]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/upvar.rs
RustWrapper: simplify removing attributes
[rust.git] / compiler / rustc_typeck / src / check / upvar.rs
1 //! ### Inferring borrow kinds for upvars
2 //!
3 //! Whenever there is a closure expression, we need to determine how each
4 //! upvar is used. We do this by initially assigning each upvar an
5 //! immutable "borrow kind" (see `ty::BorrowKind` for details) and then
6 //! "escalating" the kind as needed. The borrow kind proceeds according to
7 //! the following lattice:
8 //!
9 //!     ty::ImmBorrow -> ty::UniqueImmBorrow -> ty::MutBorrow
10 //!
11 //! So, for example, if we see an assignment `x = 5` to an upvar `x`, we
12 //! will promote its borrow kind to mutable borrow. If we see an `&mut x`
13 //! we'll do the same. Naturally, this applies not just to the upvar, but
14 //! to everything owned by `x`, so the result is the same for something
15 //! like `x.f = 5` and so on (presuming `x` is not a borrowed pointer to a
16 //! struct). These adjustments are performed in
17 //! `adjust_upvar_borrow_kind()` (you can trace backwards through the code
18 //! from there).
19 //!
20 //! The fact that we are inferring borrow kinds as we go results in a
21 //! semi-hacky interaction with mem-categorization. In particular,
22 //! mem-categorization will query the current borrow kind as it
23 //! categorizes, and we'll return the *current* value, but this may get
24 //! adjusted later. Therefore, in this module, we generally ignore the
25 //! borrow kind (and derived mutabilities) that are returned from
26 //! mem-categorization, since they may be inaccurate. (Another option
27 //! would be to use a unification scheme, where instead of returning a
28 //! concrete borrow kind like `ty::ImmBorrow`, we return a
29 //! `ty::InferBorrow(upvar_id)` or something like that, but this would
30 //! then mean that all later passes would have to check for these figments
31 //! and report an error, and it just seems like more mess in the end.)
32
33 use super::FnCtxt;
34
35 use crate::expr_use_visitor as euv;
36 use rustc_data_structures::fx::FxIndexMap;
37 use rustc_errors::Applicability;
38 use rustc_hir as hir;
39 use rustc_hir::def_id::DefId;
40 use rustc_hir::def_id::LocalDefId;
41 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
42 use rustc_infer::infer::UpvarRegion;
43 use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection, ProjectionKind};
44 use rustc_middle::mir::FakeReadCause;
45 use rustc_middle::ty::{
46     self, ClosureSizeProfileData, Ty, TyCtxt, TypeckResults, UpvarCapture, UpvarSubsts,
47 };
48 use rustc_session::lint;
49 use rustc_span::sym;
50 use rustc_span::{BytePos, MultiSpan, Pos, Span, Symbol};
51 use rustc_trait_selection::infer::InferCtxtExt;
52
53 use rustc_data_structures::stable_map::FxHashMap;
54 use rustc_data_structures::stable_set::FxHashSet;
55 use rustc_index::vec::Idx;
56 use rustc_target::abi::VariantIdx;
57
58 use std::iter;
59
60 /// Describe the relationship between the paths of two places
61 /// eg:
62 /// - `foo` is ancestor of `foo.bar.baz`
63 /// - `foo.bar.baz` is an descendant of `foo.bar`
64 /// - `foo.bar` and `foo.baz` are divergent
65 enum PlaceAncestryRelation {
66     Ancestor,
67     Descendant,
68     SamePlace,
69     Divergent,
70 }
71
72 /// Intermediate format to store a captured `Place` and associated `ty::CaptureInfo`
73 /// during capture analysis. Information in this map feeds into the minimum capture
74 /// analysis pass.
75 type InferredCaptureInformation<'tcx> = FxIndexMap<Place<'tcx>, ty::CaptureInfo<'tcx>>;
76
77 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
78     pub fn closure_analyze(&self, body: &'tcx hir::Body<'tcx>) {
79         InferBorrowKindVisitor { fcx: self }.visit_body(body);
80
81         // it's our job to process these.
82         assert!(self.deferred_call_resolutions.borrow().is_empty());
83     }
84 }
85
86 /// Intermediate format to store the hir_id pointing to the use that resulted in the
87 /// corresponding place being captured and a String which contains the captured value's
88 /// name (i.e: a.b.c)
89 #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
90 enum UpvarMigrationInfo {
91     /// We previously captured all of `x`, but now we capture some sub-path.
92     CapturingPrecise { source_expr: Option<hir::HirId>, var_name: String },
93     CapturingNothing {
94         // where the variable appears in the closure (but is not captured)
95         use_span: Span,
96     },
97 }
98
99 /// Reasons that we might issue a migration warning.
100 #[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
101 struct MigrationWarningReason {
102     /// When we used to capture `x` in its entirety, we implemented the auto-trait(s)
103     /// in this vec, but now we don't.
104     auto_traits: Vec<&'static str>,
105
106     /// When we used to capture `x` in its entirety, we would execute some destructors
107     /// at a different time.
108     drop_order: bool,
109 }
110
111 impl MigrationWarningReason {
112     fn migration_message(&self) -> String {
113         let base = "changes to closure capture in Rust 2021 will affect";
114         if !self.auto_traits.is_empty() && self.drop_order {
115             format!("{} drop order and which traits the closure implements", base)
116         } else if self.drop_order {
117             format!("{} drop order", base)
118         } else {
119             format!("{} which traits the closure implements", base)
120         }
121     }
122 }
123
124 /// Intermediate format to store information needed to generate a note in the migration lint.
125 struct MigrationLintNote {
126     captures_info: UpvarMigrationInfo,
127
128     /// reasons why migration is needed for this capture
129     reason: MigrationWarningReason,
130 }
131
132 /// Intermediate format to store the hir id of the root variable and a HashSet containing
133 /// information on why the root variable should be fully captured
134 struct NeededMigration {
135     var_hir_id: hir::HirId,
136     diagnostics_info: Vec<MigrationLintNote>,
137 }
138
139 struct InferBorrowKindVisitor<'a, 'tcx> {
140     fcx: &'a FnCtxt<'a, 'tcx>,
141 }
142
143 impl<'a, 'tcx> Visitor<'tcx> for InferBorrowKindVisitor<'a, 'tcx> {
144     type Map = intravisit::ErasedMap<'tcx>;
145
146     fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
147         NestedVisitorMap::None
148     }
149
150     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
151         match expr.kind {
152             hir::ExprKind::Closure(cc, _, body_id, _, _) => {
153                 let body = self.fcx.tcx.hir().body(body_id);
154                 self.visit_body(body);
155                 self.fcx.analyze_closure(expr.hir_id, expr.span, body_id, body, cc);
156             }
157             hir::ExprKind::ConstBlock(anon_const) => {
158                 let body = self.fcx.tcx.hir().body(anon_const.body);
159                 self.visit_body(body);
160             }
161             _ => {}
162         }
163
164         intravisit::walk_expr(self, expr);
165     }
166 }
167
168 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
169     /// Analysis starting point.
170     #[instrument(skip(self, body), level = "debug")]
171     fn analyze_closure(
172         &self,
173         closure_hir_id: hir::HirId,
174         span: Span,
175         body_id: hir::BodyId,
176         body: &'tcx hir::Body<'tcx>,
177         capture_clause: hir::CaptureBy,
178     ) {
179         // Extract the type of the closure.
180         let ty = self.node_ty(closure_hir_id);
181         let (closure_def_id, substs) = match *ty.kind() {
182             ty::Closure(def_id, substs) => (def_id, UpvarSubsts::Closure(substs)),
183             ty::Generator(def_id, substs, _) => (def_id, UpvarSubsts::Generator(substs)),
184             ty::Error(_) => {
185                 // #51714: skip analysis when we have already encountered type errors
186                 return;
187             }
188             _ => {
189                 span_bug!(
190                     span,
191                     "type of closure expr {:?} is not a closure {:?}",
192                     closure_hir_id,
193                     ty
194                 );
195             }
196         };
197
198         let infer_kind = if let UpvarSubsts::Closure(closure_substs) = substs {
199             self.closure_kind(closure_substs).is_none().then_some(closure_substs)
200         } else {
201             None
202         };
203
204         let local_def_id = closure_def_id.expect_local();
205
206         let body_owner_def_id = self.tcx.hir().body_owner_def_id(body.id());
207         assert_eq!(body_owner_def_id.to_def_id(), closure_def_id);
208         let mut delegate = InferBorrowKind {
209             fcx: self,
210             closure_def_id,
211             closure_span: span,
212             capture_information: Default::default(),
213             fake_reads: Default::default(),
214         };
215         euv::ExprUseVisitor::new(
216             &mut delegate,
217             &self.infcx,
218             body_owner_def_id,
219             self.param_env,
220             &self.typeck_results.borrow(),
221         )
222         .consume_body(body);
223
224         debug!(
225             "For closure={:?}, capture_information={:#?}",
226             closure_def_id, delegate.capture_information
227         );
228
229         self.log_capture_analysis_first_pass(closure_def_id, &delegate.capture_information, span);
230
231         let (capture_information, closure_kind, origin) = self
232             .process_collected_capture_information(capture_clause, delegate.capture_information);
233
234         self.compute_min_captures(closure_def_id, capture_information);
235
236         let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
237
238         if should_do_rust_2021_incompatible_closure_captures_analysis(self.tcx, closure_hir_id) {
239             self.perform_2229_migration_anaysis(closure_def_id, body_id, capture_clause, span);
240         }
241
242         let after_feature_tys = self.final_upvar_tys(closure_def_id);
243
244         // We now fake capture information for all variables that are mentioned within the closure
245         // We do this after handling migrations so that min_captures computes before
246         if !enable_precise_capture(self.tcx, span) {
247             let mut capture_information: InferredCaptureInformation<'tcx> = Default::default();
248
249             if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
250                 for var_hir_id in upvars.keys() {
251                     let place = self.place_for_root_variable(local_def_id, *var_hir_id);
252
253                     debug!("seed place {:?}", place);
254
255                     let upvar_id = ty::UpvarId::new(*var_hir_id, local_def_id);
256                     let capture_kind =
257                         self.init_capture_kind_for_place(&place, capture_clause, upvar_id, span);
258                     let fake_info = ty::CaptureInfo {
259                         capture_kind_expr_id: None,
260                         path_expr_id: None,
261                         capture_kind,
262                     };
263
264                     capture_information.insert(place, fake_info);
265                 }
266             }
267
268             // This will update the min captures based on this new fake information.
269             self.compute_min_captures(closure_def_id, capture_information);
270         }
271
272         let before_feature_tys = self.final_upvar_tys(closure_def_id);
273
274         if let Some(closure_substs) = infer_kind {
275             // Unify the (as yet unbound) type variable in the closure
276             // substs with the kind we inferred.
277             let closure_kind_ty = closure_substs.as_closure().kind_ty();
278             self.demand_eqtype(span, closure_kind.to_ty(self.tcx), closure_kind_ty);
279
280             // If we have an origin, store it.
281             if let Some(origin) = origin {
282                 let origin = if enable_precise_capture(self.tcx, span) {
283                     (origin.0, origin.1)
284                 } else {
285                     (origin.0, Place { projections: vec![], ..origin.1 })
286                 };
287
288                 self.typeck_results
289                     .borrow_mut()
290                     .closure_kind_origins_mut()
291                     .insert(closure_hir_id, origin);
292             }
293         }
294
295         self.log_closure_min_capture_info(closure_def_id, span);
296
297         // Now that we've analyzed the closure, we know how each
298         // variable is borrowed, and we know what traits the closure
299         // implements (Fn vs FnMut etc). We now have some updates to do
300         // with that information.
301         //
302         // Note that no closure type C may have an upvar of type C
303         // (though it may reference itself via a trait object). This
304         // results from the desugaring of closures to a struct like
305         // `Foo<..., UV0...UVn>`. If one of those upvars referenced
306         // C, then the type would have infinite size (and the
307         // inference algorithm will reject it).
308
309         // Equate the type variables for the upvars with the actual types.
