]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/upvar.rs
Rollup merge of #93568 - willcrichton:scrape-examples-leading-whitespace, r=CraftSpider
[rust.git] / compiler / rustc_typeck / src / check / upvar.rs
1 //! ### Inferring borrow kinds for upvars
2 //!
3 //! Whenever there is a closure expression, we need to determine how each
4 //! upvar is used. We do this by initially assigning each upvar an
5 //! immutable "borrow kind" (see `ty::BorrowKind` for details) and then
6 //! "escalating" the kind as needed. The borrow kind proceeds according to
7 //! the following lattice:
8 //!
9 //!     ty::ImmBorrow -> ty::UniqueImmBorrow -> ty::MutBorrow
10 //!
11 //! So, for example, if we see an assignment `x = 5` to an upvar `x`, we
12 //! will promote its borrow kind to mutable borrow. If we see an `&mut x`
13 //! we'll do the same. Naturally, this applies not just to the upvar, but
14 //! to everything owned by `x`, so the result is the same for something
15 //! like `x.f = 5` and so on (presuming `x` is not a borrowed pointer to a
16 //! struct). These adjustments are performed in
17 //! `adjust_upvar_borrow_kind()` (you can trace backwards through the code
18 //! from there).
19 //!
20 //! The fact that we are inferring borrow kinds as we go results in a
21 //! semi-hacky interaction with mem-categorization. In particular,
22 //! mem-categorization will query the current borrow kind as it
23 //! categorizes, and we'll return the *current* value, but this may get
24 //! adjusted later. Therefore, in this module, we generally ignore the
25 //! borrow kind (and derived mutabilities) that are returned from
26 //! mem-categorization, since they may be inaccurate. (Another option
27 //! would be to use a unification scheme, where instead of returning a
28 //! concrete borrow kind like `ty::ImmBorrow`, we return a
29 //! `ty::InferBorrow(upvar_id)` or something like that, but this would
30 //! then mean that all later passes would have to check for these figments
31 //! and report an error, and it just seems like more mess in the end.)
32
33 use super::FnCtxt;
34
35 use crate::expr_use_visitor as euv;
36 use rustc_errors::Applicability;
37 use rustc_hir as hir;
38 use rustc_hir::def_id::DefId;
39 use rustc_hir::def_id::LocalDefId;
40 use rustc_hir::intravisit::{self, Visitor};
41 use rustc_infer::infer::UpvarRegion;
42 use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection, ProjectionKind};
43 use rustc_middle::mir::FakeReadCause;
44 use rustc_middle::ty::{
45     self, ClosureSizeProfileData, Ty, TyCtxt, TypeckResults, UpvarCapture, UpvarSubsts,
46 };
47 use rustc_session::lint;
48 use rustc_span::sym;
49 use rustc_span::{BytePos, MultiSpan, Pos, Span, Symbol};
50 use rustc_trait_selection::infer::InferCtxtExt;
51
52 use rustc_data_structures::stable_map::FxHashMap;
53 use rustc_data_structures::stable_set::FxHashSet;
54 use rustc_index::vec::Idx;
55 use rustc_target::abi::VariantIdx;
56
57 use std::iter;
58
59 /// Describe the relationship between the paths of two places
60 /// eg:
61 /// - `foo` is ancestor of `foo.bar.baz`
62 /// - `foo.bar.baz` is an descendant of `foo.bar`
63 /// - `foo.bar` and `foo.baz` are divergent
64 enum PlaceAncestryRelation {
65     Ancestor,
66     Descendant,
67     SamePlace,
68     Divergent,
69 }
70
71 /// Intermediate format to store a captured `Place` and associated `ty::CaptureInfo`
72 /// during capture analysis. Information in this map feeds into the minimum capture
73 /// analysis pass.
74 type InferredCaptureInformation<'tcx> = Vec<(Place<'tcx>, ty::CaptureInfo)>;
75
76 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
77     pub fn closure_analyze(&self, body: &'tcx hir::Body<'tcx>) {
78         InferBorrowKindVisitor { fcx: self }.visit_body(body);
79
80         // it's our job to process these.
81         assert!(self.deferred_call_resolutions.borrow().is_empty());
82     }
83 }
84
85 /// Intermediate format to store the hir_id pointing to the use that resulted in the
86 /// corresponding place being captured and a String which contains the captured value's
87 /// name (i.e: a.b.c)
88 #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
89 enum UpvarMigrationInfo {
90     /// We previously captured all of `x`, but now we capture some sub-path.
91     CapturingPrecise { source_expr: Option<hir::HirId>, var_name: String },
92     CapturingNothing {
93         // where the variable appears in the closure (but is not captured)
94         use_span: Span,
95     },
96 }
97
98 /// Reasons that we might issue a migration warning.
99 #[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
100 struct MigrationWarningReason {
101     /// When we used to capture `x` in its entirety, we implemented the auto-trait(s)
102     /// in this vec, but now we don't.
103     auto_traits: Vec<&'static str>,
104
105     /// When we used to capture `x` in its entirety, we would execute some destructors
106     /// at a different time.
107     drop_order: bool,
108 }
109
110 impl MigrationWarningReason {
111     fn migration_message(&self) -> String {
112         let base = "changes to closure capture in Rust 2021 will affect";
113         if !self.auto_traits.is_empty() && self.drop_order {
114             format!("{} drop order and which traits the closure implements", base)
115         } else if self.drop_order {
116             format!("{} drop order", base)
117         } else {
118             format!("{} which traits the closure implements", base)
119         }
120     }
121 }
122
123 /// Intermediate format to store information needed to generate a note in the migration lint.
124 struct MigrationLintNote {
125     captures_info: UpvarMigrationInfo,
126
127     /// reasons why migration is needed for this capture
128     reason: MigrationWarningReason,
129 }
130
131 /// Intermediate format to store the hir id of the root variable and a HashSet containing
132 /// information on why the root variable should be fully captured
133 struct NeededMigration {
134     var_hir_id: hir::HirId,
135     diagnostics_info: Vec<MigrationLintNote>,
136 }
137
138 struct InferBorrowKindVisitor<'a, 'tcx> {
139     fcx: &'a FnCtxt<'a, 'tcx>,
140 }
141
142 impl<'a, 'tcx> Visitor<'tcx> for InferBorrowKindVisitor<'a, 'tcx> {
143     fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
144         match expr.kind {
145             hir::ExprKind::Closure(cc, _, body_id, _, _) => {
146                 let body = self.fcx.tcx.hir().body(body_id);
147                 self.visit_body(body);
148                 self.fcx.analyze_closure(expr.hir_id, expr.span, body_id, body, cc);
149             }
150             hir::ExprKind::ConstBlock(anon_const) => {
151                 let body = self.fcx.tcx.hir().body(anon_const.body);
152                 self.visit_body(body);
153             }
154             _ => {}
155         }
156
157         intravisit::walk_expr(self, expr);
158     }
159 }
160
161 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
162     /// Analysis starting point.
163     #[instrument(skip(self, body), level = "debug")]
164     fn analyze_closure(
165         &self,
166         closure_hir_id: hir::HirId,
167         span: Span,
168         body_id: hir::BodyId,
169         body: &'tcx hir::Body<'tcx>,
170         capture_clause: hir::CaptureBy,
171     ) {
172         // Extract the type of the closure.
173         let ty = self.node_ty(closure_hir_id);
174         let (closure_def_id, substs) = match *ty.kind() {
175             ty::Closure(def_id, substs) => (def_id, UpvarSubsts::Closure(substs)),
176             ty::Generator(def_id, substs, _) => (def_id, UpvarSubsts::Generator(substs)),
177             ty::Error(_) => {
178                 // #51714: skip analysis when we have already encountered type errors
179                 return;
180             }
181             _ => {
182                 span_bug!(
183                     span,
184                     "type of closure expr {:?} is not a closure {:?}",
185                     closure_hir_id,
186                     ty
187                 );
188             }
189         };
190
191         let infer_kind = if let UpvarSubsts::Closure(closure_substs) = substs {
192             self.closure_kind(closure_substs).is_none().then_some(closure_substs)
193         } else {
194             None
195         };
196
197         let local_def_id = closure_def_id.expect_local();
198
199         let body_owner_def_id = self.tcx.hir().body_owner_def_id(body.id());
200         assert_eq!(body_owner_def_id.to_def_id(), closure_def_id);
201         let mut delegate = InferBorrowKind {
202             fcx: self,
203             closure_def_id: local_def_id,
204             capture_information: Default::default(),
205             fake_reads: Default::default(),
206         };
207         euv::ExprUseVisitor::new(
208             &mut delegate,
209             &self.infcx,
210             body_owner_def_id,
211             self.param_env,
212             &self.typeck_results.borrow(),
213         )
214         .consume_body(body);
215
216         debug!(
217             "For closure={:?}, capture_information={:#?}",
218             closure_def_id, delegate.capture_information
219         );
220
221         self.log_capture_analysis_first_pass(closure_def_id, &delegate.capture_information, span);
222
223         let (capture_information, closure_kind, origin) = self
224             .process_collected_capture_information(capture_clause, delegate.capture_information);
225
226         self.compute_min_captures(closure_def_id, capture_information, span);
227
228         let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
229
230         if should_do_rust_2021_incompatible_closure_captures_analysis(self.tcx, closure_hir_id) {
231             self.perform_2229_migration_anaysis(closure_def_id, body_id, capture_clause, span);
232         }
233
234         let after_feature_tys = self.final_upvar_tys(closure_def_id);
235
236         // We now fake capture information for all variables that are mentioned within the closure
237         // We do this after handling migrations so that min_captures computes before
238         if !enable_precise_capture(self.tcx, span) {
239             let mut capture_information: InferredCaptureInformation<'tcx> = Default::default();
240
241             if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
242                 for var_hir_id in upvars.keys() {
243                     let place = self.place_for_root_variable(local_def_id, *var_hir_id);
244
245                     debug!("seed place {:?}", place);
246
247                     let capture_kind = self.init_capture_kind_for_place(&place, capture_clause);
248                     let fake_info = ty::CaptureInfo {
249                         capture_kind_expr_id: None,
250                         path_expr_id: None,
251                         capture_kind,
252                     };
253
254                     capture_information.push((place, fake_info));
255                 }
256             }
257
258             // This will update the min captures based on this new fake information.
259             self.compute_min_captures(closure_def_id, capture_information, span);
260         }
261
262         let before_feature_tys = self.final_upvar_tys(closure_def_id);
263
264         if let Some(closure_substs) = infer_kind {
265             // Unify the (as yet unbound) type variable in the closure
266             // substs with the kind we inferred.
267             let closure_kind_ty = closure_substs.as_closure().kind_ty();
268             self.demand_eqtype(span, closure_kind.to_ty(self.tcx), closure_kind_ty);
269
270             // If we have an origin, store it.
271             if let Some(origin) = origin {
272                 let origin = if enable_precise_capture(self.tcx, span) {
273                     (origin.0, origin.1)
274                 } else {
275                     (origin.0, Place { projections: vec![], ..origin.1 })
276                 };
277
278                 self.typeck_results
279                     .borrow_mut()
280                     .closure_kind_origins_mut()
281                     .insert(closure_hir_id, origin);
282             }
283         }
284
285         self.log_closure_min_capture_info(closure_def_id, span);
286
287         // Now that we've analyzed the closure, we know how each
288         // variable is borrowed, and we know what traits the closure
289         // implements (Fn vs FnMut etc). We now have some updates to do
290         // with that information.
