]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/method/probe.rs
fix most compiler/ doctests
[rust.git] / compiler / rustc_typeck / src / check / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::check::FnCtxt;
7 use crate::errors::MethodCallOnUnknownType;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc_data_structures::fx::FxHashSet;
12 use rustc_errors::Applicability;
13 use rustc_hir as hir;
14 use rustc_hir::def::Namespace;
15 use rustc_infer::infer::canonical::OriginalQueryValues;
16 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
17 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
18 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
19 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
20 use rustc_middle::middle::stability;
21 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
22 use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
23 use rustc_middle::ty::GenericParamDefKind;
24 use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable};
25 use rustc_session::lint;
26 use rustc_span::def_id::LocalDefId;
27 use rustc_span::lev_distance::{
28     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
29 };
30 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
31 use rustc_trait_selection::autoderef::{self, Autoderef};
32 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
33 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
34 use rustc_trait_selection::traits::query::method_autoderef::{
35     CandidateStep, MethodAutoderefStepsResult,
36 };
37 use rustc_trait_selection::traits::query::CanonicalTyGoal;
38 use rustc_trait_selection::traits::{self, ObligationCause};
39 use std::cmp::max;
40 use std::iter;
41 use std::mem;
42 use std::ops::Deref;
43
44 use smallvec::{smallvec, SmallVec};
45
46 use self::CandidateKind::*;
47 pub use self::PickKind::*;
48
49 /// Boolean flag used to indicate if this search is for a suggestion
50 /// or not. If true, we can allow ambiguity and so forth.
51 #[derive(Clone, Copy, Debug)]
52 pub struct IsSuggestion(pub bool);
53
54 struct ProbeContext<'a, 'tcx> {
55     fcx: &'a FnCtxt<'a, 'tcx>,
56     span: Span,
57     mode: Mode,
58     method_name: Option<Ident>,
59     return_type: Option<Ty<'tcx>>,
60
61     /// This is the OriginalQueryValues for the steps queries
62     /// that are answered in steps.
63     orig_steps_var_values: OriginalQueryValues<'tcx>,
64     steps: &'tcx [CandidateStep<'tcx>],
65
66     inherent_candidates: Vec<Candidate<'tcx>>,
67     extension_candidates: Vec<Candidate<'tcx>>,
68     impl_dups: FxHashSet<DefId>,
69
70     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
71     /// used for error reporting
72     static_candidates: Vec<CandidateSource>,
73
74     /// When probing for names, include names that are close to the
75     /// requested name (by Levensthein distance)
76     allow_similar_names: bool,
77
78     /// Some(candidate) if there is a private candidate
79     private_candidate: Option<(DefKind, DefId)>,
80
81     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
82     /// for error reporting
83     unsatisfied_predicates:
84         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
85
86     is_suggestion: IsSuggestion,
87
88     scope_expr_id: hir::HirId,
89 }
90
91 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
92     type Target = FnCtxt<'a, 'tcx>;
93     fn deref(&self) -> &Self::Target {
94         self.fcx
95     }
96 }
97
98 #[derive(Debug, Clone)]
99 struct Candidate<'tcx> {
100     // Candidates are (I'm not quite sure, but they are mostly) basically
101     // some metadata on top of a `ty::AssocItem` (without substs).
102     //
103     // However, method probing wants to be able to evaluate the predicates
104     // for a function with the substs applied - for example, if a function
105     // has `where Self: Sized`, we don't want to consider it unless `Self`
106     // is actually `Sized`, and similarly, return-type suggestions want
107     // to consider the "actual" return type.
108     //
109     // The way this is handled is through `xform_self_ty`. It contains
110     // the receiver type of this candidate, but `xform_self_ty`,
111     // `xform_ret_ty` and `kind` (which contains the predicates) have the
112     // generic parameters of this candidate substituted with the *same set*
113     // of inference variables, which acts as some weird sort of "query".
114     //
115     // When we check out a candidate, we require `xform_self_ty` to be
116     // a subtype of the passed-in self-type, and this equates the type
117     // variables in the rest of the fields.
118     //
119     // For example, if we have this candidate:
120     // ```
121     //    trait Foo {
122     //        fn foo(&self) where Self: Sized;
123     //    }
124     // ```
125     //
126     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
127     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
128     // the receiver `&T`, we'll do the subtyping which will make `?X`
129     // get the right value, then when we evaluate the predicate we'll check
130     // if `T: Sized`.
131     xform_self_ty: Ty<'tcx>,
132     xform_ret_ty: Option<Ty<'tcx>>,
133     item: ty::AssocItem,
134     kind: CandidateKind<'tcx>,
135     import_ids: SmallVec<[LocalDefId; 1]>,
136 }
137
138 #[derive(Debug, Clone)]
139 enum CandidateKind<'tcx> {
140     InherentImplCandidate(
141         SubstsRef<'tcx>,
142         // Normalize obligations
143         Vec<traits::PredicateObligation<'tcx>>,
144     ),
145     ObjectCandidate,
146     TraitCandidate(ty::TraitRef<'tcx>),
147     WhereClauseCandidate(
148         // Trait
149         ty::PolyTraitRef<'tcx>,
150     ),
151 }
152
153 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
154 enum ProbeResult {
155     NoMatch,
156     BadReturnType,
157     Match,
158 }
159
160 /// When adjusting a receiver we often want to do one of
161 ///
162 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
163 /// - If the receiver has type `*mut T`, convert it to `*const T`
164 ///
165 /// This type tells us which one to do.
166 ///
167 /// Note that in principle we could do both at the same time. For example, when the receiver has
168 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
169 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
170 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
171 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
172 #[derive(Debug, PartialEq, Copy, Clone)]
173 pub enum AutorefOrPtrAdjustment {
174     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
175     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
176     Autoref {
177         mutbl: hir::Mutability,
178
179         /// Indicates that the source expression should be "unsized" to a target type.
180         /// This is special-cased for just arrays unsizing to slices.
181         unsize: bool,
182     },
183     /// Receiver has type `*mut T`, convert to `*const T`
184     ToConstPtr,
185 }
186
187 impl AutorefOrPtrAdjustment {
188     fn get_unsize(&self) -> bool {
189         match self {
190             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
191             AutorefOrPtrAdjustment::ToConstPtr => false,
192         }
193     }
194 }
195
196 #[derive(Debug, PartialEq, Clone)]
197 pub struct Pick<'tcx> {
198     pub item: ty::AssocItem,
199     pub kind: PickKind<'tcx>,
200     pub import_ids: SmallVec<[LocalDefId; 1]>,
201
202     /// Indicates that the source expression should be autoderef'd N times
203     /// ```ignore (not-rust)
204     /// A = expr | *expr | **expr | ...
205     /// ```
206     pub autoderefs: usize,
207
208     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
209     /// `*mut T`, convert it to `*const T`.
210     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
211     pub self_ty: Ty<'tcx>,
212 }
213
214 #[derive(Clone, Debug, PartialEq, Eq)]
215 pub enum PickKind<'tcx> {
216     InherentImplPick,
217     ObjectPick,
218     TraitPick,
219     WhereClausePick(
220         // Trait
221         ty::PolyTraitRef<'tcx>,
222     ),
223 }
224
225 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
226
227 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
228 pub enum Mode {
229     // An expression of the form `receiver.method_name(...)`.
230     // Autoderefs are performed on `receiver`, lookup is done based on the
231     // `self` argument  of the method, and static methods aren't considered.