310         let final_upvar_tys = self.final_upvar_tys(closure_def_id);
311         debug!(
312             "analyze_closure: id={:?} substs={:?} final_upvar_tys={:?}",
313             closure_hir_id, substs, final_upvar_tys
314         );
315
316         // Build a tuple (U0..Un) of the final upvar types U0..Un
317         // and unify the upvar tupe type in the closure with it:
318         let final_tupled_upvars_type = self.tcx.mk_tup(final_upvar_tys.iter());
319         self.demand_suptype(span, substs.tupled_upvars_ty(), final_tupled_upvars_type);
320
321         let fake_reads = delegate
322             .fake_reads
323             .into_iter()
324             .map(|(place, cause, hir_id)| (place, cause, hir_id))
325             .collect();
326         self.typeck_results.borrow_mut().closure_fake_reads.insert(closure_def_id, fake_reads);
327
328         if self.tcx.sess.opts.debugging_opts.profile_closures {
329             self.typeck_results.borrow_mut().closure_size_eval.insert(
330                 closure_def_id,
331                 ClosureSizeProfileData {
332                     before_feature_tys: self.tcx.mk_tup(before_feature_tys.into_iter()),
333                     after_feature_tys: self.tcx.mk_tup(after_feature_tys.into_iter()),
334                 },
335             );
336         }
337
338         // If we are also inferred the closure kind here,
339         // process any deferred resolutions.
340         let deferred_call_resolutions = self.remove_deferred_call_resolutions(closure_def_id);
341         for deferred_call_resolution in deferred_call_resolutions {
342             deferred_call_resolution.resolve(self);
343         }
344     }
345
346     // Returns a list of `Ty`s for each upvar.
347     fn final_upvar_tys(&self, closure_id: DefId) -> Vec<Ty<'tcx>> {
348         // Presently an unboxed closure type cannot "escape" out of a
349         // function, so we will only encounter ones that originated in the
350         // local crate or were inlined into it along with some function.
351         // This may change if abstract return types of some sort are
352         // implemented.
353         self.typeck_results
354             .borrow()
355             .closure_min_captures_flattened(closure_id)
356             .map(|captured_place| {
357                 let upvar_ty = captured_place.place.ty();
358                 let capture = captured_place.info.capture_kind;
359
360                 debug!(
361                     "final_upvar_tys: place={:?} upvar_ty={:?} capture={:?}, mutability={:?}",
362                     captured_place.place, upvar_ty, capture, captured_place.mutability,
363                 );
364
365                 apply_capture_kind_on_capture_ty(self.tcx, upvar_ty, capture)
366             })
367             .collect()
368     }
369
370     /// Adjusts the closure capture information to ensure that the operations aren't unsafe,
371     /// and that the path can be captured with required capture kind (depending on use in closure,
372     /// move closure etc.)
373     ///
374     /// Returns the set of of adjusted information along with the inferred closure kind and span
375     /// associated with the closure kind inference.
376     ///
377     /// Note that we *always* infer a minimal kind, even if
378     /// we don't always *use* that in the final result (i.e., sometimes
379     /// we've taken the closure kind from the expectations instead, and
380     /// for generators we don't even implement the closure traits
381     /// really).
382     ///
383     /// If we inferred that the closure needs to be FnMut/FnOnce, last element of the returned tuple
384     /// contains a `Some()` with the `Place` that caused us to do so.
385     fn process_collected_capture_information(
386         &self,
387         capture_clause: hir::CaptureBy,
388         capture_information: InferredCaptureInformation<'tcx>,
389     ) -> (InferredCaptureInformation<'tcx>, ty::ClosureKind, Option<(Span, Place<'tcx>)>) {
390         let mut processed: InferredCaptureInformation<'tcx> = Default::default();
391
392         let mut closure_kind = ty::ClosureKind::LATTICE_BOTTOM;
393         let mut origin: Option<(Span, Place<'tcx>)> = None;
394
395         for (place, mut capture_info) in capture_information {
396             // Apply rules for safety before inferring closure kind
397             let (place, capture_kind) =
398                 restrict_capture_precision(place, capture_info.capture_kind);
399             capture_info.capture_kind = capture_kind;
400
401             let (place, capture_kind) =
402                 truncate_capture_for_optimization(place, capture_info.capture_kind);
403             capture_info.capture_kind = capture_kind;
404
405             let usage_span = if let Some(usage_expr) = capture_info.path_expr_id {
406                 self.tcx.hir().span(usage_expr)
407             } else {
408                 unreachable!()
409             };
410
411             let updated = match capture_info.capture_kind {
412                 ty::UpvarCapture::ByValue(..) => match closure_kind {
413                     ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
414                         (ty::ClosureKind::FnOnce, Some((usage_span, place.clone())))
415                     }
416                     // If closure is already FnOnce, don't update
417                     ty::ClosureKind::FnOnce => (closure_kind, origin),
418                 },
419
420                 ty::UpvarCapture::ByRef(ty::UpvarBorrow {
421                     kind: ty::BorrowKind::MutBorrow | ty::BorrowKind::UniqueImmBorrow,
422                     ..
423                 }) => {
424                     match closure_kind {
425                         ty::ClosureKind::Fn => {
426                             (ty::ClosureKind::FnMut, Some((usage_span, place.clone())))
427                         }
428                         // Don't update the origin
429                         ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce => (closure_kind, origin),
430                     }
431                 }
432
433                 _ => (closure_kind, origin),
434             };
435
436             closure_kind = updated.0;
437             origin = updated.1;
438
439             let (place, capture_kind) = match capture_clause {
440                 hir::CaptureBy::Value => adjust_for_move_closure(place, capture_info.capture_kind),
441                 hir::CaptureBy::Ref => {
442                     adjust_for_non_move_closure(place, capture_info.capture_kind)
443                 }
444             };
445
446             // This restriction needs to be applied after we have handled adjustments for `move`
447             // closures. We want to make sure any adjustment that might make us move the place into
448             // the closure gets handled.
449             let (place, capture_kind) =
450                 restrict_precision_for_drop_types(self, place, capture_kind, usage_span);
451
452             capture_info.capture_kind = capture_kind;
453
454             let capture_info = if let Some(existing) = processed.get(&place) {
455                 determine_capture_info(*existing, capture_info)
456             } else {
457                 capture_info
458             };
459             processed.insert(place, capture_info);
460         }
461
462         (processed, closure_kind, origin)
463     }
464
465     /// Analyzes the information collected by `InferBorrowKind` to compute the min number of
466     /// Places (and corresponding capture kind) that we need to keep track of to support all
467     /// the required captured paths.
468     ///
469     ///
470     /// Note: If this function is called multiple times for the same closure, it will update
471     ///       the existing min_capture map that is stored in TypeckResults.
472     ///
473     /// Eg:
474     /// ```rust,no_run
475     /// struct Point { x: i32, y: i32 }
476     ///
477     /// let s: String;  // hir_id_s
478     /// let mut p: Point; // his_id_p
479     /// let c = || {
480     ///        println!("{}", s);  // L1
481     ///        p.x += 10;  // L2
482     ///        println!("{}" , p.y) // L3
483     ///        println!("{}", p) // L4
484     ///        drop(s);   // L5
485     /// };
486     /// ```
487     /// and let hir_id_L1..5 be the expressions pointing to use of a captured variable on
488     /// the lines L1..5 respectively.
489     ///
490     /// InferBorrowKind results in a structure like this:
491     ///
492     /// ```text
493     /// {
494     ///       Place(base: hir_id_s, projections: [], ....) -> {
495     ///                                                            capture_kind_expr: hir_id_L5,
496     ///                                                            path_expr_id: hir_id_L5,
497     ///                                                            capture_kind: ByValue
498     ///                                                       },
499     ///       Place(base: hir_id_p, projections: [Field(0, 0)], ...) -> {
500     ///                                                                     capture_kind_expr: hir_id_L2,
501     ///                                                                     path_expr_id: hir_id_L2,
502     ///                                                                     capture_kind: ByValue
503     ///                                                                 },
504     ///       Place(base: hir_id_p, projections: [Field(1, 0)], ...) -> {
505     ///                                                                     capture_kind_expr: hir_id_L3,
506     ///                                                                     path_expr_id: hir_id_L3,
507     ///                                                                     capture_kind: ByValue
508     ///                                                                 },
509     ///       Place(base: hir_id_p, projections: [], ...) -> {
510     ///                                                          capture_kind_expr: hir_id_L4,
511     ///                                                          path_expr_id: hir_id_L4,
512     ///                                                          capture_kind: ByValue
513     ///                                                      },
514     /// ```
515     ///
516     /// After the min capture analysis, we get:
517     /// ```text
518     /// {
519     ///       hir_id_s -> [
520     ///            Place(base: hir_id_s, projections: [], ....) -> {
521     ///                                                                capture_kind_expr: hir_id_L5,
522     ///                                                                path_expr_id: hir_id_L5,
523     ///                                                                capture_kind: ByValue
524     ///                                                            },
525     ///       ],
526     ///       hir_id_p -> [
527     ///            Place(base: hir_id_p, projections: [], ...) -> {
528     ///                                                               capture_kind_expr: hir_id_L2,
529     ///                                                               path_expr_id: hir_id_L4,
530     ///                                                               capture_kind: ByValue
531     ///                                                           },
532     ///       ],
533     /// ```
534     fn compute_min_captures(
535         &self,
536         closure_def_id: DefId,
537         capture_information: InferredCaptureInformation<'tcx>,
538     ) {
539         if capture_information.is_empty() {
540             return;
541         }
542
543         let mut typeck_results = self.typeck_results.borrow_mut();
544
545         let mut root_var_min_capture_list =
546             typeck_results.closure_min_captures.remove(&closure_def_id).unwrap_or_default();
547
548         for (mut place, capture_info) in capture_information.into_iter() {
549             let var_hir_id = match place.base {
550                 PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
551                 base => bug!("Expected upvar, found={:?}", base),
552             };
553
554             let min_cap_list = match root_var_min_capture_list.get_mut(&var_hir_id) {
555                 None => {
556                     let mutability = self.determine_capture_mutability(&typeck_results, &place);
557                     let min_cap_list =
558                         vec![ty::CapturedPlace { place, info: capture_info, mutability }];
559                     root_var_min_capture_list.insert(var_hir_id, min_cap_list);
560                     continue;
561                 }
562                 Some(min_cap_list) => min_cap_list,
563             };
564
565             // Go through each entry in the current list of min_captures
566             // - if ancestor is found, update it's capture kind to account for current place's
567             // capture information.
568             //
569             // - if descendant is found, remove it from the list, and update the current place's
570             // capture information to account for the descendants's capture kind.
571             //
572             // We can never be in a case where the list contains both an ancestor and a descendant
573             // Also there can only be ancestor but in case of descendants there might be
574             // multiple.
575
576             let mut descendant_found = false;
577             let mut updated_capture_info = capture_info;
578             min_cap_list.retain(|possible_descendant| {
579                 match determine_place_ancestry_relation(&place, &possible_descendant.place) {
580                     // current place is ancestor of possible_descendant
581                     PlaceAncestryRelation::Ancestor => {
582                         descendant_found = true;
583
584                         let mut possible_descendant = possible_descendant.clone();
585                         let backup_path_expr_id = updated_capture_info.path_expr_id;
586
587                         // Truncate the descendant (already in min_captures) to be same as the ancestor to handle any
588                         // possible change in capture mode.
589                         truncate_place_to_len_and_update_capture_kind(
590                             &mut possible_descendant.place,
591                             &mut possible_descendant.info.capture_kind,
592                             place.projections.len(),
593                         );
594
595                         updated_capture_info =
596                             determine_capture_info(updated_capture_info, possible_descendant.info);
597
598                         // we need to keep the ancestor's `path_expr_id`
599                         updated_capture_info.path_expr_id = backup_path_expr_id;
600                         false
601                     }
602
603                     _ => true,
604                 }
605             });
606
607             let mut ancestor_found = false;
608             if !descendant_found {
609                 for possible_ancestor in min_cap_list.iter_mut() {
610                     match determine_place_ancestry_relation(&place, &possible_ancestor.place) {
611                         // current place is descendant of possible_ancestor
612                         PlaceAncestryRelation::Descendant | PlaceAncestryRelation::SamePlace => {
613                             ancestor_found = true;
614                             let backup_path_expr_id = possible_ancestor.info.path_expr_id;
615
616                             // Truncate the descendant (current place) to be same as the ancestor to handle any
617                             // possible change in capture mode.