291         //
292         // Note that no closure type C may have an upvar of type C
293         // (though it may reference itself via a trait object). This
294         // results from the desugaring of closures to a struct like
295         // `Foo<..., UV0...UVn>`. If one of those upvars referenced
296         // C, then the type would have infinite size (and the
297         // inference algorithm will reject it).
298
299         // Equate the type variables for the upvars with the actual types.
300         let final_upvar_tys = self.final_upvar_tys(closure_def_id);
301         debug!(
302             "analyze_closure: id={:?} substs={:?} final_upvar_tys={:?}",
303             closure_hir_id, substs, final_upvar_tys
304         );
305
306         // Build a tuple (U0..Un) of the final upvar types U0..Un
307         // and unify the upvar tupe type in the closure with it:
308         let final_tupled_upvars_type = self.tcx.mk_tup(final_upvar_tys.iter());
309         self.demand_suptype(span, substs.tupled_upvars_ty(), final_tupled_upvars_type);
310
311         let fake_reads = delegate
312             .fake_reads
313             .into_iter()
314             .map(|(place, cause, hir_id)| (place, cause, hir_id))
315             .collect();
316         self.typeck_results.borrow_mut().closure_fake_reads.insert(closure_def_id, fake_reads);
317
318         if self.tcx.sess.opts.debugging_opts.profile_closures {
319             self.typeck_results.borrow_mut().closure_size_eval.insert(
320                 closure_def_id,
321                 ClosureSizeProfileData {
322                     before_feature_tys: self.tcx.mk_tup(before_feature_tys.into_iter()),
323                     after_feature_tys: self.tcx.mk_tup(after_feature_tys.into_iter()),
324                 },
325             );
326         }
327
328         // If we are also inferred the closure kind here,
329         // process any deferred resolutions.
330         let deferred_call_resolutions = self.remove_deferred_call_resolutions(closure_def_id);
331         for deferred_call_resolution in deferred_call_resolutions {
332             deferred_call_resolution.resolve(self);
333         }
334     }
335
336     // Returns a list of `Ty`s for each upvar.
337     fn final_upvar_tys(&self, closure_id: DefId) -> Vec<Ty<'tcx>> {
338         self.typeck_results
339             .borrow()
340             .closure_min_captures_flattened(closure_id)
341             .map(|captured_place| {
342                 let upvar_ty = captured_place.place.ty();
343                 let capture = captured_place.info.capture_kind;
344
345                 debug!(
346                     "final_upvar_tys: place={:?} upvar_ty={:?} capture={:?}, mutability={:?}",
347                     captured_place.place, upvar_ty, capture, captured_place.mutability,
348                 );
349
350                 apply_capture_kind_on_capture_ty(self.tcx, upvar_ty, capture, captured_place.region)
351             })
352             .collect()
353     }
354
355     /// Adjusts the closure capture information to ensure that the operations aren't unsafe,
356     /// and that the path can be captured with required capture kind (depending on use in closure,
357     /// move closure etc.)
358     ///
359     /// Returns the set of of adjusted information along with the inferred closure kind and span
360     /// associated with the closure kind inference.
361     ///
362     /// Note that we *always* infer a minimal kind, even if
363     /// we don't always *use* that in the final result (i.e., sometimes
364     /// we've taken the closure kind from the expectations instead, and
365     /// for generators we don't even implement the closure traits
366     /// really).
367     ///
368     /// If we inferred that the closure needs to be FnMut/FnOnce, last element of the returned tuple
369     /// contains a `Some()` with the `Place` that caused us to do so.
370     fn process_collected_capture_information(
371         &self,
372         capture_clause: hir::CaptureBy,
373         capture_information: InferredCaptureInformation<'tcx>,
374     ) -> (InferredCaptureInformation<'tcx>, ty::ClosureKind, Option<(Span, Place<'tcx>)>) {
375         let mut closure_kind = ty::ClosureKind::LATTICE_BOTTOM;
376         let mut origin: Option<(Span, Place<'tcx>)> = None;
377
378         let processed = capture_information
379             .into_iter()
380             .map(|(place, mut capture_info)| {
381                 // Apply rules for safety before inferring closure kind
382                 let (place, capture_kind) =
383                     restrict_capture_precision(place, capture_info.capture_kind);
384
385                 let (place, capture_kind) = truncate_capture_for_optimization(place, capture_kind);
386
387                 let usage_span = if let Some(usage_expr) = capture_info.path_expr_id {
388                     self.tcx.hir().span(usage_expr)
389                 } else {
390                     unreachable!()
391                 };
392
393                 let updated = match capture_kind {
394                     ty::UpvarCapture::ByValue => match closure_kind {
395                         ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
396                             (ty::ClosureKind::FnOnce, Some((usage_span, place.clone())))
397                         }
398                         // If closure is already FnOnce, don't update
399                         ty::ClosureKind::FnOnce => (closure_kind, origin.take()),
400                     },
401
402                     ty::UpvarCapture::ByRef(
403                         ty::BorrowKind::MutBorrow | ty::BorrowKind::UniqueImmBorrow,
404                     ) => {
405                         match closure_kind {
406                             ty::ClosureKind::Fn => {
407                                 (ty::ClosureKind::FnMut, Some((usage_span, place.clone())))
408                             }
409                             // Don't update the origin
410                             ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce => {
411                                 (closure_kind, origin.take())
412                             }
413                         }
414                     }
415
416                     _ => (closure_kind, origin.take()),
417                 };
418
419                 closure_kind = updated.0;
420                 origin = updated.1;
421
422                 let (place, capture_kind) = match capture_clause {
423                     hir::CaptureBy::Value => adjust_for_move_closure(place, capture_kind),
424                     hir::CaptureBy::Ref => adjust_for_non_move_closure(place, capture_kind),
425                 };
426
427                 // This restriction needs to be applied after we have handled adjustments for `move`
428                 // closures. We want to make sure any adjustment that might make us move the place into
429                 // the closure gets handled.
430                 let (place, capture_kind) =
431                     restrict_precision_for_drop_types(self, place, capture_kind, usage_span);
432
433                 capture_info.capture_kind = capture_kind;
434                 (place, capture_info)
435             })
436             .collect();
437
438         (processed, closure_kind, origin)
439     }
440
441     /// Analyzes the information collected by `InferBorrowKind` to compute the min number of
442     /// Places (and corresponding capture kind) that we need to keep track of to support all
443     /// the required captured paths.
444     ///
445     ///
446     /// Note: If this function is called multiple times for the same closure, it will update
447     ///       the existing min_capture map that is stored in TypeckResults.
448     ///
449     /// Eg:
450     /// ```rust,no_run
451     /// struct Point { x: i32, y: i32 }
452     ///
453     /// let s: String;  // hir_id_s
454     /// let mut p: Point; // his_id_p
455     /// let c = || {
456     ///        println!("{}", s);  // L1
457     ///        p.x += 10;  // L2
458     ///        println!("{}" , p.y) // L3
459     ///        println!("{}", p) // L4
460     ///        drop(s);   // L5
461     /// };
462     /// ```
463     /// and let hir_id_L1..5 be the expressions pointing to use of a captured variable on
464     /// the lines L1..5 respectively.
465     ///
466     /// InferBorrowKind results in a structure like this:
467     ///
468     /// ```text
469     /// {
470     ///       Place(base: hir_id_s, projections: [], ....) -> {
471     ///                                                            capture_kind_expr: hir_id_L5,
472     ///                                                            path_expr_id: hir_id_L5,
473     ///                                                            capture_kind: ByValue
474     ///                                                       },
475     ///       Place(base: hir_id_p, projections: [Field(0, 0)], ...) -> {
476     ///                                                                     capture_kind_expr: hir_id_L2,
477     ///                                                                     path_expr_id: hir_id_L2,
478     ///                                                                     capture_kind: ByValue
479     ///                                                                 },
480     ///       Place(base: hir_id_p, projections: [Field(1, 0)], ...) -> {
481     ///                                                                     capture_kind_expr: hir_id_L3,
482     ///                                                                     path_expr_id: hir_id_L3,
483     ///                                                                     capture_kind: ByValue
484     ///                                                                 },
485     ///       Place(base: hir_id_p, projections: [], ...) -> {
486     ///                                                          capture_kind_expr: hir_id_L4,
487     ///                                                          path_expr_id: hir_id_L4,
488     ///                                                          capture_kind: ByValue
489     ///                                                      },
490     /// ```
491     ///
492     /// After the min capture analysis, we get:
493     /// ```text
494     /// {
495     ///       hir_id_s -> [
496     ///            Place(base: hir_id_s, projections: [], ....) -> {
497     ///                                                                capture_kind_expr: hir_id_L5,
498     ///                                                                path_expr_id: hir_id_L5,
499     ///                                                                capture_kind: ByValue
500     ///                                                            },
501     ///       ],
502     ///       hir_id_p -> [
503     ///            Place(base: hir_id_p, projections: [], ...) -> {
504     ///                                                               capture_kind_expr: hir_id_L2,
505     ///                                                               path_expr_id: hir_id_L4,
506     ///                                                               capture_kind: ByValue
507     ///                                                           },
508     ///       ],
509     /// ```
510     fn compute_min_captures(
511         &self,
512         closure_def_id: DefId,
513         capture_information: InferredCaptureInformation<'tcx>,
514         closure_span: Span,
515     ) {
516         if capture_information.is_empty() {
517             return;
518         }
519
520         let mut typeck_results = self.typeck_results.borrow_mut();
521
522         let mut root_var_min_capture_list =
523             typeck_results.closure_min_captures.remove(&closure_def_id).unwrap_or_default();
524
525         for (mut place, capture_info) in capture_information.into_iter() {
526             let var_hir_id = match place.base {
527                 PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
528                 base => bug!("Expected upvar, found={:?}", base),
529             };
530
531             let min_cap_list = match root_var_min_capture_list.get_mut(&var_hir_id) {
532                 None => {
533                     let mutability = self.determine_capture_mutability(&typeck_results, &place);
534                     let min_cap_list = vec![ty::CapturedPlace {
535                         place,
536                         info: capture_info,
537                         mutability,
538                         region: None,
539                     }];
540                     root_var_min_capture_list.insert(var_hir_id, min_cap_list);
541                     continue;
542                 }
543                 Some(min_cap_list) => min_cap_list,
544             };
545
546             // Go through each entry in the current list of min_captures
547             // - if ancestor is found, update it's capture kind to account for current place's
548             // capture information.
549             //
550             // - if descendant is found, remove it from the list, and update the current place's
551             // capture information to account for the descendants's capture kind.
552             //
553             // We can never be in a case where the list contains both an ancestor and a descendant
554             // Also there can only be ancestor but in case of descendants there might be
555             // multiple.
556
557             let mut descendant_found = false;
558             let mut updated_capture_info = capture_info;
559             min_cap_list.retain(|possible_descendant| {
560                 match determine_place_ancestry_relation(&place, &possible_descendant.place) {
561                     // current place is ancestor of possible_descendant
562                     PlaceAncestryRelation::Ancestor => {
563                         descendant_found = true;
564
565                         let mut possible_descendant = possible_descendant.clone();
566                         let backup_path_expr_id = updated_capture_info.path_expr_id;
567
568                         // Truncate the descendant (already in min_captures) to be same as the ancestor to handle any
569                         // possible change in capture mode.
