]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/method/probe.rs
Rollup merge of #99812 - GuillaumeGomez:fix-headings-colors, r=jsha,notriddle
[rust.git] / compiler / rustc_typeck / src / check / method / probe.rs
1 use super::suggest;
2 use super::CandidateSource;
3 use super::MethodError;
4 use super::NoMatchData;
5
6 use crate::check::FnCtxt;
7 use crate::errors::MethodCallOnUnknownType;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc_data_structures::fx::FxHashSet;
12 use rustc_errors::Applicability;
13 use rustc_hir as hir;
14 use rustc_hir::def::Namespace;
15 use rustc_infer::infer::canonical::OriginalQueryValues;
16 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
17 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
18 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
19 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
20 use rustc_middle::middle::stability;
21 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
22 use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
23 use rustc_middle::ty::GenericParamDefKind;
24 use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
25 use rustc_session::lint;
26 use rustc_span::def_id::LocalDefId;
27 use rustc_span::lev_distance::{
28     find_best_match_for_name_with_substrings, lev_distance_with_substrings,
29 };
30 use rustc_span::symbol::sym;
31 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
32 use rustc_trait_selection::autoderef::{self, Autoderef};
33 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
34 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
35 use rustc_trait_selection::traits::query::method_autoderef::{
36     CandidateStep, MethodAutoderefStepsResult,
37 };
38 use rustc_trait_selection::traits::query::CanonicalTyGoal;
39 use rustc_trait_selection::traits::{self, ObligationCause};
40 use std::cmp::max;
41 use std::iter;
42 use std::mem;
43 use std::ops::Deref;
44
45 use smallvec::{smallvec, SmallVec};
46
47 use self::CandidateKind::*;
48 pub use self::PickKind::*;
49
50 /// Boolean flag used to indicate if this search is for a suggestion
51 /// or not. If true, we can allow ambiguity and so forth.
52 #[derive(Clone, Copy, Debug)]
53 pub struct IsSuggestion(pub bool);
54
55 struct ProbeContext<'a, 'tcx> {
56     fcx: &'a FnCtxt<'a, 'tcx>,
57     span: Span,
58     mode: Mode,
59     method_name: Option<Ident>,
60     return_type: Option<Ty<'tcx>>,
61
62     /// This is the OriginalQueryValues for the steps queries
63     /// that are answered in steps.
64     orig_steps_var_values: OriginalQueryValues<'tcx>,
65     steps: &'tcx [CandidateStep<'tcx>],
66
67     inherent_candidates: Vec<Candidate<'tcx>>,
68     extension_candidates: Vec<Candidate<'tcx>>,
69     impl_dups: FxHashSet<DefId>,
70
71     /// Collects near misses when the candidate functions are missing a `self` keyword and is only
72     /// used for error reporting
73     static_candidates: Vec<CandidateSource>,
74
75     /// When probing for names, include names that are close to the
76     /// requested name (by Levensthein distance)
77     allow_similar_names: bool,
78
79     /// Some(candidate) if there is a private candidate
80     private_candidate: Option<(DefKind, DefId)>,
81
82     /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
83     /// for error reporting
84     unsatisfied_predicates:
85         Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
86
87     is_suggestion: IsSuggestion,
88
89     scope_expr_id: hir::HirId,
90 }
91
92 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
93     type Target = FnCtxt<'a, 'tcx>;
94     fn deref(&self) -> &Self::Target {
95         self.fcx
96     }
97 }
98
99 #[derive(Debug, Clone)]
100 struct Candidate<'tcx> {
101     // Candidates are (I'm not quite sure, but they are mostly) basically
102     // some metadata on top of a `ty::AssocItem` (without substs).
103     //
104     // However, method probing wants to be able to evaluate the predicates
105     // for a function with the substs applied - for example, if a function
106     // has `where Self: Sized`, we don't want to consider it unless `Self`
107     // is actually `Sized`, and similarly, return-type suggestions want
108     // to consider the "actual" return type.
109     //
110     // The way this is handled is through `xform_self_ty`. It contains
111     // the receiver type of this candidate, but `xform_self_ty`,
112     // `xform_ret_ty` and `kind` (which contains the predicates) have the
113     // generic parameters of this candidate substituted with the *same set*
114     // of inference variables, which acts as some weird sort of "query".
115     //
116     // When we check out a candidate, we require `xform_self_ty` to be
117     // a subtype of the passed-in self-type, and this equates the type
118     // variables in the rest of the fields.
119     //
120     // For example, if we have this candidate:
121     // ```
122     //    trait Foo {
123     //        fn foo(&self) where Self: Sized;
124     //    }
125     // ```
126     //
127     // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
128     // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
129     // the receiver `&T`, we'll do the subtyping which will make `?X`
130     // get the right value, then when we evaluate the predicate we'll check
131     // if `T: Sized`.