618                             truncate_place_to_len_and_update_capture_kind(
619                                 &mut place,
620                                 &mut updated_capture_info.capture_kind,
621                                 possible_ancestor.place.projections.len(),
622                             );
623
624                             possible_ancestor.info = determine_capture_info(
625                                 possible_ancestor.info,
626                                 updated_capture_info,
627                             );
628
629                             // we need to keep the ancestor's `path_expr_id`
630                             possible_ancestor.info.path_expr_id = backup_path_expr_id;
631
632                             // Only one ancestor of the current place will be in the list.
633                             break;
634                         }
635                         _ => {}
636                     }
637                 }
638             }
639
640             // Only need to insert when we don't have an ancestor in the existing min capture list
641             if !ancestor_found {
642                 let mutability = self.determine_capture_mutability(&typeck_results, &place);
643                 let captured_place =
644                     ty::CapturedPlace { place, info: updated_capture_info, mutability };
645                 min_cap_list.push(captured_place);
646             }
647         }
648
649         debug!(
650             "For closure={:?}, min_captures before sorting={:?}",
651             closure_def_id, root_var_min_capture_list
652         );
653
654         // Now that we have the minimized list of captures, sort the captures by field id.
655         // This causes the closure to capture the upvars in the same order as the fields are
656         // declared which is also the drop order. Thus, in situations where we capture all the
657         // fields of some type, the obserable drop order will remain the same as it previously
658         // was even though we're dropping each capture individually.
659         // See https://github.com/rust-lang/project-rfc-2229/issues/42 and
660         // `src/test/ui/closures/2229_closure_analysis/preserve_field_drop_order.rs`.
661         for (_, captures) in &mut root_var_min_capture_list {
662             captures.sort_by(|capture1, capture2| {
663                 for (p1, p2) in capture1.place.projections.iter().zip(&capture2.place.projections) {
664                     // We do not need to look at the `Projection.ty` fields here because at each
665                     // step of the iteration, the projections will either be the same and therefore
666                     // the types must be as well or the current projection will be different and
667                     // we will return the result of comparing the field indexes.
668                     match (p1.kind, p2.kind) {
669                         // Paths are the same, continue to next loop.
670                         (ProjectionKind::Deref, ProjectionKind::Deref) => {}
671                         (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _))
672                             if i1 == i2 => {}
673
674                         // Fields are different, compare them.
675                         (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _)) => {
676                             return i1.cmp(&i2);
677                         }
678
679                         // We should have either a pair of `Deref`s or a pair of `Field`s.
680                         // Anything else is a bug.
681                         (
682                             l @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
683                             r @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
684                         ) => bug!(
685                             "ProjectionKinds Deref and Field were mismatched: ({:?}, {:?})",
686                             l,
687                             r
688                         ),
689                         (
690                             l @ (ProjectionKind::Index
691                             | ProjectionKind::Subslice
692                             | ProjectionKind::Deref
693                             | ProjectionKind::Field(..)),
694                             r @ (ProjectionKind::Index
695                             | ProjectionKind::Subslice
696                             | ProjectionKind::Deref
697                             | ProjectionKind::Field(..)),
698                         ) => bug!(
699                             "ProjectionKinds Index or Subslice were unexpected: ({:?}, {:?})",
700                             l,
701                             r
702                         ),
703                     }
704                 }
705
706                 unreachable!(
707                     "we captured two identical projections: capture1 = {:?}, capture2 = {:?}",
708                     capture1, capture2
709                 );
710             });
711         }
712
713         debug!(
714             "For closure={:?}, min_captures after sorting={:#?}",
715             closure_def_id, root_var_min_capture_list
716         );
717         typeck_results.closure_min_captures.insert(closure_def_id, root_var_min_capture_list);
718     }
719
720     /// Perform the migration analysis for RFC 2229, and emit lint
721     /// `disjoint_capture_drop_reorder` if needed.
722     fn perform_2229_migration_anaysis(
723         &self,
724         closure_def_id: DefId,
725         body_id: hir::BodyId,
726         capture_clause: hir::CaptureBy,
727         span: Span,
728     ) {
729         let (need_migrations, reasons) = self.compute_2229_migrations(
730             closure_def_id,
731             span,
732             capture_clause,
733             self.typeck_results.borrow().closure_min_captures.get(&closure_def_id),
734         );
735
736         if !need_migrations.is_empty() {
737             let (migration_string, migrated_variables_concat) =
738                 migration_suggestion_for_2229(self.tcx, &need_migrations);
739
740             let local_def_id = closure_def_id.expect_local();
741             let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
742             let closure_span = self.tcx.hir().span(closure_hir_id);
743             let closure_head_span = self.tcx.sess.source_map().guess_head_span(closure_span);
744             self.tcx.struct_span_lint_hir(
745                 lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
746                 closure_hir_id,
747                  closure_head_span,
748                 |lint| {
749                     let mut diagnostics_builder = lint.build(
750                         &reasons.migration_message(),
751                     );
752                     for NeededMigration { var_hir_id, diagnostics_info } in &need_migrations {
753                         // Labels all the usage of the captured variable and why they are responsible
754                         // for migration being needed
755                         for lint_note in diagnostics_info.iter() {
756                             match &lint_note.captures_info {
757                                 UpvarMigrationInfo::CapturingPrecise { source_expr: Some(capture_expr_id), var_name: captured_name } => {
758                                     let cause_span = self.tcx.hir().span(*capture_expr_id);
759                                     diagnostics_builder.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
760                                         self.tcx.hir().name(*var_hir_id),
761                                         captured_name,
762                                     ));
763                                 }
764                                 UpvarMigrationInfo::CapturingNothing { use_span } => {
765                                     diagnostics_builder.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
766                                         self.tcx.hir().name(*var_hir_id),
767                                     ));
768                                 }
769
770                                 _ => { }
771                             }
772
773                             // Add a label pointing to where a captured variable affected by drop order
774                             // is dropped
775                             if lint_note.reason.drop_order {
776                                 let drop_location_span = drop_location_span(self.tcx, &closure_hir_id);
777
778                                 match &lint_note.captures_info {
779                                     UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
780                                         diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
781                                             self.tcx.hir().name(*var_hir_id),
782                                             captured_name,
783                                         ));
784                                     }
785                                     UpvarMigrationInfo::CapturingNothing { use_span: _ } => {
786                                         diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
787                                             v = self.tcx.hir().name(*var_hir_id),
788                                         ));
789                                     }
790                                 }
791                             }
792
793                             // Add a label explaining why a closure no longer implements a trait
794                             for &missing_trait in &lint_note.reason.auto_traits {
795                                 // not capturing something anymore cannot cause a trait to fail to be implemented:
796                                 match &lint_note.captures_info {
797                                     UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
798                                         let var_name = self.tcx.hir().name(*var_hir_id);
799                                         diagnostics_builder.span_label(closure_head_span, format!("\
800                                         in Rust 2018, this closure implements {missing_trait} \
801                                         as `{var_name}` implements {missing_trait}, but in Rust 2021, \
802                                         this closure will no longer implement {missing_trait} \
803                                         because `{var_name}` is not fully captured \
804                                         and `{captured_name}` does not implement {missing_trait}"));
805                                     }
806
807                                     // Cannot happen: if we don't capture a variable, we impl strictly more traits
808                                     UpvarMigrationInfo::CapturingNothing { use_span } => span_bug!(*use_span, "missing trait from not capturing something"),
809                                 }
810                             }
811                         }
812                     }
813                     diagnostics_builder.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/disjoint-capture-in-closures.html>");
814
815                     let diagnostic_msg = format!(
816                         "add a dummy let to cause {} to be fully captured",
817                         migrated_variables_concat
818                     );
819
820                     let mut closure_body_span = {
821                         // If the body was entirely expanded from a macro
822                         // invocation, i.e. the body is not contained inside the
823                         // closure span, then we walk up the expansion until we
824                         // find the span before the expansion.
825                         let s = self.tcx.hir().span(body_id.hir_id);
826                         s.find_ancestor_inside(closure_span).unwrap_or(s)
827                     };
828
829                     if let Ok(mut s) = self.tcx.sess.source_map().span_to_snippet(closure_body_span) {
830                         if s.starts_with('$') {
831                             // Looks like a macro fragment. Try to find the real block.
832                             if let Some(hir::Node::Expr(&hir::Expr {
833                                 kind: hir::ExprKind::Block(block, ..), ..
834                             })) = self.tcx.hir().find(body_id.hir_id) {
835                                 // If the body is a block (with `{..}`), we use the span of that block.
836                                 // E.g. with a `|| $body` expanded from a `m!({ .. })`, we use `{ .. }`, and not `$body`.
837                                 // Since we know it's a block, we know we can insert the `let _ = ..` without
838                                 // breaking the macro syntax.
839                                 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(block.span) {
840                                     closure_body_span = block.span;
841                                     s = snippet;
842                                 }
843                             }
844                         }
845
846                         let mut lines = s.lines();
847                         let line1 = lines.next().unwrap_or_default();
848
849                         if line1.trim_end() == "{" {
850                             // This is a multi-line closure with just a `{` on the first line,
851                             // so we put the `let` on its own line.
852                             // We take the indentation from the next non-empty line.
853                             let line2 = lines.find(|line| !line.is_empty()).unwrap_or_default();
854                             let indent = line2.split_once(|c: char| !c.is_whitespace()).unwrap_or_default().0;
855                             diagnostics_builder.span_suggestion(
856                                 closure_body_span.with_lo(closure_body_span.lo() + BytePos::from_usize(line1.len())).shrink_to_lo(),
857                                 &diagnostic_msg,
858                                 format!("\n{}{};", indent, migration_string),
859                                 Applicability::MachineApplicable,
860                             );
861                         } else if line1.starts_with('{') {
862                             // This is a closure with its body wrapped in
863                             // braces, but with more than just the opening
864                             // brace on the first line. We put the `let`
865                             // directly after the `{`.
866                             diagnostics_builder.span_suggestion(
867                                 closure_body_span.with_lo(closure_body_span.lo() + BytePos(1)).shrink_to_lo(),
868                                 &diagnostic_msg,
869                                 format!(" {};", migration_string),
870                                 Applicability::MachineApplicable,
871                             );
872                         } else {
873                             // This is a closure without braces around the body.
874                             // We add braces to add the `let` before the body.
875                             diagnostics_builder.multipart_suggestion(
876                                 &diagnostic_msg,
877                                 vec![
878                                     (closure_body_span.shrink_to_lo(), format!("{{ {}; ", migration_string)),
879                                     (closure_body_span.shrink_to_hi(), " }".to_string()),
880                                 ],
881                                 Applicability::MachineApplicable
882                             );
883                         }
884                     } else {
885                         diagnostics_builder.span_suggestion(
886                             closure_span,
887                             &diagnostic_msg,
888                             migration_string,
889                             Applicability::HasPlaceholders
890                         );
891                     }
892
893                     diagnostics_builder.emit();
894                 },
895             );
896         }
897     }
898
899     /// Combines all the reasons for 2229 migrations
900     fn compute_2229_migrations_reasons(
901         &self,
902         auto_trait_reasons: FxHashSet<&'static str>,
903         drop_order: bool,
904     ) -> MigrationWarningReason {
905         let mut reasons = MigrationWarningReason::default();
906
907         reasons.auto_traits.extend(auto_trait_reasons);
908         reasons.drop_order = drop_order;
909
910         reasons
911     }
912
913     /// Figures out the list of root variables (and their types) that aren't completely
914     /// captured by the closure when `capture_disjoint_fields` is enabled and auto-traits
915     /// differ between the root variable and the captured paths.
