]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/upvar.rs
Auto merge of #94372 - erikdesjardins:asrefinl, r=dtolnay
[rust.git] / compiler / rustc_typeck / src / check / upvar.rs
1 //! ### Inferring borrow kinds for upvars
2 //!
3 //! Whenever there is a closure expression, we need to determine how each
4 //! upvar is used. We do this by initially assigning each upvar an
5 //! immutable "borrow kind" (see `ty::BorrowKind` for details) and then
6 //! "escalating" the kind as needed. The borrow kind proceeds according to
7 //! the following lattice:
8 //!
9 //!     ty::ImmBorrow -> ty::UniqueImmBorrow -> ty::MutBorrow
10 //!
11 //! So, for example, if we see an assignment `x = 5` to an upvar `x`, we
12 //! will promote its borrow kind to mutable borrow. If we see an `&mut x`
13 //! we'll do the same. Naturally, this applies not just to the upvar, but
14 //! to everything owned by `x`, so the result is the same for something
15 //! like `x.f = 5` and so on (presuming `x` is not a borrowed pointer to a
16 //! struct). These adjustments are performed in
17 //! `adjust_upvar_borrow_kind()` (you can trace backwards through the code
18 //! from there).
19 //!
20 //! The fact that we are inferring borrow kinds as we go results in a
21 //! semi-hacky interaction with mem-categorization. In particular,
22 //! mem-categorization will query the current borrow kind as it
23 //! categorizes, and we'll return the *current* value, but this may get
24 //! adjusted later. Therefore, in this module, we generally ignore the
25 //! borrow kind (and derived mutabilities) that are returned from
26 //! mem-categorization, since they may be inaccurate. (Another option
27 //! would be to use a unification scheme, where instead of returning a
28 //! concrete borrow kind like `ty::ImmBorrow`, we return a
29 //! `ty::InferBorrow(upvar_id)` or something like that, but this would
30 //! then mean that all later passes would have to check for these figments
31 //! and report an error, and it just seems like more mess in the end.)
32
33 use super::FnCtxt;
34
35 use crate::expr_use_visitor as euv;
36 use rustc_errors::Applicability;
37 use rustc_hir as hir;
38 use rustc_hir::def_id::DefId;
39 use rustc_hir::def_id::LocalDefId;
40 use rustc_hir::intravisit::{self, Visitor};
41 use rustc_infer::infer::UpvarRegion;
42 use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection, ProjectionKind};
43 use rustc_middle::mir::FakeReadCause;
44 use rustc_middle::ty::{
45     self, ClosureSizeProfileData, Ty, TyCtxt, TypeckResults, UpvarCapture, UpvarSubsts,
46 };
47 use rustc_session::lint;
48 use rustc_span::sym;
49 use rustc_span::{BytePos, MultiSpan, Pos, Span, Symbol};
50 use rustc_trait_selection::infer::InferCtxtExt;
51
52 use rustc_data_structures::stable_map::FxHashMap;
53 use rustc_data_structures::stable_set::FxHashSet;
54 use rustc_index::vec::Idx;
55 use rustc_target::abi::VariantIdx;
56
57 use std::iter;
58
59 /// Describe the relationship between the paths of two places
60 /// eg:
61 /// - `foo` is ancestor of `foo.bar.baz`
62 /// - `foo.bar.baz` is an descendant of `foo.bar`
63 /// - `foo.bar` and `foo.baz` are divergent
64 enum PlaceAncestryRelation {
65     Ancestor,
66     Descendant,
67     SamePlace,
68     Divergent,
69 }
70
71 /// Intermediate format to store a captured `Place` and associated `ty::CaptureInfo`
72 /// during capture analysis. Information in this map feeds into the minimum capture
73 /// analysis pass.
74 type InferredCaptureInformation<'tcx> = Vec<(Place<'tcx>, ty::CaptureInfo)>;
75
76 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
77     pub fn closure_analyze(&self, body: &'tcx hir::Body<'tcx>) {
78         InferBorrowKindVisitor { fcx: self }.visit_body(body);
79
80         // it's our job to process these.
81         assert!(self.deferred_call_resolutions.borrow().is_empty());
82     }
83 }
84
85 /// Intermediate format to store the hir_id pointing to the use that resulted in the
86 /// corresponding place being captured and a String which contains the captured value's
87 /// name (i.e: a.b.c)
88 #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
89 enum UpvarMigrationInfo {
90     /// We previously captured all of `x`, but now we capture some sub-path.
91     CapturingPrecise { source_expr: Option<hir::HirId>, var_name: String },
92     CapturingNothing {
93         // where the variable appears in the closure (but is not captured)
94         use_span: Span,
95     },
96 }
97
98 /// Reasons that we might issue a migration warning.
99 #[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
100 struct MigrationWarningReason {
101     /// When we used to capture `x` in its entirety, we implemented the auto-trait(s)
102     /// in this vec, but now we don't.
103     auto_traits: Vec<&'static str>,
104
105     /// When we used to capture `x` in its entirety, we would execute some destructors
106     /// at a different time.
107     drop_order: bool,
108 }
109
110 impl MigrationWarningReason {
111     fn migration_message(&self) -> String {
112         let base = "changes to closure capture in Rust 2021 will affect";
113         if !self.auto_traits.is_empty() && self.drop_order {
114             format!("{} drop order and which traits the closure implements", base)
115         } else if self.drop_order {
116             format!("{} drop order", base)
117         } else {
118             format!("{} which traits the closure implements", base)
119         }
120     }
121 }
122
123 /// Intermediate format to store information needed to generate a note in the migration lint.
124 struct MigrationLintNote {
125     captures_info: UpvarMigrationInfo,
126
127     /// reasons why migration is needed for this capture
128     reason: MigrationWarningReason,
129 }
130
131 /// Intermediate format to store the hir id of the root variable and a HashSet containing
132 /// information on why the root variable should be fully captured
133 struct NeededMigration {
134     var_hir_id: hir::HirId,
135     diagnostics_info: Vec<MigrationLintNote>,
136 }
137
138 struct InferBorrowKindVisitor<'a, 'tcx> {
139     fcx: &'a FnCtxt<'a, 'tcx>,
140 }
141
142 impl<'a, 'tcx> Visitor<'tcx> for InferBorrowKindVisitor<'a, 'tcx> {
143     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
144         match expr.kind {
145             hir::ExprKind::Closure(cc, _, body_id, _, _) => {
146                 let body = self.fcx.tcx.hir().body(body_id);
147                 self.visit_body(body);
148                 self.fcx.analyze_closure(expr.hir_id, expr.span, body_id, body, cc);
149             }
150             hir::ExprKind::ConstBlock(anon_const) => {
151                 let body = self.fcx.tcx.hir().body(anon_const.body);
152                 self.visit_body(body);
153             }
154             _ => {}
155         }
156
157         intravisit::walk_expr(self, expr);
158     }
159 }
160
161 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
162     /// Analysis starting point.
163     #[instrument(skip(self, body), level = "debug")]
164     fn analyze_closure(
165         &self,
166         closure_hir_id: hir::HirId,
167         span: Span,
168         body_id: hir::BodyId,
169         body: &'tcx hir::Body<'tcx>,
170         capture_clause: hir::CaptureBy,
171     ) {
172         // Extract the type of the closure.
173         let ty = self.node_ty(closure_hir_id);
174         let (closure_def_id, substs) = match *ty.kind() {
175             ty::Closure(def_id, substs) => (def_id, UpvarSubsts::Closure(substs)),
176             ty::Generator(def_id, substs, _) => (def_id, UpvarSubsts::Generator(substs)),
177             ty::Error(_) => {
178                 // #51714: skip analysis when we have already encountered type errors
179                 return;
180             }
181             _ => {
182                 span_bug!(
183                     span,
184                     "type of closure expr {:?} is not a closure {:?}",
185                     closure_hir_id,
186                     ty
187                 );
188             }
189         };
190
191         let infer_kind = if let UpvarSubsts::Closure(closure_substs) = substs {
192             self.closure_kind(closure_substs).is_none().then_some(closure_substs)
193         } else {
194             None
195         };
196
197         let local_def_id = closure_def_id.expect_local();
198
199         let body_owner_def_id = self.tcx.hir().body_owner_def_id(body.id());
200         assert_eq!(body_owner_def_id.to_def_id(), closure_def_id);
201         let mut delegate = InferBorrowKind {
202             fcx: self,
203             closure_def_id: local_def_id,
204             capture_information: Default::default(),
205             fake_reads: Default::default(),
206         };
207         euv::ExprUseVisitor::new(
208             &mut delegate,
209             &self.infcx,
210             body_owner_def_id,
211             self.param_env,
212             &self.typeck_results.borrow(),
213         )
214         .consume_body(body);
215
216         debug!(
217             "For closure={:?}, capture_information={:#?}",
218             closure_def_id, delegate.capture_information
219         );
220
221         self.log_capture_analysis_first_pass(closure_def_id, &delegate.capture_information, span);
222
223         let (capture_information, closure_kind, origin) = self
224             .process_collected_capture_information(capture_clause, delegate.capture_information);
225
226         self.compute_min_captures(closure_def_id, capture_information, span);
227
228         let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
229
230         if should_do_rust_2021_incompatible_closure_captures_analysis(self.tcx, closure_hir_id) {
231             self.perform_2229_migration_anaysis(closure_def_id, body_id, capture_clause, span);
232         }
233
234         let after_feature_tys = self.final_upvar_tys(closure_def_id);
235
236         // We now fake capture information for all variables that are mentioned within the closure
237         // We do this after handling migrations so that min_captures computes before
238         if !enable_precise_capture(self.tcx, span) {
239             let mut capture_information: InferredCaptureInformation<'tcx> = Default::default();
240
241             if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
242                 for var_hir_id in upvars.keys() {
243                     let place = self.place_for_root_variable(local_def_id, *var_hir_id);
244
245                     debug!("seed place {:?}", place);
246
247                     let capture_kind = self.init_capture_kind_for_place(&place, capture_clause);
248                     let fake_info = ty::CaptureInfo {
249                         capture_kind_expr_id: None,
250                         path_expr_id: None,
251                         capture_kind,
252                     };
253
254                     capture_information.push((place, fake_info));
255                 }
256             }
257
258             // This will update the min captures based on this new fake information.
259             self.compute_min_captures(closure_def_id, capture_information, span);
260         }
261
262         let before_feature_tys = self.final_upvar_tys(closure_def_id);
263
264         if let Some(closure_substs) = infer_kind {
265             // Unify the (as yet unbound) type variable in the closure
266             // substs with the kind we inferred.
267             let closure_kind_ty = closure_substs.as_closure().kind_ty();
268             self.demand_eqtype(span, closure_kind.to_ty(self.tcx), closure_kind_ty);
269
270             // If we have an origin, store it.
271             if let Some(origin) = origin {
272                 let origin = if enable_precise_capture(self.tcx, span) {
273                     (origin.0, origin.1)
274                 } else {
275                     (origin.0, Place { projections: vec![], ..origin.1 })
276                 };
277
278                 self.typeck_results
279                     .borrow_mut()
280                     .closure_kind_origins_mut()
281                     .insert(closure_hir_id, origin);
282             }
283         }
284
285         self.log_closure_min_capture_info(closure_def_id, span);
286
287         // Now that we've analyzed the closure, we know how each
288         // variable is borrowed, and we know what traits the closure
289         // implements (Fn vs FnMut etc). We now have some updates to do
290         // with that information.
