HirId,
616     ident: Ident,
617     span: Span,
618     decl: &hir::FnDecl<'_>,
619 ) {
620     for_id(tcx, item_id, span).with_fcx(|fcx| {
621         let def_id = tcx.hir().local_def_id(item_id);
622         let sig = tcx.fn_sig(def_id);
623         let mut implied_bounds = FxHashSet::default();
624         check_fn_or_method(fcx, ident.span, sig, decl, def_id.to_def_id(), &mut implied_bounds);
625         implied_bounds
626     })
627 }
628
629 fn check_item_type(tcx: TyCtxt<'_>, item_id: hir::HirId, ty_span: Span, allow_foreign_ty: bool) {
630     debug!("check_item_type: {:?}", item_id);
631
632     for_id(tcx, item_id, ty_span).with_fcx(|fcx| {
633         let ty = tcx.type_of(tcx.hir().local_def_id(item_id));
634         let item_ty = fcx.normalize_associated_types_in_wf(
635             ty_span,
636             ty,
637             WellFormedLoc::Ty(item_id.expect_owner()),
638         );
639
640         let mut forbid_unsized = true;
641         if allow_foreign_ty {
642             let tail = fcx.tcx.struct_tail_erasing_lifetimes(item_ty, fcx.param_env);
643             if let ty::Foreign(_) = tail.kind() {
644                 forbid_unsized = false;
645             }
646         }
647
648         fcx.register_wf_obligation(
649             item_ty.into(),
650             ty_span,
651             ObligationCauseCode::WellFormed(Some(WellFormedLoc::Ty(item_id.expect_owner()))),
652         );
653         if forbid_unsized {
654             fcx.register_bound(
655                 item_ty,
656                 tcx.require_lang_item(LangItem::Sized, None),
657                 traits::ObligationCause::new(ty_span, fcx.body_id, traits::MiscObligation),
658             );
659         }
660
661         // No implied bounds in a const, etc.
662         FxHashSet::default()
663     });
664 }
665
666 #[tracing::instrument(level = "debug", skip(tcx, ast_self_ty, ast_trait_ref))]
667 fn check_impl<'tcx>(
668     tcx: TyCtxt<'tcx>,
669     item: &'tcx hir::Item<'tcx>,
670     ast_self_ty: &hir::Ty<'_>,
671     ast_trait_ref: &Option<hir::TraitRef<'_>>,
672 ) {
673     for_item(tcx, item).with_fcx(|fcx| {
674         match *ast_trait_ref {
675             Some(ref ast_trait_ref) => {
676                 // `#[rustc_reservation_impl]` impls are not real impls and
677                 // therefore don't need to be WF (the trait's `Self: Trait` predicate
678                 // won't hold).
679                 let trait_ref = tcx.impl_trait_ref(item.def_id).unwrap();
680                 let trait_ref =
681                     fcx.normalize_associated_types_in(ast_trait_ref.path.span, trait_ref);
682                 let obligations = traits::wf::trait_obligations(
683                     fcx,
684                     fcx.param_env,
685                     fcx.body_id,
686                     &trait_ref,
687                     ast_trait_ref.path.span,
688                     Some(item),
689                 );
690                 debug!(?obligations);
691                 for obligation in obligations {
692                     fcx.register_predicate(obligation);
693                 }
694             }
695             None => {
696                 let self_ty = tcx.type_of(item.def_id);
697                 let self_ty = fcx.normalize_associated_types_in(item.span, self_ty);
698                 fcx.register_wf_obligation(
699                     self_ty.into(),
700                     ast_self_ty.span,
701                     ObligationCauseCode::WellFormed(Some(WellFormedLoc::Ty(
702                         item.hir_id().expect_owner(),
703                     ))),
704                 );
705             }
706         }
707
708         check_where_clauses(fcx, item.span, item.def_id.to_def_id(), None);
709
710         fcx.impl_implied_bounds(item.def_id.to_def_id(), item.span)
711     });
712 }
713
714 /// Checks where-clauses and inline bounds that are declared on `def_id`.
715 fn check_where_clauses<'tcx, 'fcx>(
716     fcx: &FnCtxt<'fcx, 'tcx>,
717     span: Span,
718     def_id: DefId,
719     return_ty: Option<(Ty<'tcx>, Span)>,
720 ) {
721     debug!("check_where_clauses(def_id={:?}, return_ty={:?})", def_id, return_ty);
722     let tcx = fcx.tcx;
723
724     let predicates = tcx.predicates_of(def_id);
725     let generics = tcx.generics_of(def_id);
726
727     let is_our_default = |def: &ty::GenericParamDef| match def.kind {
728         GenericParamDefKind::Type { has_default, .. }
729         | GenericParamDefKind::Const { has_default } => {
730             has_default && def.index >= generics.parent_count as u32
731         }
732         GenericParamDefKind::Lifetime => unreachable!(),
733     };
734
735     // Check that concrete defaults are well-formed. See test `type-check-defaults.rs`.