132     xform_self_ty: Ty<'tcx>,
133     xform_ret_ty: Option<Ty<'tcx>>,
134     item: ty::AssocItem,
135     kind: CandidateKind<'tcx>,
136     import_ids: SmallVec<[LocalDefId; 1]>,
137 }
138
139 #[derive(Debug, Clone)]
140 enum CandidateKind<'tcx> {
141     InherentImplCandidate(
142         SubstsRef<'tcx>,
143         // Normalize obligations
144         Vec<traits::PredicateObligation<'tcx>>,
145     ),
146     ObjectCandidate,
147     TraitCandidate(ty::TraitRef<'tcx>),
148     WhereClauseCandidate(
149         // Trait
150         ty::PolyTraitRef<'tcx>,
151     ),
152 }
153
154 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
155 enum ProbeResult {
156     NoMatch,
157     BadReturnType,
158     Match,
159 }
160
161 /// When adjusting a receiver we often want to do one of
162 ///
163 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
164 /// - If the receiver has type `*mut T`, convert it to `*const T`
165 ///
166 /// This type tells us which one to do.
167 ///
168 /// Note that in principle we could do both at the same time. For example, when the receiver has
169 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
170 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
171 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
172 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
173 #[derive(Debug, PartialEq, Copy, Clone)]
174 pub enum AutorefOrPtrAdjustment {
175     /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
176     /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
177     Autoref {
178         mutbl: hir::Mutability,
179
180         /// Indicates that the source expression should be "unsized" to a target type.
181         /// This is special-cased for just arrays unsizing to slices.
182         unsize: bool,
183     },
184     /// Receiver has type `*mut T`, convert to `*const T`
185     ToConstPtr,
186 }
187
188 impl AutorefOrPtrAdjustment {
189     fn get_unsize(&self) -> bool {
190         match self {
191             AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
192             AutorefOrPtrAdjustment::ToConstPtr => false,
193         }
194     }
195 }
196
197 #[derive(Debug, PartialEq, Clone)]
198 pub struct Pick<'tcx> {
199     pub item: ty::AssocItem,
200     pub kind: PickKind<'tcx>,
201     pub import_ids: SmallVec<[LocalDefId; 1]>,
202
203     /// Indicates that the source expression should be autoderef'd N times
204     /// ```ignore (not-rust)
205     /// A = expr | *expr | **expr | ...
206     /// ```
207     pub autoderefs: usize,
208
209     /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
210     /// `*mut T`, convert it to `*const T`.
211     pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
212     pub self_ty: Ty<'tcx>,
213 }
214
215 #[derive(Clone, Debug, PartialEq, Eq)]
216 pub enum PickKind<'tcx> {
217     InherentImplPick,
218     ObjectPick,
219     TraitPick,
220     WhereClausePick(
221         // Trait
222         ty::PolyTraitRef<'tcx>,
223     ),
224 }
225
226 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
227
228 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
229 pub enum Mode {
230     // An expression of the form `receiver.method_name(...)`.
231     // Autoderefs are performed on `receiver`, lookup is done based on the
232     // `self` argument  of the method, and static methods aren't considered.
233     MethodCall,
234     // An expression of the form `Type::item` or `<T>::item`.
235     // No autoderefs are performed, lookup is done based on the type each
236     // implementation is for, and static methods are included.
237     Path,
238 }
239
240 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
241 pub enum ProbeScope {
242     // Assemble candidates coming only from traits in scope.
243     TraitsInScope,
244
245     // Assemble candidates coming from all traits.
246     AllTraits,
247 }
248
249 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
250     /// This is used to offer suggestions to users. It returns methods
251     /// that could have been called which have the desired return
252     /// type. Some effort is made to rule out methods that, if called,
253     /// would result in an error (basically, the same criteria we
254     /// would use to decide if a method is a plausible fit for
255     /// ambiguity purposes).