570                         truncate_place_to_len_and_update_capture_kind(
571                             &mut possible_descendant.place,
572                             &mut possible_descendant.info.capture_kind,
573                             place.projections.len(),
574                         );
575
576                         updated_capture_info =
577                             determine_capture_info(updated_capture_info, possible_descendant.info);
578
579                         // we need to keep the ancestor's `path_expr_id`
580                         updated_capture_info.path_expr_id = backup_path_expr_id;
581                         false
582                     }
583
584                     _ => true,
585                 }
586             });
587
588             let mut ancestor_found = false;
589             if !descendant_found {
590                 for possible_ancestor in min_cap_list.iter_mut() {
591                     match determine_place_ancestry_relation(&place, &possible_ancestor.place) {
592                         PlaceAncestryRelation::SamePlace => {
593                             ancestor_found = true;
594                             possible_ancestor.info = determine_capture_info(
595                                 possible_ancestor.info,
596                                 updated_capture_info,
597                             );
598
599                             // Only one related place will be in the list.
600                             break;
601                         }
602                         // current place is descendant of possible_ancestor
603                         PlaceAncestryRelation::Descendant => {
604                             ancestor_found = true;
605                             let backup_path_expr_id = possible_ancestor.info.path_expr_id;
606
607                             // Truncate the descendant (current place) to be same as the ancestor to handle any
608                             // possible change in capture mode.
609                             truncate_place_to_len_and_update_capture_kind(
610                                 &mut place,
611                                 &mut updated_capture_info.capture_kind,
612                                 possible_ancestor.place.projections.len(),
613                             );
614
615                             possible_ancestor.info = determine_capture_info(
616                                 possible_ancestor.info,
617                                 updated_capture_info,
618                             );
619
620                             // we need to keep the ancestor's `path_expr_id`
621                             possible_ancestor.info.path_expr_id = backup_path_expr_id;
622
623                             // Only one related place will be in the list.
624                             break;
625                         }
626                         _ => {}
627                     }
628                 }
629             }
630
631             // Only need to insert when we don't have an ancestor in the existing min capture list
632             if !ancestor_found {
633                 let mutability = self.determine_capture_mutability(&typeck_results, &place);
634                 let captured_place = ty::CapturedPlace {
635                     place,
636                     info: updated_capture_info,
637                     mutability,
638                     region: None,
639                 };
640                 min_cap_list.push(captured_place);
641             }
642         }
643
644         // For each capture that is determined to be captured by ref, add region info.
645         for (_, captures) in &mut root_var_min_capture_list {
646             for capture in captures {
647                 match capture.info.capture_kind {
648                     ty::UpvarCapture::ByRef(_) => {
649                         let PlaceBase::Upvar(upvar_id) = capture.place.base else { bug!("expected upvar") };
650                         let origin = UpvarRegion(upvar_id, closure_span);
651                         let upvar_region = self.next_region_var(origin);
652                         capture.region = Some(upvar_region);
653                     }
654                     _ => (),
655                 }
656             }
657         }
658
659         debug!(
660             "For closure={:?}, min_captures before sorting={:?}",
661             closure_def_id, root_var_min_capture_list
662         );
663
664         // Now that we have the minimized list of captures, sort the captures by field id.
665         // This causes the closure to capture the upvars in the same order as the fields are
666         // declared which is also the drop order. Thus, in situations where we capture all the
667         // fields of some type, the obserable drop order will remain the same as it previously
668         // was even though we're dropping each capture individually.
669         // See https://github.com/rust-lang/project-rfc-2229/issues/42 and
670         // `src/test/ui/closures/2229_closure_analysis/preserve_field_drop_order.rs`.
671         for (_, captures) in &mut root_var_min_capture_list {
672             captures.sort_by(|capture1, capture2| {
673                 for (p1, p2) in capture1.place.projections.iter().zip(&capture2.place.projections) {
674                     // We do not need to look at the `Projection.ty` fields here because at each
675                     // step of the iteration, the projections will either be the same and therefore
676                     // the types must be as well or the current projection will be different and
677                     // we will return the result of comparing the field indexes.
678                     match (p1.kind, p2.kind) {
679                         // Paths are the same, continue to next loop.
680                         (ProjectionKind::Deref, ProjectionKind::Deref) => {}
681                         (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _))
682                             if i1 == i2 => {}
683
684                         // Fields are different, compare them.
685                         (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _)) => {
686                             return i1.cmp(&i2);
687                         }
688
689                         // We should have either a pair of `Deref`s or a pair of `Field`s.
690                         // Anything else is a bug.
691                         (
692                             l @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
693                             r @ (ProjectionKind::Deref | ProjectionKind::Field(..)),
694                         ) => bug!(
695                             "ProjectionKinds Deref and Field were mismatched: ({:?}, {:?})",
696                             l,
697                             r
698                         ),
699                         (
700                             l @ (ProjectionKind::Index
701                             | ProjectionKind::Subslice
702                             | ProjectionKind::Deref
703                             | ProjectionKind::Field(..)),
704                             r @ (ProjectionKind::Index
705                             | ProjectionKind::Subslice
706                             | ProjectionKind::Deref
707                             | ProjectionKind::Field(..)),
708                         ) => bug!(
709                             "ProjectionKinds Index or Subslice were unexpected: ({:?}, {:?})",
710                             l,
711                             r
712                         ),
713                     }
714                 }
715
716                 unreachable!(
717                     "we captured two identical projections: capture1 = {:?}, capture2 = {:?}",
718                     capture1, capture2
719                 );
720             });
721         }
722
723         debug!(
724             "For closure={:?}, min_captures after sorting={:#?}",
725             closure_def_id, root_var_min_capture_list
726         );
727         typeck_results.closure_min_captures.insert(closure_def_id, root_var_min_capture_list);
728     }
729
730     /// Perform the migration analysis for RFC 2229, and emit lint
731     /// `disjoint_capture_drop_reorder` if needed.
732     fn perform_2229_migration_anaysis(
733         &self,
734         closure_def_id: DefId,
735         body_id: hir::BodyId,
736         capture_clause: hir::CaptureBy,
737         span: Span,
738     ) {
739         let (need_migrations, reasons) = self.compute_2229_migrations(
740             closure_def_id,
741             span,
742             capture_clause,
743             self.typeck_results.borrow().closure_min_captures.get(&closure_def_id),
744         );
745
746         if !need_migrations.is_empty() {
747             let (migration_string, migrated_variables_concat) =
748                 migration_suggestion_for_2229(self.tcx, &need_migrations);
749
750             let local_def_id = closure_def_id.expect_local();
751             let closure_hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
752             let closure_span = self.tcx.hir().span(closure_hir_id);
753             let closure_head_span = self.tcx.sess.source_map().guess_head_span(closure_span);
754             self.tcx.struct_span_lint_hir(
755                 lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
756                 closure_hir_id,
757                  closure_head_span,
758                 |lint| {
759                     let mut diagnostics_builder = lint.build(
760                         &reasons.migration_message(),
761                     );
762                     for NeededMigration { var_hir_id, diagnostics_info } in &need_migrations {
763                         // Labels all the usage of the captured variable and why they are responsible
764                         // for migration being needed
765                         for lint_note in diagnostics_info.iter() {
766                             match &lint_note.captures_info {
767                                 UpvarMigrationInfo::CapturingPrecise { source_expr: Some(capture_expr_id), var_name: captured_name } => {
768                                     let cause_span = self.tcx.hir().span(*capture_expr_id);
769                                     diagnostics_builder.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
770                                         self.tcx.hir().name(*var_hir_id),
771                                         captured_name,
772                                     ));
773                                 }
774                                 UpvarMigrationInfo::CapturingNothing { use_span } => {
775                                     diagnostics_builder.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
776                                         self.tcx.hir().name(*var_hir_id),
777                                     ));
778                                 }
779
780                                 _ => { }
781                             }
782
783                             // Add a label pointing to where a captured variable affected by drop order
784                             // is dropped
785                             if lint_note.reason.drop_order {
786                                 let drop_location_span = drop_location_span(self.tcx, &closure_hir_id);
787
788                                 match &lint_note.captures_info {
789                                     UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
790                                         diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
791                                             self.tcx.hir().name(*var_hir_id),
792                                             captured_name,
793                                         ));
794                                     }
795                                     UpvarMigrationInfo::CapturingNothing { use_span: _ } => {
796                                         diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
797                                             v = self.tcx.hir().name(*var_hir_id),
798                                         ));
799                                     }
800                                 }
801                             }
802
803                             // Add a label explaining why a closure no longer implements a trait
804                             for &missing_trait in &lint_note.reason.auto_traits {
805                                 // not capturing something anymore cannot cause a trait to fail to be implemented:
806                                 match &lint_note.captures_info {
807                                     UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
808                                         let var_name = self.tcx.hir().name(*var_hir_id);
809                                         diagnostics_builder.span_label(closure_head_span, format!("\
810                                         in Rust 2018, this closure implements {missing_trait} \
811                                         as `{var_name}` implements {missing_trait}, but in Rust 2021, \
812                                         this closure will no longer implement {missing_trait} \
813                                         because `{var_name}` is not fully captured \
814                                         and `{captured_name}` does not implement {missing_trait}"));
815                                     }
816
817                                     // Cannot happen: if we don't capture a variable, we impl strictly more traits
818                                     UpvarMigrationInfo::CapturingNothing { use_span } => span_bug!(*use_span, "missing trait from not capturing something"),
819                                 }
820                             }
821                         }
822                     }
823                     diagnostics_builder.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/disjoint-capture-in-closures.html>");
824
825                     let diagnostic_msg = format!(
826                         "add a dummy let to cause {} to be fully captured",
827                         migrated_variables_concat
828                     );
829
830                     let mut closure_body_span = {
831                         // If the body was entirely expanded from a macro
832                         // invocation, i.e. the body is not contained inside the
833                         // closure span, then we walk up the expansion until we
834                         // find the span before the expansion.
835                         let s = self.tcx.hir().span(body_id.hir_id);
836                         s.find_ancestor_inside(closure_span).unwrap_or(s)
837                     };
838
839                     if let Ok(mut s) = self.tcx.sess.source_map().span_to_snippet(closure_body_span) {
840                         if s.starts_with('$') {
841                             // Looks like a macro fragment. Try to find the real block.
842                             if let Some(hir::Node::Expr(&hir::Expr {
843                                 kind: hir::ExprKind::Block(block, ..), ..
844                             })) = self.tcx.hir().find(body_id.hir_id) {
845                                 // If the body is a block (with `{..}`), we use the span of that block.
846                                 // E.g. with a `|| $body` expanded from a `m!({ .. })`, we use `{ .. }`, and not `$body`.
847                                 // Since we know it's a block, we know we can insert the `let _ = ..` without
848                                 // breaking the macro syntax.
849                                 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(block.span) {
850                                     closure_body_span = block.span;
851                                     s = snippet;
852                                 }
853                             }
854                         }
855
856                         let mut lines = s.lines();
857                         let line1 = lines.next().unwrap_or_default();
858
859                         if line1.trim_end() == "{" {
860                             // This is a multi-line closure with just a `{` on the first line,
861                             // so we put the `let` on its own line.
862                             // We take the indentation from the next non-empty line.