736     // For example, this forbids the declaration:
737     //
738     //     struct Foo<T = Vec<[u32]>> { .. }
739     //
740     // Here, the default `Vec<[u32]>` is not WF because `[u32]: Sized` does not hold.
741     for param in &generics.params {
742         match param.kind {
743             GenericParamDefKind::Type { .. } => {
744                 if is_our_default(&param) {
745                     let ty = tcx.type_of(param.def_id);
746                     // Ignore dependent defaults -- that is, where the default of one type
747                     // parameter includes another (e.g., `<T, U = T>`). In those cases, we can't
748                     // be sure if it will error or not as user might always specify the other.
749                     if !ty.definitely_needs_subst(tcx) {
750                         fcx.register_wf_obligation(
751                             ty.into(),
752                             tcx.def_span(param.def_id),
753                             ObligationCauseCode::MiscObligation,
754                         );
755                     }
756                 }
757             }
758             GenericParamDefKind::Const { .. } => {
759                 if is_our_default(&param) {
760                     // FIXME(const_generics_defaults): This
761                     // is incorrect when dealing with unused substs, for example
762                     // for `struct Foo<const N: usize, const M: usize = { 1 - 2 }>`
763                     // we should eagerly error.
764                     let default_ct = tcx.const_param_default(param.def_id);
765                     if !default_ct.definitely_needs_subst(tcx) {
766                         fcx.register_wf_obligation(
767                             default_ct.into(),
768                             tcx.def_span(param.def_id),
769                             ObligationCauseCode::WellFormed(None),
770                         );
771                     }
772                 }
773             }
774             // Doesn't have defaults.
775             GenericParamDefKind::Lifetime => {}
776         }
777     }
778
779     // Check that trait predicates are WF when params are substituted by their defaults.
780     // We don't want to overly constrain the predicates that may be written but we want to
781     // catch cases where a default my never be applied such as `struct Foo<T: Copy = String>`.
782     // Therefore we check if a predicate which contains a single type param
783     // with a concrete default is WF with that default substituted.
784     // For more examples see tests `defaults-well-formedness.rs` and `type-check-defaults.rs`.
785     //
786     // First we build the defaulted substitution.
787     let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
788         match param.kind {
789             GenericParamDefKind::Lifetime => {
790                 // All regions are identity.
791                 tcx.mk_param_from_def(param)
792             }
793
794             GenericParamDefKind::Type { .. } => {
795                 // If the param has a default, ...
796                 if is_our_default(param) {
797                     let default_ty = tcx.type_of(param.def_id);
798                     // ... and it's not a dependent default, ...
799                     if !default_ty.definitely_needs_subst(tcx) {
800                         // ... then substitute it with the default.
801                         return default_ty.into();
802                     }
803                 }
804
805                 tcx.mk_param_from_def(param)
806             }
807             GenericParamDefKind::Const { .. } => {
808                 // If the param has a default, ...
809                 if is_our_default(param) {
810                     let default_ct = tcx.const_param_default(param.def_id);
811                     // ... and it's not a dependent default, ...
812                     if !default_ct.definitely_needs_subst(tcx) {
813                         // ... then substitute it with the default.
814                         return default_ct.into();
815                     }
816                 }
817
818                 tcx.mk_param_from_def(param)
819             }
820         }
821     });
822
823     // Now we build the substituted predicates.
824     let default_obligations = predicates
825         .predicates
826         .iter()
827         .flat_map(|&(pred, sp)| {
828             struct CountParams<'tcx> {
829                 tcx: TyCtxt<'tcx>,
830                 params: FxHashSet<u32>,
831             }
832             impl<'tcx> ty::fold::TypeVisitor<'tcx> for CountParams<'tcx> {
833                 type BreakTy = ();
834                 fn tcx_for_anon_const_substs(&self) -> Option<TyCtxt<'tcx>> {
835                     Some(self.tcx)
836                 }
837
838                 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
839                     if let ty::Param(param) = t.kind() {
840                         self.params.insert(param.index);
841                     }
842                     t.super_visit_with(self)
843                 }
844
845                 fn visit_region(&mut self, _: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
846                     ControlFlow::BREAK
847                 }
848
849                 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
850                     if let ty::ConstKind::Param(param) = c.val {
851                         self.params.insert(param.index);
852                     }
853                     c.super_visit_with(self)
854                 }
855             }
856             let mut param_count = CountParams { tcx: fcx.tcx, params: FxHashSet::default() };
857             let has_region = pred.visit_with(&mut param_count).is_break();
858             let substituted_pred = pred.subst(tcx, substs);
859             // Don't check non-defaulted params, dependent defaults (including lifetimes)
860             // or preds with multiple params.