916     ///
917     /// Returns a tuple containing a HashMap of CapturesInfo that maps to a HashSet of trait names
918     /// if migration is needed for traits for the provided var_hir_id, otherwise returns None
919     fn compute_2229_migrations_for_trait(
920         &self,
921         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
922         var_hir_id: hir::HirId,
923         closure_clause: hir::CaptureBy,
924     ) -> Option<FxHashMap<UpvarMigrationInfo, FxHashSet<&'static str>>> {
925         let auto_traits_def_id = vec![
926             self.tcx.lang_items().clone_trait(),
927             self.tcx.lang_items().sync_trait(),
928             self.tcx.get_diagnostic_item(sym::Send),
929             self.tcx.lang_items().unpin_trait(),
930             self.tcx.get_diagnostic_item(sym::unwind_safe_trait),
931             self.tcx.get_diagnostic_item(sym::ref_unwind_safe_trait),
932         ];
933         const AUTO_TRAITS: [&str; 6] =
934             ["`Clone`", "`Sync`", "`Send`", "`Unpin`", "`UnwindSafe`", "`RefUnwindSafe`"];
935
936         let root_var_min_capture_list = min_captures.and_then(|m| m.get(&var_hir_id))?;
937
938         let ty = self.infcx.resolve_vars_if_possible(self.node_ty(var_hir_id));
939
940         let ty = match closure_clause {
941             hir::CaptureBy::Value => ty, // For move closure the capture kind should be by value
942             hir::CaptureBy::Ref => {
943                 // For non move closure the capture kind is the max capture kind of all captures
944                 // according to the ordering ImmBorrow < UniqueImmBorrow < MutBorrow < ByValue
945                 let mut max_capture_info = root_var_min_capture_list.first().unwrap().info;
946                 for capture in root_var_min_capture_list.iter() {
947                     max_capture_info = determine_capture_info(max_capture_info, capture.info);
948                 }
949
950                 apply_capture_kind_on_capture_ty(self.tcx, ty, max_capture_info.capture_kind)
951             }
952         };
953
954         let mut obligations_should_hold = Vec::new();
955         // Checks if a root variable implements any of the auto traits
956         for check_trait in auto_traits_def_id.iter() {
957             obligations_should_hold.push(
958                 check_trait
959                     .map(|check_trait| {
960                         self.infcx
961                             .type_implements_trait(
962                                 check_trait,
963                                 ty,
964                                 self.tcx.mk_substs_trait(ty, &[]),
965                                 self.param_env,
966                             )
967                             .must_apply_modulo_regions()
968                     })
969                     .unwrap_or(false),
970             );
971         }
972
973         let mut problematic_captures = FxHashMap::default();
974         // Check whether captured fields also implement the trait
975         for capture in root_var_min_capture_list.iter() {
976             let ty = apply_capture_kind_on_capture_ty(
977                 self.tcx,
978                 capture.place.ty(),
979                 capture.info.capture_kind,
980             );
981
982             // Checks if a capture implements any of the auto traits
983             let mut obligations_holds_for_capture = Vec::new();
984             for check_trait in auto_traits_def_id.iter() {
985                 obligations_holds_for_capture.push(
986                     check_trait
987                         .map(|check_trait| {
988                             self.infcx
989                                 .type_implements_trait(
990                                     check_trait,
991                                     ty,
992                                     self.tcx.mk_substs_trait(ty, &[]),
993                                     self.param_env,
994                                 )
995                                 .must_apply_modulo_regions()
996                         })
997                         .unwrap_or(false),
998                 );
999             }
1000
1001             let mut capture_problems = FxHashSet::default();
1002
1003             // Checks if for any of the auto traits, one or more trait is implemented
1004             // by the root variable but not by the capture
1005             for (idx, _) in obligations_should_hold.iter().enumerate() {
1006                 if !obligations_holds_for_capture[idx] && obligations_should_hold[idx] {
1007                     capture_problems.insert(AUTO_TRAITS[idx]);
1008                 }
1009             }
1010
1011             if !capture_problems.is_empty() {
1012                 problematic_captures.insert(
1013                     UpvarMigrationInfo::CapturingPrecise {
1014                         source_expr: capture.info.path_expr_id,
1015                         var_name: capture.to_string(self.tcx),
1016                     },
1017                     capture_problems,
1018                 );
1019             }
1020         }
1021         if !problematic_captures.is_empty() {
1022             return Some(problematic_captures);
1023         }
1024         None
1025     }
1026
1027     /// Figures out the list of root variables (and their types) that aren't completely
1028     /// captured by the closure when `capture_disjoint_fields` is enabled and drop order of
1029     /// some path starting at that root variable **might** be affected.
1030     ///
1031     /// The output list would include a root variable if:
1032     /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1033     ///   enabled, **and**
1034     /// - It wasn't completely captured by the closure, **and**
1035     /// - One of the paths starting at this root variable, that is not captured needs Drop.
1036     ///
1037     /// This function only returns a HashSet of CapturesInfo for significant drops. If there
1038     /// are no significant drops than None is returned
1039     #[instrument(level = "debug", skip(self))]
1040     fn compute_2229_migrations_for_drop(
1041         &self,
1042         closure_def_id: DefId,
1043         closure_span: Span,
1044         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1045         closure_clause: hir::CaptureBy,
1046         var_hir_id: hir::HirId,
1047     ) -> Option<FxHashSet<UpvarMigrationInfo>> {
1048         let ty = self.infcx.resolve_vars_if_possible(self.node_ty(var_hir_id));
1049
1050         if !ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id.expect_local())) {
1051             debug!("does not have significant drop");
1052             return None;
1053         }
1054
1055         let Some(root_var_min_capture_list) = min_captures.and_then(|m| m.get(&var_hir_id)) else {
1056             // The upvar is mentioned within the closure but no path starting from it is
1057             // used. This occurs when you have (e.g.)
1058             //
1059             // ```
1060             // let x = move || {
1061             //     let _ = y;
1062             // });
1063             // ```
1064             debug!("no path starting from it is used");
1065
1066
1067             match closure_clause {
1068                 // Only migrate if closure is a move closure
1069                 hir::CaptureBy::Value => {
1070                     let mut diagnostics_info = FxHashSet::default();
1071                     let upvars = self.tcx.upvars_mentioned(closure_def_id).expect("must be an upvar");
1072                     let upvar = upvars[&var_hir_id];
1073                     diagnostics_info.insert(UpvarMigrationInfo::CapturingNothing { use_span: upvar.span });
1074                     return Some(diagnostics_info);
1075                 }
1076                 hir::CaptureBy::Ref => {}
1077             }
1078
1079             return None;
1080         };
1081         debug!(?root_var_min_capture_list);
1082
1083         let mut projections_list = Vec::new();
1084         let mut diagnostics_info = FxHashSet::default();
1085
1086         for captured_place in root_var_min_capture_list.iter() {
1087             match captured_place.info.capture_kind {
1088                 // Only care about captures that are moved into the closure
1089                 ty::UpvarCapture::ByValue(..) => {
1090                     projections_list.push(captured_place.place.projections.as_slice());
1091                     diagnostics_info.insert(UpvarMigrationInfo::CapturingPrecise {
1092                         source_expr: captured_place.info.path_expr_id,
1093                         var_name: captured_place.to_string(self.tcx),
1094                     });
1095                 }
1096                 ty::UpvarCapture::ByRef(..) => {}
1097             }
1098         }
1099
1100         debug!(?projections_list);
1101         debug!(?diagnostics_info);
1102
1103         let is_moved = !projections_list.is_empty();
1104         debug!(?is_moved);
1105
1106         let is_not_completely_captured =
1107             root_var_min_capture_list.iter().any(|capture| !capture.place.projections.is_empty());
1108         debug!(?is_not_completely_captured);
1109
1110         if is_moved
1111             && is_not_completely_captured
1112             && self.has_significant_drop_outside_of_captures(
1113                 closure_def_id,
1114                 closure_span,
1115                 ty,
1116                 projections_list,
1117             )
1118         {
1119             return Some(diagnostics_info);
1120         }
1121
1122         None
1123     }
1124
1125     /// Figures out the list of root variables (and their types) that aren't completely
1126     /// captured by the closure when `capture_disjoint_fields` is enabled and either drop
1127     /// order of some path starting at that root variable **might** be affected or auto-traits
1128     /// differ between the root variable and the captured paths.
1129     ///
1130     /// The output list would include a root variable if:
1131     /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1132     ///   enabled, **and**
1133     /// - It wasn't completely captured by the closure, **and**
1134     /// - One of the paths starting at this root variable, that is not captured needs Drop **or**
1135     /// - One of the paths captured does not implement all the auto-traits its root variable
1136     ///   implements.
1137     ///
1138     /// Returns a tuple containing a vector of MigrationDiagnosticInfo, as well as a String
1139     /// containing the reason why root variables whose HirId is contained in the vector should
1140     /// be captured
1141     #[instrument(level = "debug", skip(self))]
1142     fn compute_2229_migrations(
1143         &self,
1144         closure_def_id: DefId,
1145         closure_span: Span,
1146         closure_clause: hir::CaptureBy,
1147         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1148     ) -> (Vec<NeededMigration>, MigrationWarningReason) {
1149         let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) else {
1150             return (Vec::new(), MigrationWarningReason::default());
1151         };
1152
1153         let mut need_migrations = Vec::new();
1154         let mut auto_trait_migration_reasons = FxHashSet::default();
1155         let mut drop_migration_needed = false;
1156
1157         // Perform auto-trait analysis
1158         for (&var_hir_id, _) in upvars.iter() {
1159             let mut diagnostics_info = Vec::new();
1160
1161             let auto_trait_diagnostic = if let Some(diagnostics_info) =
1162                 self.compute_2229_migrations_for_trait(min_captures, var_hir_id, closure_clause)
1163             {
1164                 diagnostics_info
1165             } else {
1166                 FxHashMap::default()
1167             };
1168
1169             let drop_reorder_diagnostic = if let Some(diagnostics_info) = self
1170                 .compute_2229_migrations_for_drop(
1171                     closure_def_id,
1172                     closure_span,
1173                     min_captures,
1174                     closure_clause,
1175                     var_hir_id,
1176                 ) {
1177                 drop_migration_needed = true;
1178                 diagnostics_info
1179             } else {
1180                 FxHashSet::default()
1181             };
1182
1183             // Combine all the captures responsible for needing migrations into one HashSet
1184             let mut capture_diagnostic = drop_reorder_diagnostic.clone();
1185             for key in auto_trait_diagnostic.keys() {
1186                 capture_diagnostic.insert(key.clone());
1187             }
1188
1189             let mut capture_diagnostic = capture_diagnostic.into_iter().collect::<Vec<_>>();
1190             capture_diagnostic.sort();
1191             for captures_info in capture_diagnostic {
1192                 // Get the auto trait reasons of why migration is needed because of that capture, if there are any
1193                 let capture_trait_reasons =
1194                     if let Some(reasons) = auto_trait_diagnostic.get(&captures_info) {
1195                         reasons.clone()
1196                     } else {
1197                         FxHashSet::default()
1198                     };
1199
1200                 // Check if migration is needed because of drop reorder as a result of that capture
1201                 let capture_drop_reorder_reason = drop_reorder_diagnostic.contains(&captures_info);
1202
1203                 // Combine all the reasons of why the root variable should be captured as a result of
1204                 // auto trait implementation issues
1205                 auto_trait_migration_reasons.extend(capture_trait_reasons.clone());
1206
1207                 diagnostics_info.push(MigrationLintNote {
1208                     captures_info,
1209                     reason: self.compute_2229_migrations_reasons(
1210                         capture_trait_reasons,
1211                         capture_drop_reorder_reason,
1212                     ),
1213                 });
1214             }
1215
1216             if !diagnostics_info.is_empty() {
1217                 need_migrations.push(NeededMigration { var_hir_id, diagnostics_info });
1218             }
1219         }
1220         (
1221             need_migrations,
1222             self.compute_2229_migrations_reasons(
1223                 auto_trait_migration_reasons,
1224                 drop_migration_needed,
1225             ),
1226         )
1227     }
1228
1229     /// This is a helper function to `compute_2229_migrations_precise_pass`. Provided the type
1230     /// of a root variable and a list of captured paths starting at this root variable (expressed
1231     /// using list of `Projection` slices), it returns true if there is a path that is not
1232     /// captured starting at this root variable that implements Drop.
1233     ///
1234     /// The way this function works is at a given call it looks at type `base_path_ty` of some base
1235     /// path say P and then list of projection slices which represent the different captures moved
1236     /// into the closure starting off of P.
1237     ///
1238     /// This will make more sense with an example:
1239     ///
1240     /// ```rust
1241     /// #![feature(capture_disjoint_fields)]
1242     ///
1243     /// struct FancyInteger(i32); // This implements Drop
1244     ///
1245     /// struct Point { x: FancyInteger, y: FancyInteger }
1246     /// struct Color;
1247     ///
1248     /// struct Wrapper { p: Point, c: Color }
1249     ///
1250     /// fn f(w: Wrapper) {
1251     ///   let c = || {
1252     ///       // Closure captures w.p.x and w.c by move.