863                             let line2 = lines.find(|line| !line.is_empty()).unwrap_or_default();
864                             let indent = line2.split_once(|c: char| !c.is_whitespace()).unwrap_or_default().0;
865                             diagnostics_builder.span_suggestion(
866                                 closure_body_span.with_lo(closure_body_span.lo() + BytePos::from_usize(line1.len())).shrink_to_lo(),
867                                 &diagnostic_msg,
868                                 format!("\n{}{};", indent, migration_string),
869                                 Applicability::MachineApplicable,
870                             );
871                         } else if line1.starts_with('{') {
872                             // This is a closure with its body wrapped in
873                             // braces, but with more than just the opening
874                             // brace on the first line. We put the `let`
875                             // directly after the `{`.
876                             diagnostics_builder.span_suggestion(
877                                 closure_body_span.with_lo(closure_body_span.lo() + BytePos(1)).shrink_to_lo(),
878                                 &diagnostic_msg,
879                                 format!(" {};", migration_string),
880                                 Applicability::MachineApplicable,
881                             );
882                         } else {
883                             // This is a closure without braces around the body.
884                             // We add braces to add the `let` before the body.
885                             diagnostics_builder.multipart_suggestion(
886                                 &diagnostic_msg,
887                                 vec![
888                                     (closure_body_span.shrink_to_lo(), format!("{{ {}; ", migration_string)),
889                                     (closure_body_span.shrink_to_hi(), " }".to_string()),
890                                 ],
891                                 Applicability::MachineApplicable
892                             );
893                         }
894                     } else {
895                         diagnostics_builder.span_suggestion(
896                             closure_span,
897                             &diagnostic_msg,
898                             migration_string,
899                             Applicability::HasPlaceholders
900                         );
901                     }
902
903                     diagnostics_builder.emit();
904                 },
905             );
906         }
907     }
908
909     /// Combines all the reasons for 2229 migrations
910     fn compute_2229_migrations_reasons(
911         &self,
912         auto_trait_reasons: FxHashSet<&'static str>,
913         drop_order: bool,
914     ) -> MigrationWarningReason {
915         let mut reasons = MigrationWarningReason::default();
916
917         reasons.auto_traits.extend(auto_trait_reasons);
918         reasons.drop_order = drop_order;
919
920         reasons
921     }
922
923     /// Figures out the list of root variables (and their types) that aren't completely
924     /// captured by the closure when `capture_disjoint_fields` is enabled and auto-traits
925     /// differ between the root variable and the captured paths.
926     ///
927     /// Returns a tuple containing a HashMap of CapturesInfo that maps to a HashSet of trait names
928     /// if migration is needed for traits for the provided var_hir_id, otherwise returns None
929     fn compute_2229_migrations_for_trait(
930         &self,
931         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
932         var_hir_id: hir::HirId,
933         closure_clause: hir::CaptureBy,
934     ) -> Option<FxHashMap<UpvarMigrationInfo, FxHashSet<&'static str>>> {
935         let auto_traits_def_id = vec![
936             self.tcx.lang_items().clone_trait(),
937             self.tcx.lang_items().sync_trait(),
938             self.tcx.get_diagnostic_item(sym::Send),
939             self.tcx.lang_items().unpin_trait(),
940             self.tcx.get_diagnostic_item(sym::unwind_safe_trait),
941             self.tcx.get_diagnostic_item(sym::ref_unwind_safe_trait),
942         ];
943         const AUTO_TRAITS: [&str; 6] =
944             ["`Clone`", "`Sync`", "`Send`", "`Unpin`", "`UnwindSafe`", "`RefUnwindSafe`"];
945
946         let root_var_min_capture_list = min_captures.and_then(|m| m.get(&var_hir_id))?;
947
948         let ty = self.infcx.resolve_vars_if_possible(self.node_ty(var_hir_id));
949
950         let ty = match closure_clause {
951             hir::CaptureBy::Value => ty, // For move closure the capture kind should be by value
952             hir::CaptureBy::Ref => {
953                 // For non move closure the capture kind is the max capture kind of all captures
954                 // according to the ordering ImmBorrow < UniqueImmBorrow < MutBorrow < ByValue
955                 let mut max_capture_info = root_var_min_capture_list.first().unwrap().info;
956                 for capture in root_var_min_capture_list.iter() {
957                     max_capture_info = determine_capture_info(max_capture_info, capture.info);
958                 }
959
960                 apply_capture_kind_on_capture_ty(
961                     self.tcx,
962                     ty,
963                     max_capture_info.capture_kind,
964                     Some(&ty::ReErased),
965                 )
966             }
967         };
968
969         let mut obligations_should_hold = Vec::new();
970         // Checks if a root variable implements any of the auto traits
971         for check_trait in auto_traits_def_id.iter() {
972             obligations_should_hold.push(
973                 check_trait
974                     .map(|check_trait| {
975                         self.infcx
976                             .type_implements_trait(
977                                 check_trait,
978                                 ty,
979                                 self.tcx.mk_substs_trait(ty, &[]),
980                                 self.param_env,
981                             )
982                             .must_apply_modulo_regions()
983                     })
984                     .unwrap_or(false),
985             );
986         }
987
988         let mut problematic_captures = FxHashMap::default();
989         // Check whether captured fields also implement the trait
990         for capture in root_var_min_capture_list.iter() {
991             let ty = apply_capture_kind_on_capture_ty(
992                 self.tcx,
993                 capture.place.ty(),
994                 capture.info.capture_kind,
995                 Some(&ty::ReErased),
996             );
997
998             // Checks if a capture implements any of the auto traits
999             let mut obligations_holds_for_capture = Vec::new();
1000             for check_trait in auto_traits_def_id.iter() {
1001                 obligations_holds_for_capture.push(
1002                     check_trait
1003                         .map(|check_trait| {
1004                             self.infcx
1005                                 .type_implements_trait(
1006                                     check_trait,
1007                                     ty,
1008                                     self.tcx.mk_substs_trait(ty, &[]),
1009                                     self.param_env,
1010                                 )
1011                                 .must_apply_modulo_regions()
1012                         })
1013                         .unwrap_or(false),
1014                 );
1015             }
1016
1017             let mut capture_problems = FxHashSet::default();
1018
1019             // Checks if for any of the auto traits, one or more trait is implemented
1020             // by the root variable but not by the capture
1021             for (idx, _) in obligations_should_hold.iter().enumerate() {
1022                 if !obligations_holds_for_capture[idx] && obligations_should_hold[idx] {
1023                     capture_problems.insert(AUTO_TRAITS[idx]);
1024                 }
1025             }
1026
1027             if !capture_problems.is_empty() {
1028                 problematic_captures.insert(
1029                     UpvarMigrationInfo::CapturingPrecise {
1030                         source_expr: capture.info.path_expr_id,
1031                         var_name: capture.to_string(self.tcx),
1032                     },
1033                     capture_problems,
1034                 );
1035             }
1036         }
1037         if !problematic_captures.is_empty() {
1038             return Some(problematic_captures);
1039         }
1040         None
1041     }
1042
1043     /// Figures out the list of root variables (and their types) that aren't completely
1044     /// captured by the closure when `capture_disjoint_fields` is enabled and drop order of
1045     /// some path starting at that root variable **might** be affected.
1046     ///
1047     /// The output list would include a root variable if:
1048     /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1049     ///   enabled, **and**
1050     /// - It wasn't completely captured by the closure, **and**
1051     /// - One of the paths starting at this root variable, that is not captured needs Drop.
1052     ///
1053     /// This function only returns a HashSet of CapturesInfo for significant drops. If there
1054     /// are no significant drops than None is returned
1055     #[instrument(level = "debug", skip(self))]
1056     fn compute_2229_migrations_for_drop(
1057         &self,
1058         closure_def_id: DefId,
1059         closure_span: Span,
1060         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1061         closure_clause: hir::CaptureBy,
1062         var_hir_id: hir::HirId,
1063     ) -> Option<FxHashSet<UpvarMigrationInfo>> {
1064         let ty = self.infcx.resolve_vars_if_possible(self.node_ty(var_hir_id));
1065
1066         if !ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id.expect_local())) {
1067             debug!("does not have significant drop");
1068             return None;
1069         }
1070
1071         let Some(root_var_min_capture_list) = min_captures.and_then(|m| m.get(&var_hir_id)) else {
1072             // The upvar is mentioned within the closure but no path starting from it is
1073             // used. This occurs when you have (e.g.)
1074             //
1075             // ```
1076             // let x = move || {
1077             //     let _ = y;
1078             // });
1079             // ```
1080             debug!("no path starting from it is used");
1081
1082
1083             match closure_clause {
1084                 // Only migrate if closure is a move closure
1085                 hir::CaptureBy::Value => {
1086                     let mut diagnostics_info = FxHashSet::default();
1087                     let upvars = self.tcx.upvars_mentioned(closure_def_id).expect("must be an upvar");
1088                     let upvar = upvars[&var_hir_id];
1089                     diagnostics_info.insert(UpvarMigrationInfo::CapturingNothing { use_span: upvar.span });
1090                     return Some(diagnostics_info);
1091                 }
1092                 hir::CaptureBy::Ref => {}
1093             }
1094
1095             return None;
1096         };
1097         debug!(?root_var_min_capture_list);
1098
1099         let mut projections_list = Vec::new();
1100         let mut diagnostics_info = FxHashSet::default();
1101
1102         for captured_place in root_var_min_capture_list.iter() {
1103             match captured_place.info.capture_kind {
1104                 // Only care about captures that are moved into the closure
1105                 ty::UpvarCapture::ByValue => {
1106                     projections_list.push(captured_place.place.projections.as_slice());
1107                     diagnostics_info.insert(UpvarMigrationInfo::CapturingPrecise {
1108                         source_expr: captured_place.info.path_expr_id,
1109                         var_name: captured_place.to_string(self.tcx),
1110                     });
1111                 }
1112                 ty::UpvarCapture::ByRef(..) => {}
1113             }
1114         }
1115
1116         debug!(?projections_list);
1117         debug!(?diagnostics_info);
1118
1119         let is_moved = !projections_list.is_empty();
1120         debug!(?is_moved);
1121
1122         let is_not_completely_captured =
1123             root_var_min_capture_list.iter().any(|capture| !capture.place.projections.is_empty());
1124         debug!(?is_not_completely_captured);
1125
1126         if is_moved
1127             && is_not_completely_captured
1128             && self.has_significant_drop_outside_of_captures(
1129                 closure_def_id,
1130                 closure_span,
1131                 ty,
1132                 projections_list,
1133             )
1134         {
1135             return Some(diagnostics_info);
1136         }
1137
1138         None
1139     }
1140
1141     /// Figures out the list of root variables (and their types) that aren't completely
1142     /// captured by the closure when `capture_disjoint_fields` is enabled and either drop
1143     /// order of some path starting at that root variable **might** be affected or auto-traits
1144     /// differ between the root variable and the captured paths.
1145     ///
1146     /// The output list would include a root variable if:
1147     /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1148     ///   enabled, **and**
1149     /// - It wasn't completely captured by the closure, **and**
1150     /// - One of the paths starting at this root variable, that is not captured needs Drop **or**
1151     /// - One of the paths captured does not implement all the auto-traits its root variable
1152     ///   implements.