291         //
292         // Note that no closure type C may have an upvar of type C
293         // (though it may reference itself via a trait object). This
294         // results from the desugaring of closures to a struct like
295         // `Foo<..., UV0...UVn>`. If one of those upvars referenced
296         // C, then the type would have infinite size (and the
297         // inference algorithm will reject it).
298
299         // Equate the type variables for the upvars with the actual types.
300         let final_upvar_tys = self.final_upvar_tys(closure_def_id);
301         debug!(
302             "analyze_closure: id={:?} substs={:?} final_upvar_tys={:?}",
303             closure_hir_id, substs, final_upvar_tys
304         );
305
306         // Build a tuple (U0..Un) of the final upvar types U0..Un
307         // and unify the upvar tupe type in the closure with it:
308         let final_tupled_upvars_type = self.tcx.mk_tup(final_upvar_tys.iter());
309         self.demand_suptype(span, substs.tupled_upvars_ty(), final_tupled_upvars_type);
310
311         let fake_reads = delegate
312             .fake_reads
313             .into_iter()
314             .map(|(place, cause, hir_id)| (place, cause, hir_id))
315             .collect();
316         self.typeck_results.borrow_mut().closure_fake_reads.insert(closure_def_id, fake_reads);
317
318         if self.tcx.sess.opts.debugging_opts.profile_closures {
319             self.typeck_results.borrow_mut().closure_size_eval.insert(
320                 closure_def_id,
321                 ClosureSizeProfileData {
322                     before_feature_tys: self.tcx.mk_tup(before_feature_tys.into_iter()),
323                     after_feature_tys: self.tcx.mk_tup(after_feature_tys.into_iter()),
324                 },
325             );
326         }
327
328         // If we are also inferred the closure kind here,
329         // process any deferred resolutions.
330         let deferred_call_resolutions = self.remove_deferred_call_resolutions(closure_def_id);
331         for deferred_call_resolution in deferred_call_resolutions {
332             deferred_call_resolution.resolve(self);
333         }
334     }
335
336     // Returns a list of `Ty`s for each upvar.
337     fn final_upvar_tys(&self, closure_id: DefId) -> Vec<Ty<'tcx>> {
338         // Presently an unboxed closure type cannot "escape" out of a
339         // function, so we will only encounter ones that originated in the
340         // local crate or were inlined into it along with some function.
341         // This may change if abstract return types of some sort are
342         // implemented.
343         self.typeck_results
344             .borrow()
345             .closure_min_captures_flattened(closure_id)
346             .map(|captured_place| {
347                 let upvar_ty = captured_place.place.ty();
348                 let capture = captured_place.info.capture_kind;
349
350                 debug!(
351                     "final_upvar_tys: place={:?} upvar_ty={:?} capture={:?}, mutability={:?}",
352                     captured_place.place, upvar_ty, capture, captured_place.mutability,
353                 );
354
355                 apply_capture_kind_on_capture_ty(self.tcx, upvar_ty, capture, captured_place.region)
356             })
357             .collect()
358     }
359
360     /// Adjusts the closure capture information to ensure that the operations aren't unsafe,
361     /// and that the path can be captured with required capture kind (depending on use in closure,
362     /// move closure etc.)
363     ///
364     /// Returns the set of of adjusted information along with the inferred closure kind and span
365     /// associated with the closure kind inference.
366     ///
367     /// Note that we *always* infer a minimal kind, even if
368     /// we don't always *use* that in the final result (i.e., sometimes
369     /// we've taken the closure kind from the expectations instead, and
370     /// for generators we don't even implement the closure traits
371     /// really).
372     ///
373     /// If we inferred that the closure needs to be FnMut/FnOnce, last element of the returned tuple
374     /// contains a `Some()` with the `Place` that caused us to do so.
375     fn process_collected_capture_information(
376         &self,
377         capture_clause: hir::CaptureBy,
378         capture_information: InferredCaptureInformation<'tcx>,
379     ) -> (InferredCaptureInformation<'tcx>, ty::ClosureKind, Option<(Span, Place<'tcx>)>) {
380         let mut closure_kind = ty::ClosureKind::LATTICE_BOTTOM;
381         let mut origin: Option<(Span, Place<'tcx>)> = None;
382
383         let processed = capture_information
384             .into_iter()
385             .map(|(place, mut capture_info)| {
386                 // Apply rules for safety before inferring closure kind
387                 let (place, capture_kind) =
388                     restrict_capture_precision(place, capture_info.capture_kind);
389
390                 let (place, capture_kind) = truncate_capture_for_optimization(place, capture_kind);
391
392                 let usage_span = if let Some(usage_expr) = capture_info.path_expr_id {
393                     self.tcx.hir().span(usage_expr)
394                 } else {
395                     unreachable!()
396                 };
397
398                 let updated = match capture_kind {
399                     ty::UpvarCapture::ByValue => match closure_kind {
400                         ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
401                             (ty::ClosureKind::FnOnce, Some((usage_span, place.clone())))
402                         }
403                         // If closure is already FnOnce, don't update
404                         ty::ClosureKind::FnOnce => (closure_kind, origin.take()),
405                     },
406
407                     ty::UpvarCapture::ByRef(
408                         ty::BorrowKind::MutBorrow | ty::BorrowKind::UniqueImmBorrow,
409                     ) => {
410                         match closure_kind {
411                             ty::ClosureKind::Fn => {
412                                 (ty::ClosureKind::FnMut, Some((usage_span, place.clone())))
413                             }
414                             // Don't update the origin
415                             ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce => {
416                                 (closure_kind, origin.take())
417                             }
418                         }
419                     }
420
421                     _ => (closure_kind, origin.take()),
422                 };
423
424                 closure_kind = updated.0;
425                 origin = updated.1;
426
427                 let (place, capture_kind) = match capture_clause {
428                     hir::CaptureBy::Value => adjust_for_move_closure(place, capture_kind),
429                     hir::CaptureBy::Ref => adjust_for_non_move_closure(place, capture_kind),
430                 };
431
432                 // This restriction needs to be applied after we have handled adjustments for `move`
433                 // closures. We want to make sure any adjustment that might make us move the place into
434                 // the closure gets handled.
435                 let (place, capture_kind) =
436                     restrict_precision_for_drop_types(self, place, capture_kind, usage_span);
437
438                 capture_info.capture_kind = capture_kind;
439                 (place, capture_info)
440             })
441             .collect();
442
443         (processed, closure_kind, origin)
444     }
445
446     /// Analyzes the information collected by `InferBorrowKind` to compute the min number of
447     /// Places (and corresponding capture kind) that we need to keep track of to support all
448     /// the required captured paths.
449     ///
450     ///
451     /// Note: If this function is called multiple times for the same closure, it will update
452     ///       the existing min_capture map that is stored in TypeckResults.
453     ///
454     /// Eg:
455     /// ```rust,no_run
456     /// struct Point { x: i32, y: i32 }
457     ///
458     /// let s: String;  // hir_id_s
459     /// let mut p: Point; // his_id_p
460     /// let c = || {
461     ///        println!("{s}");  // L1
462     ///        p.x += 10;  // L2
463     ///        println!("{}" , p.y); // L3
464     ///        println!("{p}"); // L4
465     ///        drop(s);   // L5
466     /// };
467     /// ```
468     /// and let hir_id_L1..5 be the expressions pointing to use of a captured variable on
469     /// the lines L1..5 respectively.
470     ///
471     /// InferBorrowKind results in a structure like this:
472     ///
473     /// ```text
474     /// {
475     ///       Place(base: hir_id_s, projections: [], ....) -> {
476     ///                                                            capture_kind_expr: hir_id_L5,
477     ///                                                            path_expr_id: hir_id_L5,
478     ///                                                            capture_kind: ByValue
479     ///                                                       },
480     ///       Place(base: hir_id_p, projections: [Field(0, 0)], ...) -> {
481     ///                                                                     capture_kind_expr: hir_id_L2,
482     ///                                                                     path_expr_id: hir_id_L2,
483     ///                                                                     capture_kind: ByValue
484     ///                                                                 },
485     ///       Place(base: hir_id_p, projections: [Field(1, 0)], ...) -> {
486     ///                                                                     capture_kind_expr: hir_id_L3,
487     ///                                                                     path_expr_id: hir_id_L3,
488     ///                                                                     capture_kind: ByValue
489     ///                                                                 },
490     ///       Place(base: hir_id_p, projections: [], ...) -> {
491     ///                                                          capture_kind_expr: hir_id_L4,
492     ///                                                          path_expr_id: hir_id_L4,
493     ///                                                          capture_kind: ByValue
494     ///                                                      },
495     /// ```
496     ///
497     /// After the min capture analysis, we get:
498     /// ```text
499     /// {
500     ///       hir_id_s -> [
501     ///            Place(base: hir_id_s, projections: [], ....) -> {
502     ///                                                                capture_kind_expr: hir_id_L5,
503     ///                                                                path_expr_id: hir_id_L5,
504     ///                                                                capture_kind: ByValue
505     ///                                                            },
506     ///       ],
507     ///       hir_id_p -> [
508     ///            Place(base: hir_id_p, projections: [], ...) -> {
509     ///                                                               capture_kind_expr: hir_id_L2,
510     ///                                                               path_expr_id: hir_id_L4,
511     ///                                                               capture_kind: ByValue
512     ///                                                           },
513     ///       ],
514     /// ```
515     fn compute_min_captures(
516         &self,
517         closure_def_id: DefId,
518         capture_information: InferredCaptureInformation<'tcx>,
519         closure_span: Span,
520     ) {
521         if capture_information.is_empty() {
522             return;
523         }
524
525         let mut typeck_results = self.typeck_results.borrow_mut();
526
527         let mut root_var_min_capture_list =
528             typeck_results.closure_min_captures.remove(&closure_def_id).unwrap_or_default();
529
530         for (mut place, capture_info) in capture_information.into_iter() {
531             let var_hir_id = match place.base {
532                 PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
533                 base => bug!("Expected upvar, found={:?}", base),
534             };
535
536             let Some(min_cap_list) = root_var_min_capture_list.get_mut(&var_hir_id) else {
537                 let mutability = self.determine_capture_mutability(&typeck_results, &place);
538                 let min_cap_list = vec![ty::CapturedPlace {
539                     place,
540                     info: capture_info,
541                     mutability,
542                     region: None,
543                 }];
544                 root_var_min_capture_list.insert(var_hir_id, min_cap_list);
545                 continue;
546             };
547
548             // Go through each entry in the current list of min_captures
549             // - if ancestor is found, update it's capture kind to account for current place's
550             // capture information.
551             //
552             // - if descendant is found, remove it from the list, and update the current place's
553             // capture information to account for the descendants's capture kind.
554             //
555             // We can never be in a case where the list contains both an ancestor and a descendant
556             // Also there can only be ancestor but in case of descendants there might be
557             // multiple.
558
559             let mut descendant_found = false;
560             let mut updated_capture_info = capture_info;
561             min_cap_list.retain(|possible_descendant| {
562                 match determine_place_ancestry_relation(&place, &possible_descendant.place) {
563                     // current place is ancestor of possible_descendant
564                     PlaceAncestryRelation::Ancestor => {
565                         descendant_found = true;
566
567                         let mut possible_descendant = possible_descendant.clone();
568                         let backup_path_expr_id = updated_capture_info.path_expr_id;
569
570                         // Truncate the descendant (already in min_captures) to be same as the ancestor to handle any
571                         // possible change in capture mode.