1253     ///   };
1254     ///
1255     ///   c();
1256     /// }
1257     /// ```
1258     ///
1259     /// If `capture_disjoint_fields` wasn't enabled the closure would've moved `w` instead of the
1260     /// precise paths. If we look closely `w.p.y` isn't captured which implements Drop and
1261     /// therefore Drop ordering would change and we want this function to return true.
1262     ///
1263     /// Call stack to figure out if we need to migrate for `w` would look as follows:
1264     ///
1265     /// Our initial base path is just `w`, and the paths captured from it are `w[p, x]` and
1266     /// `w[c]`.
1267     /// Notation:
1268     /// - Ty(place): Type of place
1269     /// - `(a, b)`: Represents the function parameters `base_path_ty` and `captured_by_move_projs`
1270     /// respectively.
1271     /// ```
1272     ///                  (Ty(w), [ &[p, x], &[c] ])
1273     ///                                 |
1274     ///                    ----------------------------
1275     ///                    |                          |
1276     ///                    v                          v
1277     ///        (Ty(w.p), [ &[x] ])          (Ty(w.c), [ &[] ]) // I(1)
1278     ///                    |                          |
1279     ///                    v                          v
1280     ///        (Ty(w.p), [ &[x] ])                 false
1281     ///                    |
1282     ///                    |
1283     ///          -------------------------------
1284     ///          |                             |
1285     ///          v                             v
1286     ///     (Ty((w.p).x), [ &[] ])     (Ty((w.p).y), []) // IMP 2
1287     ///          |                             |
1288     ///          v                             v
1289     ///        false              NeedsSignificantDrop(Ty(w.p.y))
1290     ///                                        |
1291     ///                                        v
1292     ///                                      true
1293     /// ```
1294     ///
1295     /// IMP 1 `(Ty(w.c), [ &[] ])`: Notice the single empty slice inside `captured_projs`.
1296     ///                             This implies that the `w.c` is completely captured by the closure.
1297     ///                             Since drop for this path will be called when the closure is
1298     ///                             dropped we don't need to migrate for it.
1299     ///
1300     /// IMP 2 `(Ty((w.p).y), [])`: Notice that `captured_projs` is empty. This implies that this
1301     ///                             path wasn't captured by the closure. Also note that even
1302     ///                             though we didn't capture this path, the function visits it,
1303     ///                             which is kind of the point of this function. We then return
1304     ///                             if the type of `w.p.y` implements Drop, which in this case is
1305     ///                             true.
1306     ///
1307     /// Consider another example:
1308     ///
1309     /// ```rust
1310     /// struct X;
1311     /// impl Drop for X {}
1312     ///
1313     /// struct Y(X);
1314     /// impl Drop for Y {}
1315     ///
1316     /// fn foo() {
1317     ///     let y = Y(X);
1318     ///     let c = || move(y.0);
1319     /// }
1320     /// ```
1321     ///
1322     /// Note that `y.0` is captured by the closure. When this function is called for `y`, it will
1323     /// return true, because even though all paths starting at `y` are captured, `y` itself
1324     /// implements Drop which will be affected since `y` isn't completely captured.
1325     fn has_significant_drop_outside_of_captures(
1326         &self,
1327         closure_def_id: DefId,
1328         closure_span: Span,
1329         base_path_ty: Ty<'tcx>,
1330         captured_by_move_projs: Vec<&[Projection<'tcx>]>,
1331     ) -> bool {
1332         let needs_drop = |ty: Ty<'tcx>| {
1333             ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id.expect_local()))
1334         };
1335
1336         let is_drop_defined_for_ty = |ty: Ty<'tcx>| {
1337             let drop_trait = self.tcx.require_lang_item(hir::LangItem::Drop, Some(closure_span));
1338             let ty_params = self.tcx.mk_substs_trait(base_path_ty, &[]);
1339             self.infcx
1340                 .type_implements_trait(
1341                     drop_trait,
1342                     ty,
1343                     ty_params,
1344                     self.tcx.param_env(closure_def_id.expect_local()),
1345                 )
1346                 .must_apply_modulo_regions()
1347         };
1348
1349         let is_drop_defined_for_ty = is_drop_defined_for_ty(base_path_ty);
1350
1351         // If there is a case where no projection is applied on top of current place
1352         // then there must be exactly one capture corresponding to such a case. Note that this
1353         // represents the case of the path being completely captured by the variable.
1354         //
1355         // eg. If `a.b` is captured and we are processing `a.b`, then we can't have the closure also
1356         //     capture `a.b.c`, because that voilates min capture.
1357         let is_completely_captured = captured_by_move_projs.iter().any(|projs| projs.is_empty());
1358
1359         assert!(!is_completely_captured || (captured_by_move_projs.len() == 1));
1360
1361         if is_completely_captured {
1362             // The place is captured entirely, so doesn't matter if needs dtor, it will be drop
1363             // when the closure is dropped.
1364             return false;
1365         }
1366
1367         if captured_by_move_projs.is_empty() {
1368             return needs_drop(base_path_ty);
1369         }
1370
1371         if is_drop_defined_for_ty {
1372             // If drop is implemented for this type then we need it to be fully captured,
1373             // and we know it is not completely captured because of the previous checks.
1374
1375             // Note that this is a bug in the user code that will be reported by the
1376             // borrow checker, since we can't move out of drop types.
1377
1378             // The bug exists in the user's code pre-migration, and we don't migrate here.
1379             return false;
1380         }
1381
1382         match base_path_ty.kind() {
1383             // Observations:
1384             // - `captured_by_move_projs` is not empty. Therefore we can call
1385             //   `captured_by_move_projs.first().unwrap()` safely.
1386             // - All entries in `captured_by_move_projs` have atleast one projection.
1387             //   Therefore we can call `captured_by_move_projs.first().unwrap().first().unwrap()` safely.
1388
1389             // We don't capture derefs in case of move captures, which would have be applied to
1390             // access any further paths.
1391             ty::Adt(def, _) if def.is_box() => unreachable!(),
1392             ty::Ref(..) => unreachable!(),
1393             ty::RawPtr(..) => unreachable!(),
1394
1395             ty::Adt(def, substs) => {
1396                 // Multi-varaint enums are captured in entirety,
1397                 // which would've been handled in the case of single empty slice in `captured_by_move_projs`.
1398                 assert_eq!(def.variants.len(), 1);
1399
1400                 // Only Field projections can be applied to a non-box Adt.
1401                 assert!(
1402                     captured_by_move_projs.iter().all(|projs| matches!(
1403                         projs.first().unwrap().kind,
1404                         ProjectionKind::Field(..)
1405                     ))
1406                 );
1407                 def.variants.get(VariantIdx::new(0)).unwrap().fields.iter().enumerate().any(
1408                     |(i, field)| {
1409                         let paths_using_field = captured_by_move_projs
1410                             .iter()
1411                             .filter_map(|projs| {
1412                                 if let ProjectionKind::Field(field_idx, _) =
1413                                     projs.first().unwrap().kind
1414                                 {
1415                                     if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
1416                                 } else {
1417                                     unreachable!();
1418                                 }
1419                             })
1420                             .collect();
1421
1422                         let after_field_ty = field.ty(self.tcx, substs);
1423                         self.has_significant_drop_outside_of_captures(
1424                             closure_def_id,
1425                             closure_span,
1426                             after_field_ty,
1427                             paths_using_field,
1428                         )
1429                     },
1430                 )
1431             }
1432
1433             ty::Tuple(..) => {
1434                 // Only Field projections can be applied to a tuple.
1435                 assert!(
1436                     captured_by_move_projs.iter().all(|projs| matches!(
1437                         projs.first().unwrap().kind,
1438                         ProjectionKind::Field(..)
1439                     ))
1440                 );
1441
1442                 base_path_ty.tuple_fields().enumerate().any(|(i, element_ty)| {
1443                     let paths_using_field = captured_by_move_projs
1444                         .iter()
1445                         .filter_map(|projs| {
1446                             if let ProjectionKind::Field(field_idx, _) = projs.first().unwrap().kind
1447                             {
1448                                 if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
1449                             } else {
1450                                 unreachable!();
1451                             }
1452                         })
1453                         .collect();
1454
1455                     self.has_significant_drop_outside_of_captures(
1456                         closure_def_id,
1457                         closure_span,
1458                         element_ty,
1459                         paths_using_field,
1460                     )
1461                 })
1462             }
1463
1464             // Anything else would be completely captured and therefore handled already.
1465             _ => unreachable!(),
1466         }
1467     }
1468
1469     fn init_capture_kind_for_place(
1470         &self,
1471         place: &Place<'tcx>,
1472         capture_clause: hir::CaptureBy,
1473         upvar_id: ty::UpvarId,
1474         closure_span: Span,
1475     ) -> ty::UpvarCapture<'tcx> {
1476         match capture_clause {
1477             // In case of a move closure if the data is accessed through a reference we
1478             // want to capture by ref to allow precise capture using reborrows.
1479             //
1480             // If the data will be moved out of this place, then the place will be truncated
1481             // at the first Deref in `adjust_upvar_borrow_kind_for_consume` and then moved into
1482             // the closure.
1483             hir::CaptureBy::Value if !place.deref_tys().any(ty::TyS::is_ref) => {
1484                 ty::UpvarCapture::ByValue(None)
1485             }
1486             hir::CaptureBy::Value | hir::CaptureBy::Ref => {
1487                 let origin = UpvarRegion(upvar_id, closure_span);
1488                 let upvar_region = self.next_region_var(origin);
1489                 let upvar_borrow = ty::UpvarBorrow { kind: ty::ImmBorrow, region: upvar_region };
1490                 ty::UpvarCapture::ByRef(upvar_borrow)
1491             }
1492         }
1493     }
1494
1495     fn place_for_root_variable(
1496         &self,
1497         closure_def_id: LocalDefId,
1498         var_hir_id: hir::HirId,
1499     ) -> Place<'tcx> {
1500         let upvar_id = ty::UpvarId::new(var_hir_id, closure_def_id);
1501
1502         Place {
1503             base_ty: self.node_ty(var_hir_id),
1504             base: PlaceBase::Upvar(upvar_id),
1505             projections: Default::default(),
1506         }
1507     }
1508
1509     fn should_log_capture_analysis(&self, closure_def_id: DefId) -> bool {
1510         self.tcx.has_attr(closure_def_id, sym::rustc_capture_analysis)
1511     }
1512
1513     fn log_capture_analysis_first_pass(
1514         &self,
1515         closure_def_id: rustc_hir::def_id::DefId,
1516         capture_information: &FxIndexMap<Place<'tcx>, ty::CaptureInfo<'tcx>>,
1517         closure_span: Span,
1518     ) {
1519         if self.should_log_capture_analysis(closure_def_id) {
1520             let mut diag =
1521                 self.tcx.sess.struct_span_err(closure_span, "First Pass analysis includes:");
1522             for (place, capture_info) in capture_information {
1523                 let capture_str = construct_capture_info_string(self.tcx, place, capture_info);
1524                 let output_str = format!("Capturing {}", capture_str);
1525
1526                 let span =
1527                     capture_info.path_expr_id.map_or(closure_span, |e| self.tcx.hir().span(e));
1528                 diag.span_note(span, &output_str);
1529             }
1530             diag.emit();
1531         }
1532     }
1533
1534     fn log_closure_min_capture_info(&self, closure_def_id: DefId, closure_span: Span) {
1535         if self.should_log_capture_analysis(closure_def_id) {
1536             if let Some(min_captures) =
1537                 self.typeck_results.borrow().closure_min_captures.get(&closure_def_id)
1538             {
1539                 let mut diag =
1540                     self.tcx.sess.struct_span_err(closure_span, "Min Capture analysis includes:");
1541
1542                 for (_, min_captures_for_var) in min_captures {
1543                     for capture in min_captures_for_var {
1544                         let place = &capture.place;
1545                         let capture_info = &capture.info;
1546
1547                         let capture_str =
1548                             construct_capture_info_string(self.tcx, place, capture_info);
1549                         let output_str = format!("Min Capture {}", capture_str);
1550
1551                         if capture.info.path_expr_id != capture.info.capture_kind_expr_id {
1552                             let path_span = capture_info
1553                                 .path_expr_id
1554                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1555                             let capture_kind_span = capture_info
1556                                 .capture_kind_expr_id
1557                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1558
1559                             let mut multi_span: MultiSpan =
1560                                 MultiSpan::from_spans(vec![path_span, capture_kind_span]);
1561
1562                             let capture_kind_label =
1563                                 construct_capture_kind_reason_string(self.tcx, place, capture_info);
1564                             let path_label = construct_path_string(self.tcx, place);
1565
1566                             multi_span.push_span_label(path_span, path_label);
1567                             multi_span.push_span_label(capture_kind_span, capture_kind_label);
1568
1569                             diag.span_note(multi_span, &output_str);
1570                         } else {
1571                             let span = capture_info
1572                                 .path_expr_id
1573                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1574
1575                             diag.span_note(span, &output_str);
1576                         };
1577                     }
1578                 }
1579                 diag.emit();
1580             }
1581         }
1582     }
1583
1584     /// A captured place is mutable if
1585     /// 1. Projections don't include a Deref of an immut-borrow, **and**
1586     /// 2. PlaceBase is mut or projections include a Deref of a mut-borrow.