256     #[instrument(level = "debug", skip(self, scope_expr_id))]
257     pub fn probe_for_return_type(
258         &self,
259         span: Span,
260         mode: Mode,
261         return_type: Ty<'tcx>,
262         self_ty: Ty<'tcx>,
263         scope_expr_id: hir::HirId,
264     ) -> Vec<ty::AssocItem> {
265         debug!(
266             "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
267             self_ty, return_type, scope_expr_id
268         );
269         let method_names = self
270             .probe_op(
271                 span,
272                 mode,
273                 None,
274                 Some(return_type),
275                 IsSuggestion(true),
276                 self_ty,
277                 scope_expr_id,
278                 ProbeScope::AllTraits,
279                 |probe_cx| Ok(probe_cx.candidate_method_names()),
280             )
281             .unwrap_or_default();
282         method_names
283             .iter()
284             .flat_map(|&method_name| {
285                 self.probe_op(
286                     span,
287                     mode,
288                     Some(method_name),
289                     Some(return_type),
290                     IsSuggestion(true),
291                     self_ty,
292                     scope_expr_id,
293                     ProbeScope::AllTraits,
294                     |probe_cx| probe_cx.pick(),
295                 )
296                 .ok()
297                 .map(|pick| pick.item)
298             })
299             .collect()
300     }
301
302     #[instrument(level = "debug", skip(self, scope_expr_id))]
303     pub fn probe_for_name(
304         &self,
305         span: Span,
306         mode: Mode,
307         item_name: Ident,
308         is_suggestion: IsSuggestion,
309         self_ty: Ty<'tcx>,
310         scope_expr_id: hir::HirId,
311         scope: ProbeScope,
312     ) -> PickResult<'tcx> {
313         debug!(
314             "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
315             self_ty, item_name, scope_expr_id
316         );
317         self.probe_op(
318             span,
319             mode,
320             Some(item_name),
321             None,
322             is_suggestion,
323             self_ty,
324             scope_expr_id,
325             scope,
326             |probe_cx| probe_cx.pick(),
327         )
328     }
329
330     fn probe_op<OP, R>(
331         &'a self,
332         span: Span,
333         mode: Mode,
334         method_name: Option<Ident>,
335         return_type: Option<Ty<'tcx>>,
336         is_suggestion: IsSuggestion,
337         self_ty: Ty<'tcx>,
338         scope_expr_id: hir::HirId,
339         scope: ProbeScope,
340         op: OP,
341     ) -> Result<R, MethodError<'tcx>>
342     where
343         OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
344     {
345         let mut orig_values = OriginalQueryValues::default();
346         let param_env_and_self_ty = self.canonicalize_query(
347             ParamEnvAnd { param_env: self.param_env, value: self_ty },
348             &mut orig_values,
349         );
350
351         let steps = if mode == Mode::MethodCall {
352             self.tcx.method_autoderef_steps(param_env_and_self_ty)
353         } else {
354             self.probe(|_| {
355                 // Mode::Path - the deref steps is "trivial". This turns
356                 // our CanonicalQuery into a "trivial" QueryResponse. This
357                 // is a bit inefficient, but I don't think that writing
358                 // special handling for this "trivial case" is a good idea.
359
360                 let infcx = &self.infcx;
361                 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
362                     infcx.instantiate_canonical_with_fresh_inference_vars(
363                         span,
364                         &param_env_and_self_ty,
365                     );
366                 debug!(
367                     "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
368                     param_env_and_self_ty, self_ty
369                 );
370                 MethodAutoderefStepsResult {
371                     steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
372                         self_ty: self.make_query_response_ignoring_pending_obligations(
373                             canonical_inference_vars,
374                             self_ty,
375                         ),
376                         autoderefs: 0,
377                         from_unsafe_deref: false,
378                         unsize: false,
379                     }]),
380                     opt_bad_ty: None,
381                     reached_recursion_limit: false,
382                 }
383             })
384         };
385
386         // If our autoderef loop had reached the recursion limit,
387         // report an overflow error, but continue going on with
388         // the truncated autoderef list.
389         if steps.reached_recursion_limit {
390             self.probe(|_| {
391                 let ty = &steps
392                     .steps
393                     .last()
394                     .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
395                     .self_ty;
396                 let ty = self
397                     .probe_instantiate_query_response(span, &orig_values, ty)
398                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
399                 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
400             });
401         }
402
403         // If we encountered an `_` type or an error type during autoderef, this is
404         // ambiguous.
405         if let Some(bad_ty) = &steps.opt_bad_ty {
406             if is_suggestion.0 {
407                 // Ambiguity was encountered during a suggestion. Just keep going.
408                 debug!("ProbeContext: encountered ambiguity in suggestion");
409             } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
410                 // this case used to be allowed by the compiler,
411                 // so we do a future-compat lint here for the 2015 edition
412                 // (see https://github.com/rust-lang/rust/issues/46906)
413                 if self.tcx.sess.rust_2018() {
414                     self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
415                 } else {
416                     self.tcx.struct_span_lint_hir(
417                         lint::builtin::TYVAR_BEHIND_RAW_POINTER,
418                         scope_expr_id,
419                         span,
420                         |lint| {
421                             lint.build("type annotations needed").emit();
422                         },
423                     );
424                 }
425             } else {
426                 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
427                 // an `Err`, report the right "type annotations needed" error pointing
428                 // to it.