861             if substituted_pred.definitely_has_param_types_or_consts(tcx)
862                 || param_count.params.len() > 1
863                 || has_region
864             {
865                 None
866             } else if predicates.predicates.iter().any(|&(p, _)| p == substituted_pred) {
867                 // Avoid duplication of predicates that contain no parameters, for example.
868                 None
869             } else {
870                 Some((substituted_pred, sp))
871             }
872         })
873         .map(|(pred, sp)| {
874             // Convert each of those into an obligation. So if you have
875             // something like `struct Foo<T: Copy = String>`, we would
876             // take that predicate `T: Copy`, substitute to `String: Copy`
877             // (actually that happens in the previous `flat_map` call),
878             // and then try to prove it (in this case, we'll fail).
879             //
880             // Note the subtle difference from how we handle `predicates`
881             // below: there, we are not trying to prove those predicates
882             // to be *true* but merely *well-formed*.
883             let pred = fcx.normalize_associated_types_in(sp, pred);
884             let cause =
885                 traits::ObligationCause::new(sp, fcx.body_id, traits::ItemObligation(def_id));
886             traits::Obligation::new(cause, fcx.param_env, pred)
887         });
888
889     let predicates = predicates.instantiate_identity(tcx);
890
891     if let Some((mut return_ty, span)) = return_ty {
892         if return_ty.has_infer_types_or_consts() {
893             fcx.select_obligations_where_possible(false, |_| {});
894             return_ty = fcx.resolve_vars_if_possible(return_ty);
895         }
896         check_opaque_types(fcx, def_id.expect_local(), span, return_ty);
897     }
898
899     let predicates = fcx.normalize_associated_types_in(span, predicates);
900
901     debug!("check_where_clauses: predicates={:?}", predicates.predicates);
902     assert_eq!(predicates.predicates.len(), predicates.spans.len());
903     let wf_obligations =
904         iter::zip(&predicates.predicates, &predicates.spans).flat_map(|(&p, &sp)| {
905             traits::wf::predicate_obligations(fcx, fcx.param_env, fcx.body_id, p, sp)
906         });
907
908     for obligation in wf_obligations.chain(default_obligations) {
909         debug!("next obligation cause: {:?}", obligation.cause);
910         fcx.register_predicate(obligation);
911     }
912 }
913
914 #[tracing::instrument(level = "debug", skip(fcx, span, hir_decl))]
915 fn check_fn_or_method<'fcx, 'tcx>(
916     fcx: &FnCtxt<'fcx, 'tcx>,
917     span: Span,
918     sig: ty::PolyFnSig<'tcx>,
919     hir_decl: &hir::FnDecl<'_>,
920     def_id: DefId,
921     implied_bounds: &mut FxHashSet<Ty<'tcx>>,
922 ) {
923     let sig = fcx.tcx.liberate_late_bound_regions(def_id, sig);
924
925     // Unnormalized types in signature are WF too
926     implied_bounds.extend(sig.inputs());
927     // FIXME(#27579) return types should not be implied bounds
928     implied_bounds.insert(sig.output());
929
930     // Normalize the input and output types one at a time, using a different
931     // `WellFormedLoc` for each. We cannot call `normalize_associated_types`
932     // on the entire `FnSig`, since this would use the same `WellFormedLoc`
933     // for each type, preventing the HIR wf check from generating
934     // a nice error message.
935     let ty::FnSig { mut inputs_and_output, c_variadic, unsafety, abi } = sig;
936     inputs_and_output =
937         fcx.tcx.mk_type_list(inputs_and_output.iter().enumerate().map(|(i, ty)| {
938             fcx.normalize_associated_types_in_wf(
939                 span,
940                 ty,
941                 WellFormedLoc::Param {
942                     function: def_id.expect_local(),
943                     // Note that the `param_idx` of the output type is
944                     // one greater than the index of the last input type.
945                     param_idx: i.try_into().unwrap(),
946                 },
947             )
948         }));
949     // Manually call `normalize_assocaited_types_in` on the other types
950     // in `FnSig`. This ensures that if the types of these fields
951     // ever change to include projections, we will start normalizing
952     // them automatically.
953     let sig = ty::FnSig {
954         inputs_and_output,
955         c_variadic: fcx.normalize_associated_types_in(span, c_variadic),
956         unsafety: fcx.normalize_associated_types_in(span, unsafety),
957         abi: fcx.normalize_associated_types_in(span, abi),
958     };
959
960     for (i, (&input_ty, ty)) in iter::zip(sig.inputs(), hir_decl.inputs).enumerate() {
961         fcx.register_wf_obligation(
962             input_ty.into(),
963             ty.span,
964             ObligationCauseCode::WellFormed(Some(WellFormedLoc::Param {
965                 function: def_id.expect_local(),
966                 param_idx: i.try_into().unwrap(),
967             })),
968         );
969     }
970
971     implied_bounds.extend(sig.inputs());
972
973     fcx.register_wf_obligation(
974         sig.output().into(),
975         hir_decl.output.span(),
976         ObligationCauseCode::ReturnType,
977     );
978
979     // FIXME(#27579) return types should not be implied bounds
980     implied_bounds.insert(sig.output());
981
982     debug!(?implied_bounds);
983
984     check_where_clauses(fcx, span, def_id, Some((sig.output(), hir_decl.output.span())));
985 }
986
987 /// Checks "defining uses" of opaque `impl Trait` types to ensure that they meet the restrictions
988 /// laid for "higher-order pattern unification".