572                         truncate_place_to_len_and_update_capture_kind(
573                             &mut possible_descendant.place,
574                             &mut possible_descendant.info.capture_kind,
575                             place.projections.len(),
576                         );
577
578                         updated_capture_info =
579                             determine_capture_info(updated_capture_info, possible_descendant.info);
580
581                         // we need to keep the ancestor's `path_expr_id`
582                         updated_capture_info.path_expr_id = backup_path_expr_id;
583                         false
584                     }
585
586                     _ => true,
587                 }
588             });
589
590             let mut ancestor_found = false;
591             if !descendant_found {
592                 for possible_ancestor in min_cap_list.iter_mut() {
593                     match determine_place_ancestry_relation(&place, &possible_ancestor.place) {
594                         PlaceAncestryRelation::SamePlace => {
595                             ancestor_found = true;
596                             possible_ancestor.info = determine_capture_info(
597                                 possible_ancestor.info,
598                                 updated_capture_info,
599                             );
600
601                             // Only one related place will be in the list.
602                             break;
603                         }
604                         // current place is descendant of possible_ancestor
605                         PlaceAncestryRelation::Descendant => {
606                             ancestor_found = true;
607                             let backup_path_expr_id = possible_ancestor.info.path_expr_id;
608
609                             // Truncate the descendant (current place) to be same as the ancestor to handle any
610                             // possible change in capture mode.
611                             truncate_place_to_len_and_update_capture_kind(
612                                 &mut place,
613                                 &mut updated_capture_info.capture_kind,
614                                 possible_ancestor.place.projections.len(),
615                             );
616
617                             possible_ancestor.info = determine_capture_info(
618                                 possible_ancestor.info,
619                                 updated_capture_info,
620                             );
621
622                             // we need to keep the ancestor's `path_expr_id`
623                             possible_ancestor.info.path_expr_id = backup_path_expr_id;
624
625                             // Only one related place will be in the list.
626                             break;
627                         }
628                         _ => {}
629                     }
630                 }
631             }
632
633             // Only need to insert when we don't have an ancestor in the existing min capture list
634             if !ancestor_found {
635                 let mutability = self.determine_capture_mutability(&typeck_results, &place);
636                 let captured_place = ty::CapturedPlace {
637                     place,
638                     info: updated_capture_info,
639                     mutability,
640                     region: None,
641                 };
642                 min_cap_list.push(captured_place);
643             }
644         }
645
646         // For each capture that is determined to be captured by ref, add region info.
647         for (_, captures) in &mut root_var_min_capture_list {
648             for capture in captures {
649                 match capture.info.capture_kind {
650                     ty::UpvarCapture::ByRef(_) => {
651                         let PlaceBase::Upvar(upvar_id) = capture.place.base else { bug!("expected upvar") };
652                         let origin = UpvarRegion(upvar_id, closure_span);
653                         let upvar_region = self.next_region_var(origin);
654                         capture.region = Some(upvar_region);
655                     }
656                     _ => (),
657                 }
658             }
659         }
660
661         debug!(
662             "For closure={:?}, min_captures before sorting={:?}",
663             closure_def_id, root_var_min_capture_list
664         );
665
666         // Now that we have the minimized list of captures, sort the captures by field id.
667         // This causes the closure to capture the upvars in the same order as the fields are
668         // declared which is also the drop order. Thus, in situations where we capture all the
669         // fields of some type, the obserable drop order will remain the same as it previously
670         // was even though we're dropping each capture individually.
671         // See https://github.com/rust-lang/project-rfc-2229/issues/42 and
672         // `src/test/ui/closures/2229_closure_analysis/preserve_field_drop_order.rs`.
673         for (_, captures) in &mut root_var_min_capture_list {
674             captures.sort_by(|capture1, capture2| {
675                 for (p1, p2) in capture1.place.projections.iter().zip(&capture2.place.projections) {
676                     // We do not need to look at the `Projection.ty` fields here because at each
677                     // step of the iteration, the projections will either be the same and therefore
678                     // the types must be as well or the current projection will be different and
679                     // we will return the result of comparing the field indexes.
680                     match (p1.kind, p2.kind) {
681                         // Paths are the same, continue to next loop.
682                         (ProjectionKind::Deref, ProjectionKind::Deref) => {}
683                         (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _))
684                             if i1 == i2 => {}
685
686                         // Fields are different, compare them.
687                         (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _)) => {
688                             return i1.cmp(&i2);
689                         }
690
691                         // We should have either a pair of `Deref`s or a pair of `Field`s.
692                         // Anything else is a bug.
693                         (
694                             l @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
695                             r @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
696                         ) => bug!(
697                             "ProjectionKinds Deref and Field were mismatched: ({:?}, {:?})",
698                             l,
699                             r
700                         ),
701                         (
702                             l @ (ProjectionKind::Index
703                             | ProjectionKind::Subslice
704                             | ProjectionKind::Deref
705                             | ProjectionKind::Field(..)),
706                             r @ (ProjectionKind::Index
707                             | ProjectionKind::Subslice
708                             | ProjectionKind::Deref
709                             | ProjectionKind::Field(..)),
710                         ) => bug!(
711                             "ProjectionKinds Index or Subslice were unexpected: ({:?}, {:?})",
712                             l,
713                             r
714                         ),
715                     }
716                 }
717
718                 unreachable!(
719                     "we captured two identical projections: capture1 = {:?}, capture2 = {:?}",
720                     capture1, capture2
721                 );
722             });
723         }
724
725         debug!(
726             "For closure={:?}, min_captures after sorting={:#?}",
727             closure_def_id, root_var_min_capture_list
728         );
729         typeck_results.closure_min_captures.insert(closure_def_id, root_var_min_capture_list);
730     }
731
732     /// Perform the migration analysis for RFC 2229, and emit lint
733     /// `disjoint_capture_drop_reorder` if needed.
734     fn perform_2229_migration_anaysis(
735         &self,
736         closure_def_id: DefId,
737         body_id: hir::BodyId,
738         capture_clause: hir::CaptureBy,
739         span: Span,
740     ) {
741         let (need_migrations, reasons) = self.compute_2229_migrations(
742             closure_def_id,
743             span,
744             capture_clause,
745             self.typeck_results.borrow().closure_min_captures.get(&closure_def_id),
746         );
747
748         if !need_migrations.is_empty() {
749             let (migration_string, migrated_variables_concat) =
750                 migration_suggestion_for_2229(self.tcx, &need_migrations);
751
752             let local_def_id = closure_def_id.expect_local();
753             let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
754             let closure_span = self.tcx.hir().span(closure_hir_id);
755             let closure_head_span = self.tcx.sess.source_map().guess_head_span(closure_span);
756             self.tcx.struct_span_lint_hir(
757                 lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
758                 closure_hir_id,
759                  closure_head_span,
760                 |lint| {
761                     let mut diagnostics_builder = lint.build(
762                         &reasons.migration_message(),
763                     );
764                     for NeededMigration { var_hir_id, diagnostics_info } in &need_migrations {
765                         // Labels all the usage of the captured variable and why they are responsible
766                         // for migration being needed
767                         for lint_note in diagnostics_info.iter() {
768                             match &lint_note.captures_info {
769                                 UpvarMigrationInfo::CapturingPrecise { source_expr: Some(capture_expr_id), var_name: captured_name } => {
770                                     let cause_span = self.tcx.hir().span(*capture_expr_id);
771                                     diagnostics_builder.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
772                                         self.tcx.hir().name(*var_hir_id),
773                                         captured_name,
774                                     ));
775                                 }
776                                 UpvarMigrationInfo::CapturingNothing { use_span } => {
777                                     diagnostics_builder.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
778                                         self.tcx.hir().name(*var_hir_id),
779                                     ));
780                                 }
781
782                                 _ => { }
783                             }
784
785                             // Add a label pointing to where a captured variable affected by drop order
786                             // is dropped
787                             if lint_note.reason.drop_order {
788                                 let drop_location_span = drop_location_span(self.tcx, closure_hir_id);
789
790                                 match &lint_note.captures_info {
791                                     UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
792                                         diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
793                                             self.tcx.hir().name(*var_hir_id),
794                                             captured_name,
795                                         ));
796                                     }
797                                     UpvarMigrationInfo::CapturingNothing { use_span: _ } => {
798                                         diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
799                                             v = self.tcx.hir().name(*var_hir_id),
800                                         ));
801                                     }
802                                 }
803                             }
804
805                             // Add a label explaining why a closure no longer implements a trait
806                             for &missing_trait in &lint_note.reason.auto_traits {
807                                 // not capturing something anymore cannot cause a trait to fail to be implemented:
808                                 match &lint_note.captures_info {
809                                     UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
810                                         let var_name = self.tcx.hir().name(*var_hir_id);
811                                         diagnostics_builder.span_label(closure_head_span, format!("\
812                                         in Rust 2018, this closure implements {missing_trait} \
813                                         as `{var_name}` implements {missing_trait}, but in Rust 2021, \
814                                         this closure will no longer implement {missing_trait} \
815                                         because `{var_name}` is not fully captured \
816                                         and `{captured_name}` does not implement {missing_trait}"));
817                                     }
818
819                                     // Cannot happen: if we don't capture a variable, we impl strictly more traits
820                                     UpvarMigrationInfo::CapturingNothing { use_span } => span_bug!(*use_span, "missing trait from not capturing something"),
821                                 }
822                             }
823                         }
824                     }
825                     diagnostics_builder.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/disjoint-capture-in-closures.html>");
826
827                     let diagnostic_msg = format!(
828                         "add a dummy let to cause {} to be fully captured",
829                         migrated_variables_concat
830                     );
831
832                     let mut closure_body_span = {
833                         // If the body was entirely expanded from a macro
834                         // invocation, i.e. the body is not contained inside the
835                         // closure span, then we walk up the expansion until we
836                         // find the span before the expansion.
837                         let s = self.tcx.hir().span(body_id.hir_id);
838                         s.find_ancestor_inside(closure_span).unwrap_or(s)
839                     };
840
841                     if let Ok(mut s) = self.tcx.sess.source_map().span_to_snippet(closure_body_span) {
842                         if s.starts_with('$') {
843                             // Looks like a macro fragment. Try to find the real block.
844                             if let Some(hir::Node::Expr(&hir::Expr {
845                                 kind: hir::ExprKind::Block(block, ..), ..
846                             })) = self.tcx.hir().find(body_id.hir_id) {
847                                 // If the body is a block (with `{..}`), we use the span of that block.
848                                 // E.g. with a `|| $body` expanded from a `m!({ .. })`, we use `{ .. }`, and not `$body`.
849                                 // Since we know it's a block, we know we can insert the `let _ = ..` without
850                                 // breaking the macro syntax.
851                                 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(block.span) {
852                                     closure_body_span = block.span;
853                                     s = snippet;
854                                 }
855                             }
856                         }
857
858                         let mut lines = s.lines();
859                         let line1 = lines.next().unwrap_or_default();
860
861                         if line1.trim_end() == "{" {
862                             // This is a multi-line closure with just a `{` on the first line,
863                             // so we put the `let` on its own line.
864                             // We take the indentation from the next non-empty line.