429                 let ty = &bad_ty.ty;
430                 let ty = self
431                     .probe_instantiate_query_response(span, &orig_values, ty)
432                     .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
433                 let ty = self.structurally_resolved_type(span, ty.value);
434                 assert!(matches!(ty.kind(), ty::Error(_)));
435                 return Err(MethodError::NoMatch(NoMatchData {
436                     static_candidates: Vec::new(),
437                     unsatisfied_predicates: Vec::new(),
438                     out_of_scope_traits: Vec::new(),
439                     lev_candidate: None,
440                     mode,
441                 }));
442             }
443         }
444
445         debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
446
447         // this creates one big transaction so that all type variables etc
448         // that we create during the probe process are removed later
449         self.probe(|_| {
450             let mut probe_cx = ProbeContext::new(
451                 self,
452                 span,
453                 mode,
454                 method_name,
455                 return_type,
456                 orig_values,
457                 steps.steps,
458                 is_suggestion,
459                 scope_expr_id,
460             );
461
462             probe_cx.assemble_inherent_candidates();
463             match scope {
464                 ProbeScope::TraitsInScope => {
465                     probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
466                 }
467                 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
468             };
469             op(probe_cx)
470         })
471     }
472 }
473
474 pub fn provide(providers: &mut ty::query::Providers) {
475     providers.method_autoderef_steps = method_autoderef_steps;
476 }
477
478 fn method_autoderef_steps<'tcx>(
479     tcx: TyCtxt<'tcx>,
480     goal: CanonicalTyGoal<'tcx>,
481 ) -> MethodAutoderefStepsResult<'tcx> {
482     debug!("method_autoderef_steps({:?})", goal);
483
484     tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
485         let ParamEnvAnd { param_env, value: self_ty } = goal;
486
487         let mut autoderef =
488             Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
489                 .include_raw_pointers()
490                 .silence_errors();
491         let mut reached_raw_pointer = false;
492         let mut steps: Vec<_> = autoderef
493             .by_ref()
494             .map(|(ty, d)| {
495                 let step = CandidateStep {
496                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
497                         inference_vars.clone(),
498                         ty,
499                     ),
500                     autoderefs: d,
501                     from_unsafe_deref: reached_raw_pointer,
502                     unsize: false,
503                 };
504                 if let ty::RawPtr(_) = ty.kind() {
505                     // all the subsequent steps will be from_unsafe_deref
506                     reached_raw_pointer = true;
507                 }
508                 step
509             })
510             .collect();
511
512         let final_ty = autoderef.final_ty(true);
513         let opt_bad_ty = match final_ty.kind() {
514             ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
515                 reached_raw_pointer,
516                 ty: infcx
517                     .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
518             }),
519             ty::Array(elem_ty, _) => {
520                 let dereferences = steps.len() - 1;
521
522                 steps.push(CandidateStep {
523                     self_ty: infcx.make_query_response_ignoring_pending_obligations(
524                         inference_vars,
525                         infcx.tcx.mk_slice(*elem_ty),
526                     ),
527                     autoderefs: dereferences,
528                     // this could be from an unsafe deref if we had
529                     // a *mut/const [T; N]
530                     from_unsafe_deref: reached_raw_pointer,
531                     unsize: true,
532                 });
533
534                 None
535             }
536             _ => None,
537         };
538
539         debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
540
541         MethodAutoderefStepsResult {
542             steps: tcx.arena.alloc_from_iter(steps),
543             opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
544             reached_recursion_limit: autoderef.reached_recursion_limit(),
545         }
546     })
547 }
548
549 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
550     fn new(
551         fcx: &'a FnCtxt<'a, 'tcx>,
552         span: Span,
553         mode: Mode,
554         method_name: Option<Ident>,
555         return_type: Option<Ty<'tcx>>,
556         orig_steps_var_values: OriginalQueryValues<'tcx>,
557         steps: &'tcx [CandidateStep<'tcx>],
558         is_suggestion: IsSuggestion,
559         scope_expr_id: hir::HirId,
560     ) -> ProbeContext<'a, 'tcx> {
561         ProbeContext {
562             fcx,
563             span,
564             mode,
565             method_name,
566             return_type,
567             inherent_candidates: Vec::new(),
568             extension_candidates: Vec::new(),
569             impl_dups: FxHashSet::default(),
570             orig_steps_var_values,
571             steps,
572             static_candidates: Vec::new(),
573             allow_similar_names: false,
574             private_candidate: None,
575             unsatisfied_predicates: Vec::new(),
576             is_suggestion,
577             scope_expr_id,
578         }
579     }
580
581     fn reset(&mut self) {
582         self.inherent_candidates.clear();
583         self.extension_candidates.clear();
584         self.impl_dups.clear();
585         self.static_candidates.clear();
586         self.private_candidate = None;
587     }
588
589     ///////////////////////////////////////////////////////////////////////////
590     // CANDIDATE ASSEMBLY
591
592     fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
593         let is_accessible = if let Some(name) = self.method_name {
594             let item = candidate.item;
595             let def_scope =
596                 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
597             item.vis.is_accessible_from(def_scope, self.tcx)
598         } else {
599             true
600         };
601         if is_accessible {
602             if is_inherent {
603                 self.inherent_candidates.push(candidate);
604             } else {
605                 self.extension_candidates.push(candidate);
606             }
607         } else if self.private_candidate.is_none() {
608             self.private_candidate =
609                 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
610         }
611     }
612
613     fn assemble_inherent_candidates(&mut self) {
614         for step in self.steps.iter() {
615             self.assemble_probe(&step.self_ty);
616         }
617     }
618
619     fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
620         debug!("assemble_probe: self_ty={:?}", self_ty);
621         let raw_self_ty = self_ty.value.value;
622         match *raw_self_ty.kind() {
623             ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
624                 // Subtle: we can't use `instantiate_query_response` here: using it will
625                 // commit to all of the type equalities assumed by inference going through
626                 // autoderef (see the `method-probe-no-guessing` test).
627                 //
628                 // However, in this code, it is OK if we end up with an object type that is
629                 // "more general" than the object type that we are evaluating. For *every*
630                 // object type `MY_OBJECT`, a function call that goes through a trait-ref
631                 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
632                 // `ObjectCandidate`, and it should be discoverable "exactly" through one
633                 // of the iterations in the autoderef loop, so there is no problem with it
634                 // being discoverable in another one of these iterations.