1153     ///
1154     /// Returns a tuple containing a vector of MigrationDiagnosticInfo, as well as a String
1155     /// containing the reason why root variables whose HirId is contained in the vector should
1156     /// be captured
1157     #[instrument(level = "debug", skip(self))]
1158     fn compute_2229_migrations(
1159         &self,
1160         closure_def_id: DefId,
1161         closure_span: Span,
1162         closure_clause: hir::CaptureBy,
1163         min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1164     ) -> (Vec<NeededMigration>, MigrationWarningReason) {
1165         let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) else {
1166             return (Vec::new(), MigrationWarningReason::default());
1167         };
1168
1169         let mut need_migrations = Vec::new();
1170         let mut auto_trait_migration_reasons = FxHashSet::default();
1171         let mut drop_migration_needed = false;
1172
1173         // Perform auto-trait analysis
1174         for (&var_hir_id, _) in upvars.iter() {
1175             let mut diagnostics_info = Vec::new();
1176
1177             let auto_trait_diagnostic = if let Some(diagnostics_info) =
1178                 self.compute_2229_migrations_for_trait(min_captures, var_hir_id, closure_clause)
1179             {
1180                 diagnostics_info
1181             } else {
1182                 FxHashMap::default()
1183             };
1184
1185             let drop_reorder_diagnostic = if let Some(diagnostics_info) = self
1186                 .compute_2229_migrations_for_drop(
1187                     closure_def_id,
1188                     closure_span,
1189                     min_captures,
1190                     closure_clause,
1191                     var_hir_id,
1192                 ) {
1193                 drop_migration_needed = true;
1194                 diagnostics_info
1195             } else {
1196                 FxHashSet::default()
1197             };
1198
1199             // Combine all the captures responsible for needing migrations into one HashSet
1200             let mut capture_diagnostic = drop_reorder_diagnostic.clone();
1201             for key in auto_trait_diagnostic.keys() {
1202                 capture_diagnostic.insert(key.clone());
1203             }
1204
1205             let mut capture_diagnostic = capture_diagnostic.into_iter().collect::<Vec<_>>();
1206             capture_diagnostic.sort();
1207             for captures_info in capture_diagnostic {
1208                 // Get the auto trait reasons of why migration is needed because of that capture, if there are any
1209                 let capture_trait_reasons =
1210                     if let Some(reasons) = auto_trait_diagnostic.get(&captures_info) {
1211                         reasons.clone()
1212                     } else {
1213                         FxHashSet::default()
1214                     };
1215
1216                 // Check if migration is needed because of drop reorder as a result of that capture
1217                 let capture_drop_reorder_reason = drop_reorder_diagnostic.contains(&captures_info);
1218
1219                 // Combine all the reasons of why the root variable should be captured as a result of
1220                 // auto trait implementation issues
1221                 auto_trait_migration_reasons.extend(capture_trait_reasons.clone());
1222
1223                 diagnostics_info.push(MigrationLintNote {
1224                     captures_info,
1225                     reason: self.compute_2229_migrations_reasons(
1226                         capture_trait_reasons,
1227                         capture_drop_reorder_reason,
1228                     ),
1229                 });
1230             }
1231
1232             if !diagnostics_info.is_empty() {
1233                 need_migrations.push(NeededMigration { var_hir_id, diagnostics_info });
1234             }
1235         }
1236         (
1237             need_migrations,
1238             self.compute_2229_migrations_reasons(
1239                 auto_trait_migration_reasons,
1240                 drop_migration_needed,
1241             ),
1242         )
1243     }
1244
1245     /// This is a helper function to `compute_2229_migrations_precise_pass`. Provided the type
1246     /// of a root variable and a list of captured paths starting at this root variable (expressed
1247     /// using list of `Projection` slices), it returns true if there is a path that is not
1248     /// captured starting at this root variable that implements Drop.
1249     ///
1250     /// The way this function works is at a given call it looks at type `base_path_ty` of some base
1251     /// path say P and then list of projection slices which represent the different captures moved
1252     /// into the closure starting off of P.
1253     ///
1254     /// This will make more sense with an example:
1255     ///
1256     /// ```rust
1257     /// #![feature(capture_disjoint_fields)]
1258     ///
1259     /// struct FancyInteger(i32); // This implements Drop
1260     ///
1261     /// struct Point { x: FancyInteger, y: FancyInteger }
1262     /// struct Color;
1263     ///
1264     /// struct Wrapper { p: Point, c: Color }
1265     ///
1266     /// fn f(w: Wrapper) {
1267     ///   let c = || {
1268     ///       // Closure captures w.p.x and w.c by move.
1269     ///   };
1270     ///
1271     ///   c();
1272     /// }
1273     /// ```
1274     ///
1275     /// If `capture_disjoint_fields` wasn't enabled the closure would've moved `w` instead of the
1276     /// precise paths. If we look closely `w.p.y` isn't captured which implements Drop and
1277     /// therefore Drop ordering would change and we want this function to return true.
1278     ///
1279     /// Call stack to figure out if we need to migrate for `w` would look as follows:
1280     ///
1281     /// Our initial base path is just `w`, and the paths captured from it are `w[p, x]` and
1282     /// `w[c]`.
1283     /// Notation:
1284     /// - Ty(place): Type of place
1285     /// - `(a, b)`: Represents the function parameters `base_path_ty` and `captured_by_move_projs`
1286     /// respectively.
1287     /// ```
1288     ///                  (Ty(w), [ &[p, x], &[c] ])
1289     ///                                 |
1290     ///                    ----------------------------
1291     ///                    |                          |
1292     ///                    v                          v
1293     ///        (Ty(w.p), [ &[x] ])          (Ty(w.c), [ &[] ]) // I(1)
1294     ///                    |                          |
1295     ///                    v                          v
1296     ///        (Ty(w.p), [ &[x] ])                 false
1297     ///                    |
1298     ///                    |
1299     ///          -------------------------------
1300     ///          |                             |
1301     ///          v                             v
1302     ///     (Ty((w.p).x), [ &[] ])     (Ty((w.p).y), []) // IMP 2
1303     ///          |                             |
1304     ///          v                             v
1305     ///        false              NeedsSignificantDrop(Ty(w.p.y))
1306     ///                                        |
1307     ///                                        v
1308     ///                                      true
1309     /// ```
1310     ///
1311     /// IMP 1 `(Ty(w.c), [ &[] ])`: Notice the single empty slice inside `captured_projs`.
1312     ///                             This implies that the `w.c` is completely captured by the closure.
1313     ///                             Since drop for this path will be called when the closure is
1314     ///                             dropped we don't need to migrate for it.
1315     ///
1316     /// IMP 2 `(Ty((w.p).y), [])`: Notice that `captured_projs` is empty. This implies that this
1317     ///                             path wasn't captured by the closure. Also note that even
1318     ///                             though we didn't capture this path, the function visits it,
1319     ///                             which is kind of the point of this function. We then return
1320     ///                             if the type of `w.p.y` implements Drop, which in this case is
1321     ///                             true.
1322     ///
1323     /// Consider another example:
1324     ///
1325     /// ```rust
1326     /// struct X;
1327     /// impl Drop for X {}
1328     ///
1329     /// struct Y(X);
1330     /// impl Drop for Y {}
1331     ///
1332     /// fn foo() {
1333     ///     let y = Y(X);
1334     ///     let c = || move(y.0);
1335     /// }
1336     /// ```
1337     ///
1338     /// Note that `y.0` is captured by the closure. When this function is called for `y`, it will
1339     /// return true, because even though all paths starting at `y` are captured, `y` itself
1340     /// implements Drop which will be affected since `y` isn't completely captured.
1341     fn has_significant_drop_outside_of_captures(
1342         &self,
1343         closure_def_id: DefId,
1344         closure_span: Span,
1345         base_path_ty: Ty<'tcx>,
1346         captured_by_move_projs: Vec<&[Projection<'tcx>]>,
1347     ) -> bool {
1348         let needs_drop = |ty: Ty<'tcx>| {
1349             ty.has_significant_drop(self.tcx, self.tcx.param_env(closure_def_id.expect_local()))
1350         };
1351
1352         let is_drop_defined_for_ty = |ty: Ty<'tcx>| {
1353             let drop_trait = self.tcx.require_lang_item(hir::LangItem::Drop, Some(closure_span));
1354             let ty_params = self.tcx.mk_substs_trait(base_path_ty, &[]);
1355             self.infcx
1356                 .type_implements_trait(
1357                     drop_trait,
1358                     ty,
1359                     ty_params,
1360                     self.tcx.param_env(closure_def_id.expect_local()),
1361                 )
1362                 .must_apply_modulo_regions()
1363         };
1364
1365         let is_drop_defined_for_ty = is_drop_defined_for_ty(base_path_ty);
1366
1367         // If there is a case where no projection is applied on top of current place
1368         // then there must be exactly one capture corresponding to such a case. Note that this
1369         // represents the case of the path being completely captured by the variable.
1370         //
1371         // eg. If `a.b` is captured and we are processing `a.b`, then we can't have the closure also
1372         //     capture `a.b.c`, because that voilates min capture.
1373         let is_completely_captured = captured_by_move_projs.iter().any(|projs| projs.is_empty());
1374
1375         assert!(!is_completely_captured || (captured_by_move_projs.len() == 1));
1376
1377         if is_completely_captured {
1378             // The place is captured entirely, so doesn't matter if needs dtor, it will be drop
1379             // when the closure is dropped.
1380             return false;
1381         }
1382
1383         if captured_by_move_projs.is_empty() {
1384             return needs_drop(base_path_ty);
1385         }
1386
1387         if is_drop_defined_for_ty {
1388             // If drop is implemented for this type then we need it to be fully captured,
1389             // and we know it is not completely captured because of the previous checks.
1390
1391             // Note that this is a bug in the user code that will be reported by the
1392             // borrow checker, since we can't move out of drop types.
1393
1394             // The bug exists in the user's code pre-migration, and we don't migrate here.
1395             return false;
1396         }
1397
1398         match base_path_ty.kind() {
1399             // Observations:
1400             // - `captured_by_move_projs` is not empty. Therefore we can call
1401             //   `captured_by_move_projs.first().unwrap()` safely.
1402             // - All entries in `captured_by_move_projs` have atleast one projection.
1403             //   Therefore we can call `captured_by_move_projs.first().unwrap().first().unwrap()` safely.
1404
1405             // We don't capture derefs in case of move captures, which would have be applied to
1406             // access any further paths.
1407             ty::Adt(def, _) if def.is_box() => unreachable!(),
1408             ty::Ref(..) => unreachable!(),
1409             ty::RawPtr(..) => unreachable!(),
1410
1411             ty::Adt(def, substs) => {
1412                 // Multi-varaint enums are captured in entirety,
1413                 // which would've been handled in the case of single empty slice in `captured_by_move_projs`.
1414                 assert_eq!(def.variants.len(), 1);
1415
1416                 // Only Field projections can be applied to a non-box Adt.
1417                 assert!(
1418                     captured_by_move_projs.iter().all(|projs| matches!(
1419                         projs.first().unwrap().kind,
1420                         ProjectionKind::Field(..)
1421                     ))
1422                 );
1423                 def.variants.get(VariantIdx::new(0)).unwrap().fields.iter().enumerate().any(
1424                     |(i, field)| {
1425                         let paths_using_field = captured_by_move_projs
1426                             .iter()
1427                             .filter_map(|projs| {
1428                                 if let ProjectionKind::Field(field_idx, _) =
1429                                     projs.first().unwrap().kind
1430                                 {
1431                                     if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
1432                                 } else {
1433                                     unreachable!();
1434                                 }
1435                             })
1436                             .collect();
1437
1438                         let after_field_ty = field.ty(self.tcx, substs);
1439                         self.has_significant_drop_outside_of_captures(
1440                             closure_def_id,
1441                             closure_span,
1442                             after_field_ty,
1443                             paths_using_field,
1444                         )
1445                     },
1446                 )
1447             }
1448
1449             ty::Tuple(..) => {
1450                 // Only Field projections can be applied to a tuple.