232     MethodCall,
233     // An expression of the form `Type::item` or `<T>::item`.
234     // No autoderefs are performed, lookup is done based on the type each
235     // implementation is for, and static methods are included.
236     Path,
237 }
238
239 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
240 pub enum ProbeScope {
241     // Assemble candidates coming only from traits in scope.
242     TraitsInScope,
243
244     // Assemble candidates coming from all traits.
245     AllTraits,
246 }
247
248 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
249     /// This is used to offer suggestions to users. It returns methods
250     /// that could have been called which have the desired return
251     /// type. Some effort is made to rule out methods that, if called,
252     /// would result in an error (basically, the same criteria we
253     /// would use to decide if a method is a plausible fit for
254     /// ambiguity purposes).
255     #[instrument(level = "debug", skip(self, scope_expr_id))]
256     pub fn probe_for_return_type(
257         &self,
258         span: Span,
259         mode: Mode,
260         return_type: Ty<'tcx>,
261         self_ty: Ty<'tcx>,
262         scope_expr_id: hir::HirId,
263     ) -> Vec<ty::AssocItem> {
264         debug!(
265             "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
266             self_ty, return_type, scope_expr_id
267         );
268         let method_names = self
269             .probe_op(
270                 span,
271                 mode,
272                 None,
273                 Some(return_type),
274                 IsSuggestion(true),
275                 self_ty,
276                 scope_expr_id,
277                 ProbeScope::AllTraits,
278                 |probe_cx| Ok(probe_cx.candidate_method_names()),
279             )
280             .unwrap_or_default();
281         method_names
282             .iter()
283             .flat_map(|&method_name| {
284                 self.probe_op(
285                     span,
286                     mode,
287                     Some(method_name),
288                     Some(return_type),
289                     IsSuggestion(true),
290                     self_ty,
291                     scope_expr_id,
292                     ProbeScope::AllTraits,
293                     |probe_cx| probe_cx.pick(),
294                 )
295                 .ok()
296                 .map(|pick| pick.item)
297             })
298             .collect()
299     }
300
301     #[instrument(level = "debug", skip(self, scope_expr_id))]
302     pub fn probe_for_name(
303         &self,
304         span: Span,
305         mode: Mode,
306         item_name: Ident,
307         is_suggestion: IsSuggestion,
308         self_ty: Ty<'tcx>,
309         scope_expr_id: hir::HirId,
310         scope: ProbeScope,
311     ) -> PickResult<'tcx> {
312         debug!(
313             "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
314             self_ty, item_name, scope_expr_id
315         );
316         self.probe_op(
317             span,
318             mode,
319             Some(item_name),
320             None,
321             is_suggestion,
322             self_ty,
323             scope_expr_id,
324             scope,
325             |probe_cx| probe_cx.pick(),
326         )
327     }
328
329     fn probe_op<OP, R>(
330         &'a self,
331         span: Span,
332         mode: Mode,
333         method_name: Option<Ident>,
334         return_type: Option<Ty<'tcx>>,
335         is_suggestion: IsSuggestion,
336         self_ty: Ty<'tcx>,
337         scope_expr_id: hir::HirId,
338         scope: ProbeScope,
339         op: OP,
340     ) -> Result<R, MethodError<'tcx>>
341     where
342         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
343     {
344         let mut orig_values = OriginalQueryValues::default();
345         let param_env_and_self_ty = self.infcx.canonicalize_query(
346             ParamEnvAnd { param_env: self.param_env, value: self_ty },
347             &mut orig_values,
348         );
349
350         let steps = if mode == Mode::MethodCall {
351             self.tcx.method_autoderef_steps(param_env_and_self_ty)
352         } else {
353             self.infcx.probe(|_| {
354                 // Mode::Path - the deref steps is "trivial". This turns
355                 // our CanonicalQuery into a "trivial" QueryResponse. This
356                 // is a bit inefficient, but I don't think that writing
357                 // special handling for this "trivial case" is a good idea.
358
359                 let infcx = &self.infcx;
360                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
361                     infcx.instantiate_canonical_with_fresh_inference_vars(
362                         span,
363                         &param_env_and_self_ty,
364                     );
365                 debug!(
366                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
367                     param_env_and_self_ty, self_ty
368                 );
369                 MethodAutoderefStepsResult {
370                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
371                         self_ty: self.make_query_response_ignoring_pending_obligations(
372                             canonical_inference_vars,
373                             self_ty,
374                         ),
375                         autoderefs: 0,
376                         from_unsafe_deref: false,
377                         unsize: false,
378                     }]),
379                     opt_bad_ty: None,
380                     reached_recursion_limit: false,
381                 }
382             })
383         };
384
385         // If our autoderef loop had reached the recursion limit,
386         // report an overflow error, but continue going on with
387         // the truncated autoderef list.
388         if steps.reached_recursion_limit {
389             self.probe(|_| {
390                 let ty = &steps
391                     .steps
392                     .last()
393                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
394                     .self_ty;
395                 let ty = self
396                     .probe_instantiate_query_response(span, &orig_values, ty)
397                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
398                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
399             });
400         }
401
402         // If we encountered an `_` type or an error type during autoderef, this is
403         // ambiguous.
404         if let Some(bad_ty) = &steps.opt_bad_ty {
405             if is_suggestion.0 {
406                 // Ambiguity was encountered during a suggestion. Just keep going.
407                 debug!("ProbeContext: encountered ambiguity in suggestion");
408             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
409                 // this case used to be allowed by the compiler,
410                 // so we do a future-compat lint here for the 2015 edition
411                 // (see https://github.com/rust-lang/rust/issues/46906)
412                 if self.tcx.sess.rust_2018() {
413                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
414                 } else {
415                     self.tcx.struct_span_lint_hir(
416                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
417                         scope_expr_id,
418                         span,
419                         |lint| {
420                             lint.build("type annotations needed").emit();
421                         },
422                     );
423                 }
424             } else {
425                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
426                 // an `Err`, report the right "type annotations needed" error pointing
427                 // to it.