635                 //
636                 // Using `instantiate_canonical_with_fresh_inference_vars` on our
637                 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
638                 // `CanonicalVarValues` will exactly give us such a generalization - it
639                 // will still match the original object type, but it won't pollute our
640                 // type variables in any form, so just do that!
641                 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
642                     self.fcx
643                         .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
644
645                 self.assemble_inherent_candidates_from_object(generalized_self_ty);
646                 self.assemble_inherent_impl_candidates_for_type(p.def_id());
647                 if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
648                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
649                 }
650             }
651             ty::Adt(def, _) => {
652                 let def_id = def.did();
653                 self.assemble_inherent_impl_candidates_for_type(def_id);
654                 if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
655                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
656                 }
657             }
658             ty::Foreign(did) => {
659                 self.assemble_inherent_impl_candidates_for_type(did);
660                 if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
661                     self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
662                 }
663             }
664             ty::Param(p) => {
665                 self.assemble_inherent_candidates_from_param(p);
666             }
667             ty::Bool
668             | ty::Char
669             | ty::Int(_)
670             | ty::Uint(_)
671             | ty::Float(_)
672             | ty::Str
673             | ty::Array(..)
674             | ty::Slice(_)
675             | ty::RawPtr(_)
676             | ty::Ref(..)
677             | ty::Never
678             | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
679             _ => {}
680         }
681     }
682
683     fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
684         let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
685             bug!("unexpected incoherent type: {:?}", self_ty)
686         };
687         for &impl_def_id in self.tcx.incoherent_impls(simp) {
688             self.assemble_inherent_impl_probe(impl_def_id);
689         }
690     }
691
692     fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
693         let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
694         for &impl_def_id in impl_def_ids.iter() {
695             self.assemble_inherent_impl_probe(impl_def_id);
696         }
697     }
698
699     fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
700         if !self.impl_dups.insert(impl_def_id) {
701             return; // already visited
702         }
703
704         debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
705
706         for item in self.impl_or_trait_item(impl_def_id) {
707             if !self.has_applicable_self(&item) {
708                 // No receiver declared. Not a candidate.
709                 self.record_static_candidate(CandidateSource::Impl(impl_def_id));
710                 continue;
711             }
712
713             let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
714             let impl_ty = impl_ty.subst(self.tcx, impl_substs);
715
716             debug!("impl_ty: {:?}", impl_ty);
717
718             // Determine the receiver type that the method itself expects.
719             let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
720             debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
721
722             // We can't use normalize_associated_types_in as it will pollute the
723             // fcx's fulfillment context after this probe is over.
724             // Note: we only normalize `xform_self_ty` here since the normalization
725             // of the return type can lead to inference results that prohibit
726             // valid candidates from being found, see issue #85671
727             // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
728             // which might be caused by the `param_env` itself. The clauses of the `param_env`
729             // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
730             // see issue #89650
731             let cause = traits::ObligationCause::misc(self.span, self.body_id);
732             let selcx = &mut traits::SelectionContext::new(self.fcx);
733             let traits::Normalized { value: xform_self_ty, obligations } =
734                 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
735             debug!(
736                 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
737                 xform_self_ty, xform_ret_ty
738             );
739
740             self.push_candidate(
741                 Candidate {
742                     xform_self_ty,
743                     xform_ret_ty,
744                     item,
745                     kind: InherentImplCandidate(impl_substs, obligations),
746                     import_ids: smallvec![],
747                 },
748                 true,
749             );
750         }
751     }
752
753     fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
754         debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
755
756         let principal = match self_ty.kind() {
757             ty::Dynamic(ref data, ..) => Some(data),
758             _ => None,
759         }
760         .and_then(|data| data.principal())
761         .unwrap_or_else(|| {
762             span_bug!(
763                 self.span,
764                 "non-object {:?} in assemble_inherent_candidates_from_object",
765                 self_ty
766             )
767         });
768
769         // It is illegal to invoke a method on a trait instance that refers to
770         // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
771         // will be reported by `object_safety.rs` if the method refers to the
772         // `Self` type anywhere other than the receiver. Here, we use a
773         // substitution that replaces `Self` with the object type itself. Hence,
774         // a `&self` method will wind up with an argument type like `&dyn Trait`.
775         let trait_ref = principal.with_self_ty(self.tcx, self_ty);
776         self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
777             let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
778
779             let (xform_self_ty, xform_ret_ty) =
780                 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
781             this.push_candidate(
782                 Candidate {
783                     xform_self_ty,
784                     xform_ret_ty,
785                     item,
786                     kind: ObjectCandidate,
787                     import_ids: smallvec![],
788                 },
789                 true,
790             );
791         });
792     }
793
794     fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
795         // FIXME: do we want to commit to this behavior for param bounds?