1451                 assert!(
1452                     captured_by_move_projs.iter().all(|projs| matches!(
1453                         projs.first().unwrap().kind,
1454                         ProjectionKind::Field(..)
1455                     ))
1456                 );
1457
1458                 base_path_ty.tuple_fields().enumerate().any(|(i, element_ty)| {
1459                     let paths_using_field = captured_by_move_projs
1460                         .iter()
1461                         .filter_map(|projs| {
1462                             if let ProjectionKind::Field(field_idx, _) = projs.first().unwrap().kind
1463                             {
1464                                 if (field_idx as usize) == i { Some(&projs[1..]) } else { None }
1465                             } else {
1466                                 unreachable!();
1467                             }
1468                         })
1469                         .collect();
1470
1471                     self.has_significant_drop_outside_of_captures(
1472                         closure_def_id,
1473                         closure_span,
1474                         element_ty,
1475                         paths_using_field,
1476                     )
1477                 })
1478             }
1479
1480             // Anything else would be completely captured and therefore handled already.
1481             _ => unreachable!(),
1482         }
1483     }
1484
1485     fn init_capture_kind_for_place(
1486         &self,
1487         place: &Place<'tcx>,
1488         capture_clause: hir::CaptureBy,
1489     ) -> ty::UpvarCapture {
1490         match capture_clause {
1491             // In case of a move closure if the data is accessed through a reference we
1492             // want to capture by ref to allow precise capture using reborrows.
1493             //
1494             // If the data will be moved out of this place, then the place will be truncated
1495             // at the first Deref in `adjust_upvar_borrow_kind_for_consume` and then moved into
1496             // the closure.
1497             hir::CaptureBy::Value if !place.deref_tys().any(ty::TyS::is_ref) => {
1498                 ty::UpvarCapture::ByValue
1499             }
1500             hir::CaptureBy::Value | hir::CaptureBy::Ref => ty::UpvarCapture::ByRef(ty::ImmBorrow),
1501         }
1502     }
1503
1504     fn place_for_root_variable(
1505         &self,
1506         closure_def_id: LocalDefId,
1507         var_hir_id: hir::HirId,
1508     ) -> Place<'tcx> {
1509         let upvar_id = ty::UpvarId::new(var_hir_id, closure_def_id);
1510
1511         Place {
1512             base_ty: self.node_ty(var_hir_id),
1513             base: PlaceBase::Upvar(upvar_id),
1514             projections: Default::default(),
1515         }
1516     }
1517
1518     fn should_log_capture_analysis(&self, closure_def_id: DefId) -> bool {
1519         self.tcx.has_attr(closure_def_id, sym::rustc_capture_analysis)
1520     }
1521
1522     fn log_capture_analysis_first_pass(
1523         &self,
1524         closure_def_id: rustc_hir::def_id::DefId,
1525         capture_information: &InferredCaptureInformation<'tcx>,
1526         closure_span: Span,
1527     ) {
1528         if self.should_log_capture_analysis(closure_def_id) {
1529             let mut diag =
1530                 self.tcx.sess.struct_span_err(closure_span, "First Pass analysis includes:");
1531             for (place, capture_info) in capture_information {
1532                 let capture_str = construct_capture_info_string(self.tcx, place, capture_info);
1533                 let output_str = format!("Capturing {}", capture_str);
1534
1535                 let span =
1536                     capture_info.path_expr_id.map_or(closure_span, |e| self.tcx.hir().span(e));
1537                 diag.span_note(span, &output_str);
1538             }
1539             diag.emit();
1540         }
1541     }
1542
1543     fn log_closure_min_capture_info(&self, closure_def_id: DefId, closure_span: Span) {
1544         if self.should_log_capture_analysis(closure_def_id) {
1545             if let Some(min_captures) =
1546                 self.typeck_results.borrow().closure_min_captures.get(&closure_def_id)
1547             {
1548                 let mut diag =
1549                     self.tcx.sess.struct_span_err(closure_span, "Min Capture analysis includes:");
1550
1551                 for (_, min_captures_for_var) in min_captures {
1552                     for capture in min_captures_for_var {
1553                         let place = &capture.place;
1554                         let capture_info = &capture.info;
1555
1556                         let capture_str =
1557                             construct_capture_info_string(self.tcx, place, capture_info);
1558                         let output_str = format!("Min Capture {}", capture_str);
1559
1560                         if capture.info.path_expr_id != capture.info.capture_kind_expr_id {
1561                             let path_span = capture_info
1562                                 .path_expr_id
1563                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1564                             let capture_kind_span = capture_info
1565                                 .capture_kind_expr_id
1566                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1567
1568                             let mut multi_span: MultiSpan =
1569                                 MultiSpan::from_spans(vec![path_span, capture_kind_span]);
1570
1571                             let capture_kind_label =
1572                                 construct_capture_kind_reason_string(self.tcx, place, capture_info);
1573                             let path_label = construct_path_string(self.tcx, place);
1574
1575                             multi_span.push_span_label(path_span, path_label);
1576                             multi_span.push_span_label(capture_kind_span, capture_kind_label);
1577
1578                             diag.span_note(multi_span, &output_str);
1579                         } else {
1580                             let span = capture_info
1581                                 .path_expr_id
1582                                 .map_or(closure_span, |e| self.tcx.hir().span(e));
1583
1584                             diag.span_note(span, &output_str);
1585                         };
1586                     }
1587                 }
1588                 diag.emit();
1589             }
1590         }
1591     }
1592
1593     /// A captured place is mutable if
1594     /// 1. Projections don't include a Deref of an immut-borrow, **and**
1595     /// 2. PlaceBase is mut or projections include a Deref of a mut-borrow.
1596     fn determine_capture_mutability(
1597         &self,
1598         typeck_results: &'a TypeckResults<'tcx>,
1599         place: &Place<'tcx>,
1600     ) -> hir::Mutability {
1601         let var_hir_id = match place.base {
1602             PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
1603             _ => unreachable!(),
1604         };
1605
1606         let bm = *typeck_results.pat_binding_modes().get(var_hir_id).expect("missing binding mode");
1607
1608         let mut is_mutbl = match bm {
1609             ty::BindByValue(mutability) => mutability,
1610             ty::BindByReference(_) => hir::Mutability::Not,
1611         };
1612
1613         for pointer_ty in place.deref_tys() {
1614             match pointer_ty.kind() {
1615                 // We don't capture derefs of raw ptrs
1616                 ty::RawPtr(_) => unreachable!(),
1617
1618                 // Derefencing a mut-ref allows us to mut the Place if we don't deref
1619                 // an immut-ref after on top of this.
1620                 ty::Ref(.., hir::Mutability::Mut) => is_mutbl = hir::Mutability::Mut,
1621
1622                 // The place isn't mutable once we dereference an immutable reference.
1623                 ty::Ref(.., hir::Mutability::Not) => return hir::Mutability::Not,
1624
1625                 // Dereferencing a box doesn't change mutability
1626                 ty::Adt(def, ..) if def.is_box() => {}
1627
1628                 unexpected_ty => bug!("deref of unexpected pointer type {:?}", unexpected_ty),
1629             }
1630         }
1631
1632         is_mutbl
1633     }
1634 }
1635
1636 /// Truncate the capture so that the place being borrowed is in accordance with RFC 1240,
1637 /// which states that it's unsafe to take a reference into a struct marked `repr(packed)`.
1638 fn restrict_repr_packed_field_ref_capture<'tcx>(
1639     tcx: TyCtxt<'tcx>,
1640     param_env: ty::ParamEnv<'tcx>,
1641     mut place: Place<'tcx>,
1642     mut curr_borrow_kind: ty::UpvarCapture,
1643 ) -> (Place<'tcx>, ty::UpvarCapture) {
1644     let pos = place.projections.iter().enumerate().position(|(i, p)| {
1645         let ty = place.ty_before_projection(i);
1646
1647         // Return true for fields of packed structs, unless those fields have alignment 1.
1648         match p.kind {
1649             ProjectionKind::Field(..) => match ty.kind() {
1650                 ty::Adt(def, _) if def.repr.packed() => {
1651                     match tcx.layout_of(param_env.and(p.ty)) {
1652                         Ok(layout) if layout.align.abi.bytes() == 1 => {
1653                             // if the alignment is 1, the type can't be further
1654                             // disaligned.
1655                             debug!(
1656                                 "restrict_repr_packed_field_ref_capture: ({:?}) - align = 1",
1657                                 place
1658                             );
1659                             false
1660                         }
1661                         _ => {
1662                             debug!("restrict_repr_packed_field_ref_capture: ({:?}) - true", place);
1663                             true
1664                         }
1665                     }
1666                 }
1667
1668                 _ => false,
1669             },
1670             _ => false,
1671         }
1672     });
1673
1674     if let Some(pos) = pos {
1675         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_borrow_kind, pos);
1676     }
1677
1678     (place, curr_borrow_kind)
1679 }
1680
1681 /// Returns a Ty that applies the specified capture kind on the provided capture Ty
1682 fn apply_capture_kind_on_capture_ty<'tcx>(
1683     tcx: TyCtxt<'tcx>,
1684     ty: Ty<'tcx>,
1685     capture_kind: UpvarCapture,
1686     region: Option<ty::Region<'tcx>>,
1687 ) -> Ty<'tcx> {
1688     match capture_kind {
1689         ty::UpvarCapture::ByValue => ty,
1690         ty::UpvarCapture::ByRef(kind) => {
1691             tcx.mk_ref(region.unwrap(), ty::TypeAndMut { ty: ty, mutbl: kind.to_mutbl_lossy() })
1692         }
1693     }
1694 }
1695
1696 /// Returns the Span of where the value with the provided HirId would be dropped
1697 fn drop_location_span<'tcx>(tcx: TyCtxt<'tcx>, hir_id: &hir::HirId) -> Span {
1698     let owner_id = tcx.hir().get_enclosing_scope(*hir_id).unwrap();
1699
1700     let owner_node = tcx.hir().get(owner_id);
1701     let owner_span = match owner_node {
1702         hir::Node::Item(item) => match item.kind {
1703             hir::ItemKind::Fn(_, _, owner_id) => tcx.hir().span(owner_id.hir_id),
1704             _ => {
1705                 bug!("Drop location span error: need to handle more ItemKind {:?}", item.kind);
1706             }
1707         },
1708         hir::Node::Block(block) => tcx.hir().span(block.hir_id),
1709         _ => {
1710             bug!("Drop location span error: need to handle more Node {:?}", owner_node);
1711         }
1712     };
1713     tcx.sess.source_map().end_point(owner_span)
1714 }
1715
1716 struct InferBorrowKind<'a, 'tcx> {
1717     fcx: &'a FnCtxt<'a, 'tcx>,
1718
1719     // The def-id of the closure whose kind and upvar accesses are being inferred.