428                 let ty = &bad_ty.ty;
429                 let ty = self
430                     .probe_instantiate_query_response(span, &orig_values, ty)
431                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
432                 let ty = self.structurally_resolved_type(span, ty.value);
433                 assert!(matches!(ty.kind(), ty::Error(_)));
434                 return Err(MethodError::NoMatch(NoMatchData {
435                     static_candidates: Vec::new(),
436                     unsatisfied_predicates: Vec::new(),
437                     out_of_scope_traits: Vec::new(),
438                     lev_candidate: None,
439                     mode,
440                 }));
441             }
442         }
443
444         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
445
446         // this creates one big transaction so that all type variables etc
447         // that we create during the probe process are removed later
448         self.probe(|_| {
449             let mut probe_cx = ProbeContext::new(
450                 self,
451                 span,
452                 mode,
453                 method_name,
454                 return_type,
455                 orig_values,
456                 steps.steps,
457                 is_suggestion,
458                 scope_expr_id,
459             );
460
461             probe_cx.assemble_inherent_candidates();
462             match scope {
463                 ProbeScope::TraitsInScope => {
464                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
465                 }
466                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
467             };
468             op(probe_cx)
469         })
470     }
471 }
472
473 pub fn provide(providers: &mut ty::query::Providers) {
474     providers.method_autoderef_steps = method_autoderef_steps;
475 }
476
477 fn method_autoderef_steps<'tcx>(
478     tcx: TyCtxt<'tcx>,
479     goal: CanonicalTyGoal<'tcx>,
480 ) -> MethodAutoderefStepsResult<'tcx> {
481     debug!("method_autoderef_steps({:?})", goal);
482
483     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
484         let ParamEnvAnd { param_env, value: self_ty } = goal;
485
486         let mut autoderef =
487             Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
488                 .include_raw_pointers()
489                 .silence_errors();
490         let mut reached_raw_pointer = false;
491         let mut steps: Vec<_> = autoderef
492             .by_ref()
493             .map(|(ty, d)| {
494                 let step = CandidateStep {
495                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
496                         inference_vars.clone(),
497                         ty,
498                     ),
499                     autoderefs: d,
500                     from_unsafe_deref: reached_raw_pointer,
501                     unsize: false,
502                 };
503                 if let ty::RawPtr(_) = ty.kind() {
504                     // all the subsequent steps will be from_unsafe_deref
505                     reached_raw_pointer = true;
506                 }
507                 step
508             })
509             .collect();
510
511         let final_ty = autoderef.final_ty(true);
512         let opt_bad_ty = match final_ty.kind() {
513             ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
514                 reached_raw_pointer,
515                 ty: infcx
516                     .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
517             }),
518             ty::Array(elem_ty, _) => {
519                 let dereferences = steps.len() - 1;
520
521                 steps.push(CandidateStep {
522                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
523                         inference_vars,
524                         infcx.tcx.mk_slice(*elem_ty),
525                     ),
526                     autoderefs: dereferences,
527                     // this could be from an unsafe deref if we had
528                     // a *mut/const [T; N]
529                     from_unsafe_deref: reached_raw_pointer,
530                     unsize: true,
531                 });
532
533                 None
534             }
535             _ => None,
536         };
537
538         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
539
540         MethodAutoderefStepsResult {
541             steps: tcx.arena.alloc_from_iter(steps),
542             opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
543             reached_recursion_limit: autoderef.reached_recursion_limit(),
544         }
545     })
546 }
547
548 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
549     fn new(
550         fcx: &'a FnCtxt<'a, 'tcx>,
551         span: Span,
552         mode: Mode,
553         method_name: Option<Ident>,
554         return_type: Option<Ty<'tcx>>,
555         orig_steps_var_values: OriginalQueryValues<'tcx>,
556         steps: &'tcx [CandidateStep<'tcx>],
557         is_suggestion: IsSuggestion,
558         scope_expr_id: hir::HirId,
559     ) -> ProbeContext<'a, 'tcx> {
560         ProbeContext {
561             fcx,
562             span,
563             mode,
564             method_name,
565             return_type,
566             inherent_candidates: Vec::new(),
567             extension_candidates: Vec::new(),
568             impl_dups: FxHashSet::default(),
569             orig_steps_var_values,
570             steps,
571             static_candidates: Vec::new(),
572             allow_similar_names: false,
573             private_candidate: None,
574             unsatisfied_predicates: Vec::new(),
575             is_suggestion,
576             scope_expr_id,
577         }
578     }
579
580     fn reset(&mut self) {
581         self.inherent_candidates.clear();
582         self.extension_candidates.clear();
583         self.impl_dups.clear();
584         self.static_candidates.clear();
585         self.private_candidate = None;
586     }
587
588     ///////////////////////////////////////////////////////////////////////////
589     // CANDIDATE ASSEMBLY
590
591     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
592         let is_accessible = if let Some(name) = self.method_name {
593             let item = candidate.item;
594             let def_scope =
595                 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
596             item.vis.is_accessible_from(def_scope, self.tcx)
597         } else {
598             true
599         };
600         if is_accessible {
601             if is_inherent {
602                 self.inherent_candidates.push(candidate);
603             } else {
604                 self.extension_candidates.push(candidate);
605             }
606         } else if self.private_candidate.is_none() {
607             self.private_candidate =
608                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
609         }
610     }
611
612     fn assemble_inherent_candidates(&mut self) {
613         for step in self.steps.iter() {
614             self.assemble_probe(&step.self_ty);
615         }
616     }
617
618     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
619         debug!("assemble_probe: self_ty={:?}", self_ty);
620         let raw_self_ty = self_ty.value.value;
621         match *raw_self_ty.kind() {
622             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
623                 // Subtle: we can't use `instantiate_query_response` here: using it will
624                 // commit to all of the type equalities assumed by inference going through
625                 // autoderef (see the `method-probe-no-guessing` test).
626                 //
627                 // However, in this code, it is OK if we end up with an object type that is
628                 // "more general" than the object type that we are evaluating. For *every*
629                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
630                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
631                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
632                 // of the iterations in the autoderef loop, so there is no problem with it
633                 // being discoverable in another one of these iterations.
634                 //
635                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
636                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
637                 // `CanonicalVarValues` will exactly give us such a generalization - it
638                 // will still match the original object type, but it won't pollute our
639                 // type variables in any form, so just do that!
640                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
641                     self.fcx
642                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
643
644                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
645                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
646             }
647             ty::Adt(def, _) => {
648                 let def_id = def.did();
649                 self.assemble_inherent_impl_candidates_for_type(def_id);
650                 if Some(def_id) == self.tcx.lang_items().c_str() {
651                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
652                 }
653             }
654             ty::Foreign(did) => {
655                 self.assemble_inherent_impl_candidates_for_type(did);
656             }
657             ty::Param(p) => {
658                 self.assemble_inherent_candidates_from_param(p);
659             }
660             ty::Bool
661             | ty::Char
662             | ty::Int(_)
663             | ty::Uint(_)
664             | ty::Float(_)
665             | ty::Str
666             | ty::Array(..)
667             | ty::Slice(_)
668             | ty::RawPtr(_)
669             | ty::Ref(..)
670             | ty::Never
671             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
672             _ => {}
673         }
674     }
675
676     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
677         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsPlaceholders) else {
678             bug!("unexpected incoherent type: {:?}", self_ty)
679         };
680         for &impl_def_id in self.tcx.incoherent_impls(simp) {
681             self.assemble_inherent_impl_probe(impl_def_id);
682         }
683     }
684
685     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
686         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
687         for &impl_def_id in impl_def_ids.iter() {
688             self.assemble_inherent_impl_probe(impl_def_id);
689         }
690     }
691
692     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
693         if !self.impl_dups.insert(impl_def_id) {
694             return; // already visited
695         }
696
697         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
698
699         for item in self.impl_or_trait_item(impl_def_id) {
700             if !self.has_applicable_self(&item) {
701                 // No receiver declared. Not a candidate.
702                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
703                 continue;
704             }
705
706             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
707             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
708
709             debug!("impl_ty: {:?}", impl_ty);
710
711             // Determine the receiver type that the method itself expects.
712             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
713             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
714
715             // We can't use normalize_associated_types_in as it will pollute the
716             // fcx's fulfillment context after this probe is over.