796         debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
797
798         let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
799             let bound_predicate = predicate.kind();
800             match bound_predicate.skip_binder() {
801                 ty::PredicateKind::Trait(trait_predicate) => {
802                     match *trait_predicate.trait_ref.self_ty().kind() {
803                         ty::Param(p) if p == param_ty => {
804                             Some(bound_predicate.rebind(trait_predicate.trait_ref))
805                         }
806                         _ => None,
807                     }
808                 }
809                 ty::PredicateKind::Subtype(..)
810                 | ty::PredicateKind::Coerce(..)
811                 | ty::PredicateKind::Projection(..)
812                 | ty::PredicateKind::RegionOutlives(..)
813                 | ty::PredicateKind::WellFormed(..)
814                 | ty::PredicateKind::ObjectSafe(..)
815                 | ty::PredicateKind::ClosureKind(..)
816                 | ty::PredicateKind::TypeOutlives(..)
817                 | ty::PredicateKind::ConstEvaluatable(..)
818                 | ty::PredicateKind::ConstEquate(..)
819                 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
820             }
821         });
822
823         self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
824             let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
825
826             let (xform_self_ty, xform_ret_ty) =
827                 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
828
829             // Because this trait derives from a where-clause, it
830             // should not contain any inference variables or other
831             // artifacts. This means it is safe to put into the
832             // `WhereClauseCandidate` and (eventually) into the
833             // `WhereClausePick`.
834             assert!(!trait_ref.substs.needs_infer());
835
836             this.push_candidate(
837                 Candidate {
838                     xform_self_ty,
839                     xform_ret_ty,
840                     item,
841                     kind: WhereClauseCandidate(poly_trait_ref),
842                     import_ids: smallvec![],
843                 },
844                 true,
845             );
846         });
847     }
848
849     // Do a search through a list of bounds, using a callback to actually
850     // create the candidates.
851     fn elaborate_bounds<F>(
852         &mut self,
853         bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
854         mut mk_cand: F,
855     ) where
856         F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
857     {
858         let tcx = self.tcx;
859         for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
860             debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
861             for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
862                 if !self.has_applicable_self(&item) {
863                     self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
864                 } else {
865                     mk_cand(self, bound_trait_ref, item);
866                 }
867             }
868         }
869     }
870
871     fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
872         let mut duplicates = FxHashSet::default();
873         let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
874         if let Some(applicable_traits) = opt_applicable_traits {
875             for trait_candidate in applicable_traits.iter() {
876                 let trait_did = trait_candidate.def_id;
877                 if duplicates.insert(trait_did) {
878                     self.assemble_extension_candidates_for_trait(
879                         &trait_candidate.import_ids,
880                         trait_did,
881                     );
882                 }
883             }
884         }
885     }
886
887     fn assemble_extension_candidates_for_all_traits(&mut self) {
888         let mut duplicates = FxHashSet::default();
889         for trait_info in suggest::all_traits(self.tcx) {
890             if duplicates.insert(trait_info.def_id) {
891                 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
892             }
893         }
894     }
895
896     pub fn matches_return_type(
897         &self,
898         method: &ty::AssocItem,
899         self_ty: Option<Ty<'tcx>>,
900         expected: Ty<'tcx>,
901     ) -> bool {
902         match method.kind {
903             ty::AssocKind::Fn => {
904                 let fty = self.tcx.bound_fn_sig(method.def_id);
905                 self.probe(|_| {
906                     let substs = self.fresh_substs_for_item(self.span, method.def_id);
907                     let fty = fty.subst(self.tcx, substs);
908                     let fty =
909                         self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
910
911                     if let Some(self_ty) = self_ty {
912                         if self
913                             .at(&ObligationCause::dummy(), self.param_env)
914                             .sup(fty.inputs()[0], self_ty)
915                             .is_err()
916                         {
917                             return false;
918                         }
919                     }
920                     self.can_sub(self.param_env, fty.output(), expected).is_ok()
921                 })
922             }
923             _ => false,
924         }
925     }
926
927     fn assemble_extension_candidates_for_trait(
928         &mut self,
929         import_ids: &SmallVec<[LocalDefId; 1]>,
930         trait_def_id: DefId,
931     ) {
932         debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
933         let trait_substs = self.fresh_item_substs(trait_def_id);
934         let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
935
936         if self.tcx.is_trait_alias(trait_def_id) {
937             // For trait aliases, assume all supertraits are relevant.
938             let bounds = iter::once(ty::Binder::dummy(trait_ref));
939             self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
940                 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
941
942                 let (xform_self_ty, xform_ret_ty) =
943                     this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
944                 this.push_candidate(
945                     Candidate {
946                         xform_self_ty,
947                         xform_ret_ty,
948                         item,
949                         import_ids: import_ids.clone(),
950                         kind: TraitCandidate(new_trait_ref),
951                     },
952                     false,
953                 );
954             });
955         } else {
956             debug_assert!(self.tcx.is_trait(trait_def_id));
957             for item in self.impl_or_trait_item(trait_def_id) {
958                 // Check whether `trait_def_id` defines a method with suitable name.