989 /// This ensures that inference is tractable.
990 /// In particular, definitions of opaque types can only use other generics as arguments,
991 /// and they cannot repeat an argument. Example:
992 ///
993 /// ```rust
994 /// type Foo<A, B> = impl Bar<A, B>;
995 ///
996 /// // Okay -- `Foo` is applied to two distinct, generic types.
997 /// fn a<T, U>() -> Foo<T, U> { .. }
998 ///
999 /// // Not okay -- `Foo` is applied to `T` twice.
1000 /// fn b<T>() -> Foo<T, T> { .. }
1001 ///
1002 /// // Not okay -- `Foo` is applied to a non-generic type.
1003 /// fn b<T>() -> Foo<T, u32> { .. }
1004 /// ```
1005 ///
1006 fn check_opaque_types<'fcx, 'tcx>(
1007     fcx: &FnCtxt<'fcx, 'tcx>,
1008     fn_def_id: LocalDefId,
1009     span: Span,
1010     ty: Ty<'tcx>,
1011 ) {
1012     trace!("check_opaque_types(fn_def_id={:?}, ty={:?})", fn_def_id, ty);
1013     let tcx = fcx.tcx;
1014
1015     ty.fold_with(&mut ty::fold::BottomUpFolder {
1016         tcx,
1017         ty_op: |ty| {
1018             if let ty::Opaque(def_id, substs) = *ty.kind() {
1019                 trace!("check_opaque_types: opaque_ty, {:?}, {:?}", def_id, substs);
1020                 let generics = tcx.generics_of(def_id);
1021
1022                 let opaque_hir_id = if let Some(local_id) = def_id.as_local() {
1023                     tcx.hir().local_def_id_to_hir_id(local_id)
1024                 } else {
1025                     // Opaque types from other crates won't have defining uses in this crate.
1026                     return ty;
1027                 };
1028                 if let hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) =
1029                     tcx.hir().expect_item(opaque_hir_id).kind
1030                 {
1031                     // No need to check return position impl trait (RPIT)
1032                     // because for type and const parameters they are correct
1033                     // by construction: we convert
1034                     //
1035                     // fn foo<P0..Pn>() -> impl Trait
1036                     //
1037                     // into
1038                     //
1039                     // type Foo<P0...Pn>
1040                     // fn foo<P0..Pn>() -> Foo<P0...Pn>.
1041                     //
1042                     // For lifetime parameters we convert
1043                     //
1044                     // fn foo<'l0..'ln>() -> impl Trait<'l0..'lm>
1045                     //
1046                     // into
1047                     //
1048                     // type foo::<'p0..'pn>::Foo<'q0..'qm>
1049                     // fn foo<l0..'ln>() -> foo::<'static..'static>::Foo<'l0..'lm>.
1050                     //
1051                     // which would error here on all of the `'static` args.
1052                     return ty;
1053                 }
1054                 if !may_define_opaque_type(tcx, fn_def_id, opaque_hir_id) {
1055                     return ty;
1056                 }
1057                 trace!("check_opaque_types: may define, generics={:#?}", generics);
1058                 let mut seen_params: FxHashMap<_, Vec<_>> = FxHashMap::default();
1059                 for (i, arg) in substs.iter().enumerate() {
1060                     let arg_is_param = match arg.unpack() {
1061                         GenericArgKind::Type(ty) => matches!(ty.kind(), ty::Param(_)),
1062
1063                         GenericArgKind::Lifetime(region) if let ty::ReStatic = region => {
1064                             tcx.sess
1065                                 .struct_span_err(
1066                                     span,
1067                                     "non-defining opaque type use in defining scope",
1068                                 )
1069                                 .span_label(
1070                                     tcx.def_span(generics.param_at(i, tcx).def_id),
1071                                     "cannot use static lifetime; use a bound lifetime \
1072                                                 instead or remove the lifetime parameter from the \
1073                                                 opaque type",
1074                                 )
1075                                 .emit();
1076                             continue;
1077                         }
1078
1079                         GenericArgKind::Lifetime(_) => true,
1080
1081                         GenericArgKind::Const(ct) => matches!(ct.val, ty::ConstKind::Param(_)),
1082                     };
1083
1084                     if arg_is_param {
1085                         seen_params.entry(arg).or_default().push(i);
1086                     } else {
1087                         // Prevent `fn foo() -> Foo<u32>` from being defining.