1587     fn determine_capture_mutability(
1588         &self,
1589         typeck_results: &'a TypeckResults<'tcx>,
1590         place: &Place<'tcx>,
1591     ) -> hir::Mutability {
1592         let var_hir_id = match place.base {
1593             PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
1594             _ => unreachable!(),
1595         };
1596
1597         let bm = *typeck_results.pat_binding_modes().get(var_hir_id).expect("missing binding mode");
1598
1599         let mut is_mutbl = match bm {
1600             ty::BindByValue(mutability) => mutability,
1601             ty::BindByReference(_) => hir::Mutability::Not,
1602         };
1603
1604         for pointer_ty in place.deref_tys() {
1605             match pointer_ty.kind() {
1606                 // We don't capture derefs of raw ptrs
1607                 ty::RawPtr(_) => unreachable!(),
1608
1609                 // Derefencing a mut-ref allows us to mut the Place if we don't deref
1610                 // an immut-ref after on top of this.
1611                 ty::Ref(.., hir::Mutability::Mut) => is_mutbl = hir::Mutability::Mut,
1612
1613                 // The place isn't mutable once we dereference an immutable reference.
1614                 ty::Ref(.., hir::Mutability::Not) => return hir::Mutability::Not,
1615
1616                 // Dereferencing a box doesn't change mutability
1617                 ty::Adt(def, ..) if def.is_box() => {}
1618
1619                 unexpected_ty => bug!("deref of unexpected pointer type {:?}", unexpected_ty),
1620             }
1621         }
1622
1623         is_mutbl
1624     }
1625 }
1626
1627 /// Truncate the capture so that the place being borrowed is in accordance with RFC 1240,
1628 /// which states that it's unsafe to take a reference into a struct marked `repr(packed)`.
1629 fn restrict_repr_packed_field_ref_capture<'tcx>(
1630     tcx: TyCtxt<'tcx>,
1631     param_env: ty::ParamEnv<'tcx>,
1632     place: &Place<'tcx>,
1633     mut curr_borrow_kind: ty::UpvarCapture<'tcx>,
1634 ) -> (Place<'tcx>, ty::UpvarCapture<'tcx>) {
1635     let pos = place.projections.iter().enumerate().position(|(i, p)| {
1636         let ty = place.ty_before_projection(i);
1637
1638         // Return true for fields of packed structs, unless those fields have alignment 1.
1639         match p.kind {
1640             ProjectionKind::Field(..) => match ty.kind() {
1641                 ty::Adt(def, _) if def.repr.packed() => {
1642                     match tcx.layout_of(param_env.and(p.ty)) {
1643                         Ok(layout) if layout.align.abi.bytes() == 1 => {
1644                             // if the alignment is 1, the type can't be further
1645                             // disaligned.
1646                             debug!(
1647                                 "restrict_repr_packed_field_ref_capture: ({:?}) - align = 1",
1648                                 place
1649                             );
1650                             false
1651                         }
1652                         _ => {
1653                             debug!("restrict_repr_packed_field_ref_capture: ({:?}) - true", place);
1654                             true
1655                         }
1656                     }
1657                 }
1658
1659                 _ => false,
1660             },
1661             _ => false,
1662         }
1663     });
1664
1665     let mut place = place.clone();
1666
1667     if let Some(pos) = pos {
1668         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_borrow_kind, pos);
1669     }
1670
1671     (place, curr_borrow_kind)
1672 }
1673
1674 /// Returns a Ty that applies the specified capture kind on the provided capture Ty
1675 fn apply_capture_kind_on_capture_ty<'tcx>(
1676     tcx: TyCtxt<'tcx>,
1677     ty: Ty<'tcx>,
1678     capture_kind: UpvarCapture<'tcx>,
1679 ) -> Ty<'tcx> {
1680     match capture_kind {
1681         ty::UpvarCapture::ByValue(_) => ty,
1682         ty::UpvarCapture::ByRef(borrow) => tcx
1683             .mk_ref(borrow.region, ty::TypeAndMut { ty: ty, mutbl: borrow.kind.to_mutbl_lossy() }),
1684     }
1685 }
1686
1687 /// Returns the Span of where the value with the provided HirId would be dropped
1688 fn drop_location_span<'tcx>(tcx: TyCtxt<'tcx>, hir_id: &hir::HirId) -> Span {
1689     let owner_id = tcx.hir().get_enclosing_scope(*hir_id).unwrap();
1690
1691     let owner_node = tcx.hir().get(owner_id);
1692     let owner_span = match owner_node {
1693         hir::Node::Item(item) => match item.kind {
1694             hir::ItemKind::Fn(_, _, owner_id) => tcx.hir().span(owner_id.hir_id),
1695             _ => {
1696                 bug!("Drop location span error: need to handle more ItemKind {:?}", item.kind);
1697             }
1698         },
1699         hir::Node::Block(block) => tcx.hir().span(block.hir_id),
1700         _ => {
1701             bug!("Drop location span error: need to handle more Node {:?}", owner_node);
1702         }
1703     };
1704     tcx.sess.source_map().end_point(owner_span)
1705 }
1706
1707 struct InferBorrowKind<'a, 'tcx> {
1708     fcx: &'a FnCtxt<'a, 'tcx>,
1709
1710     // The def-id of the closure whose kind and upvar accesses are being inferred.
1711     closure_def_id: DefId,
1712
1713     closure_span: Span,
1714
1715     /// For each Place that is captured by the closure, we track the minimal kind of
1716     /// access we need (ref, ref mut, move, etc) and the expression that resulted in such access.
1717     ///
1718     /// Consider closure where s.str1 is captured via an ImmutableBorrow and
1719     /// s.str2 via a MutableBorrow
1720     ///
1721     /// ```rust,no_run
1722     /// struct SomeStruct { str1: String, str2: String }
1723     ///
1724     /// // Assume that the HirId for the variable definition is `V1`
1725     /// let mut s = SomeStruct { str1: format!("s1"), str2: format!("s2") }
1726     ///
1727     /// let fix_s = |new_s2| {
1728     ///     // Assume that the HirId for the expression `s.str1` is `E1`
1729     ///     println!("Updating SomeStruct with str1=", s.str1);
1730     ///     // Assume that the HirId for the expression `*s.str2` is `E2`
1731     ///     s.str2 = new_s2;
1732     /// };
1733     /// ```
1734     ///
1735     /// For closure `fix_s`, (at a high level) the map contains
1736     ///
1737     /// ```
1738     /// Place { V1, [ProjectionKind::Field(Index=0, Variant=0)] } : CaptureKind { E1, ImmutableBorrow }
1739     /// Place { V1, [ProjectionKind::Field(Index=1, Variant=0)] } : CaptureKind { E2, MutableBorrow }
1740     /// ```
1741     capture_information: InferredCaptureInformation<'tcx>,
1742     fake_reads: Vec<(Place<'tcx>, FakeReadCause, hir::HirId)>,
1743 }
1744
1745 impl<'a, 'tcx> InferBorrowKind<'a, 'tcx> {
1746     #[instrument(skip(self), level = "debug")]
1747     fn adjust_upvar_borrow_kind_for_consume(
1748         &mut self,
1749         place_with_id: &PlaceWithHirId<'tcx>,
1750         diag_expr_id: hir::HirId,
1751     ) {
1752         let tcx = self.fcx.tcx;
1753         let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else {
1754             return;
1755         };
1756
1757         debug!(?upvar_id);
1758
1759         let usage_span = tcx.hir().span(diag_expr_id);
1760
1761         let capture_info = ty::CaptureInfo {
1762             capture_kind_expr_id: Some(diag_expr_id),
1763             path_expr_id: Some(diag_expr_id),
1764             capture_kind: ty::UpvarCapture::ByValue(Some(usage_span)),
1765         };
1766
1767         let curr_info = self.capture_information[&place_with_id.place];
1768         let updated_info = determine_capture_info(curr_info, capture_info);
1769
1770         self.capture_information[&place_with_id.place] = updated_info;
1771     }
1772
1773     /// Indicates that `place_with_id` is being directly mutated (e.g., assigned
1774     /// to). If the place is based on a by-ref upvar, this implies that
1775     /// the upvar must be borrowed using an `&mut` borrow.
1776     #[instrument(skip(self), level = "debug")]
1777     fn adjust_upvar_borrow_kind_for_mut(
1778         &mut self,
1779         place_with_id: &PlaceWithHirId<'tcx>,
1780         diag_expr_id: hir::HirId,
1781     ) {
1782         if let PlaceBase::Upvar(_) = place_with_id.place.base {
1783             // Raw pointers don't inherit mutability
1784             if place_with_id.place.deref_tys().any(ty::TyS::is_unsafe_ptr) {
1785                 return;
1786             }
1787             self.adjust_upvar_deref(place_with_id, diag_expr_id, ty::MutBorrow);
1788         }
1789     }
1790
1791     #[instrument(skip(self), level = "debug")]
1792     fn adjust_upvar_borrow_kind_for_unique(
1793         &mut self,
1794         place_with_id: &PlaceWithHirId<'tcx>,
1795         diag_expr_id: hir::HirId,
1796     ) {
1797         if let PlaceBase::Upvar(_) = place_with_id.place.base {
1798             if place_with_id.place.deref_tys().any(ty::TyS::is_unsafe_ptr) {
1799                 // Raw pointers don't inherit mutability.
1800                 return;
1801             }
1802             // for a borrowed pointer to be unique, its base must be unique
1803             self.adjust_upvar_deref(place_with_id, diag_expr_id, ty::UniqueImmBorrow);
1804         }
1805     }
1806
1807     fn adjust_upvar_deref(
1808         &mut self,
1809         place_with_id: &PlaceWithHirId<'tcx>,
1810         diag_expr_id: hir::HirId,
1811         borrow_kind: ty::BorrowKind,
1812     ) {
1813         assert!(match borrow_kind {
1814             ty::MutBorrow => true,
1815             ty::UniqueImmBorrow => true,
1816
1817             // imm borrows never require adjusting any kinds, so we don't wind up here
1818             ty::ImmBorrow => false,
1819         });
1820
1821         // if this is an implicit deref of an
1822         // upvar, then we need to modify the
1823         // borrow_kind of the upvar to make sure it
1824         // is inferred to mutable if necessary
1825         self.adjust_upvar_borrow_kind(place_with_id, diag_expr_id, borrow_kind);
1826     }
1827
1828     /// We infer the borrow_kind with which to borrow upvars in a stack closure.
1829     /// The borrow_kind basically follows a lattice of `imm < unique-imm < mut`,
1830     /// moving from left to right as needed (but never right to left).
1831     /// Here the argument `mutbl` is the borrow_kind that is required by
1832     /// some particular use.
1833     #[instrument(skip(self), level = "debug")]
1834     fn adjust_upvar_borrow_kind(
1835         &mut self,
1836         place_with_id: &PlaceWithHirId<'tcx>,
1837         diag_expr_id: hir::HirId,
1838         kind: ty::BorrowKind,
1839     ) {
1840         let curr_capture_info = self.capture_information[&place_with_id.place];
1841
1842         debug!(?curr_capture_info);
1843
1844         if let ty::UpvarCapture::ByValue(_) = curr_capture_info.capture_kind {
1845             // It's already captured by value, we don't need to do anything here
1846             return;
1847         } else if let ty::UpvarCapture::ByRef(curr_upvar_borrow) = curr_capture_info.capture_kind {
1848             // Use the same region as the current capture information
1849             // Doesn't matter since only one of the UpvarBorrow will be used.