717             // Note: we only normalize `xform_self_ty` here since the normalization
718             // of the return type can lead to inference results that prohibit
719             // valid candidates from being found, see issue #85671
720             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
721             // which might be caused by the `param_env` itself. The clauses of the `param_env`
722             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
723             // see issue #89650
724             let cause = traits::ObligationCause::misc(self.span, self.body_id);
725             let selcx = &mut traits::SelectionContext::new(self.fcx);
726             let traits::Normalized { value: xform_self_ty, obligations } =
727                 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
728             debug!(
729                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
730                 xform_self_ty, xform_ret_ty
731             );
732
733             self.push_candidate(
734                 Candidate {
735                     xform_self_ty,
736                     xform_ret_ty,
737                     item,
738                     kind: InherentImplCandidate(impl_substs, obligations),
739                     import_ids: smallvec![],
740                 },
741                 true,
742             );
743         }
744     }
745
746     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
747         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
748
749         let principal = match self_ty.kind() {
750             ty::Dynamic(ref data, ..) => Some(data),
751             _ => None,
752         }
753         .and_then(|data| data.principal())
754         .unwrap_or_else(|| {
755             span_bug!(
756                 self.span,
757                 "non-object {:?} in assemble_inherent_candidates_from_object",
758                 self_ty
759             )
760         });
761
762         // It is illegal to invoke a method on a trait instance that refers to
763         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
764         // will be reported by `object_safety.rs` if the method refers to the
765         // `Self` type anywhere other than the receiver. Here, we use a
766         // substitution that replaces `Self` with the object type itself. Hence,
767         // a `&self` method will wind up with an argument type like `&dyn Trait`.
768         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
769         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
770             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
771
772             let (xform_self_ty, xform_ret_ty) =
773                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
774             this.push_candidate(
775                 Candidate {
776                     xform_self_ty,
777                     xform_ret_ty,
778                     item,
779                     kind: ObjectCandidate,
780                     import_ids: smallvec![],
781                 },
782                 true,
783             );
784         });
785     }
786
787     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
788         // FIXME: do we want to commit to this behavior for param bounds?
789         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
790
791         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
792             let bound_predicate = predicate.kind();
793             match bound_predicate.skip_binder() {
794                 ty::PredicateKind::Trait(trait_predicate) => {
795                     match *trait_predicate.trait_ref.self_ty().kind() {
796                         ty::Param(p) if p == param_ty => {
797                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
798                         }
799                         _ => None,
800                     }
801                 }
802                 ty::PredicateKind::Subtype(..)
803                 | ty::PredicateKind::Coerce(..)
804                 | ty::PredicateKind::Projection(..)
805                 | ty::PredicateKind::RegionOutlives(..)
806                 | ty::PredicateKind::WellFormed(..)
807                 | ty::PredicateKind::ObjectSafe(..)
808                 | ty::PredicateKind::ClosureKind(..)
809                 | ty::PredicateKind::TypeOutlives(..)
810                 | ty::PredicateKind::ConstEvaluatable(..)
811                 | ty::PredicateKind::ConstEquate(..)
812                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
813             }
814         });
815
816         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
817             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
818
819             let (xform_self_ty, xform_ret_ty) =
820                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
821
822             // Because this trait derives from a where-clause, it
823             // should not contain any inference variables or other
824             // artifacts. This means it is safe to put into the
825             // `WhereClauseCandidate` and (eventually) into the
826             // `WhereClausePick`.
827             assert!(!trait_ref.substs.needs_infer());
828
829             this.push_candidate(
830                 Candidate {
831                     xform_self_ty,
832                     xform_ret_ty,
833                     item,
834                     kind: WhereClauseCandidate(poly_trait_ref),
835                     import_ids: smallvec![],
836                 },
837                 true,
838             );
839         });
840     }
841
842     // Do a search through a list of bounds, using a callback to actually
843     // create the candidates.
844     fn elaborate_bounds<F>(
845         &mut self,
846         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
847         mut mk_cand: F,
848     ) where
849         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
850     {
851         let tcx = self.tcx;
852         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
853             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
854             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
855                 if !self.has_applicable_self(&item) {
856                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
857                 } else {
858                     mk_cand(self, bound_trait_ref, item);
859                 }
860             }
861         }
862     }
863
864     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
865         let mut duplicates = FxHashSet::default();
866         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
867         if let Some(applicable_traits) = opt_applicable_traits {
868             for trait_candidate in applicable_traits.iter() {
869                 let trait_did = trait_candidate.def_id;
870                 if duplicates.insert(trait_did) {
871                     self.assemble_extension_candidates_for_trait(
872                         &trait_candidate.import_ids,
873                         trait_did,
874                     );
875                 }
876             }
877         }
878     }
879
880     fn assemble_extension_candidates_for_all_traits(&mut self) {
881         let mut duplicates = FxHashSet::default();
882         for trait_info in suggest::all_traits(self.tcx) {
883             if duplicates.insert(trait_info.def_id) {
884                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
885             }
886         }
887     }
888
889     pub fn matches_return_type(
890         &self,
891         method: &ty::AssocItem,
892         self_ty: Option<Ty<'tcx>>,
893         expected: Ty<'tcx>,
894     ) -> bool {
895         match method.kind {
896             ty::AssocKind::Fn => {
897                 let fty = self.tcx.fn_sig(method.def_id);
898                 self.probe(|_| {
899                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
900                     let fty = fty.subst(self.tcx, substs);
901                     let (fty, _) =
902                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
903
904                     if let Some(self_ty) = self_ty {
905                         if self
906                             .at(&ObligationCause::dummy(), self.param_env)
907                             .sup(fty.inputs()[0], self_ty)
908                             .is_err()
909                         {
910                             return false;
911                         }
912                     }
913                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
914                 })
915             }
916             _ => false,
917         }
918     }
919
920     fn assemble_extension_candidates_for_trait(
921         &mut self,
922         import_ids: &SmallVec<[LocalDefId; 1]>,
923         trait_def_id: DefId,
924     ) {
925         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
926         let trait_substs = self.fresh_item_substs(trait_def_id);
927         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
928
929         if self.tcx.is_trait_alias(trait_def_id) {
930             // For trait aliases, assume all supertraits are relevant.
931             let bounds = iter::once(ty::Binder::dummy(trait_ref));
932             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
933                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
934
935                 let (xform_self_ty, xform_ret_ty) =
936                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
937                 this.push_candidate(
938                     Candidate {
939                         xform_self_ty,
940                         xform_ret_ty,
941                         item,
942                         import_ids: import_ids.clone(),
943                         kind: TraitCandidate(new_trait_ref),
944                     },
945                     false,
946                 );
947             });
948         } else {
949             debug_assert!(self.tcx.is_trait(trait_def_id));
950             for item in self.impl_or_trait_item(trait_def_id) {
951                 // Check whether `trait_def_id` defines a method with suitable name.
952                 if !self.has_applicable_self(&item) {
953                     debug!("method has inapplicable self");
954                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
955                     continue;
956                 }
957
958                 let (xform_self_ty, xform_ret_ty) =
959                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
960                 self.push_candidate(
961                     Candidate {
962                         xform_self_ty,
963                         xform_ret_ty,
964                         item,
965                         import_ids: import_ids.clone(),
966                         kind: TraitCandidate(trait_ref),
967                     },
968                     false,
969                 );
970             }
971         }
972     }
973
974     fn candidate_method_names(&self) -> Vec<Ident> {
975         let mut set = FxHashSet::default();
976         let mut names: Vec<_> = self
977             .inherent_candidates
978             .iter()
979             .chain(&self.extension_candidates)
980             .filter(|candidate| {
981                 if let Some(return_ty) = self.return_type {
982                     self.matches_return_type(&candidate.item, None, return_ty)
983                 } else {
984                     true
985                 }
986             })
987             .map(|candidate| candidate.item.ident(self.tcx))
988             .filter(|&name| set.insert(name))
989             .collect();
990
991         // Sort them by the name so we have a stable result.