1088                         let opaque_param = generics.param_at(i, tcx);
1089                         tcx.sess
1090                             .struct_span_err(span, "non-defining opaque type use in defining scope")
1091                             .span_note(
1092                                 tcx.def_span(opaque_param.def_id),
1093                                 &format!(
1094                                     "used non-generic {} `{}` for generic parameter",
1095                                     opaque_param.kind.descr(),
1096                                     arg,
1097                                 ),
1098                             )
1099                             .emit();
1100                     }
1101                 } // for (arg, param)
1102
1103                 for (_, indices) in seen_params {
1104                     if indices.len() > 1 {
1105                         let descr = generics.param_at(indices[0], tcx).kind.descr();
1106                         let spans: Vec<_> = indices
1107                             .into_iter()
1108                             .map(|i| tcx.def_span(generics.param_at(i, tcx).def_id))
1109                             .collect();
1110                         tcx.sess
1111                             .struct_span_err(span, "non-defining opaque type use in defining scope")
1112                             .span_note(spans, &format!("{} used multiple times", descr))
1113                             .emit();
1114                     }
1115                 }
1116             } // if let Opaque
1117             ty
1118         },
1119         lt_op: |lt| lt,
1120         ct_op: |ct| ct,
1121     });
1122 }
1123
1124 const HELP_FOR_SELF_TYPE: &str = "consider changing to `self`, `&self`, `&mut self`, `self: Box<Self>`, \
1125      `self: Rc<Self>`, `self: Arc<Self>`, or `self: Pin<P>` (where P is one \
1126      of the previous types except `Self`)";
1127
1128 #[tracing::instrument(level = "debug", skip(fcx))]
1129 fn check_method_receiver<'fcx, 'tcx>(
1130     fcx: &FnCtxt<'fcx, 'tcx>,
1131     fn_sig: &hir::FnSig<'_>,
1132     method: &ty::AssocItem,
1133     self_ty: Ty<'tcx>,
1134 ) {
1135     // Check that the method has a valid receiver type, given the type `Self`.
1136     debug!("check_method_receiver({:?}, self_ty={:?})", method, self_ty);
1137
1138     if !method.fn_has_self_parameter {
1139         return;
1140     }
1141
1142     let span = fn_sig.decl.inputs[0].span;
1143
1144     let sig = fcx.tcx.fn_sig(method.def_id);
1145     let sig = fcx.tcx.liberate_late_bound_regions(method.def_id, sig);
1146     let sig = fcx.normalize_associated_types_in(span, sig);
1147
1148     debug!("check_method_receiver: sig={:?}", sig);
1149
1150     let self_ty = fcx.normalize_associated_types_in(span, self_ty);
1151
1152     let receiver_ty = sig.inputs()[0];
1153     let receiver_ty = fcx.normalize_associated_types_in(span, receiver_ty);
1154
1155     if fcx.tcx.features().arbitrary_self_types {
1156         if !receiver_is_valid(fcx, span, receiver_ty, self_ty, true) {
1157             // Report error; `arbitrary_self_types` was enabled.
1158             e0307(fcx, span, receiver_ty);
1159         }
1160     } else {
1161         if !receiver_is_valid(fcx, span, receiver_ty, self_ty, false) {
1162             if receiver_is_valid(fcx, span, receiver_ty, self_ty, true) {
1163                 // Report error; would have worked with `arbitrary_self_types`.
1164                 feature_err(
1165                     &fcx.tcx.sess.parse_sess,
1166                     sym::arbitrary_self_types,
1167                     span,
1168                     &format!(
1169                         "`{}` cannot be used as the type of `self` without \
1170                          the `arbitrary_self_types` feature",
1171                         receiver_ty,
1172                     ),
1173                 )
1174                 .help(HELP_FOR_SELF_TYPE)
1175                 .emit();
1176             } else {
1177                 // Report error; would not have worked with `arbitrary_self_types`.
1178                 e0307(fcx, span, receiver_ty);
1179             }
1180         }
1181     }
1182 }
1183
1184 fn e0307(fcx: &FnCtxt<'fcx, 'tcx>, span: Span, receiver_ty: Ty<'_>) {
1185     struct_span_err!(
1186         fcx.tcx.sess.diagnostic(),
1187         span,
1188         E0307,
1189         "invalid `self` parameter type: {}",
1190         receiver_ty,
1191     )
1192     .note("type of `self` must be `Self` or a type that dereferences to it")
1193     .help(HELP_FOR_SELF_TYPE)
1194     .emit();
1195 }
1196
1197 /// Returns whether `receiver_ty` would be considered a valid receiver type for `self_ty`. If
1198 /// `arbitrary_self_types` is enabled, `receiver_ty` must transitively deref to `self_ty`, possibly
1199 /// through a `*const/mut T` raw pointer. If the feature is not enabled, the requirements are more
1200 /// strict: `receiver_ty` must implement `Receiver` and directly implement
1201 /// `Deref<Target = self_ty>`.