1850             let new_upvar_borrow = ty::UpvarBorrow { kind, region: curr_upvar_borrow.region };
1851
1852             let capture_info = ty::CaptureInfo {
1853                 capture_kind_expr_id: Some(diag_expr_id),
1854                 path_expr_id: Some(diag_expr_id),
1855                 capture_kind: ty::UpvarCapture::ByRef(new_upvar_borrow),
1856             };
1857             let updated_info = determine_capture_info(curr_capture_info, capture_info);
1858             self.capture_information[&place_with_id.place] = updated_info;
1859         };
1860     }
1861
1862     #[instrument(skip(self, diag_expr_id), level = "debug")]
1863     fn init_capture_info_for_place(
1864         &mut self,
1865         place_with_id: &PlaceWithHirId<'tcx>,
1866         diag_expr_id: hir::HirId,
1867     ) {
1868         if let PlaceBase::Upvar(upvar_id) = place_with_id.place.base {
1869             assert_eq!(self.closure_def_id.expect_local(), upvar_id.closure_expr_id);
1870
1871             // Initialize to ImmBorrow
1872             // We will escalate the CaptureKind based on any uses we see or in `process_collected_capture_information`.
1873             let origin = UpvarRegion(upvar_id, self.closure_span);
1874             let upvar_region = self.fcx.next_region_var(origin);
1875             let upvar_borrow = ty::UpvarBorrow { kind: ty::ImmBorrow, region: upvar_region };
1876             let capture_kind = ty::UpvarCapture::ByRef(upvar_borrow);
1877
1878             let expr_id = Some(diag_expr_id);
1879             let capture_info = ty::CaptureInfo {
1880                 capture_kind_expr_id: expr_id,
1881                 path_expr_id: expr_id,
1882                 capture_kind,
1883             };
1884
1885             debug!("Capturing new place {:?}, capture_info={:?}", place_with_id, capture_info);
1886
1887             self.capture_information.insert(place_with_id.place.clone(), capture_info);
1888         } else {
1889             debug!("Not upvar");
1890         }
1891     }
1892 }
1893
1894 impl<'a, 'tcx> euv::Delegate<'tcx> for InferBorrowKind<'a, 'tcx> {
1895     fn fake_read(&mut self, place: Place<'tcx>, cause: FakeReadCause, diag_expr_id: hir::HirId) {
1896         if let PlaceBase::Upvar(_) = place.base {
1897             // We need to restrict Fake Read precision to avoid fake reading unsafe code,
1898             // such as deref of a raw pointer.
1899             let dummy_capture_kind = ty::UpvarCapture::ByRef(ty::UpvarBorrow {
1900                 kind: ty::BorrowKind::ImmBorrow,
1901                 region: &ty::ReErased,
1902             });
1903
1904             let (place, _) = restrict_capture_precision(place, dummy_capture_kind);
1905
1906             let (place, _) = restrict_repr_packed_field_ref_capture(
1907                 self.fcx.tcx,
1908                 self.fcx.param_env,
1909                 &place,
1910                 dummy_capture_kind,
1911             );
1912             self.fake_reads.push((place, cause, diag_expr_id));
1913         }
1914     }
1915
1916     #[instrument(skip(self), level = "debug")]
1917     fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
1918         if !self.capture_information.contains_key(&place_with_id.place) {
1919             self.init_capture_info_for_place(place_with_id, diag_expr_id);
1920         }
1921
1922         self.adjust_upvar_borrow_kind_for_consume(place_with_id, diag_expr_id);
1923     }
1924
1925     #[instrument(skip(self), level = "debug")]
1926     fn borrow(
1927         &mut self,
1928         place_with_id: &PlaceWithHirId<'tcx>,
1929         diag_expr_id: hir::HirId,
1930         bk: ty::BorrowKind,
1931     ) {
1932         // The region here will get discarded/ignored
1933         let dummy_capture_kind =
1934             ty::UpvarCapture::ByRef(ty::UpvarBorrow { kind: bk, region: &ty::ReErased });
1935
1936         // We only want repr packed restriction to be applied to reading references into a packed
1937         // struct, and not when the data is being moved. Therefore we call this method here instead
1938         // of in `restrict_capture_precision`.
1939         let (place, updated_kind) = restrict_repr_packed_field_ref_capture(
1940             self.fcx.tcx,
1941             self.fcx.param_env,
1942             &place_with_id.place,
1943             dummy_capture_kind,
1944         );
1945
1946         let place_with_id = PlaceWithHirId { place, ..*place_with_id };
1947
1948         if !self.capture_information.contains_key(&place_with_id.place) {
1949             self.init_capture_info_for_place(&place_with_id, diag_expr_id);
1950         }
1951
1952         match updated_kind {
1953             ty::UpvarCapture::ByRef(ty::UpvarBorrow { kind, .. }) => match kind {
1954                 ty::ImmBorrow => {}
1955                 ty::UniqueImmBorrow => {
1956                     self.adjust_upvar_borrow_kind_for_unique(&place_with_id, diag_expr_id);
1957                 }
1958                 ty::MutBorrow => {
1959                     self.adjust_upvar_borrow_kind_for_mut(&place_with_id, diag_expr_id);
1960                 }
1961             },
1962
1963             // Just truncating the place will never cause capture kind to be updated to ByValue
1964             ty::UpvarCapture::ByValue(..) => unreachable!(),
1965         }
1966     }
1967
1968     #[instrument(skip(self), level = "debug")]
1969     fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
1970         self.borrow(assignee_place, diag_expr_id, ty::BorrowKind::MutBorrow);
1971     }
1972 }
1973
1974 /// Rust doesn't permit moving fields out of a type that implements drop
1975 fn restrict_precision_for_drop_types<'a, 'tcx>(
1976     fcx: &'a FnCtxt<'a, 'tcx>,
1977     mut place: Place<'tcx>,
1978     mut curr_mode: ty::UpvarCapture<'tcx>,
1979     span: Span,
1980 ) -> (Place<'tcx>, ty::UpvarCapture<'tcx>) {
1981     let is_copy_type = fcx.infcx.type_is_copy_modulo_regions(fcx.param_env, place.ty(), span);
1982
1983     if let (false, UpvarCapture::ByValue(..)) = (is_copy_type, curr_mode) {
1984         for i in 0..place.projections.len() {
1985             match place.ty_before_projection(i).kind() {
1986                 ty::Adt(def, _) if def.destructor(fcx.tcx).is_some() => {
1987                     truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
1988                     break;
1989                 }
1990                 _ => {}
1991             }
1992         }
1993     }
1994
1995     (place, curr_mode)
1996 }
1997
1998 /// Truncate `place` so that an `unsafe` block isn't required to capture it.
1999 /// - No projections are applied to raw pointers, since these require unsafe blocks. We capture
2000 ///   them completely.
2001 /// - No projections are applied on top of Union ADTs, since these require unsafe blocks.
2002 fn restrict_precision_for_unsafe<'tcx>(
2003     mut place: Place<'tcx>,
2004     mut curr_mode: ty::UpvarCapture<'tcx>,
2005 ) -> (Place<'tcx>, ty::UpvarCapture<'tcx>) {
2006     if place.base_ty.is_unsafe_ptr() {
2007         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
2008     }
2009
2010     if place.base_ty.is_union() {
2011         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
2012     }
2013
2014     for (i, proj) in place.projections.iter().enumerate() {
2015         if proj.ty.is_unsafe_ptr() {
2016             // Don't apply any projections on top of an unsafe ptr.
2017             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
2018             break;
2019         }
2020
2021         if proj.ty.is_union() {
2022             // Don't capture preicse fields of a union.
2023             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
2024             break;
2025         }
2026     }
2027
2028     (place, curr_mode)
2029 }
2030
2031 /// Truncate projections so that following rules are obeyed by the captured `place`:
2032 /// - No Index projections are captured, since arrays are captured completely.
2033 /// - No unsafe block is required to capture `place`
2034 /// Returns the truncated place and updated cature mode.
2035 fn restrict_capture_precision<'tcx>(
2036     place: Place<'tcx>,
2037     curr_mode: ty::UpvarCapture<'tcx>,
2038 ) -> (Place<'tcx>, ty::UpvarCapture<'tcx>) {
2039     let (mut place, mut curr_mode) = restrict_precision_for_unsafe(place, curr_mode);
2040
2041     if place.projections.is_empty() {
2042         // Nothing to do here
2043         return (place, curr_mode);
2044     }
2045
2046     for (i, proj) in place.projections.iter().enumerate() {
2047         match proj.kind {
2048             ProjectionKind::Index => {
2049                 // Arrays are completely captured, so we drop Index projections
2050                 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
2051                 return (place, curr_mode);
2052             }
2053             ProjectionKind::Deref => {}
2054             ProjectionKind::Field(..) => {} // ignore
2055             ProjectionKind::Subslice => {}  // We never capture this
2056         }
2057     }
2058
2059     (place, curr_mode)
2060 }
2061
2062 /// Truncate deref of any reference.
2063 fn adjust_for_move_closure<'tcx>(
2064     mut place: Place<'tcx>,
2065     mut kind: ty::UpvarCapture<'tcx>,
2066 ) -> (Place<'tcx>, ty::UpvarCapture<'tcx>) {
2067     let first_deref = place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
2068
2069     if let Some(idx) = first_deref {
2070         truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
2071     }
2072
2073     // AMAN: I think we don't need the span inside the ByValue anymore
2074     //       we have more detailed span in CaptureInfo
2075     (place, ty::UpvarCapture::ByValue(None))
2076 }
2077
2078 /// Adjust closure capture just that if taking ownership of data, only move data
2079 /// from enclosing stack frame.
2080 fn adjust_for_non_move_closure<'tcx>(
2081     mut place: Place<'tcx>,
2082     mut kind: ty::UpvarCapture<'tcx>,
2083 ) -> (Place<'tcx>, ty::UpvarCapture<'tcx>) {
2084     let contains_deref =
2085         place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
2086
2087     match kind {
2088         ty::UpvarCapture::ByValue(..) => {
2089             if let Some(idx) = contains_deref {
2090                 truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
2091             }
2092         }
2093
2094         ty::UpvarCapture::ByRef(..) => {}
2095     }
2096
2097     (place, kind)
2098 }
2099
2100 fn construct_place_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
2101     let variable_name = match place.base {
2102         PlaceBase::Upvar(upvar_id) => var_name(tcx, upvar_id.var_path.hir_id).to_string(),
2103         _ => bug!("Capture_information should only contain upvars"),
2104     };
2105
2106     let mut projections_str = String::new();
2107     for (i, item) in place.projections.iter().enumerate() {
2108         let proj = match item.kind {
2109             ProjectionKind::Field(a, b) => format!("({:?}, {:?})", a, b),
2110             ProjectionKind::Deref => String::from("Deref"),
2111             ProjectionKind::Index => String::from("Index"),
2112             ProjectionKind::Subslice => String::from("Subslice"),
2113         };
2114         if i != 0 {
2115             projections_str.push(',');
2116         }
2117         projections_str.push_str(proj.as_str());
2118     }
2119
2120     format!("{}[{}]", variable_name, projections_str)
2121 }
2122
2123 fn construct_capture_kind_reason_string<'tcx>(
2124     tcx: TyCtxt<'_>,
2125     place: &Place<'tcx>,
2126     capture_info: &ty::CaptureInfo<'tcx>,
2127 ) -> String {
2128     let place_str = construct_place_string(tcx, place);
2129
2130     let capture_kind_str = match capture_info.capture_kind {
2131         ty::UpvarCapture::ByValue(_) => "ByValue".into(),
2132         ty::UpvarCapture::ByRef(borrow) => format!("{:?}", borrow.kind),
2133     };
2134
2135     format!("{} captured as {} here", place_str, capture_kind_str)
2136 }
2137
2138 fn construct_path_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
2139     let place_str = construct_place_string(tcx, place);
2140
2141     format!("{} used here", place_str)
2142 }
2143
2144 fn construct_capture_info_string<'tcx>(
2145     tcx: TyCtxt<'_>,
2146     place: &Place<'tcx>,
2147     capture_info: &ty::CaptureInfo<'tcx>,
2148 ) -> String {
2149     let place_str = construct_place_string(tcx, place);
2150
2151     let capture_kind_str = match capture_info.capture_kind {
2152         ty::UpvarCapture::ByValue(_) => "ByValue".into(),
2153         ty::UpvarCapture::ByRef(borrow) => format!("{:?}", borrow.kind),
2154     };
2155     format!("{} -> {}", place_str, capture_kind_str)
2156 }
2157
2158 fn var_name(tcx: TyCtxt<'_>, var_hir_id: hir::HirId) -> Symbol {
2159     tcx.hir().name(var_hir_id)
2160 }
2161
2162 #[instrument(level = "debug", skip(tcx))]
2163 fn should_do_rust_2021_incompatible_closure_captures_analysis(
2164     tcx: TyCtxt<'_>,
2165     closure_id: hir::HirId,
2166 ) -> bool {
2167     let (level, _) =
2168         tcx.lint_level_at_node(lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES, closure_id);
2169
2170     !matches!(level, lint::Level::Allow)
2171 }
2172
2173 /// Return a two string tuple (s1, s2)
2174 /// - s1: Line of code that is needed for the migration: eg: `let _ = (&x, ...)`.