865                             let line2 = lines.find(|line| !line.is_empty()).unwrap_or_default();
866                             let indent = line2.split_once(|c: char| !c.is_whitespace()).unwrap_or_default().0;
867                             diagnostics_builder.span_suggestion(
868                                 closure_body_span.with_lo(closure_body_span.lo() + BytePos::from_usize(line1.len())).shrink_to_lo(),
869                                 &diagnostic_msg,
870                                 format!("\n{}{};", indent, migration_string),
871                                 Applicability::MachineApplicable,
872                             );
873                         } else if line1.starts_with('{') {
874                             // This is a closure with its body wrapped in
875                             // braces, but with more than just the opening
876                             // brace on the first line. We put the `let`
877                             // directly after the `{`.
878                             diagnostics_builder.span_suggestion(
879                                 closure_body_span.with_lo(closure_body_span.lo() + BytePos(1)).shrink_to_lo(),
880                                 &diagnostic_msg,
881                                 format!(" {};", migration_string),
882                                 Applicability::MachineApplicable,
883                             );
884                         } else {
885                             // This is a closure without braces around the body.
886                             // We add braces to add the `let` before the body.
887                             diagnostics_builder.multipart_suggestion(
888                                 &diagnostic_msg,
889                                 vec![
890                                     (closure_body_span.shrink_to_lo(), format!("{{ {}; ", migration_string)),
891                                     (closure_body_span.shrink_to_hi(), " }".to_string()),
892                                 ],
893                                 Applicability::MachineApplicable
894                             );
895                         }
896                     } else {
897                         diagnostics_builder.span_suggestion(
898                             closure_span,
899                             &diagnostic_msg,
900                             migration_string,
901                             Applicability::HasPlaceholders
902                         );
903                     }
904
905                     diagnostics_builder.emit();
906                 },
907             );
908         }
909     }
910
911     /// Combines all the reasons for 2229 migrations
912     fn compute_2229_migrations_reasons(
913         &self,
914         auto_trait_reasons: FxHashSet<&'static str>,
915         drop_order: bool,
916     ) -> MigrationWarningReason {
917         let mut reasons = MigrationWarningReason::default();
918
919         reasons.auto_traits.extend(auto_trait_reasons);
920         reasons.drop_order = drop_order;
921
922         reasons
923     }
924
925     /// Figures out the list of root variables (and their types) that aren't completely
926     /// captured by the closure when `capture_disjoint_fields` is enabled and auto-traits
927     /// differ between the root variable and the captured paths.
928     ///
929     /// Returns a tuple containing a HashMap of CapturesInfo that maps to a HashSet of trait names
930     /// if migration is needed for traits for the provided var_hir_id, otherwise returns None
931     fn compute_2229_migrations_for_trait(
932         &self,
933         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
934         var_hir_id: hir::HirId,
935         closure_clause: hir::CaptureBy,
936     ) -> Option<FxHashMap<UpvarMigrationInfo, FxHashSet<&'static str>>> {
937         let auto_traits_def_id = vec![
938             self.tcx.lang_items().clone_trait(),
939             self.tcx.lang_items().sync_trait(),
940             self.tcx.get_diagnostic_item(sym::Send),
941             self.tcx.lang_items().unpin_trait(),
942             self.tcx.get_diagnostic_item(sym::unwind_safe_trait),
943             self.tcx.get_diagnostic_item(sym::ref_unwind_safe_trait),
944         ];
945         const AUTO_TRAITS: [&str; 6] =
946             ["`Clone`", "`Sync`", "`Send`", "`Unpin`", "`UnwindSafe`", "`RefUnwindSafe`"];
947
948         let root_var_min_capture_list = min_captures.and_then(|m| m.get(&var_hir_id))?;
949
950         let ty = self.infcx.resolve_vars_if_possible(self.node_ty(var_hir_id));
951
952         let ty = match closure_clause {
953             hir::CaptureBy::Value => ty, // For move closure the capture kind should be by value
954             hir::CaptureBy::Ref => {
955                 // For non move closure the capture kind is the max capture kind of all captures
956                 // according to the ordering ImmBorrow < UniqueImmBorrow < MutBorrow < ByValue
957                 let mut max_capture_info = root_var_min_capture_list.first().unwrap().info;
958                 for capture in root_var_min_capture_list.iter() {
959                     max_capture_info = determine_capture_info(max_capture_info, capture.info);
960                 }
961
962                 apply_capture_kind_on_capture_ty(
963                     self.tcx,
964                     ty,
965                     max_capture_info.capture_kind,
966                     Some(self.tcx.lifetimes.re_erased),
967                 )
968             }
969         };
970
971         let mut obligations_should_hold = Vec::new();
972         // Checks if a root variable implements any of the auto traits
973         for check_trait in auto_traits_def_id.iter() {
974             obligations_should_hold.push(
975                 check_trait
976                     .map(|check_trait| {
977                         self.infcx
978                             .type_implements_trait(
979                                 check_trait,
980                                 ty,
981                                 self.tcx.mk_substs_trait(ty, &[]),
982                                 self.param_env,
983                             )
984                             .must_apply_modulo_regions()
985                     })
986                     .unwrap_or(false),
987             );
988         }
989
990         let mut problematic_captures = FxHashMap::default();
991         // Check whether captured fields also implement the trait
992         for capture in root_var_min_capture_list.iter() {
993             let ty = apply_capture_kind_on_capture_ty(
994                 self.tcx,
995                 capture.place.ty(),
996                 capture.info.capture_kind,
997                 Some(self.tcx.lifetimes.re_erased),
998             );
999
1000             // Checks if a capture implements any of the auto traits
1001             let mut obligations_holds_for_capture = Vec::new();
1002             for check_trait in auto_traits_def_id.iter() {
1003                 obligations_holds_for_capture.push(
1004                     check_trait
1005                         .map(|check_trait| {
1006                             self.infcx
1007                                 .type_implements_trait(
1008                                     check_trait,
1009                                     ty,
1010                                     self.tcx.mk_substs_trait(ty, &[]),
1011                                     self.param_env,
1012                                 )
1013                                 .must_apply_modulo_regions()
1014                         })
1015                         .unwrap_or(false),
1016                 );
1017             }
1018
1019             let mut capture_problems = FxHashSet::default();
1020
1021             // Checks if for any of the auto traits, one or more trait is implemented
1022             // by the root variable but not by the capture
1023             for (idx, _) in obligations_should_hold.iter().enumerate() {
1024                 if !obligations_holds_for_capture[idx] && obligations_should_hold[idx] {
1025                     capture_problems.insert(AUTO_TRAITS[idx]);
1026                 }
1027             }
1028
1029             if !capture_problems.is_empty() {
1030                 problematic_captures.insert(
1031                     UpvarMigrationInfo::CapturingPrecise {
1032                         source_expr: capture.info.path_expr_id,
1033                         var_name: capture.to_string(self.tcx),
1034                     },
1035                     capture_problems,
1036                 );
1037             }
1038         }
1039         if !problematic_captures.is_empty() {
1040             return Some(problematic_captures);
1041         }
1042         None
1043     }
1044
1045     /// Figures out the list of root variables (and their types) that aren't completely
1046     /// captured by the closure when `capture_disjoint_fields` is enabled and drop order of
1047     /// some path starting at that root variable **might** be affected.
1048     ///
1049     /// The output list would include a root variable if:
1050     /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1051     ///   enabled, **and**
1052     /// - It wasn't completely captured by the closure, **and**
1053     /// - One of the paths starting at this root variable, that is not captured needs Drop.
1054     ///
1055     /// This function only returns a HashSet of CapturesInfo for significant drops. If there
1056     /// are no significant drops than None is returned
1057     #[instrument(level = "debug", skip(self))]
1058     fn compute_2229_migrations_for_drop(
1059         &self,
1060         closure_def_id: DefId,
1061         closure_span: Span,
1062         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1063         closure_clause: hir::CaptureBy,
1064         var_hir_id: hir::HirId,
1065     ) -> Option<FxHashSet<UpvarMigrationInfo>> {
1066         let ty = self.infcx.resolve_vars_if_possible(self.node_ty(var_hir_id));
1067
1068         if !ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id.expect_local())) {
1069             debug!("does not have significant drop");
1070             return None;
1071         }
1072
1073         let Some(root_var_min_capture_list) = min_captures.and_then(|m| m.get(&var_hir_id)) else {
1074             // The upvar is mentioned within the closure but no path starting from it is
1075             // used. This occurs when you have (e.g.)
1076             //
1077             // ```
1078             // let x = move || {
1079             //     let _ = y;
1080             // });
1081             // ```
1082             debug!("no path starting from it is used");
1083
1084
1085             match closure_clause {
1086                 // Only migrate if closure is a move closure
1087                 hir::CaptureBy::Value => {
1088                     let mut diagnostics_info = FxHashSet::default();
1089                     let upvars = self.tcx.upvars_mentioned(closure_def_id).expect("must be an upvar");
1090                     let upvar = upvars[&var_hir_id];
1091                     diagnostics_info.insert(UpvarMigrationInfo::CapturingNothing { use_span: upvar.span });
1092                     return Some(diagnostics_info);
1093                 }
1094                 hir::CaptureBy::Ref => {}
1095             }
1096
1097             return None;
1098         };
1099         debug!(?root_var_min_capture_list);
1100
1101         let mut projections_list = Vec::new();
1102         let mut diagnostics_info = FxHashSet::default();
1103
1104         for captured_place in root_var_min_capture_list.iter() {
1105             match captured_place.info.capture_kind {
1106                 // Only care about captures that are moved into the closure
1107                 ty::UpvarCapture::ByValue => {
1108                     projections_list.push(captured_place.place.projections.as_slice());
1109                     diagnostics_info.insert(UpvarMigrationInfo::CapturingPrecise {
1110                         source_expr: captured_place.info.path_expr_id,
1111                         var_name: captured_place.to_string(self.tcx),
1112                     });
1113                 }
1114                 ty::UpvarCapture::ByRef(..) => {}
1115             }
1116         }
1117
1118         debug!(?projections_list);
1119         debug!(?diagnostics_info);
1120
1121         let is_moved = !projections_list.is_empty();
1122         debug!(?is_moved);
1123
1124         let is_not_completely_captured =
1125             root_var_min_capture_list.iter().any(|capture| !capture.place.projections.is_empty());
1126         debug!(?is_not_completely_captured);
1127
1128         if is_moved
1129             && is_not_completely_captured
1130             && self.has_significant_drop_outside_of_captures(
1131                 closure_def_id,
1132                 closure_span,
1133                 ty,
1134                 projections_list,
1135             )
1136         {
1137             return Some(diagnostics_info);
1138         }
1139
1140         None
1141     }
1142
1143     /// Figures out the list of root variables (and their types) that aren't completely
1144     /// captured by the closure when `capture_disjoint_fields` is enabled and either drop
1145     /// order of some path starting at that root variable **might** be affected or auto-traits
1146     /// differ between the root variable and the captured paths.
1147     ///
1148     /// The output list would include a root variable if:
1149     /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1150     ///   enabled, **and**
1151     /// - It wasn't completely captured by the closure, **and**
1152     /// - One of the paths starting at this root variable, that is not captured needs Drop **or**
1153     /// - One of the paths captured does not implement all the auto-traits its root variable
1154     ///   implements.