1202 ///
1203 /// N.B., there are cases this function returns `true` but causes an error to be emitted,
1204 /// particularly when `receiver_ty` derefs to a type that is the same as `self_ty` but has the
1205 /// wrong lifetime. Be careful of this if you are calling this function speculatively.
1206 fn receiver_is_valid<'fcx, 'tcx>(
1207     fcx: &FnCtxt<'fcx, 'tcx>,
1208     span: Span,
1209     receiver_ty: Ty<'tcx>,
1210     self_ty: Ty<'tcx>,
1211     arbitrary_self_types_enabled: bool,
1212 ) -> bool {
1213     let cause = fcx.cause(span, traits::ObligationCauseCode::MethodReceiver);
1214
1215     let can_eq_self = |ty| fcx.infcx.can_eq(fcx.param_env, self_ty, ty).is_ok();
1216
1217     // `self: Self` is always valid.
1218     if can_eq_self(receiver_ty) {
1219         if let Some(mut err) = fcx.demand_eqtype_with_origin(&cause, self_ty, receiver_ty) {
1220             err.emit();
1221         }
1222         return true;
1223     }
1224
1225     let mut autoderef = fcx.autoderef(span, receiver_ty);
1226
1227     // The `arbitrary_self_types` feature allows raw pointer receivers like `self: *const Self`.
1228     if arbitrary_self_types_enabled {
1229         autoderef = autoderef.include_raw_pointers();
1230     }
1231
1232     // The first type is `receiver_ty`, which we know its not equal to `self_ty`; skip it.
1233     autoderef.next();
1234
1235     let receiver_trait_def_id = fcx.tcx.require_lang_item(LangItem::Receiver, None);
1236
1237     // Keep dereferencing `receiver_ty` until we get to `self_ty`.
1238     loop {
1239         if let Some((potential_self_ty, _)) = autoderef.next() {
1240             debug!(
1241                 "receiver_is_valid: potential self type `{:?}` to match `{:?}`",
1242                 potential_self_ty, self_ty
1243             );
1244
1245             if can_eq_self(potential_self_ty) {
1246                 fcx.register_predicates(autoderef.into_obligations());
1247
1248                 if let Some(mut err) =
1249                     fcx.demand_eqtype_with_origin(&cause, self_ty, potential_self_ty)
1250                 {
1251                     err.emit();
1252                 }
1253
1254                 break;
1255             } else {
1256                 // Without `feature(arbitrary_self_types)`, we require that each step in the
1257                 // deref chain implement `receiver`
1258                 if !arbitrary_self_types_enabled
1259                     && !receiver_is_implemented(
1260                         fcx,
1261                         receiver_trait_def_id,
1262                         cause.clone(),
1263                         potential_self_ty,
1264                     )
1265                 {
1266                     return false;
1267                 }
1268             }
1269         } else {
1270             debug!("receiver_is_valid: type `{:?}` does not deref to `{:?}`", receiver_ty, self_ty);
1271             // If he receiver already has errors reported due to it, consider it valid to avoid
1272             // unnecessary errors (#58712).
1273             return receiver_ty.references_error();
1274         }
1275     }
1276
1277     // Without `feature(arbitrary_self_types)`, we require that `receiver_ty` implements `Receiver`.