2175 /// - s2: Comma separated names of the variables being migrated.
2176 fn migration_suggestion_for_2229(
2177     tcx: TyCtxt<'_>,
2178     need_migrations: &Vec<NeededMigration>,
2179 ) -> (String, String) {
2180     let need_migrations_variables = need_migrations
2181         .iter()
2182         .map(|NeededMigration { var_hir_id: v, .. }| var_name(tcx, *v))
2183         .collect::<Vec<_>>();
2184
2185     let migration_ref_concat =
2186         need_migrations_variables.iter().map(|v| format!("&{}", v)).collect::<Vec<_>>().join(", ");
2187
2188     let migration_string = if 1 == need_migrations.len() {
2189         format!("let _ = {}", migration_ref_concat)
2190     } else {
2191         format!("let _ = ({})", migration_ref_concat)
2192     };
2193
2194     let migrated_variables_concat =
2195         need_migrations_variables.iter().map(|v| format!("`{}`", v)).collect::<Vec<_>>().join(", ");
2196
2197     (migration_string, migrated_variables_concat)
2198 }
2199
2200 /// Helper function to determine if we need to escalate CaptureKind from
2201 /// CaptureInfo A to B and returns the escalated CaptureInfo.
2202 /// (Note: CaptureInfo contains CaptureKind and an expression that led to capture it in that way)
2203 ///
2204 /// If both `CaptureKind`s are considered equivalent, then the CaptureInfo is selected based
2205 /// on the `CaptureInfo` containing an associated `capture_kind_expr_id`.
2206 ///
2207 /// It is the caller's duty to figure out which path_expr_id to use.
2208 ///
2209 /// If both the CaptureKind and Expression are considered to be equivalent,
2210 /// then `CaptureInfo` A is preferred. This can be useful in cases where we want to priortize
2211 /// expressions reported back to the user as part of diagnostics based on which appears earlier
2212 /// in the closure. This can be achieved simply by calling
2213 /// `determine_capture_info(existing_info, current_info)`. This works out because the
2214 /// expressions that occur earlier in the closure body than the current expression are processed before.
2215 /// Consider the following example
2216 /// ```rust,no_run
2217 /// struct Point { x: i32, y: i32 }
2218 /// let mut p: Point { x: 10, y: 10 };
2219 ///
2220 /// let c = || {
2221 ///     p.x     += 10;
2222 /// // ^ E1 ^
2223 ///     // ...
2224 ///     // More code
2225 ///     // ...
2226 ///     p.x += 10; // E2
2227 /// // ^ E2 ^
2228 /// };
2229 /// ```
2230 /// `CaptureKind` associated with both `E1` and `E2` will be ByRef(MutBorrow),
2231 /// and both have an expression associated, however for diagnostics we prefer reporting
2232 /// `E1` since it appears earlier in the closure body. When `E2` is being processed we
2233 /// would've already handled `E1`, and have an existing capture_information for it.
2234 /// Calling `determine_capture_info(existing_info_e1, current_info_e2)` will return
2235 /// `existing_info_e1` in this case, allowing us to point to `E1` in case of diagnostics.
2236 fn determine_capture_info<'tcx>(
2237     capture_info_a: ty::CaptureInfo<'tcx>,
2238     capture_info_b: ty::CaptureInfo<'tcx>,
2239 ) -> ty::CaptureInfo<'tcx> {
2240     // If the capture kind is equivalent then, we don't need to escalate and can compare the
2241     // expressions.
2242     let eq_capture_kind = match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2243         (ty::UpvarCapture::ByValue(_), ty::UpvarCapture::ByValue(_)) => {
2244             // We don't need to worry about the spans being ignored here.
2245             //
2246             // The expr_id in capture_info corresponds to the span that is stored within
2247             // ByValue(span) and therefore it gets handled with priortizing based on
2248             // expressions below.
2249             true
2250         }
2251         (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => {
2252             ref_a.kind == ref_b.kind
2253         }
2254         (ty::UpvarCapture::ByValue(_), _) | (ty::UpvarCapture::ByRef(_), _) => false,
2255     };
2256
2257     if eq_capture_kind {
2258         match (capture_info_a.capture_kind_expr_id, capture_info_b.capture_kind_expr_id) {
2259             (Some(_), _) | (None, None) => capture_info_a,
2260             (None, Some(_)) => capture_info_b,
2261         }
2262     } else {
2263         // We select the CaptureKind which ranks higher based the following priority order:
2264         // ByValue > MutBorrow > UniqueImmBorrow > ImmBorrow
2265         match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2266             (ty::UpvarCapture::ByValue(_), _) => capture_info_a,
2267             (_, ty::UpvarCapture::ByValue(_)) => capture_info_b,
2268             (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => {
2269                 match (ref_a.kind, ref_b.kind) {
2270                     // Take LHS:
2271                     (ty::UniqueImmBorrow | ty::MutBorrow, ty::ImmBorrow)
2272                     | (ty::MutBorrow, ty::UniqueImmBorrow) => capture_info_a,
2273
2274                     // Take RHS:
2275                     (ty::ImmBorrow, ty::UniqueImmBorrow | ty::MutBorrow)
2276                     | (ty::UniqueImmBorrow, ty::MutBorrow) => capture_info_b,
2277
2278                     (ty::ImmBorrow, ty::ImmBorrow)
2279                     | (ty::UniqueImmBorrow, ty::UniqueImmBorrow)
2280                     | (ty::MutBorrow, ty::MutBorrow) => {
2281                         bug!("Expected unequal capture kinds");
2282                     }
2283                 }
2284             }
2285         }
2286     }
2287 }
2288
2289 /// Truncates `place` to have up to `len` projections.
2290 /// `curr_mode` is the current required capture kind for the place.
2291 /// Returns the truncated `place` and the updated required capture kind.
2292 ///
2293 /// Note: Capture kind changes from `MutBorrow` to `UniqueImmBorrow` if the truncated part of the `place`
2294 /// contained `Deref` of `&mut`.
2295 fn truncate_place_to_len_and_update_capture_kind<'tcx>(
2296     place: &mut Place<'tcx>,
2297     curr_mode: &mut ty::UpvarCapture<'tcx>,
2298     len: usize,
2299 ) {
2300     let is_mut_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Mut));
2301
2302     // If the truncated part of the place contains `Deref` of a `&mut` then convert MutBorrow ->
2303     // UniqueImmBorrow
2304     // Note that if the place contained Deref of a raw pointer it would've not been MutBorrow, so
2305     // we don't need to worry about that case here.
2306     match curr_mode {
2307         ty::UpvarCapture::ByRef(ty::UpvarBorrow { kind: ty::BorrowKind::MutBorrow, region }) => {
2308             for i in len..place.projections.len() {
2309                 if place.projections[i].kind == ProjectionKind::Deref
2310                     && is_mut_ref(place.ty_before_projection(i))
2311                 {
2312                     *curr_mode = ty::UpvarCapture::ByRef(ty::UpvarBorrow {
2313                         kind: ty::BorrowKind::UniqueImmBorrow,
2314                         region,
2315                     });
2316                     break;
2317                 }
2318             }
2319         }
2320
2321         ty::UpvarCapture::ByRef(..) => {}
2322         ty::UpvarCapture::ByValue(..) => {}
2323     }
2324
2325     place.projections.truncate(len);
2326 }
2327
2328 /// Determines the Ancestry relationship of Place A relative to Place B
2329 ///
2330 /// `PlaceAncestryRelation::Ancestor` implies Place A is ancestor of Place B
2331 /// `PlaceAncestryRelation::Descendant` implies Place A is descendant of Place B
2332 /// `PlaceAncestryRelation::Divergent` implies neither of them is the ancestor of the other.
2333 fn determine_place_ancestry_relation<'tcx>(
2334     place_a: &Place<'tcx>,
2335     place_b: &Place<'tcx>,
2336 ) -> PlaceAncestryRelation {
2337     // If Place A and Place B, don't start off from the same root variable, they are divergent.
2338     if place_a.base != place_b.base {
2339         return PlaceAncestryRelation::Divergent;
2340     }
2341
2342     // Assume of length of projections_a = n
2343     let projections_a = &place_a.projections;
2344
2345     // Assume of length of projections_b = m
2346     let projections_b = &place_b.projections;
2347
2348     let same_initial_projections =
2349         iter::zip(projections_a, projections_b).all(|(proj_a, proj_b)| proj_a.kind == proj_b.kind);
2350
2351     if same_initial_projections {
2352         use std::cmp::Ordering;
2353
2354         // First min(n, m) projections are the same
2355         // Select Ancestor/Descendant
2356         match projections_b.len().cmp(&projections_a.len()) {
2357             Ordering::Greater => PlaceAncestryRelation::Ancestor,
2358             Ordering::Equal => PlaceAncestryRelation::SamePlace,
2359             Ordering::Less => PlaceAncestryRelation::Descendant,
2360         }
2361     } else {
2362         PlaceAncestryRelation::Divergent
2363     }
2364 }
2365
2366 /// Reduces the precision of the captured place when the precision doesn't yeild any benefit from
2367 /// borrow checking prespective, allowing us to save us on the size of the capture.
2368 ///
2369 ///
2370 /// Fields that are read through a shared reference will always be read via a shared ref or a copy,
2371 /// and therefore capturing precise paths yields no benefit. This optimization truncates the
2372 /// rightmost deref of the capture if the deref is applied to a shared ref.
2373 ///
2374 /// Reason we only drop the last deref is because of the following edge case:
2375 ///
2376 /// ```rust
2377 /// struct MyStruct<'a> {
2378 ///    a: &'static A,
2379 ///    b: B,
2380 ///    c: C<'a>,
2381 /// }
2382 ///
2383 /// fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static {
2384 ///     let c = || drop(&*m.a.field_of_a);
2385 ///     // Here we really do want to capture `*m.a` because that outlives `'static`
2386 ///
2387 ///     // If we capture `m`, then the closure no longer outlives `'static'
2388 ///     // it is constrained to `'a`
2389 /// }
2390 /// ```
2391 fn truncate_capture_for_optimization<'tcx>(
2392     mut place: Place<'tcx>,
2393     mut curr_mode: ty::UpvarCapture<'tcx>,
2394 ) -> (Place<'tcx>, ty::UpvarCapture<'tcx>) {
2395     let is_shared_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Not));
2396
2397     // Find the right-most deref (if any). All the projections that come after this
2398     // are fields or other "in-place pointer adjustments"; these refer therefore to
2399     // data owned by whatever pointer is being dereferenced here.
2400     let idx = place.projections.iter().rposition(|proj| ProjectionKind::Deref == proj.kind);
2401
2402     match idx {
2403         // If that pointer is a shared reference, then we don't need those fields.
2404         Some(idx) if is_shared_ref(place.ty_before_projection(idx)) => {
2405             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, idx + 1)
2406         }
2407         None | Some(_) => {}
2408     }
2409
2410     (place, curr_mode)
2411 }
2412
2413 /// Precise capture is enabled if the feature gate `capture_disjoint_fields` is enabled or if
2414 /// user is using Rust Edition 2021 or higher.
2415 ///
2416 /// `span` is the span of the closure.
2417 fn enable_precise_capture(tcx: TyCtxt<'_>, span: Span) -> bool {
2418     // We use span here to ensure that if the closure was generated by a macro with a different
2419     // edition.
2420     tcx.features().capture_disjoint_fields || span.rust_2021()
2421 }