1720     closure_def_id: LocalDefId,
1721
1722     /// For each Place that is captured by the closure, we track the minimal kind of
1723     /// access we need (ref, ref mut, move, etc) and the expression that resulted in such access.
1724     ///
1725     /// Consider closure where s.str1 is captured via an ImmutableBorrow and
1726     /// s.str2 via a MutableBorrow
1727     ///
1728     /// ```rust,no_run
1729     /// struct SomeStruct { str1: String, str2: String }
1730     ///
1731     /// // Assume that the HirId for the variable definition is `V1`
1732     /// let mut s = SomeStruct { str1: format!("s1"), str2: format!("s2") }
1733     ///
1734     /// let fix_s = |new_s2| {
1735     ///     // Assume that the HirId for the expression `s.str1` is `E1`
1736     ///     println!("Updating SomeStruct with str1=", s.str1);
1737     ///     // Assume that the HirId for the expression `*s.str2` is `E2`
1738     ///     s.str2 = new_s2;
1739     /// };
1740     /// ```
1741     ///
1742     /// For closure `fix_s`, (at a high level) the map contains
1743     ///
1744     /// ```
1745     /// Place { V1, [ProjectionKind::Field(Index=0, Variant=0)] } : CaptureKind { E1, ImmutableBorrow }
1746     /// Place { V1, [ProjectionKind::Field(Index=1, Variant=0)] } : CaptureKind { E2, MutableBorrow }
1747     /// ```
1748     capture_information: InferredCaptureInformation<'tcx>,
1749     fake_reads: Vec<(Place<'tcx>, FakeReadCause, hir::HirId)>,
1750 }
1751
1752 impl<'a, 'tcx> euv::Delegate<'tcx> for InferBorrowKind<'a, 'tcx> {
1753     fn fake_read(&mut self, place: Place<'tcx>, cause: FakeReadCause, diag_expr_id: hir::HirId) {
1754         let PlaceBase::Upvar(_) = place.base else { return };
1755
1756         // We need to restrict Fake Read precision to avoid fake reading unsafe code,
1757         // such as deref of a raw pointer.
1758         let dummy_capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::ImmBorrow);
1759
1760         let (place, _) = restrict_capture_precision(place, dummy_capture_kind);
1761
1762         let (place, _) = restrict_repr_packed_field_ref_capture(
1763             self.fcx.tcx,
1764             self.fcx.param_env,
1765             place,
1766             dummy_capture_kind,
1767         );
1768         self.fake_reads.push((place, cause, diag_expr_id));
1769     }
1770
1771     #[instrument(skip(self), level = "debug")]
1772     fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
1773         let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
1774         assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
1775
1776         self.capture_information.push((
1777             place_with_id.place.clone(),
1778             ty::CaptureInfo {
1779                 capture_kind_expr_id: Some(diag_expr_id),
1780                 path_expr_id: Some(diag_expr_id),
1781                 capture_kind: ty::UpvarCapture::ByValue,
1782             },
1783         ));
1784     }
1785
1786     #[instrument(skip(self), level = "debug")]
1787     fn borrow(
1788         &mut self,
1789         place_with_id: &PlaceWithHirId<'tcx>,
1790         diag_expr_id: hir::HirId,
1791         bk: ty::BorrowKind,
1792     ) {
1793         let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
1794         assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
1795
1796         // The region here will get discarded/ignored
1797         let capture_kind = ty::UpvarCapture::ByRef(bk);
1798
1799         // We only want repr packed restriction to be applied to reading references into a packed
1800         // struct, and not when the data is being moved. Therefore we call this method here instead
1801         // of in `restrict_capture_precision`.
1802         let (place, mut capture_kind) = restrict_repr_packed_field_ref_capture(
1803             self.fcx.tcx,
1804             self.fcx.param_env,
1805             place_with_id.place.clone(),
1806             capture_kind,
1807         );
1808
1809         // Raw pointers don't inherit mutability
1810         if place_with_id.place.deref_tys().any(ty::TyS::is_unsafe_ptr) {
1811             capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::ImmBorrow);
1812         }
1813
1814         self.capture_information.push((
1815             place,
1816             ty::CaptureInfo {
1817                 capture_kind_expr_id: Some(diag_expr_id),
1818                 path_expr_id: Some(diag_expr_id),
1819                 capture_kind,
1820             },
1821         ));
1822     }
1823
1824     #[instrument(skip(self), level = "debug")]
1825     fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: hir::HirId) {
1826         self.borrow(assignee_place, diag_expr_id, ty::BorrowKind::MutBorrow);
1827     }
1828 }
1829
1830 /// Rust doesn't permit moving fields out of a type that implements drop
1831 fn restrict_precision_for_drop_types<'a, 'tcx>(
1832     fcx: &'a FnCtxt<'a, 'tcx>,
1833     mut place: Place<'tcx>,
1834     mut curr_mode: ty::UpvarCapture,
1835     span: Span,
1836 ) -> (Place<'tcx>, ty::UpvarCapture) {
1837     let is_copy_type = fcx.infcx.type_is_copy_modulo_regions(fcx.param_env, place.ty(), span);
1838
1839     if let (false, UpvarCapture::ByValue) = (is_copy_type, curr_mode) {
1840         for i in 0..place.projections.len() {
1841             match place.ty_before_projection(i).kind() {
1842                 ty::Adt(def, _) if def.destructor(fcx.tcx).is_some() => {
1843                     truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
1844                     break;
1845                 }
1846                 _ => {}
1847             }
1848         }
1849     }
1850
1851     (place, curr_mode)
1852 }
1853
1854 /// Truncate `place` so that an `unsafe` block isn't required to capture it.
1855 /// - No projections are applied to raw pointers, since these require unsafe blocks. We capture
1856 ///   them completely.
1857 /// - No projections are applied on top of Union ADTs, since these require unsafe blocks.
1858 fn restrict_precision_for_unsafe<'tcx>(
1859     mut place: Place<'tcx>,
1860     mut curr_mode: ty::UpvarCapture,
1861 ) -> (Place<'tcx>, ty::UpvarCapture) {
1862     if place.base_ty.is_unsafe_ptr() {
1863         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
1864     }
1865
1866     if place.base_ty.is_union() {
1867         truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
1868     }
1869
1870     for (i, proj) in place.projections.iter().enumerate() {
1871         if proj.ty.is_unsafe_ptr() {
1872             // Don't apply any projections on top of an unsafe ptr.
1873             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
1874             break;
1875         }
1876
1877         if proj.ty.is_union() {
1878             // Don't capture preicse fields of a union.
1879             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
1880             break;
1881         }
1882     }
1883
1884     (place, curr_mode)
1885 }
1886
1887 /// Truncate projections so that following rules are obeyed by the captured `place`:
1888 /// - No Index projections are captured, since arrays are captured completely.
1889 /// - No unsafe block is required to capture `place`
1890 /// Returns the truncated place and updated cature mode.
1891 fn restrict_capture_precision<'tcx>(
1892     place: Place<'tcx>,
1893     curr_mode: ty::UpvarCapture,
1894 ) -> (Place<'tcx>, ty::UpvarCapture) {
1895     let (mut place, mut curr_mode) = restrict_precision_for_unsafe(place, curr_mode);
1896
1897     if place.projections.is_empty() {
1898         // Nothing to do here
1899         return (place, curr_mode);
1900     }
1901
1902     for (i, proj) in place.projections.iter().enumerate() {
1903         match proj.kind {
1904             ProjectionKind::Index => {
1905                 // Arrays are completely captured, so we drop Index projections
1906                 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
1907                 return (place, curr_mode);
1908             }
1909             ProjectionKind::Deref => {}
1910             ProjectionKind::Field(..) => {} // ignore
1911             ProjectionKind::Subslice => {}  // We never capture this
1912         }
1913     }
1914
1915     (place, curr_mode)
1916 }
1917
1918 /// Truncate deref of any reference.
1919 fn adjust_for_move_closure<'tcx>(
1920     mut place: Place<'tcx>,
1921     mut kind: ty::UpvarCapture,
1922 ) -> (Place<'tcx>, ty::UpvarCapture) {
1923     let first_deref = place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
1924
1925     if let Some(idx) = first_deref {
1926         truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
1927     }
1928
1929     (place, ty::UpvarCapture::ByValue)
1930 }
1931
1932 /// Adjust closure capture just that if taking ownership of data, only move data
1933 /// from enclosing stack frame.
1934 fn adjust_for_non_move_closure<'tcx>(
1935     mut place: Place<'tcx>,
1936     mut kind: ty::UpvarCapture,
1937 ) -> (Place<'tcx>, ty::UpvarCapture) {
1938     let contains_deref =
1939         place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
1940
1941     match kind {
1942         ty::UpvarCapture::ByValue => {
1943             if let Some(idx) = contains_deref {
1944                 truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
1945             }
1946         }
1947
1948         ty::UpvarCapture::ByRef(..) => {}
1949     }
1950
1951     (place, kind)
1952 }
1953
1954 fn construct_place_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
1955     let variable_name = match place.base {
1956         PlaceBase::Upvar(upvar_id) => var_name(tcx, upvar_id.var_path.hir_id).to_string(),
1957         _ => bug!("Capture_information should only contain upvars"),
1958     };
1959
1960     let mut projections_str = String::new();
1961     for (i, item) in place.projections.iter().enumerate() {
1962         let proj = match item.kind {
1963             ProjectionKind::Field(a, b) => format!("({:?}, {:?})", a, b),
1964             ProjectionKind::Deref => String::from("Deref"),
1965             ProjectionKind::Index => String::from("Index"),
1966             ProjectionKind::Subslice => String::from("Subslice"),
1967         };
1968         if i != 0 {
1969             projections_str.push(',');
1970         }
1971         projections_str.push_str(proj.as_str());
1972     }
1973
1974     format!("{}[{}]", variable_name, projections_str)
1975 }
1976
1977 fn construct_capture_kind_reason_string<'tcx>(
1978     tcx: TyCtxt<'_>,
1979     place: &Place<'tcx>,
1980     capture_info: &ty::CaptureInfo,
1981 ) -> String {
1982     let place_str = construct_place_string(tcx, place);
1983
1984     let capture_kind_str = match capture_info.capture_kind {
1985         ty::UpvarCapture::ByValue => "ByValue".into(),
1986         ty::UpvarCapture::ByRef(kind) => format!("{:?}", kind),
1987     };
1988
1989     format!("{} captured as {} here", place_str, capture_kind_str)
1990 }
1991
1992 fn construct_path_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
1993     let place_str = construct_place_string(tcx, place);
1994
1995     format!("{} used here", place_str)
1996 }
1997
1998 fn construct_capture_info_string<'tcx>(
1999     tcx: TyCtxt<'_>,
2000     place: &Place<'tcx>,
2001     capture_info: &ty::CaptureInfo,
2002 ) -> String {
2003     let place_str = construct_place_string(tcx, place);
2004
2005     let capture_kind_str = match capture_info.capture_kind {
2006         ty::UpvarCapture::ByValue => "ByValue".into(),
2007         ty::UpvarCapture::ByRef(kind) => format!("{:?}", kind),
2008     };
2009     format!("{} -> {}", place_str, capture_kind_str)
2010 }
2011
2012 fn var_name(tcx: TyCtxt<'_>, var_hir_id: hir::HirId) -> Symbol {
2013     tcx.hir().name(var_hir_id)
2014 }
2015
2016 #[instrument(level = "debug", skip(tcx))]
2017 fn should_do_rust_2021_incompatible_closure_captures_analysis(
2018     tcx: TyCtxt<'_>,
2019     closure_id: hir::HirId,
2020 ) -> bool {
2021     let (level, _) =
2022         tcx.lint_level_at_node(lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES, closure_id);
2023
2024     !matches!(level, lint::Level::Allow)
2025 }
2026
2027 /// Return a two string tuple (s1, s2)
2028 /// - s1: Line of code that is needed for the migration: eg: `let _ = (&x, ...)`.