1278     if !arbitrary_self_types_enabled
1279         && !receiver_is_implemented(fcx, receiver_trait_def_id, cause.clone(), receiver_ty)
1280     {
1281         return false;
1282     }
1283
1284     true
1285 }
1286
1287 fn receiver_is_implemented(
1288     fcx: &FnCtxt<'_, 'tcx>,
1289     receiver_trait_def_id: DefId,
1290     cause: ObligationCause<'tcx>,
1291     receiver_ty: Ty<'tcx>,
1292 ) -> bool {
1293     let trait_ref = ty::TraitRef {
1294         def_id: receiver_trait_def_id,
1295         substs: fcx.tcx.mk_substs_trait(receiver_ty, &[]),
1296     };
1297
1298     let obligation = traits::Obligation::new(
1299         cause,
1300         fcx.param_env,
1301         trait_ref.without_const().to_predicate(fcx.tcx),
1302     );
1303
1304     if fcx.predicate_must_hold_modulo_regions(&obligation) {
1305         true
1306     } else {
1307         debug!(
1308             "receiver_is_implemented: type `{:?}` does not implement `Receiver` trait",
1309             receiver_ty
1310         );
1311         false
1312     }
1313 }
1314
1315 fn check_variances_for_type_defn<'tcx>(
1316     tcx: TyCtxt<'tcx>,
1317     item: &hir::Item<'tcx>,
1318     hir_generics: &hir::Generics<'_>,
1319 ) {
1320     let ty = tcx.type_of(item.def_id);
1321     if tcx.has_error_field(ty) {
1322         return;
1323     }
1324
1325     let ty_predicates = tcx.predicates_of(item.def_id);
1326     assert_eq!(ty_predicates.parent, None);
1327     let variances = tcx.variances_of(item.def_id);
1328
1329     let mut constrained_parameters: FxHashSet<_> = variances
1330         .iter()
1331         .enumerate()
1332         .filter(|&(_, &variance)| variance != ty::Bivariant)
1333         .map(|(index, _)| Parameter(index as u32))
1334         .collect();
1335
1336     identify_constrained_generic_params(tcx, ty_predicates, None, &mut constrained_parameters);
1337
1338     for (index, _) in variances.iter().enumerate() {
1339         if constrained_parameters.contains(&Parameter(index as u32)) {
1340             continue;
1341         }
1342
1343         let param = &hir_generics.params[index];
1344
1345         match param.name {
1346             hir::ParamName::Error => {}
1347             _ => report_bivariance(tcx, param),
1348         }
1349     }
1350 }
1351
1352 fn report_bivariance(tcx: TyCtxt<'_>, param: &rustc_hir::GenericParam<'_>) {
1353     let span = param.span;
1354     let param_name = param.name.ident().name;
1355     let mut err = error_392(tcx, span, param_name);
1356
1357     let suggested_marker_id = tcx.lang_items().phantom_data();
1358     // Help is available only in presence of lang items.
1359     let msg = if let Some(def_id) = suggested_marker_id {
1360         format!(
1361             "consider removing `{}`, referring to it in a field, or using a marker such as `{}`",
1362             param_name,
1363             tcx.def_path_str(def_id),
1364         )
1365     } else {
1366         format!("consider removing `{}` or referring to it in a field", param_name)
1367     };
1368     err.help(&msg);
1369
1370     if matches!(param.kind, rustc_hir::GenericParamKind::Type { .. }) {
1371         err.help(&format!(
1372             "if you intended `{0}` to be a const parameter, use `const {0}: usize` instead",
1373             param_name
1374         ));
1375     }
1376     err.emit()
1377 }
1378
1379 /// Feature gates RFC 2056 -- trivial bounds, checking for global bounds that
1380 /// aren't true.
1381 fn check_false_global_bounds(fcx: &FnCtxt<'_, '_>, span: Span, id: hir::HirId) {
1382     let empty_env = ty::ParamEnv::empty();
1383
1384     let def_id = fcx.tcx.hir().local_def_id(id);
1385     let predicates = fcx.tcx.predicates_of(def_id).predicates.iter().map(|(p, _)| *p);
1386     // Check elaborated bounds.
1387     let implied_obligations = traits::elaborate_predicates(fcx.tcx, predicates);
1388
1389     for obligation in implied_obligations {
1390         let pred = obligation.predicate;
1391         // Match the existing behavior.
1392         if pred.is_global(fcx.tcx) && !pred.has_late_bound_regions() {
1393             let pred = fcx.normalize_associated_types_in(span, pred);
1394             let obligation = traits::Obligation::new(
1395                 traits::ObligationCause::new(span, id, traits::TrivialBound),
1396                 empty_env,
1397                 pred,
1398             );
1399             fcx.register_predicate(obligation);
1400         }
1401     }
1402
1403     fcx.select_all_obligations_or_error();
1404 }
1405
1406 #[derive(Clone, Copy)]
1407 pub struct CheckTypeWellFormedVisitor<'tcx> {
1408     tcx: TyCtxt<'tcx>,
1409 }
1410
1411 impl CheckTypeWellFormedVisitor<'tcx> {
1412     pub fn new(tcx: TyCtxt<'tcx>) -> CheckTypeWellFormedVisitor<'tcx> {
1413         CheckTypeWellFormedVisitor { tcx }
1414     }
1415 }
1416
1417 impl ParItemLikeVisitor<'tcx> for CheckTypeWellFormedVisitor<'tcx> {
1418     fn visit_item(&self, i: &'tcx hir::Item<'tcx>) {
1419         Visitor::visit_item(&mut self.clone(), i);
1420     }
1421