992         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
993         names
994     }
995
996     ///////////////////////////////////////////////////////////////////////////
997     // THE ACTUAL SEARCH
998
999     fn pick(mut self) -> PickResult<'tcx> {
1000         assert!(self.method_name.is_some());
1001
1002         if let Some(r) = self.pick_core() {
1003             return r;
1004         }
1005
1006         debug!("pick: actual search failed, assemble diagnostics");
1007
1008         let static_candidates = mem::take(&mut self.static_candidates);
1009         let private_candidate = self.private_candidate.take();
1010         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1011
1012         // things failed, so lets look at all traits, for diagnostic purposes now:
1013         self.reset();
1014
1015         let span = self.span;
1016         let tcx = self.tcx;
1017
1018         self.assemble_extension_candidates_for_all_traits();
1019
1020         let out_of_scope_traits = match self.pick_core() {
1021             Some(Ok(p)) => vec![p.item.container.id()],
1022             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1023             Some(Err(MethodError::Ambiguity(v))) => v
1024                 .into_iter()
1025                 .map(|source| match source {
1026                     CandidateSource::Trait(id) => id,
1027                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1028                         Some(id) => id,
1029                         None => span_bug!(span, "found inherent method when looking at traits"),
1030                     },
1031                 })
1032                 .collect(),
1033             Some(Err(MethodError::NoMatch(NoMatchData {
1034                 out_of_scope_traits: others, ..
1035             }))) => {
1036                 assert!(others.is_empty());
1037                 vec![]
1038             }
1039             _ => vec![],
1040         };
1041
1042         if let Some((kind, def_id)) = private_candidate {
1043             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1044         }
1045         let lev_candidate = self.probe_for_lev_candidate()?;
1046
1047         Err(MethodError::NoMatch(NoMatchData {
1048             static_candidates,
1049             unsatisfied_predicates,
1050             out_of_scope_traits,
1051             lev_candidate,
1052             mode: self.mode,
1053         }))
1054     }
1055
1056     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1057         let mut unstable_candidates = Vec::new();
1058         let pick = self.pick_all_method(Some(&mut unstable_candidates));
1059
1060         // In this case unstable picking is done by `pick_method`.
1061         if !self.tcx.sess.opts.debugging_opts.pick_stable_methods_before_any_unstable {
1062             return pick;
1063         }
1064
1065         match pick {
1066             // Emit a lint if there are unstable candidates alongside the stable ones.
1067             //
1068             // We suppress warning if we're picking the method only because it is a
1069             // suggestion.
1070             Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
1071                 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1072                 pick
1073             }
1074             Some(_) => pick,
1075             None => self.pick_all_method(None),
1076         }
1077     }
1078
1079     fn pick_all_method(
1080         &mut self,
1081         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1082     ) -> Option<PickResult<'tcx>> {
1083         let steps = self.steps.clone();
1084         steps
1085             .iter()
1086             .filter(|step| {
1087                 debug!("pick_all_method: step={:?}", step);
1088                 // skip types that are from a type error or that would require dereferencing
1089                 // a raw pointer
1090                 !step.self_ty.references_error() && !step.from_unsafe_deref
1091             })
1092             .flat_map(|step| {
1093                 let InferOk { value: self_ty, obligations: _ } = self
1094                     .fcx
1095                     .probe_instantiate_query_response(
1096                         self.span,
1097                         &self.orig_steps_var_values,
1098                         &step.self_ty,
1099                     )
1100                     .unwrap_or_else(|_| {
1101                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1102                     });
1103                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1104                     .or_else(|| {
1105                         self.pick_autorefd_method(
1106                             step,
1107                             self_ty,
1108                             hir::Mutability::Not,
1109                             unstable_candidates.as_deref_mut(),
1110                         )
1111                         .or_else(|| {
1112                             self.pick_autorefd_method(
1113                                 step,
1114                                 self_ty,
1115                                 hir::Mutability::Mut,
1116                                 unstable_candidates.as_deref_mut(),
1117                             )
1118                         })
1119                         .or_else(|| {
1120                             self.pick_const_ptr_method(
1121                                 step,
1122                                 self_ty,
1123                                 unstable_candidates.as_deref_mut(),
1124                             )
1125                         })
1126                     })
1127             })
1128             .next()
1129     }
1130
1131     /// For each type `T` in the step list, this attempts to find a method where
1132     /// the (transformed) self type is exactly `T`. We do however do one
1133     /// transformation on the adjustment: if we are passing a region pointer in,
1134     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1135     /// to transparently pass `&mut` pointers, in particular, without consuming
1136     /// them for their entire lifetime.
1137     fn pick_by_value_method(
1138         &mut self,
1139         step: &CandidateStep<'tcx>,
1140         self_ty: Ty<'tcx>,
1141         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1142     ) -> Option<PickResult<'tcx>> {
1143         if step.unsize {
1144             return None;
1145         }
1146
1147         self.pick_method(self_ty, unstable_candidates).map(|r| {
1148             r.map(|mut pick| {
1149                 pick.autoderefs = step.autoderefs;
1150
1151                 // Insert a `&*` or `&mut *` if this is a reference type:
1152                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1153                     pick.autoderefs += 1;
1154                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1155                         mutbl,
1156                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1157                     })
1158                 }
1159
1160                 pick
1161             })
1162         })
1163     }
1164
1165     fn pick_autorefd_method(
1166         &mut self,
1167         step: &CandidateStep<'tcx>,
1168         self_ty: Ty<'tcx>,
1169         mutbl: hir::Mutability,
1170         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1171     ) -> Option<PickResult<'tcx>> {
1172         let tcx = self.tcx;
1173
1174         // In general, during probing we erase regions.
1175         let region = tcx.lifetimes.re_erased;
1176
1177         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1178         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1179             r.map(|mut pick| {
1180                 pick.autoderefs = step.autoderefs;
1181                 pick.autoref_or_ptr_adjustment =
1182                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1183                 pick
1184             })
1185         })
1186     }
1187
1188     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1189     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1190     /// autorefs would require dereferencing the pointer, which is not safe.
1191     fn pick_const_ptr_method(
1192         &mut self,
1193         step: &CandidateStep<'tcx>,
1194         self_ty: Ty<'tcx>,
1195         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1196     ) -> Option<PickResult<'tcx>> {
1197         // Don't convert an unsized reference to ptr
1198         if step.unsize {
1199             return None;
1200         }
1201
1202         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1203             return None;
1204         };
1205
1206         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1207         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1208         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1209             r.map(|mut pick| {
1210                 pick.autoderefs = step.autoderefs;
1211                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1212                 pick
1213             })
1214         })
1215     }
1216
1217     fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1218         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1219
1220         let mut possibly_unsatisfied_predicates = Vec::new();
1221         let mut unstable_candidates = Vec::new();
1222
1223         for (kind, candidates) in
1224             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1225         {
1226             debug!("searching {} candidates", kind);
1227             let res = self.consider_candidates(
1228                 self_ty,
1229                 candidates.iter(),
1230                 &mut possibly_unsatisfied_predicates,
1231                 Some(&mut unstable_candidates),
1232             );
1233             if let Some(pick) = res {
1234                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1235                     if let Ok(p) = &pick {
1236                         // Emit a lint if there are unstable candidates alongside the stable ones.