1155     ///
1156     /// Returns a tuple containing a vector of MigrationDiagnosticInfo, as well as a String
1157     /// containing the reason why root variables whose HirId is contained in the vector should
1158     /// be captured
1159     #[instrument(level = "debug", skip(self))]
1160     fn compute_2229_migrations(
1161         &self,
1162         closure_def_id: DefId,
1163         closure_span: Span,
1164         closure_clause: hir::CaptureBy,
1165         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1166     ) -> (Vec<NeededMigration>, MigrationWarningReason) {
1167         let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) else {
1168             return (Vec::new(), MigrationWarningReason::default());
1169         };
1170
1171         let mut need_migrations = Vec::new();
1172         let mut auto_trait_migration_reasons = FxHashSet::default();
1173         let mut drop_migration_needed = false;
1174
1175         // Perform auto-trait analysis
1176         for (&var_hir_id, _) in upvars.iter() {
1177             let mut diagnostics_info = Vec::new();
1178
1179             let auto_trait_diagnostic = if let Some(diagnostics_info) =
1180                 self.compute_2229_migrations_for_trait(min_captures, var_hir_id, closure_clause)
1181             {
1182                 diagnostics_info
1183             } else {
1184                 FxHashMap::default()
1185             };
1186
1187             let drop_reorder_diagnostic = if let Some(diagnostics_info) = self
1188                 .compute_2229_migrations_for_drop(
1189                     closure_def_id,
1190                     closure_span,
1191                     min_captures,
1192                     closure_clause,
1193                     var_hir_id,
1194                 ) {
1195                 drop_migration_needed = true;
1196                 diagnostics_info
1197             } else {
1198                 FxHashSet::default()
1199             };
1200
1201             // Combine all the captures responsible for needing migrations into one HashSet
1202             let mut capture_diagnostic = drop_reorder_diagnostic.clone();
1203             for key in auto_trait_diagnostic.keys() {
1204                 capture_diagnostic.insert(key.clone());
1205             }
1206
1207             let mut capture_diagnostic = capture_diagnostic.into_iter().collect::<Vec<_>>();
1208             capture_diagnostic.sort();
1209             for captures_info in capture_diagnostic {
1210                 // Get the auto trait reasons of why migration is needed because of that capture, if there are any
1211                 let capture_trait_reasons =
1212                     if let Some(reasons) = auto_trait_diagnostic.get(&captures_info) {
1213                         reasons.clone()
1214                     } else {
1215                         FxHashSet::default()
1216                     };
1217
1218                 // Check if migration is needed because of drop reorder as a result of that capture
1219                 let capture_drop_reorder_reason = drop_reorder_diagnostic.contains(&captures_info);
1220
1221                 // Combine all the reasons of why the root variable should be captured as a result of
1222                 // auto trait implementation issues
1223                 auto_trait_migration_reasons.extend(capture_trait_reasons.clone());
1224
1225                 diagnostics_info.push(MigrationLintNote {
1226                     captures_info,
1227                     reason: self.compute_2229_migrations_reasons(
1228                         capture_trait_reasons,
1229                         capture_drop_reorder_reason,
1230                     ),
1231                 });
1232             }
1233
1234             if !diagnostics_info.is_empty() {
1235                 need_migrations.push(NeededMigration { var_hir_id, diagnostics_info });
1236             }
1237         }
1238         (
1239             need_migrations,
1240             self.compute_2229_migrations_reasons(
1241                 auto_trait_migration_reasons,
1242                 drop_migration_needed,
1243             ),
1244         )
1245     }
1246
1247     /// This is a helper function to `compute_2229_migrations_precise_pass`. Provided the type
1248     /// of a root variable and a list of captured paths starting at this root variable (expressed
1249     /// using list of `Projection` slices), it returns true if there is a path that is not
1250     /// captured starting at this root variable that implements Drop.
1251     ///
1252     /// The way this function works is at a given call it looks at type `base_path_ty` of some base
1253     /// path say P and then list of projection slices which represent the different captures moved
1254     /// into the closure starting off of P.
1255     ///
1256     /// This will make more sense with an example:
1257     ///
1258     /// ```rust
1259     /// #![feature(capture_disjoint_fields)]
1260     ///
1261     /// struct FancyInteger(i32); // This implements Drop
1262     ///
1263     /// struct Point { x: FancyInteger, y: FancyInteger }
1264     /// struct Color;
1265     ///
1266     /// struct Wrapper { p: Point, c: Color }
1267     ///
1268     /// fn f(w: Wrapper) {
1269     ///   let c = || {
1270     ///       // Closure captures w.p.x and w.c by move.
1271     ///   };
1272     ///
1273     ///   c();
1274     /// }
1275     /// ```
1276     ///
1277     /// If `capture_disjoint_fields` wasn't enabled the closure would've moved `w` instead of the
1278     /// precise paths. If we look closely `w.p.y` isn't captured which implements Drop and
1279     /// therefore Drop ordering would change and we want this function to return true.
1280     ///
1281     /// Call stack to figure out if we need to migrate for `w` would look as follows:
1282     ///
1283     /// Our initial base path is just `w`, and the paths captured from it are `w[p, x]` and
1284     /// `w[c]`.
1285     /// Notation:
1286     /// - Ty(place): Type of place
1287     /// - `(a, b)`: Represents the function parameters `base_path_ty` and `captured_by_move_projs`
1288     /// respectively.
1289     /// ```
1290     ///                  (Ty(w), [ &[p, x], &[c] ])
1291     ///                                 |
1292     ///                    ----------------------------
1293     ///                    |                          |
1294     ///                    v                          v
1295     ///        (Ty(w.p), [ &[x] ])          (Ty(w.c), [ &[] ]) // I(1)
1296     ///                    |                          |
1297     ///                    v                          v
1298     ///        (Ty(w.p), [ &[x] ])                 false
1299     ///                    |
1300     ///                    |
1301     ///          -------------------------------
1302     ///          |                             |
1303     ///          v                             v
1304     ///     (Ty((w.p).x), [ &[] ])     (Ty((w.p).y), []) // IMP 2
1305     ///          |                             |
1306     ///          v                             v
1307     ///        false              NeedsSignificantDrop(Ty(w.p.y))
1308     ///                                        |
1309     ///                                        v
1310     ///                                      true
1311     /// ```
1312     ///
1313     /// IMP 1 `(Ty(w.c), [ &[] ])`: Notice the single empty slice inside `captured_projs`.
1314     ///                             This implies that the `w.c` is completely captured by the closure.
1315     ///                             Since drop for this path will be called when the closure is
1316     ///                             dropped we don't need to migrate for it.
1317     ///
1318     /// IMP 2 `(Ty((w.p).y), [])`: Notice that `captured_projs` is empty. This implies that this
1319     ///                             path wasn't captured by the closure. Also note that even
1320     ///                             though we didn't capture this path, the function visits it,
1321     ///                             which is kind of the point of this function. We then return
1322     ///                             if the type of `w.p.y` implements Drop, which in this case is
1323     ///                             true.
1324     ///
1325     /// Consider another example:
1326     ///
1327     /// ```rust
1328     /// struct X;
1329     /// impl Drop for X {}
1330     ///
1331     /// struct Y(X);
1332     /// impl Drop for Y {}
1333     ///
1334     /// fn foo() {
1335     ///     let y = Y(X);
1336     ///     let c = || move(y.0);
1337     /// }
1338     /// ```
1339     ///
1340     /// Note that `y.0` is captured by the closure. When this function is called for `y`, it will
1341     /// return true, because even though all paths starting at `y` are captured, `y` itself
1342     /// implements Drop which will be affected since `y` isn't completely captured.
1343     fn has_significant_drop_outside_of_captures(
1344         &self,
1345         closure_def_id: DefId,
1346         closure_span: Span,
1347         base_path_ty: Ty<'tcx>,
1348         captured_by_move_projs: Vec<&[Projection<'tcx>]>,
1349     ) -> bool {
1350         let needs_drop = |ty: Ty<'tcx>| {
1351             ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id.expect_local()))
1352         };
1353
1354         let is_drop_defined_for_ty = |ty: Ty<'tcx>| {
1355             let drop_trait = self.tcx.require_lang_item(hir::LangItem::Drop, Some(closure_span));
1356             let ty_params = self.tcx.mk_substs_trait(base_path_ty, &[]);
1357             self.infcx
1358                 .type_implements_trait(
1359                     drop_trait,
1360                     ty,
1361                     ty_params,
1362                     self.tcx.param_env(closure_def_id.expect_local()),
1363                 )
1364                 .must_apply_modulo_regions()
1365         };
1366
1367         let is_drop_defined_for_ty = is_drop_defined_for_ty(base_path_ty);
1368
1369         // If there is a case where no projection is applied on top of current place
1370         // then there must be exactly one capture corresponding to such a case. Note that this
1371         // represents the case of the path being completely captured by the variable.
1372         //
1373         // eg. If `a.b` is captured and we are processing `a.b`, then we can't have the closure also
1374         //     capture `a.b.c`, because that violates min capture.
1375         let is_completely_captured = captured_by_move_projs.iter().any(|projs| projs.is_empty());
1376
1377         assert!(!is_completely_captured || (captured_by_move_projs.len() == 1));
1378
1379         if is_completely_captured {
1380             // The place is captured entirely, so doesn't matter if needs dtor, it will be drop
1381             // when the closure is dropped.
1382             return false;
1383         }
1384
1385         if captured_by_move_projs.is_empty() {
1386             return needs_drop(base_path_ty);
1387         }
1388
1389         if is_drop_defined_for_ty {
1390             // If drop is implemented for this type then we need it to be fully captured,
1391             // and we know it is not completely captured because of the previous checks.
1392
1393             // Note that this is a bug in the user code that will be reported by the
1394             // borrow checker, since we can't move out of drop types.
1395
1396             // The bug exists in the user's code pre-migration, and we don't migrate here.
1397             return false;
1398         }
1399
1400         match base_path_ty.kind() {
1401             // Observations:
1402             // - `captured_by_move_projs` is not empty. Therefore we can call
1403             //   `captured_by_move_projs.first().unwrap()` safely.
1404             // - All entries in `captured_by_move_projs` have atleast one projection.
1405             //   Therefore we can call `captured_by_move_projs.first().unwrap().first().unwrap()` safely.
1406
1407             // We don't capture derefs in case of move captures, which would have be applied to
1408             // access any further paths.
1409             ty::Adt(def, _) if def.is_box() => unreachable!(),
1410             ty::Ref(..) => unreachable!(),
1411             ty::RawPtr(..) => unreachable!(),
1412
1413             ty::Adt(def, substs) => {
1414                 // Multi-variant enums are captured in entirety,
1415                 // which would've been handled in the case of single empty slice in `captured_by_move_projs`.
1416                 assert_eq!(def.variants().len(), 1);
1417
1418                 // Only Field projections can be applied to a non-box Adt.