2029 /// - s2: Comma separated names of the variables being migrated.
2030 fn migration_suggestion_for_2229(
2031     tcx: TyCtxt<'_>,
2032     need_migrations: &Vec<NeededMigration>,
2033 ) -> (String, String) {
2034     let need_migrations_variables = need_migrations
2035         .iter()
2036         .map(|NeededMigration { var_hir_id: v, .. }| var_name(tcx, *v))
2037         .collect::<Vec<_>>();
2038
2039     let migration_ref_concat =
2040         need_migrations_variables.iter().map(|v| format!("&{}", v)).collect::<Vec<_>>().join(", ");
2041
2042     let migration_string = if 1 == need_migrations.len() {
2043         format!("let _ = {}", migration_ref_concat)
2044     } else {
2045         format!("let _ = ({})", migration_ref_concat)
2046     };
2047
2048     let migrated_variables_concat =
2049         need_migrations_variables.iter().map(|v| format!("`{}`", v)).collect::<Vec<_>>().join(", ");
2050
2051     (migration_string, migrated_variables_concat)
2052 }
2053
2054 /// Helper function to determine if we need to escalate CaptureKind from
2055 /// CaptureInfo A to B and returns the escalated CaptureInfo.
2056 /// (Note: CaptureInfo contains CaptureKind and an expression that led to capture it in that way)
2057 ///
2058 /// If both `CaptureKind`s are considered equivalent, then the CaptureInfo is selected based
2059 /// on the `CaptureInfo` containing an associated `capture_kind_expr_id`.
2060 ///
2061 /// It is the caller's duty to figure out which path_expr_id to use.
2062 ///
2063 /// If both the CaptureKind and Expression are considered to be equivalent,
2064 /// then `CaptureInfo` A is preferred. This can be useful in cases where we want to priortize
2065 /// expressions reported back to the user as part of diagnostics based on which appears earlier
2066 /// in the closure. This can be achieved simply by calling
2067 /// `determine_capture_info(existing_info, current_info)`. This works out because the
2068 /// expressions that occur earlier in the closure body than the current expression are processed before.
2069 /// Consider the following example
2070 /// ```rust,no_run
2071 /// struct Point { x: i32, y: i32 }
2072 /// let mut p: Point { x: 10, y: 10 };
2073 ///
2074 /// let c = || {
2075 ///     p.x     += 10;
2076 /// // ^ E1 ^
2077 ///     // ...
2078 ///     // More code
2079 ///     // ...
2080 ///     p.x += 10; // E2
2081 /// // ^ E2 ^
2082 /// };
2083 /// ```
2084 /// `CaptureKind` associated with both `E1` and `E2` will be ByRef(MutBorrow),
2085 /// and both have an expression associated, however for diagnostics we prefer reporting
2086 /// `E1` since it appears earlier in the closure body. When `E2` is being processed we
2087 /// would've already handled `E1`, and have an existing capture_information for it.
2088 /// Calling `determine_capture_info(existing_info_e1, current_info_e2)` will return
2089 /// `existing_info_e1` in this case, allowing us to point to `E1` in case of diagnostics.
2090 fn determine_capture_info(
2091     capture_info_a: ty::CaptureInfo,
2092     capture_info_b: ty::CaptureInfo,
2093 ) -> ty::CaptureInfo {
2094     // If the capture kind is equivalent then, we don't need to escalate and can compare the
2095     // expressions.
2096     let eq_capture_kind = match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2097         (ty::UpvarCapture::ByValue, ty::UpvarCapture::ByValue) => true,
2098         (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => ref_a == ref_b,
2099         (ty::UpvarCapture::ByValue, _) | (ty::UpvarCapture::ByRef(_), _) => false,
2100     };
2101
2102     if eq_capture_kind {
2103         match (capture_info_a.capture_kind_expr_id, capture_info_b.capture_kind_expr_id) {
2104             (Some(_), _) | (None, None) => capture_info_a,
2105             (None, Some(_)) => capture_info_b,
2106         }
2107     } else {
2108         // We select the CaptureKind which ranks higher based the following priority order:
2109         // ByValue > MutBorrow > UniqueImmBorrow > ImmBorrow
2110         match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2111             (ty::UpvarCapture::ByValue, _) => capture_info_a,
2112             (_, ty::UpvarCapture::ByValue) => capture_info_b,
2113             (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => {
2114                 match (ref_a, ref_b) {
2115                     // Take LHS:
2116                     (ty::UniqueImmBorrow | ty::MutBorrow, ty::ImmBorrow)
2117                     | (ty::MutBorrow, ty::UniqueImmBorrow) => capture_info_a,
2118
2119                     // Take RHS:
2120                     (ty::ImmBorrow, ty::UniqueImmBorrow | ty::MutBorrow)
2121                     | (ty::UniqueImmBorrow, ty::MutBorrow) => capture_info_b,
2122
2123                     (ty::ImmBorrow, ty::ImmBorrow)
2124                     | (ty::UniqueImmBorrow, ty::UniqueImmBorrow)
2125                     | (ty::MutBorrow, ty::MutBorrow) => {
2126                         bug!("Expected unequal capture kinds");
2127                     }
2128                 }
2129             }
2130         }
2131     }
2132 }
2133
2134 /// Truncates `place` to have up to `len` projections.
2135 /// `curr_mode` is the current required capture kind for the place.
2136 /// Returns the truncated `place` and the updated required capture kind.
2137 ///
2138 /// Note: Capture kind changes from `MutBorrow` to `UniqueImmBorrow` if the truncated part of the `place`
2139 /// contained `Deref` of `&mut`.
2140 fn truncate_place_to_len_and_update_capture_kind<'tcx>(
2141     place: &mut Place<'tcx>,
2142     curr_mode: &mut ty::UpvarCapture,
2143     len: usize,
2144 ) {
2145     let is_mut_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Mut));
2146
2147     // If the truncated part of the place contains `Deref` of a `&mut` then convert MutBorrow ->
2148     // UniqueImmBorrow
2149     // Note that if the place contained Deref of a raw pointer it would've not been MutBorrow, so
2150     // we don't need to worry about that case here.
2151     match curr_mode {
2152         ty::UpvarCapture::ByRef(ty::BorrowKind::MutBorrow) => {
2153             for i in len..place.projections.len() {
2154                 if place.projections[i].kind == ProjectionKind::Deref
2155                     && is_mut_ref(place.ty_before_projection(i))
2156                 {
2157                     *curr_mode = ty::UpvarCapture::ByRef(ty::BorrowKind::UniqueImmBorrow);
2158                     break;
2159                 }
2160             }
2161         }
2162
2163         ty::UpvarCapture::ByRef(..) => {}
2164         ty::UpvarCapture::ByValue => {}
2165     }
2166
2167     place.projections.truncate(len);
2168 }
2169
2170 /// Determines the Ancestry relationship of Place A relative to Place B
2171 ///
2172 /// `PlaceAncestryRelation::Ancestor` implies Place A is ancestor of Place B
2173 /// `PlaceAncestryRelation::Descendant` implies Place A is descendant of Place B
2174 /// `PlaceAncestryRelation::Divergent` implies neither of them is the ancestor of the other.
2175 fn determine_place_ancestry_relation<'tcx>(
2176     place_a: &Place<'tcx>,
2177     place_b: &Place<'tcx>,
2178 ) -> PlaceAncestryRelation {
2179     // If Place A and Place B, don't start off from the same root variable, they are divergent.
2180     if place_a.base != place_b.base {
2181         return PlaceAncestryRelation::Divergent;
2182     }
2183
2184     // Assume of length of projections_a = n
2185     let projections_a = &place_a.projections;
2186
2187     // Assume of length of projections_b = m
2188     let projections_b = &place_b.projections;
2189
2190     let same_initial_projections =
2191         iter::zip(projections_a, projections_b).all(|(proj_a, proj_b)| proj_a.kind == proj_b.kind);
2192
2193     if same_initial_projections {
2194         use std::cmp::Ordering;
2195
2196         // First min(n, m) projections are the same
2197         // Select Ancestor/Descendant
2198         match projections_b.len().cmp(&projections_a.len()) {
2199             Ordering::Greater => PlaceAncestryRelation::Ancestor,
2200             Ordering::Equal => PlaceAncestryRelation::SamePlace,
2201             Ordering::Less => PlaceAncestryRelation::Descendant,
2202         }
2203     } else {
2204         PlaceAncestryRelation::Divergent
2205     }
2206 }
2207
2208 /// Reduces the precision of the captured place when the precision doesn't yeild any benefit from
2209 /// borrow checking prespective, allowing us to save us on the size of the capture.
2210 ///
2211 ///
2212 /// Fields that are read through a shared reference will always be read via a shared ref or a copy,
2213 /// and therefore capturing precise paths yields no benefit. This optimization truncates the
2214 /// rightmost deref of the capture if the deref is applied to a shared ref.
2215 ///
2216 /// Reason we only drop the last deref is because of the following edge case:
2217 ///
2218 /// ```rust
2219 /// struct MyStruct<'a> {
2220 ///    a: &'static A,
2221 ///    b: B,
2222 ///    c: C<'a>,
2223 /// }
2224 ///
2225 /// fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static {
2226 ///     let c = || drop(&*m.a.field_of_a);
2227 ///     // Here we really do want to capture `*m.a` because that outlives `'static`
2228 ///
2229 ///     // If we capture `m`, then the closure no longer outlives `'static'
2230 ///     // it is constrained to `'a`
2231 /// }
2232 /// ```
2233 fn truncate_capture_for_optimization<'tcx>(
2234     mut place: Place<'tcx>,
2235     mut curr_mode: ty::UpvarCapture,
2236 ) -> (Place<'tcx>, ty::UpvarCapture) {
2237     let is_shared_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Not));
2238
2239     // Find the right-most deref (if any). All the projections that come after this
2240     // are fields or other "in-place pointer adjustments"; these refer therefore to
2241     // data owned by whatever pointer is being dereferenced here.
2242     let idx = place.projections.iter().rposition(|proj| ProjectionKind::Deref == proj.kind);
2243
2244     match idx {
2245         // If that pointer is a shared reference, then we don't need those fields.
2246         Some(idx) if is_shared_ref(place.ty_before_projection(idx)) => {
2247             truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, idx + 1)
2248         }
2249         None | Some(_) => {}
2250     }
2251
2252     (place, curr_mode)
2253 }
2254
2255 /// Precise capture is enabled if the feature gate `capture_disjoint_fields` is enabled or if
2256 /// user is using Rust Edition 2021 or higher.
2257 ///
2258 /// `span` is the span of the closure.
2259 fn enable_precise_capture(tcx: TyCtxt<'_>, span: Span) -> bool {
2260     // We use span here to ensure that if the closure was generated by a macro with a different
2261     // edition.
2262     tcx.features().capture_disjoint_fields || span.rust_2021()
2263 }