1422     fn visit_trait_item(&self, trait_item: &'tcx hir::TraitItem<'tcx>) {
1423         Visitor::visit_trait_item(&mut self.clone(), trait_item);
1424     }
1425
1426     fn visit_impl_item(&self, impl_item: &'tcx hir::ImplItem<'tcx>) {
1427         Visitor::visit_impl_item(&mut self.clone(), impl_item);
1428     }
1429
1430     fn visit_foreign_item(&self, foreign_item: &'tcx hir::ForeignItem<'tcx>) {
1431         Visitor::visit_foreign_item(&mut self.clone(), foreign_item)
1432     }
1433 }
1434
1435 impl Visitor<'tcx> for CheckTypeWellFormedVisitor<'tcx> {
1436     type Map = hir_map::Map<'tcx>;
1437
1438     fn nested_visit_map(&mut self) -> hir_visit::NestedVisitorMap<Self::Map> {
1439         hir_visit::NestedVisitorMap::OnlyBodies(self.tcx.hir())
1440     }
1441
1442     fn visit_item(&mut self, i: &'tcx hir::Item<'tcx>) {
1443         debug!("visit_item: {:?}", i);
1444         self.tcx.ensure().check_item_well_formed(i.def_id);
1445         hir_visit::walk_item(self, i);
1446     }
1447
1448     fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
1449         debug!("visit_trait_item: {:?}", trait_item);
1450         self.tcx.ensure().check_trait_item_well_formed(trait_item.def_id);
1451         hir_visit::walk_trait_item(self, trait_item);
1452     }
1453
1454     fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
1455         debug!("visit_impl_item: {:?}", impl_item);
1456         self.tcx.ensure().check_impl_item_well_formed(impl_item.def_id);
1457         hir_visit::walk_impl_item(self, impl_item);
1458     }
1459
1460     fn visit_generic_param(&mut self, p: &'tcx hir::GenericParam<'tcx>) {
1461         check_param_wf(self.tcx, p);
1462         hir_visit::walk_generic_param(self, p);
1463     }
1464 }
1465
1466 ///////////////////////////////////////////////////////////////////////////
1467 // ADT
1468
1469 // FIXME(eddyb) replace this with getting fields/discriminants through `ty::AdtDef`.
1470 struct AdtVariant<'tcx> {
1471     /// Types of fields in the variant, that must be well-formed.
1472     fields: Vec<AdtField<'tcx>>,
1473
1474     /// Explicit discriminant of this variant (e.g. `A = 123`),
1475     /// that must evaluate to a constant value.
1476     explicit_discr: Option<LocalDefId>,
1477 }
1478
1479 struct AdtField<'tcx> {
1480     ty: Ty<'tcx>,
1481     def_id: LocalDefId,
1482     span: Span,
1483 }
1484
1485 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
1486     // FIXME(eddyb) replace this with getting fields through `ty::AdtDef`.
1487     fn non_enum_variant(&self, struct_def: &hir::VariantData<'_>) -> AdtVariant<'tcx> {
1488         let fields = struct_def
1489             .fields()
1490             .iter()
1491             .map(|field| {
1492                 let def_id = self.tcx.hir().local_def_id(field.hir_id);
1493                 let field_ty = self.tcx.type_of(def_id);
1494                 let field_ty = self.normalize_associated_types_in(field.ty.span, field_ty);
1495                 let field_ty = self.resolve_vars_if_possible(field_ty);
1496                 debug!("non_enum_variant: type of field {:?} is {:?}", field, field_ty);
1497                 AdtField { ty: field_ty, span: field.ty.span, def_id }
1498             })
1499             .collect();
1500         AdtVariant { fields, explicit_discr: None }
1501     }
1502
1503     fn enum_variants(&self, enum_def: &hir::EnumDef<'_>) -> Vec<AdtVariant<'tcx>> {
1504         enum_def
1505             .variants
1506             .iter()
1507             .map(|variant| AdtVariant {
1508                 fields: self.non_enum_variant(&variant.data).fields,
1509                 explicit_discr: variant
1510                     .disr_expr
1511                     .map(|explicit_discr| self.tcx.hir().local_def_id(explicit_discr.hir_id)),
1512             })
1513             .collect()
1514     }
1515
1516     pub(super) fn impl_implied_bounds(
1517         &self,
1518         impl_def_id: DefId,
1519         span: Span,
1520     ) -> FxHashSet<Ty<'tcx>> {
1521         match self.tcx.impl_trait_ref(impl_def_id) {
1522             Some(trait_ref) => {
1523                 // Trait impl: take implied bounds from all types that
1524                 // appear in the trait reference.
1525                 let trait_ref = self.normalize_associated_types_in(span, trait_ref);
1526                 trait_ref.substs.types().collect()
1527             }
1528
1529             None => {
1530                 // Inherent impl: take implied bounds from the `self` type.
1531                 let self_ty = self.tcx.type_of(impl_def_id);
1532                 let self_ty = self.normalize_associated_types_in(span, self_ty);
1533                 std::array::IntoIter::new([self_ty]).collect()
1534             }
1535         }
1536     }
1537 }
1538
1539 fn error_392(tcx: TyCtxt<'_>, span: Span, param_name: Symbol) -> DiagnosticBuilder<'_> {
1540     let mut err =
1541         struct_span_err!(tcx.sess, span, E0392, "parameter `{}` is never used", param_name);
1542     err.span_label(span, "unused parameter");
1543     err
1544 }