1419                 assert!(
1420                     captured_by_move_projs.iter().all(|projs| matches!(
1421                         projs.first().unwrap().kind,
1422                         ProjectionKind::Field(..)
1423                     ))
1424                 );
1425                 def.variants().get(VariantIdx::new(0)).unwrap().fields.iter().enumerate().any(
1426                     |(i, field)| {
1427                         let paths_using_field = captured_by_move_projs
1428                             .iter()
1429                             .filter_map(|projs| {
1430                                 if let ProjectionKind::Field(field_idx, _) =
1431                                     projs.first().unwrap().kind
1432                                 {
1433                                     if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
1434                                 } else {
1435                                     unreachable!();
1436                                 }
1437                             })
1438                             .collect();
1439
1440                         let after_field_ty = field.ty(self.tcx, substs);
1441                         self.has_significant_drop_outside_of_captures(
1442                             closure_def_id,
1443                             closure_span,
1444                             after_field_ty,
1445                             paths_using_field,
1446                         )
1447                     },
1448                 )
1449             }
1450
1451             ty::Tuple(fields) => {
1452                 // Only Field projections can be applied to a tuple.
1453                 assert!(
1454                     captured_by_move_projs.iter().all(|projs| matches!(
1455                         projs.first().unwrap().kind,
1456                         ProjectionKind::Field(..)
1457                     ))
1458                 );
1459
1460                 fields.iter().enumerate().any(|(i, element_ty)| {
1461                     let paths_using_field = captured_by_move_projs
1462                         .iter()
1463                         .filter_map(|projs| {
1464                             if let ProjectionKind::Field(field_idx, _) = projs.first().unwrap().kind
1465                             {
1466                                 if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
1467                             } else {
1468                                 unreachable!();
1469                             }
1470                         })
1471                         .collect();
1472
1473                     self.has_significant_drop_outside_of_captures(
1474                         closure_def_id,
1475                         closure_span,
1476                         element_ty,
1477                         paths_using_field,
1478                     )
1479                 })
1480             }
1481
1482             // Anything else would be completely captured and therefore handled already.
1483             _ => unreachable!(),
1484         }
1485     }
1486
1487     fn init_capture_kind_for_place(
1488         &self,
1489         place: &Place<'tcx>,
1490         capture_clause: hir::CaptureBy,
1491     ) -> ty::UpvarCapture {
1492         match capture_clause {
1493             // In case of a move closure if the data is accessed through a reference we
1494             // want to capture by ref to allow precise capture using reborrows.
1495             //
1496             // If the data will be moved out of this place, then the place will be truncated
1497             // at the first Deref in `adjust_upvar_borrow_kind_for_consume` and then moved into
1498             // the closure.
1499             hir::CaptureBy::Value if !place.deref_tys().any(Ty::is_ref) => {
1500                 ty::UpvarCapture::ByValue
1501             }
1502             hir::CaptureBy::Value | hir::CaptureBy::Ref => ty::UpvarCapture::ByRef(ty::ImmBorrow),
1503         }
1504     }
1505
1506     fn place_for_root_variable(
1507         &self,
1508         closure_def_id: LocalDefId,
1509         var_hir_id: hir::HirId,
1510     ) -> Place<'tcx> {
1511         let upvar_id = ty::UpvarId::new(var_hir_id, closure_def_id);
1512
1513         Place {
1514             base_ty: self.node_ty(var_hir_id),
1515             base: PlaceBase::Upvar(upvar_id),
1516             projections: Default::default(),
1517         }
1518     }
1519
1520     fn should_log_capture_analysis(&self, closure_def_id: DefId) -> bool {
1521         self.tcx.has_attr(closure_def_id, sym::rustc_capture_analysis)
1522     }
1523
1524     fn log_capture_analysis_first_pass(
1525         &self,
1526         closure_def_id: rustc_hir::def_id::DefId,
1527         capture_information: &InferredCaptureInformation<'tcx>,
1528         closure_span: Span,
1529     ) {
1530         if self.should_log_capture_analysis(closure_def_id) {
1531             let mut diag =
1532                 self.tcx.sess.struct_span_err(closure_span, "First Pass analysis includes:");
1533             for (place, capture_info) in capture_information {
1534                 let capture_str = construct_capture_info_string(self.tcx, place, capture_info);
1535                 let output_str = format!("Capturing {}", capture_str);
1536
1537                 let span =
1538                     capture_info.path_expr_id.map_or(closure_span, |e| self.tcx.hir().span(e));
1539                 diag.span_note(span, &output_str);
1540             }
1541             diag.emit();
1542         }
1543     }
1544
1545     fn log_closure_min_capture_info(&self, closure_def_id: DefId, closure_span: Span) {
1546         if self.should_log_capture_analysis(closure_def_id) {
1547             if let Some(min_captures) =
1548                 self.typeck_results.borrow().closure_min_captures.get(&closure_def_id)
1549             {
1550                 let mut diag =
1551                     self.tcx.sess.struct_span_err(closure_span, "Min Capture analysis includes:");
1552
1553                 for (_, min_captures_for_var) in min_captures {
1554                     for capture in min_captures_for_var {
1555                         let place = &capture.place;
1556                         let capture_info = &capture.info;
1557
1558                         let capture_str =
1559                             construct_capture_info_string(self.tcx, place, capture_info);
1560                         let output_str = format!("Min Capture {}", capture_str);
1561
1562                         if capture.info.path_expr_id != capture.info.capture_kind_expr_id {
1563                             let path_span = capture_info
1564                                 .path_expr_id
1565                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1566                             let capture_kind_span = capture_info
1567                                 .capture_kind_expr_id
1568                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1569
1570                             let mut multi_span: MultiSpan =
1571                                 MultiSpan::from_spans(vec![path_span, capture_kind_span]);
1572
1573                             let capture_kind_label =
1574                                 construct_capture_kind_reason_string(self.tcx, place, capture_info);
1575                             let path_label = construct_path_string(self.tcx, place);
1576
1577                             multi_span.push_span_label(path_span, path_label);
1578                             multi_span.push_span_label(capture_kind_span, capture_kind_label);
1579
1580                             diag.span_note(multi_span, &output_str);
1581                         } else {
1582                             let span = capture_info
1583                                 .path_expr_id
1584                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1585
1586                             diag.span_note(span, &output_str);
1587                         };
1588                     }
1589                 }
1590                 diag.emit();
1591             }
1592         }
1593     }
1594
1595     /// A captured place is mutable if
1596     /// 1. Projections don't include a Deref of an immut-borrow, **and**
1597     /// 2. PlaceBase is mut or projections include a Deref of a mut-borrow.
1598     fn determine_capture_mutability(
1599         &self,
1600         typeck_results: &'a TypeckResults<'tcx>,
1601         place: &Place<'tcx>,
1602     ) -> hir::Mutability {
1603         let var_hir_id = match place.base {
1604             PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
1605             _ => unreachable!(),
1606         };
1607
1608         let bm = *typeck_results.pat_binding_modes().get(var_hir_id).expect("missing binding mode");
1609
1610         let mut is_mutbl = match bm {
1611             ty::BindByValue(mutability) => mutability,
1612             ty::BindByReference(_) => hir::Mutability::Not,
1613         };
1614
1615         for pointer_ty in place.deref_tys() {
1616             match pointer_ty.kind() {
1617                 // We don't capture derefs of raw ptrs
1618                 ty::RawPtr(_) => unreachable!(),
1619
1620                 // Derefencing a mut-ref allows us to mut the Place if we don't deref
1621                 // an immut-ref after on top of this.
1622                 ty::Ref(.., hir::Mutability::Mut) => is_mutbl = hir::Mutability::Mut,
1623
1624                 // The place isn't mutable once we dereference an immutable reference.
1625                 ty::Ref(.., hir::Mutability::Not) => return hir::Mutability::Not,
1626
1627                 // Dereferencing a box doesn't change mutability
1628                 ty::Adt(def, ..) if def.is_box() => {}
1629
1630                 unexpected_ty => bug!("deref of unexpected pointer type {:?}", unexpected_ty),
1631             }
1632         }
1633
1634         is_mutbl
1635     }
1636 }
1637
1638 /// Truncate the capture so that the place being borrowed is in accordance with RFC 1240,
1639 /// which states that it's unsafe to take a reference into a struct marked `repr(packed)`.
1640 fn restrict_repr_packed_field_ref_capture<'tcx>(
1641     tcx: TyCtxt<'tcx>,
1642     param_env: ty::ParamEnv<'tcx>,
1643     mut place: Place<'tcx>,
1644     mut curr_borrow_kind: ty::UpvarCapture,
1645 ) -> (Place<'tcx>, ty::UpvarCapture) {
1646     let pos = place.projections.iter().enumerate().position(|(i, p)| {
1647         let ty = place.ty_before_projection(i);
1648
1649         // Return true for fields of packed structs, unless those fields have alignment 1.
1650         match p.kind {
1651             ProjectionKind::Field(..) => match ty.kind() {
1652                 ty::Adt(def, _) if def.repr().packed() => {
1653                     // We erase regions here because they cannot be hashed
1654                     match tcx.layout_of(param_env.and(tcx.erase_regions(p.ty))) {
1655                         Ok(layout) if layout.align.abi.bytes() == 1 => {
1656                             // if the alignment is 1, the type can't be further
1657                             // disaligned.
1658                             debug!(
1659                                 "restrict_repr_packed_field_ref_capture: ({:?}) - align = 1",
1660                                 place
1661                             );
1662                             false
1663                         }
1664                         _ => {
1665                             debug!("restrict_repr_packed_field_ref_capture: ({:?}) - true", place);
1666                             true
1667                         }
1668                     }
1669                 }
1670
1671                 _ => false,
1672             },
1673             _ => false,
1674         }
1675     });
1676
1677     if let Some(pos) = pos {
1678         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_borrow_kind, pos);
1679     }
1680
1681     (place, curr_borrow_kind)
1682 }
1683
1684 /// Returns a Ty that applies the specified capture kind on the provided capture Ty
1685 fn apply_capture_kind_on_capture_ty<'tcx>(
1686     tcx: TyCtxt<'tcx>,
1687     ty: Ty<'tcx>,
1688     capture_kind: UpvarCapture,
1689     region: Option<ty::Region<'tcx>>,
1690 ) -> Ty<'tcx> {
1691     match capture_kind {
1692         ty::UpvarCapture::ByValue => ty,
1693         ty::UpvarCapture::ByRef(kind) => {
1694             tcx.mk_ref(region.unwrap(), ty::TypeAndMut { ty: ty, mutbl: kind.to_mutbl_lossy() })
1695         }
1696     }
1697 }
1698
1699 /// Returns the Span of where the value with the provided HirId would be dropped
1700 fn drop_location_span<'tcx>(tcx: TyCtxt<'tcx>, hir_id: hir::HirId) -> Span {
1701     let owner_id = tcx.hir().get_enclosing_scope(hir_id).unwrap();
1702
1703     let owner_node = tcx.hir().get(owner_id);
1704     let owner_span = match owner_node {
1705         hir::Node::Item(item) => match item.kind {
1706             hir::ItemKind::Fn(_, _, owner_id) => tcx.hir().span(owner_id.hir_id),
1707             _ => {
1708                 bug!("Drop location span error: need to handle more ItemKind {:?}", item.kind);
1709             }
1710         },
1711         hir::Node::Block(block) => tcx.hir().span(block.hir_id),
1712         _ => {
1713             bug!("Drop location span error: need to handle more Node {:?}", owner_node);
1714         }
1715     };
1716     tcx.sess.source_map().end_point(owner_span)
1717 }
1718
1719 struct InferBorrowKind<'a, 'tcx> {
1720     fcx: &'a FnCtxt<'a, 'tcx>,
1721
1722     // The def-id of the closure whose kind and upvar accesses are being inferred.