1237                         //
1238                         // We suppress warning if we're picking the method only because it is a
1239                         // suggestion.
1240                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1241                     }
1242                 }
1243                 return Some(pick);
1244             }
1245         }
1246
1247         debug!("searching unstable candidates");
1248         let res = self.consider_candidates(
1249             self_ty,
1250             unstable_candidates.iter().map(|(c, _)| c),
1251             &mut possibly_unsatisfied_predicates,
1252             None,
1253         );
1254         if res.is_none() {
1255             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1256         }
1257         res
1258     }
1259
1260     fn pick_method(
1261         &mut self,
1262         self_ty: Ty<'tcx>,
1263         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1264     ) -> Option<PickResult<'tcx>> {
1265         if !self.tcx.sess.opts.debugging_opts.pick_stable_methods_before_any_unstable {
1266             return self.pick_method_with_unstable(self_ty);
1267         }
1268
1269         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1270
1271         let mut possibly_unsatisfied_predicates = Vec::new();
1272
1273         for (kind, candidates) in
1274             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1275         {
1276             debug!("searching {} candidates", kind);
1277             let res = self.consider_candidates(
1278                 self_ty,
1279                 candidates.iter(),
1280                 &mut possibly_unsatisfied_predicates,
1281                 unstable_candidates.as_deref_mut(),
1282             );
1283             if let Some(pick) = res {
1284                 return Some(pick);
1285             }
1286         }
1287
1288         // `pick_method` may be called twice for the same self_ty if no stable methods
1289         // match. Only extend once.
1290         if unstable_candidates.is_some() {
1291             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1292         }
1293         None
1294     }
1295
1296     fn consider_candidates<'b, ProbesIter>(
1297         &self,
1298         self_ty: Ty<'tcx>,
1299         probes: ProbesIter,
1300         possibly_unsatisfied_predicates: &mut Vec<(
1301             ty::Predicate<'tcx>,
1302             Option<ty::Predicate<'tcx>>,
1303             Option<ObligationCause<'tcx>>,
1304         )>,
1305         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1306     ) -> Option<PickResult<'tcx>>
1307     where
1308         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1309         'tcx: 'b,
1310     {
1311         let mut applicable_candidates: Vec<_> = probes
1312             .clone()
1313             .map(|probe| {
1314                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1315             })
1316             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1317             .collect();
1318
1319         debug!("applicable_candidates: {:?}", applicable_candidates);
1320
1321         if applicable_candidates.len() > 1 {
1322             if let Some(pick) =
1323                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1324             {
1325                 return Some(Ok(pick));
1326             }
1327         }
1328
1329         if let Some(uc) = unstable_candidates {
1330             applicable_candidates.retain(|&(p, _)| {
1331                 if let stability::EvalResult::Deny { feature, .. } =
1332                     self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1333                 {
1334                     uc.push((p.clone(), feature));
1335                     return false;
1336                 }
1337                 true
1338             });
1339         }
1340
1341         if applicable_candidates.len() > 1 {
1342             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1343             return Some(Err(MethodError::Ambiguity(sources)));
1344         }
1345
1346         applicable_candidates.pop().map(|(probe, status)| {
1347             if status == ProbeResult::Match {
1348                 Ok(probe.to_unadjusted_pick(self_ty))
1349             } else {
1350                 Err(MethodError::BadReturnType)
1351             }
1352         })
1353     }
1354
1355     fn emit_unstable_name_collision_hint(
1356         &self,
1357         stable_pick: &Pick<'_>,
1358         unstable_candidates: &[(Candidate<'tcx>, Symbol)],
1359     ) {
1360         self.tcx.struct_span_lint_hir(
1361             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1362             self.scope_expr_id,
1363             self.span,
1364             |lint| {
1365                 let def_kind = stable_pick.item.kind.as_def_kind();
1366                 let mut diag = lint.build(&format!(
1367                     "{} {} with this name may be added to the standard library in the future",
1368                     def_kind.article(),
1369                     def_kind.descr(stable_pick.item.def_id),
1370                 ));
1371                 match (stable_pick.item.kind, stable_pick.item.container) {
1372                     (ty::AssocKind::Fn, _) => {
1373                         // FIXME: This should be a `span_suggestion` instead of `help`
1374                         // However `self.span` only
1375                         // highlights the method name, so we can't use it. Also consider reusing
1376                         // the code from `report_method_error()`.
1377                         diag.help(&format!(
1378                             "call with fully qualified syntax `{}(...)` to keep using the current \
1379                              method",
1380                             self.tcx.def_path_str(stable_pick.item.def_id),
1381                         ));
1382                     }
1383                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer(def_id)) => {
1384                         diag.span_suggestion(
1385                             self.span,
1386                             "use the fully qualified path to the associated const",
1387                             format!(
1388                                 "<{} as {}>::{}",
1389                                 stable_pick.self_ty,
1390                                 self.tcx.def_path_str(def_id),
1391                                 stable_pick.item.name
1392                             ),
1393                             Applicability::MachineApplicable,
1394                         );
1395                     }
1396                     _ => {}
1397                 }
1398                 if self.tcx.sess.is_nightly_build() {
1399                     for (candidate, feature) in unstable_candidates {
1400                         diag.help(&format!(
1401                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1402                             feature,
1403                             self.tcx.def_path_str(candidate.item.def_id),
1404                         ));
1405                     }
1406                 }
1407
1408                 diag.emit();
1409             },
1410         );
1411     }
1412
1413     fn select_trait_candidate(
1414         &self,
1415         trait_ref: ty::TraitRef<'tcx>,
1416     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1417         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1418         let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1419         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1420         traits::SelectionContext::new(self).select(&obligation)
1421     }
1422
1423     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1424         match candidate.kind {
1425             InherentImplCandidate(..) => CandidateSource::Impl(candidate.item.container.id()),
1426             ObjectCandidate | WhereClauseCandidate(_) => {
1427                 CandidateSource::Trait(candidate.item.container.id())
1428             }
1429             TraitCandidate(trait_ref) => self.probe(|_| {
1430                 let _ = self
1431                     .at(&ObligationCause::dummy(), self.param_env)
1432                     .define_opaque_types(false)
1433                     .sup(candidate.xform_self_ty, self_ty);
1434                 match self.select_trait_candidate(trait_ref) {
1435                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1436                         // If only a single impl matches, make the error message point
1437                         // to that impl.
1438                         CandidateSource::Impl(impl_data.impl_def_id)
1439                     }
1440                     _ => CandidateSource::Trait(candidate.item.container.id()),
1441                 }
1442             }),
1443         }
1444     }
1445
1446     fn consider_probe(
1447         &self,
1448         self_ty: Ty<'tcx>,
1449         probe: &Candidate<'tcx>,
1450         possibly_unsatisfied_predicates: &mut Vec<(
1451             ty::Predicate<'tcx>,
1452             Option<ty::Predicate<'tcx>>,
1453             Option<ObligationCause<'tcx>>,
1454         )>,
1455     ) -> ProbeResult {
1456         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1457
1458         self.probe(|_| {
1459             // First check that the self type can be related.