959                 if !self.has_applicable_self(&item) {
960                     debug!("method has inapplicable self");
961                     self.record_static_candidate(CandidateSource::Trait(trait_def_id));
962                     continue;
963                 }
964
965                 let (xform_self_ty, xform_ret_ty) =
966                     self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
967                 self.push_candidate(
968                     Candidate {
969                         xform_self_ty,
970                         xform_ret_ty,
971                         item,
972                         import_ids: import_ids.clone(),
973                         kind: TraitCandidate(trait_ref),
974                     },
975                     false,
976                 );
977             }
978         }
979     }
980
981     fn candidate_method_names(&self) -> Vec<Ident> {
982         let mut set = FxHashSet::default();
983         let mut names: Vec<_> = self
984             .inherent_candidates
985             .iter()
986             .chain(&self.extension_candidates)
987             .filter(|candidate| {
988                 if let Some(return_ty) = self.return_type {
989                     self.matches_return_type(&candidate.item, None, return_ty)
990                 } else {
991                     true
992                 }
993             })
994             .map(|candidate| candidate.item.ident(self.tcx))
995             .filter(|&name| set.insert(name))
996             .collect();
997
998         // Sort them by the name so we have a stable result.
999         names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
1000         names
1001     }
1002
1003     ///////////////////////////////////////////////////////////////////////////
1004     // THE ACTUAL SEARCH
1005
1006     fn pick(mut self) -> PickResult<'tcx> {
1007         assert!(self.method_name.is_some());
1008
1009         if let Some(r) = self.pick_core() {
1010             return r;
1011         }
1012
1013         debug!("pick: actual search failed, assemble diagnostics");
1014
1015         let static_candidates = mem::take(&mut self.static_candidates);
1016         let private_candidate = self.private_candidate.take();
1017         let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1018
1019         // things failed, so lets look at all traits, for diagnostic purposes now:
1020         self.reset();
1021
1022         let span = self.span;
1023         let tcx = self.tcx;
1024
1025         self.assemble_extension_candidates_for_all_traits();
1026
1027         let out_of_scope_traits = match self.pick_core() {
1028             Some(Ok(p)) => vec![p.item.container.id()],
1029             //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1030             Some(Err(MethodError::Ambiguity(v))) => v
1031                 .into_iter()
1032                 .map(|source| match source {
1033                     CandidateSource::Trait(id) => id,
1034                     CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1035                         Some(id) => id,
1036                         None => span_bug!(span, "found inherent method when looking at traits"),
1037                     },
1038                 })
1039                 .collect(),
1040             Some(Err(MethodError::NoMatch(NoMatchData {
1041                 out_of_scope_traits: others, ..
1042             }))) => {
1043                 assert!(others.is_empty());
1044                 vec![]
1045             }
1046             _ => vec![],
1047         };
1048
1049         if let Some((kind, def_id)) = private_candidate {
1050             return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1051         }
1052         let lev_candidate = self.probe_for_lev_candidate()?;
1053
1054         Err(MethodError::NoMatch(NoMatchData {
1055             static_candidates,
1056             unsatisfied_predicates,
1057             out_of_scope_traits,
1058             lev_candidate,
1059             mode: self.mode,
1060         }))
1061     }
1062
1063     fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1064         let mut unstable_candidates = Vec::new();
1065         let pick = self.pick_all_method(Some(&mut unstable_candidates));
1066
1067         // In this case unstable picking is done by `pick_method`.
1068         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1069             return pick;
1070         }
1071
1072         match pick {
1073             // Emit a lint if there are unstable candidates alongside the stable ones.
1074             //
1075             // We suppress warning if we're picking the method only because it is a
1076             // suggestion.
1077             Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
1078                 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1079                 pick
1080             }
1081             Some(_) => pick,
1082             None => self.pick_all_method(None),
1083         }
1084     }
1085
1086     fn pick_all_method(
1087         &mut self,
1088         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1089     ) -> Option<PickResult<'tcx>> {
1090         let steps = self.steps.clone();
1091         steps
1092             .iter()
1093             .filter(|step| {
1094                 debug!("pick_all_method: step={:?}", step);
1095                 // skip types that are from a type error or that would require dereferencing
1096                 // a raw pointer
1097                 !step.self_ty.references_error() && !step.from_unsafe_deref
1098             })
1099             .flat_map(|step| {
1100                 let InferOk { value: self_ty, obligations: _ } = self
1101                     .fcx
1102                     .probe_instantiate_query_response(
1103                         self.span,
1104                         &self.orig_steps_var_values,
1105                         &step.self_ty,
1106                     )
1107                     .unwrap_or_else(|_| {
1108                         span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1109                     });
1110                 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1111                     .or_else(|| {
1112                         self.pick_autorefd_method(
1113                             step,
1114                             self_ty,
1115                             hir::Mutability::Not,
1116                             unstable_candidates.as_deref_mut(),
1117                         )
1118                         .or_else(|| {
1119                             self.pick_autorefd_method(
1120                                 step,
1121                                 self_ty,
1122                                 hir::Mutability::Mut,
1123                                 unstable_candidates.as_deref_mut(),
1124                             )
1125                         })
1126                         .or_else(|| {
1127                             self.pick_const_ptr_method(
1128                                 step,
1129                                 self_ty,
1130                                 unstable_candidates.as_deref_mut(),
1131                             )
1132                         })
1133                     })
1134             })
1135             .next()
1136     }
1137
1138     /// For each type `T` in the step list, this attempts to find a method where
1139     /// the (transformed) self type is exactly `T`. We do however do one
1140     /// transformation on the adjustment: if we are passing a region pointer in,
1141     /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1142     /// to transparently pass `&mut` pointers, in particular, without consuming
1143     /// them for their entire lifetime.