1723     closure_def_id: LocalDefId,
1724
1725     /// For each Place that is captured by the closure, we track the minimal kind of
1726     /// access we need (ref, ref mut, move, etc) and the expression that resulted in such access.
1727     ///
1728     /// Consider closure where s.str1 is captured via an ImmutableBorrow and
1729     /// s.str2 via a MutableBorrow
1730     ///
1731     /// ```rust,no_run
1732     /// struct SomeStruct { str1: String, str2: String }
1733     ///
1734     /// // Assume that the HirId for the variable definition is `V1`
1735     /// let mut s = SomeStruct { str1: format!("s1"), str2: format!("s2") }
1736     ///
1737     /// let fix_s = |new_s2| {
1738     ///     // Assume that the HirId for the expression `s.str1` is `E1`
1739     ///     println!("Updating SomeStruct with str1=", s.str1);
1740     ///     // Assume that the HirId for the expression `*s.str2` is `E2`
1741     ///     s.str2 = new_s2;
1742     /// };
1743     /// ```
1744     ///
1745     /// For closure `fix_s`, (at a high level) the map contains
1746     ///
1747     /// ```
1748     /// Place { V1, [ProjectionKind::Field(Index=0, Variant=0)] } : CaptureKind { E1, ImmutableBorrow }
1749     /// Place { V1, [ProjectionKind::Field(Index=1, Variant=0)] } : CaptureKind { E2, MutableBorrow }
1750     /// ```
1751     capture_information: InferredCaptureInformation<'tcx>,
1752     fake_reads: Vec<(Place<'tcx>, FakeReadCause, hir::HirId)>,
1753 }
1754
1755 impl<'a, 'tcx> euv::Delegate<'tcx> for InferBorrowKind<'a, 'tcx> {
1756     fn fake_read(&mut self, place: Place<'tcx>, cause: FakeReadCause, diag_expr_id: hir::HirId) {
1757         let PlaceBase::Upvar(_) = place.base else { return };
1758
1759         // We need to restrict Fake Read precision to avoid fake reading unsafe code,
1760         // such as deref of a raw pointer.
1761         let dummy_capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::ImmBorrow);
1762
1763         let (place, _) = restrict_capture_precision(place, dummy_capture_kind);
1764
1765         let (place, _) = restrict_repr_packed_field_ref_capture(
1766             self.fcx.tcx,
1767             self.fcx.param_env,
1768             place,
1769             dummy_capture_kind,
1770         );
1771         self.fake_reads.push((place, cause, diag_expr_id));
1772     }
1773
1774     #[instrument(skip(self), level = "debug")]
1775     fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
1776         let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
1777         assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
1778
1779         self.capture_information.push((
1780             place_with_id.place.clone(),
1781             ty::CaptureInfo {
1782                 capture_kind_expr_id: Some(diag_expr_id),
1783                 path_expr_id: Some(diag_expr_id),
1784                 capture_kind: ty::UpvarCapture::ByValue,
1785             },
1786         ));
1787     }
1788
1789     #[instrument(skip(self), level = "debug")]
1790     fn borrow(
1791         &mut self,
1792         place_with_id: &PlaceWithHirId<'tcx>,
1793         diag_expr_id: hir::HirId,
1794         bk: ty::BorrowKind,
1795     ) {
1796         let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
1797         assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
1798
1799         // The region here will get discarded/ignored
1800         let capture_kind = ty::UpvarCapture::ByRef(bk);
1801
1802         // We only want repr packed restriction to be applied to reading references into a packed
1803         // struct, and not when the data is being moved. Therefore we call this method here instead
1804         // of in `restrict_capture_precision`.
1805         let (place, mut capture_kind) = restrict_repr_packed_field_ref_capture(
1806             self.fcx.tcx,
1807             self.fcx.param_env,
1808             place_with_id.place.clone(),
1809             capture_kind,
1810         );
1811
1812         // Raw pointers don't inherit mutability
1813         if place_with_id.place.deref_tys().any(Ty::is_unsafe_ptr) {
1814             capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::ImmBorrow);
1815         }
1816
1817         self.capture_information.push((
1818             place,
1819             ty::CaptureInfo {
1820                 capture_kind_expr_id: Some(diag_expr_id),
1821                 path_expr_id: Some(diag_expr_id),
1822                 capture_kind,
1823             },
1824         ));
1825     }
1826
1827     #[instrument(skip(self), level = "debug")]
1828     fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
1829         self.borrow(assignee_place, diag_expr_id, ty::BorrowKind::MutBorrow);
1830     }
1831 }
1832
1833 /// Rust doesn't permit moving fields out of a type that implements drop
1834 fn restrict_precision_for_drop_types<'a, 'tcx>(
1835     fcx: &'a FnCtxt<'a, 'tcx>,
1836     mut place: Place<'tcx>,
1837     mut curr_mode: ty::UpvarCapture,
1838     span: Span,
1839 ) -> (Place<'tcx>, ty::UpvarCapture) {
1840     let is_copy_type = fcx.infcx.type_is_copy_modulo_regions(fcx.param_env, place.ty(), span);
1841
1842     if let (false, UpvarCapture::ByValue) = (is_copy_type, curr_mode) {
1843         for i in 0..place.projections.len() {
1844             match place.ty_before_projection(i).kind() {
1845                 ty::Adt(def, _) if def.destructor(fcx.tcx).is_some() => {
1846                     truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
1847                     break;
1848                 }
1849                 _ => {}
1850             }
1851         }
1852     }
1853
1854     (place, curr_mode)
1855 }
1856
1857 /// Truncate `place` so that an `unsafe` block isn't required to capture it.
1858 /// - No projections are applied to raw pointers, since these require unsafe blocks. We capture
1859 ///   them completely.
1860 /// - No projections are applied on top of Union ADTs, since these require unsafe blocks.
1861 fn restrict_precision_for_unsafe<'tcx>(
1862     mut place: Place<'tcx>,
1863     mut curr_mode: ty::UpvarCapture,
1864 ) -> (Place<'tcx>, ty::UpvarCapture) {
1865     if place.base_ty.is_unsafe_ptr() {
1866         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
1867     }
1868
1869     if place.base_ty.is_union() {
1870         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
1871     }
1872
1873     for (i, proj) in place.projections.iter().enumerate() {
1874         if proj.ty.is_unsafe_ptr() {
1875             // Don't apply any projections on top of an unsafe ptr.
1876             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
1877             break;
1878         }
1879
1880         if proj.ty.is_union() {
1881             // Don't capture preicse fields of a union.
1882             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
1883             break;
1884         }
1885     }
1886
1887     (place, curr_mode)
1888 }
1889
1890 /// Truncate projections so that following rules are obeyed by the captured `place`:
1891 /// - No Index projections are captured, since arrays are captured completely.
1892 /// - No unsafe block is required to capture `place`
1893 /// Returns the truncated place and updated cature mode.
1894 fn restrict_capture_precision<'tcx>(
1895     place: Place<'tcx>,
1896     curr_mode: ty::UpvarCapture,
1897 ) -> (Place<'tcx>, ty::UpvarCapture) {
1898     let (mut place, mut curr_mode) = restrict_precision_for_unsafe(place, curr_mode);
1899
1900     if place.projections.is_empty() {
1901         // Nothing to do here
1902         return (place, curr_mode);
1903     }
1904
1905     for (i, proj) in place.projections.iter().enumerate() {
1906         match proj.kind {
1907             ProjectionKind::Index => {
1908                 // Arrays are completely captured, so we drop Index projections
1909                 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
1910                 return (place, curr_mode);
1911             }
1912             ProjectionKind::Deref => {}
1913             ProjectionKind::Field(..) => {} // ignore
1914             ProjectionKind::Subslice => {}  // We never capture this
1915         }
1916     }
1917
1918     (place, curr_mode)
1919 }
1920
1921 /// Truncate deref of any reference.
1922 fn adjust_for_move_closure<'tcx>(
1923     mut place: Place<'tcx>,
1924     mut kind: ty::UpvarCapture,
1925 ) -> (Place<'tcx>, ty::UpvarCapture) {
1926     let first_deref = place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
1927
1928     if let Some(idx) = first_deref {
1929         truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
1930     }
1931
1932     (place, ty::UpvarCapture::ByValue)
1933 }
1934
1935 /// Adjust closure capture just that if taking ownership of data, only move data
1936 /// from enclosing stack frame.
1937 fn adjust_for_non_move_closure<'tcx>(
1938     mut place: Place<'tcx>,
1939     mut kind: ty::UpvarCapture,
1940 ) -> (Place<'tcx>, ty::UpvarCapture) {
1941     let contains_deref =
1942         place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
1943
1944     match kind {
1945         ty::UpvarCapture::ByValue => {
1946             if let Some(idx) = contains_deref {
1947                 truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
1948             }
1949         }
1950
1951         ty::UpvarCapture::ByRef(..) => {}
1952     }
1953
1954     (place, kind)
1955 }
1956
1957 fn construct_place_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
1958     let variable_name = match place.base {
1959         PlaceBase::Upvar(upvar_id) => var_name(tcx, upvar_id.var_path.hir_id).to_string(),
1960         _ => bug!("Capture_information should only contain upvars"),
1961     };
1962
1963     let mut projections_str = String::new();
1964     for (i, item) in place.projections.iter().enumerate() {
1965         let proj = match item.kind {
1966             ProjectionKind::Field(a, b) => format!("({:?}, {:?})", a, b),
1967             ProjectionKind::Deref => String::from("Deref"),
1968             ProjectionKind::Index => String::from("Index"),
1969             ProjectionKind::Subslice => String::from("Subslice"),
1970         };
1971         if i != 0 {
1972             projections_str.push(',');
1973         }
1974         projections_str.push_str(proj.as_str());
1975     }
1976
1977     format!("{}[{}]", variable_name, projections_str)
1978 }
1979
1980 fn construct_capture_kind_reason_string<'tcx>(
1981     tcx: TyCtxt<'_>,
1982     place: &Place<'tcx>,
1983     capture_info: &ty::CaptureInfo,
1984 ) -> String {
1985     let place_str = construct_place_string(tcx, place);
1986
1987     let capture_kind_str = match capture_info.capture_kind {
1988         ty::UpvarCapture::ByValue => "ByValue".into(),
1989         ty::UpvarCapture::ByRef(kind) => format!("{:?}", kind),
1990     };
1991
1992     format!("{} captured as {} here", place_str, capture_kind_str)
1993 }
1994
1995 fn construct_path_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
1996     let place_str = construct_place_string(tcx, place);
1997
1998     format!("{} used here", place_str)
1999 }
2000
2001 fn construct_capture_info_string<'tcx>(
2002     tcx: TyCtxt<'_>,
2003     place: &Place<'tcx>,
2004     capture_info: &ty::CaptureInfo,
2005 ) -> String {
2006     let place_str = construct_place_string(tcx, place);
2007
2008     let capture_kind_str = match capture_info.capture_kind {
2009         ty::UpvarCapture::ByValue => "ByValue".into(),
2010         ty::UpvarCapture::ByRef(kind) => format!("{:?}", kind),
2011     };
2012     format!("{} -> {}", place_str, capture_kind_str)
2013 }
2014
2015 fn var_name(tcx: TyCtxt<'_>, var_hir_id: hir::HirId) -> Symbol {
2016     tcx.hir().name(var_hir_id)
2017 }
2018
2019 #[instrument(level = "debug", skip(tcx))]
2020 fn should_do_rust_2021_incompatible_closure_captures_analysis(
2021     tcx: TyCtxt<'_>,
2022     closure_id: hir::HirId,
2023 ) -> bool {
2024     let (level, _) =
2025         tcx.lint_level_at_node(lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES, closure_id);
2026
2027     !matches!(level, lint::Level::Allow)
2028 }
2029
2030 /// Return a two string tuple (s1, s2)
2031 /// - s1: Line of code that is needed for the migration: eg: `let _ = (&x, ...)`.