1460             let sub_obligations = match self
1461                 .at(&ObligationCause::dummy(), self.param_env)
1462                 .define_opaque_types(false)
1463                 .sup(probe.xform_self_ty, self_ty)
1464             {
1465                 Ok(InferOk { obligations, value: () }) => obligations,
1466                 Err(err) => {
1467                     debug!("--> cannot relate self-types {:?}", err);
1468                     return ProbeResult::NoMatch;
1469                 }
1470             };
1471
1472             let mut result = ProbeResult::Match;
1473             let mut xform_ret_ty = probe.xform_ret_ty;
1474             debug!(?xform_ret_ty);
1475
1476             let selcx = &mut traits::SelectionContext::new(self);
1477             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1478
1479             let mut parent_pred = None;
1480
1481             // If so, impls may carry other conditions (e.g., where
1482             // clauses) that must be considered. Make sure that those
1483             // match as well (or at least may match, sometimes we
1484             // don't have enough information to fully evaluate).
1485             match probe.kind {
1486                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1487                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1488                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1489                     // for why this is necessary
1490                     let traits::Normalized {
1491                         value: normalized_xform_ret_ty,
1492                         obligations: normalization_obligations,
1493                     } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1494                     xform_ret_ty = normalized_xform_ret_ty;
1495                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1496
1497                     // Check whether the impl imposes obligations we have to worry about.
1498                     let impl_def_id = probe.item.container.id();
1499                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1500                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1501                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1502                         traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1503
1504                     // Convert the bounds into obligations.
1505                     let impl_obligations =
1506                         traits::predicates_for_generics(cause, self.param_env, impl_bounds);
1507
1508                     let candidate_obligations = impl_obligations
1509                         .chain(norm_obligations.into_iter())
1510                         .chain(ref_obligations.iter().cloned())
1511                         .chain(normalization_obligations.into_iter());
1512
1513                     // Evaluate those obligations to see if they might possibly hold.
1514                     for o in candidate_obligations {
1515                         let o = self.resolve_vars_if_possible(o);
1516                         if !self.predicate_may_hold(&o) {
1517                             result = ProbeResult::NoMatch;
1518                             possibly_unsatisfied_predicates.push((
1519                                 o.predicate,
1520                                 None,
1521                                 Some(o.cause),
1522                             ));
1523                         }
1524                     }
1525                 }
1526
1527                 ObjectCandidate | WhereClauseCandidate(..) => {
1528                     // These have no additional conditions to check.
1529                 }
1530
1531                 TraitCandidate(trait_ref) => {
1532                     if let Some(method_name) = self.method_name {
1533                         // Some trait methods are excluded for arrays before 2021.
1534                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1535                         if self_ty.is_array() && !method_name.span.rust_2021() {
1536                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1537                             if trait_def.skip_array_during_method_dispatch {
1538                                 return ProbeResult::NoMatch;
1539                             }
1540                         }
1541                     }
1542                     let predicate =
1543                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1544                     parent_pred = Some(predicate);
1545                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1546                     if !self.predicate_may_hold(&obligation) {
1547                         result = ProbeResult::NoMatch;
1548                         if self.probe(|_| {
1549                             match self.select_trait_candidate(trait_ref) {
1550                                 Err(_) => return true,
1551                                 Ok(Some(impl_source))
1552                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1553                                 {
1554                                     for obligation in impl_source.borrow_nested_obligations() {
1555                                         // Determine exactly which obligation wasn't met, so
1556                                         // that we can give more context in the error.
1557                                         if !self.predicate_may_hold(obligation) {
1558                                             let nested_predicate =
1559                                                 self.resolve_vars_if_possible(obligation.predicate);
1560                                             let predicate =
1561                                                 self.resolve_vars_if_possible(predicate);
1562                                             let p = if predicate == nested_predicate {
1563                                                 // Avoid "`MyStruct: Foo` which is required by
1564                                                 // `MyStruct: Foo`" in E0599.
1565                                                 None
1566                                             } else {
1567                                                 Some(predicate)
1568                                             };
1569                                             possibly_unsatisfied_predicates.push((
1570                                                 nested_predicate,
1571                                                 p,
1572                                                 Some(obligation.cause.clone()),
1573                                             ));
1574                                         }
1575                                     }
1576                                 }
1577                                 _ => {
1578                                     // Some nested subobligation of this predicate
1579                                     // failed.
1580                                     let predicate = self.resolve_vars_if_possible(predicate);
1581                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1582                                 }
1583                             }
1584                             false
1585                         }) {
1586                             // This candidate's primary obligation doesn't even
1587                             // select - don't bother registering anything in
1588                             // `potentially_unsatisfied_predicates`.
1589                             return ProbeResult::NoMatch;
1590                         }
1591                     }
1592                 }
1593             }
1594
1595             // Evaluate those obligations to see if they might possibly hold.
1596             for o in sub_obligations {
1597                 let o = self.resolve_vars_if_possible(o);
1598                 if !self.predicate_may_hold(&o) {
1599                     result = ProbeResult::NoMatch;
1600                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1601                 }
1602             }
1603
1604             if let ProbeResult::Match = result {
1605                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1606                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1607                     debug!(
1608                         "comparing return_ty {:?} with xform ret ty {:?}",
1609                         return_ty, probe.xform_ret_ty
1610                     );
1611                     if self
1612                         .at(&ObligationCause::dummy(), self.param_env)
1613                         .define_opaque_types(false)
1614                         .sup(return_ty, xform_ret_ty)
1615                         .is_err()
1616                     {
1617                         return ProbeResult::BadReturnType;
1618                     }
1619                 }
1620             }
1621
1622             result
1623         })
1624     }
1625
1626     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1627     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1628     /// external interface of the method can be determined from the trait, it's ok not to decide.
1629     /// We can basically just collapse all of the probes for various impls into one where-clause
1630     /// probe. This will result in a pending obligation so when more type-info is available we can
1631     /// make the final decision.
1632     ///
1633     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1634     ///
1635     /// ```ignore (illustrative)
1636     /// trait Foo { ... }
1637     /// impl Foo for Vec<i32> { ... }
1638     /// impl Foo for Vec<usize> { ... }
1639     /// ```
1640     ///
1641     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1642     /// use, so it's ok to just commit to "using the method from the trait Foo".
1643     fn collapse_candidates_to_trait_pick(
1644         &self,
1645         self_ty: Ty<'tcx>,
1646         probes: &[(&Candidate<'tcx>, ProbeResult)],
1647     ) -> Option<Pick<'tcx>> {
1648         // Do all probes correspond to the same trait?
1649         let container = probes[0].0.item.container;
1650         if let ty::ImplContainer(_) = container {
1651             return None;
1652         }
1653         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1654             return None;
1655         }
1656
1657         // FIXME: check the return type here somehow.
1658         // If so, just use this trait and call it a day.
1659         Some(Pick {
1660             item: probes[0].0.item,
1661             kind: TraitPick,
1662             import_ids: probes[0].0.import_ids.clone(),
1663             autoderefs: 0,
1664             autoref_or_ptr_adjustment: None,
1665             self_ty,
1666         })
1667     }
1668
1669     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1670     /// candidate method where the method name may have been misspelled. Similarly to other
1671     /// Levenshtein based suggestions, we provide at most one such suggestion.
1672     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1673         debug!("probing for method names similar to {:?}", self.method_name);
1674
1675         let steps = self.steps.clone();
1676         self.probe(|_| {
1677             let mut pcx = ProbeContext::new(
1678                 self.fcx,
1679                 self.span,
1680                 self.mode,
1681                 self.method_name,
1682                 self.return_type,
1683                 self.orig_steps_var_values.clone(),
1684                 steps,
1685                 IsSuggestion(true),
1686                 self.scope_expr_id,
1687             );
1688             pcx.allow_similar_names = true;
1689             pcx.assemble_inherent_candidates();
1690
1691             let method_names = pcx.candidate_method_names();
1692             pcx.allow_similar_names = false;
1693             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1694                 .iter()
1695                 .filter_map(|&method_name| {
1696                     pcx.reset();
1697                     pcx.method_name = Some(method_name);
1698                     pcx.assemble_inherent_candidates();
1699                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1700                 })
1701                 .collect();
1702
1703             if applicable_close_candidates.is_empty() {
1704                 Ok(None)
1705             } else {
1706                 let best_name = {
1707                     let names = applicable_close_candidates
1708                         .iter()
1709                         .map(|cand| cand.name)
1710                         .collect::<Vec<Symbol>>();
1711                     find_best_match_for_name_with_substrings(
1712                         &names,
1713                         self.method_name.unwrap().name,
1714                         None,
1715                     )
1716                 }
1717                 .unwrap();
1718                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1719             }
1720         })
1721     }
1722
1723     ///////////////////////////////////////////////////////////////////////////
1724     // MISCELLANY
1725     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1726         // "Fast track" -- check for usage of sugar when in method call
1727         // mode.
1728         //
1729         // In Path mode (i.e., resolving a value like `T::next`), consider any
1730         // associated value (i.e., methods, constants) but not types.
1731         match self.mode {
1732             Mode::MethodCall => item.fn_has_self_parameter,
1733             Mode::Path => match item.kind {
1734                 ty::AssocKind::Type => false,
1735                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1736             },
1737         }
1738         // FIXME -- check for types that deref to `Self`,
1739         // like `Rc<Self>` and so on.
1740         //
1741         // Note also that the current code will break if this type
1742         // includes any of the type parameters defined on the method
1743         // -- but this could be overcome.
1744     }
1745
1746     fn record_static_candidate(&mut self, source: CandidateSource) {
1747         self.static_candidates.push(source);
1748     }
1749
1750     #[instrument(level = "debug", skip(self))]
1751     fn xform_self_ty(
1752         &self,
1753         item: &ty::AssocItem,
1754         impl_ty: Ty<'tcx>,
1755         substs: SubstsRef<'tcx>,
1756     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1757         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1758             let sig = self.xform_method_sig(item.def_id, substs);
1759             (sig.inputs()[0], Some(sig.output()))
1760         } else {
1761             (impl_ty, None)
1762         }
1763     }
1764
1765     #[instrument(level = "debug", skip(self))]
1766     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1767         let fn_sig = self.tcx.fn_sig(method);
1768         debug!(?fn_sig);
1769
1770         assert!(!substs.has_escaping_bound_vars());
1771
1772         // It is possible for type parameters or early-bound lifetimes
1773         // to appear in the signature of `self`. The substitutions we
1774         // are given do not include type/lifetime parameters for the
1775         // method yet. So create fresh variables here for those too,
1776         // if there are any.
1777         let generics = self.tcx.generics_of(method);
1778         assert_eq!(substs.len(), generics.parent_count as usize);
1779
1780         // Erase any late-bound regions from the method and substitute
1781         // in the values from the substitution.
1782         let xform_fn_sig = self.erase_late_bound_regions(fn_sig);
1783
1784         if generics.params.is_empty() {
1785             xform_fn_sig.subst(self.tcx, substs)
1786         } else {
1787             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1788                 let i = param.index as usize;
1789                 if i < substs.len() {
1790                     substs[i]
1791                 } else {
1792                     match param.kind {
1793                         GenericParamDefKind::Lifetime => {
1794                             // In general, during probe we erase regions.
1795                             self.tcx.lifetimes.re_erased.into()
1796                         }
1797                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1798                             self.var_for_def(self.span, param)
1799                         }
1800                     }
1801                 }
1802             });
1803             xform_fn_sig.subst(self.tcx, substs)
1804         }
1805     }
1806
1807     /// Gets the type of an impl and generate substitutions with placeholders.
1808     fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1809         (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1810     }
1811
1812     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1813         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1814             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1815             GenericParamDefKind::Type { .. } => self
1816                 .next_ty_var(TypeVariableOrigin {
1817                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1818                     span: self.tcx.def_span(def_id),
1819                 })
1820                 .into(),
1821             GenericParamDefKind::Const { .. } => {
1822                 let span = self.tcx.def_span(def_id);
1823                 let origin = ConstVariableOrigin {
1824                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1825                     span,
1826                 };
1827                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1828             }
1829         })
1830     }
1831
1832     /// Replaces late-bound-regions bound by `value` with `'static` using
1833     /// `ty::erase_late_bound_regions`.
1834     ///
1835     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1836     /// method matching. It is reasonable during the probe phase because we don't consider region
1837     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1838     /// rather than creating fresh region variables. This is nice for two reasons:
1839     ///
1840     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1841     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1842     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1843     ///
1844     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1845     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1846     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1847     ///    region got replaced with the same variable, which requires a bit more coordination
1848     ///    and/or tracking the substitution and
1849     ///    so forth.
1850     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1851     where
1852         T: TypeFoldable<'tcx>,
1853     {
1854         self.tcx.erase_late_bound_regions(value)
1855     }
1856
1857     /// Finds the method with the appropriate name (or return type, as the case may be). If
1858     /// `allow_similar_names` is set, find methods with close-matching names.
1859     // The length of the returned iterator is nearly always 0 or 1 and this
1860     // method is fairly hot.
1861     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1862         if let Some(name) = self.method_name {
1863             if self.allow_similar_names {
1864                 let max_dist = max(name.as_str().len(), 3) / 3;
1865                 self.tcx
1866                     .associated_items(def_id)
1867                     .in_definition_order()
1868                     .filter(|x| {
1869                         if x.kind.namespace() != Namespace::ValueNS {
1870                             return false;
1871                         }
1872                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1873                         {
1874                             Some(d) => d > 0,
1875                             None => false,
1876                         }
1877                     })
1878                     .copied()
1879                     .collect()
1880             } else {
1881                 self.fcx
1882                     .associated_value(def_id, name)
1883                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1884             }
1885         } else {
1886             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1887         }
1888     }
1889 }
1890
1891 impl<'tcx> Candidate<'tcx> {
1892     fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
1893         Pick {
1894             item: self.item,
1895             kind: match self.kind {
1896                 InherentImplCandidate(..) => InherentImplPick,
1897                 ObjectCandidate => ObjectPick,
1898                 TraitCandidate(_) => TraitPick,
1899                 WhereClauseCandidate(ref trait_ref) => {
1900                     // Only trait derived from where-clauses should
1901                     // appear here, so they should not contain any
1902                     // inference variables or other artifacts. This
1903                     // means they are safe to put into the
1904                     // `WhereClausePick`.
1905                     assert!(
1906                         !trait_ref.skip_binder().substs.needs_infer()
1907                             && !trait_ref.skip_binder().substs.has_placeholders()
1908                     );
1909
1910                     WhereClausePick(*trait_ref)
1911                 }
1912             },
1913             import_ids: self.import_ids.clone(),
1914             autoderefs: 0,
1915             autoref_or_ptr_adjustment: None,
1916             self_ty,
1917         }
1918     }
1919 }