2032 /// - s2: Comma separated names of the variables being migrated.
2033 fn migration_suggestion_for_2229(
2034     tcx: TyCtxt<'_>,
2035     need_migrations: &Vec<NeededMigration>,
2036 ) -> (String, String) {
2037     let need_migrations_variables = need_migrations
2038         .iter()
2039         .map(|NeededMigration { var_hir_id: v, .. }| var_name(tcx, *v))
2040         .collect::<Vec<_>>();
2041
2042     let migration_ref_concat =
2043         need_migrations_variables.iter().map(|v| format!("&{}", v)).collect::<Vec<_>>().join(", ");
2044
2045     let migration_string = if 1 == need_migrations.len() {
2046         format!("let _ = {}", migration_ref_concat)
2047     } else {
2048         format!("let _ = ({})", migration_ref_concat)
2049     };
2050
2051     let migrated_variables_concat =
2052         need_migrations_variables.iter().map(|v| format!("`{}`", v)).collect::<Vec<_>>().join(", ");
2053
2054     (migration_string, migrated_variables_concat)
2055 }
2056
2057 /// Helper function to determine if we need to escalate CaptureKind from
2058 /// CaptureInfo A to B and returns the escalated CaptureInfo.
2059 /// (Note: CaptureInfo contains CaptureKind and an expression that led to capture it in that way)
2060 ///
2061 /// If both `CaptureKind`s are considered equivalent, then the CaptureInfo is selected based
2062 /// on the `CaptureInfo` containing an associated `capture_kind_expr_id`.
2063 ///
2064 /// It is the caller's duty to figure out which path_expr_id to use.
2065 ///
2066 /// If both the CaptureKind and Expression are considered to be equivalent,
2067 /// then `CaptureInfo` A is preferred. This can be useful in cases where we want to priortize
2068 /// expressions reported back to the user as part of diagnostics based on which appears earlier
2069 /// in the closure. This can be achieved simply by calling
2070 /// `determine_capture_info(existing_info, current_info)`. This works out because the
2071 /// expressions that occur earlier in the closure body than the current expression are processed before.
2072 /// Consider the following example
2073 /// ```rust,no_run
2074 /// struct Point { x: i32, y: i32 }
2075 /// let mut p: Point { x: 10, y: 10 };
2076 ///
2077 /// let c = || {
2078 ///     p.x     += 10;
2079 /// // ^ E1 ^
2080 ///     // ...
2081 ///     // More code
2082 ///     // ...
2083 ///     p.x += 10; // E2
2084 /// // ^ E2 ^
2085 /// };
2086 /// ```
2087 /// `CaptureKind` associated with both `E1` and `E2` will be ByRef(MutBorrow),
2088 /// and both have an expression associated, however for diagnostics we prefer reporting
2089 /// `E1` since it appears earlier in the closure body. When `E2` is being processed we
2090 /// would've already handled `E1`, and have an existing capture_information for it.
2091 /// Calling `determine_capture_info(existing_info_e1, current_info_e2)` will return
2092 /// `existing_info_e1` in this case, allowing us to point to `E1` in case of diagnostics.
2093 fn determine_capture_info(
2094     capture_info_a: ty::CaptureInfo,
2095     capture_info_b: ty::CaptureInfo,
2096 ) -> ty::CaptureInfo {
2097     // If the capture kind is equivalent then, we don't need to escalate and can compare the
2098     // expressions.
2099     let eq_capture_kind = match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2100         (ty::UpvarCapture::ByValue, ty::UpvarCapture::ByValue) => true,
2101         (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => ref_a == ref_b,
2102         (ty::UpvarCapture::ByValue, _) | (ty::UpvarCapture::ByRef(_), _) => false,
2103     };
2104
2105     if eq_capture_kind {
2106         match (capture_info_a.capture_kind_expr_id, capture_info_b.capture_kind_expr_id) {
2107             (Some(_), _) | (None, None) => capture_info_a,
2108             (None, Some(_)) => capture_info_b,
2109         }
2110     } else {
2111         // We select the CaptureKind which ranks higher based the following priority order:
2112         // ByValue > MutBorrow > UniqueImmBorrow > ImmBorrow
2113         match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2114             (ty::UpvarCapture::ByValue, _) => capture_info_a,
2115             (_, ty::UpvarCapture::ByValue) => capture_info_b,
2116             (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => {
2117                 match (ref_a, ref_b) {
2118                     // Take LHS:
2119                     (ty::UniqueImmBorrow | ty::MutBorrow, ty::ImmBorrow)
2120                     | (ty::MutBorrow, ty::UniqueImmBorrow) => capture_info_a,
2121
2122                     // Take RHS:
2123                     (ty::ImmBorrow, ty::UniqueImmBorrow | ty::MutBorrow)
2124                     | (ty::UniqueImmBorrow, ty::MutBorrow) => capture_info_b,
2125
2126                     (ty::ImmBorrow, ty::ImmBorrow)
2127                     | (ty::UniqueImmBorrow, ty::UniqueImmBorrow)
2128                     | (ty::MutBorrow, ty::MutBorrow) => {
2129                         bug!("Expected unequal capture kinds");
2130                     }
2131                 }
2132             }
2133         }
2134     }
2135 }
2136
2137 /// Truncates `place` to have up to `len` projections.
2138 /// `curr_mode` is the current required capture kind for the place.
2139 /// Returns the truncated `place` and the updated required capture kind.
2140 ///
2141 /// Note: Capture kind changes from `MutBorrow` to `UniqueImmBorrow` if the truncated part of the `place`
2142 /// contained `Deref` of `&mut`.
2143 fn truncate_place_to_len_and_update_capture_kind<'tcx>(
2144     place: &mut Place<'tcx>,
2145     curr_mode: &mut ty::UpvarCapture,
2146     len: usize,
2147 ) {
2148     let is_mut_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Mut));
2149
2150     // If the truncated part of the place contains `Deref` of a `&mut` then convert MutBorrow ->
2151     // UniqueImmBorrow
2152     // Note that if the place contained Deref of a raw pointer it would've not been MutBorrow, so
2153     // we don't need to worry about that case here.
2154     match curr_mode {
2155         ty::UpvarCapture::ByRef(ty::BorrowKind::MutBorrow) => {
2156             for i in len..place.projections.len() {
2157                 if place.projections[i].kind == ProjectionKind::Deref
2158                     && is_mut_ref(place.ty_before_projection(i))
2159                 {
2160                     *curr_mode = ty::UpvarCapture::ByRef(ty::BorrowKind::UniqueImmBorrow);
2161                     break;
2162                 }
2163             }
2164         }
2165
2166         ty::UpvarCapture::ByRef(..) => {}
2167         ty::UpvarCapture::ByValue => {}
2168     }
2169
2170     place.projections.truncate(len);
2171 }
2172
2173 /// Determines the Ancestry relationship of Place A relative to Place B
2174 ///
2175 /// `PlaceAncestryRelation::Ancestor` implies Place A is ancestor of Place B
2176 /// `PlaceAncestryRelation::Descendant` implies Place A is descendant of Place B
2177 /// `PlaceAncestryRelation::Divergent` implies neither of them is the ancestor of the other.
2178 fn determine_place_ancestry_relation<'tcx>(
2179     place_a: &Place<'tcx>,
2180     place_b: &Place<'tcx>,
2181 ) -> PlaceAncestryRelation {
2182     // If Place A and Place B, don't start off from the same root variable, they are divergent.
2183     if place_a.base != place_b.base {
2184         return PlaceAncestryRelation::Divergent;
2185     }
2186
2187     // Assume of length of projections_a = n
2188     let projections_a = &place_a.projections;
2189
2190     // Assume of length of projections_b = m
2191     let projections_b = &place_b.projections;
2192
2193     let same_initial_projections =
2194         iter::zip(projections_a, projections_b).all(|(proj_a, proj_b)| proj_a.kind == proj_b.kind);
2195
2196     if same_initial_projections {
2197         use std::cmp::Ordering;
2198
2199         // First min(n, m) projections are the same
2200         // Select Ancestor/Descendant
2201         match projections_b.len().cmp(&projections_a.len()) {
2202             Ordering::Greater => PlaceAncestryRelation::Ancestor,
2203             Ordering::Equal => PlaceAncestryRelation::SamePlace,
2204             Ordering::Less => PlaceAncestryRelation::Descendant,
2205         }
2206     } else {
2207         PlaceAncestryRelation::Divergent
2208     }
2209 }
2210
2211 /// Reduces the precision of the captured place when the precision doesn't yield any benefit from
2212 /// borrow checking perspective, allowing us to save us on the size of the capture.
2213 ///
2214 ///
2215 /// Fields that are read through a shared reference will always be read via a shared ref or a copy,
2216 /// and therefore capturing precise paths yields no benefit. This optimization truncates the
2217 /// rightmost deref of the capture if the deref is applied to a shared ref.
2218 ///
2219 /// Reason we only drop the last deref is because of the following edge case:
2220 ///
2221 /// ```rust
2222 /// struct MyStruct<'a> {
2223 ///    a: &'static A,
2224 ///    b: B,
2225 ///    c: C<'a>,
2226 /// }
2227 ///
2228 /// fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static {
2229 ///     let c = || drop(&*m.a.field_of_a);
2230 ///     // Here we really do want to capture `*m.a` because that outlives `'static`
2231 ///
2232 ///     // If we capture `m`, then the closure no longer outlives `'static'
2233 ///     // it is constrained to `'a`
2234 /// }
2235 /// ```
2236 fn truncate_capture_for_optimization<'tcx>(
2237     mut place: Place<'tcx>,
2238     mut curr_mode: ty::UpvarCapture,
2239 ) -> (Place<'tcx>, ty::UpvarCapture) {
2240     let is_shared_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Not));
2241
2242     // Find the right-most deref (if any). All the projections that come after this
2243     // are fields or other "in-place pointer adjustments"; these refer therefore to
2244     // data owned by whatever pointer is being dereferenced here.
2245     let idx = place.projections.iter().rposition(|proj| ProjectionKind::Deref == proj.kind);
2246
2247     match idx {
2248         // If that pointer is a shared reference, then we don't need those fields.
2249         Some(idx) if is_shared_ref(place.ty_before_projection(idx)) => {
2250             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, idx + 1)
2251         }
2252         None | Some(_) => {}
2253     }
2254
2255     (place, curr_mode)
2256 }
2257
2258 /// Precise capture is enabled if the feature gate `capture_disjoint_fields` is enabled or if
2259 /// user is using Rust Edition 2021 or higher.
2260 ///
2261 /// `span` is the span of the closure.
2262 fn enable_precise_capture(tcx: TyCtxt<'_>, span: Span) -> bool {
2263     // We use span here to ensure that if the closure was generated by a macro with a different
2264     // edition.
2265     tcx.features().capture_disjoint_fields || span.rust_2021()
2266 }