1144     fn pick_by_value_method(
1145         &mut self,
1146         step: &CandidateStep<'tcx>,
1147         self_ty: Ty<'tcx>,
1148         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1149     ) -> Option<PickResult<'tcx>> {
1150         if step.unsize {
1151             return None;
1152         }
1153
1154         self.pick_method(self_ty, unstable_candidates).map(|r| {
1155             r.map(|mut pick| {
1156                 pick.autoderefs = step.autoderefs;
1157
1158                 // Insert a `&*` or `&mut *` if this is a reference type:
1159                 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1160                     pick.autoderefs += 1;
1161                     pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1162                         mutbl,
1163                         unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1164                     })
1165                 }
1166
1167                 pick
1168             })
1169         })
1170     }
1171
1172     fn pick_autorefd_method(
1173         &mut self,
1174         step: &CandidateStep<'tcx>,
1175         self_ty: Ty<'tcx>,
1176         mutbl: hir::Mutability,
1177         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1178     ) -> Option<PickResult<'tcx>> {
1179         let tcx = self.tcx;
1180
1181         // In general, during probing we erase regions.
1182         let region = tcx.lifetimes.re_erased;
1183
1184         let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1185         self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1186             r.map(|mut pick| {
1187                 pick.autoderefs = step.autoderefs;
1188                 pick.autoref_or_ptr_adjustment =
1189                     Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1190                 pick
1191             })
1192         })
1193     }
1194
1195     /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1196     /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1197     /// autorefs would require dereferencing the pointer, which is not safe.
1198     fn pick_const_ptr_method(
1199         &mut self,
1200         step: &CandidateStep<'tcx>,
1201         self_ty: Ty<'tcx>,
1202         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1203     ) -> Option<PickResult<'tcx>> {
1204         // Don't convert an unsized reference to ptr
1205         if step.unsize {
1206             return None;
1207         }
1208
1209         let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
1210             return None;
1211         };
1212
1213         let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1214         let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1215         self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1216             r.map(|mut pick| {
1217                 pick.autoderefs = step.autoderefs;
1218                 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1219                 pick
1220             })
1221         })
1222     }
1223
1224     fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1225         debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1226
1227         let mut possibly_unsatisfied_predicates = Vec::new();
1228         let mut unstable_candidates = Vec::new();
1229
1230         for (kind, candidates) in
1231             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1232         {
1233             debug!("searching {} candidates", kind);
1234             let res = self.consider_candidates(
1235                 self_ty,
1236                 candidates.iter(),
1237                 &mut possibly_unsatisfied_predicates,
1238                 Some(&mut unstable_candidates),
1239             );
1240             if let Some(pick) = res {
1241                 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1242                     if let Ok(p) = &pick {
1243                         // Emit a lint if there are unstable candidates alongside the stable ones.
1244                         //
1245                         // We suppress warning if we're picking the method only because it is a
1246                         // suggestion.
1247                         self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1248                     }
1249                 }
1250                 return Some(pick);
1251             }
1252         }
1253
1254         debug!("searching unstable candidates");
1255         let res = self.consider_candidates(
1256             self_ty,
1257             unstable_candidates.iter().map(|(c, _)| c),
1258             &mut possibly_unsatisfied_predicates,
1259             None,
1260         );
1261         if res.is_none() {
1262             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1263         }
1264         res
1265     }
1266
1267     fn pick_method(
1268         &mut self,
1269         self_ty: Ty<'tcx>,
1270         mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1271     ) -> Option<PickResult<'tcx>> {
1272         if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
1273             return self.pick_method_with_unstable(self_ty);
1274         }
1275
1276         debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1277
1278         let mut possibly_unsatisfied_predicates = Vec::new();
1279
1280         for (kind, candidates) in
1281             &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1282         {
1283             debug!("searching {} candidates", kind);
1284             let res = self.consider_candidates(
1285                 self_ty,
1286                 candidates.iter(),
1287                 &mut possibly_unsatisfied_predicates,
1288                 unstable_candidates.as_deref_mut(),
1289             );
1290             if let Some(pick) = res {
1291                 return Some(pick);
1292             }
1293         }
1294
1295         // `pick_method` may be called twice for the same self_ty if no stable methods
1296         // match. Only extend once.
1297         if unstable_candidates.is_some() {
1298             self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1299         }
1300         None
1301     }
1302
1303     fn consider_candidates<'b, ProbesIter>(
1304         &self,
1305         self_ty: Ty<'tcx>,
1306         probes: ProbesIter,
1307         possibly_unsatisfied_predicates: &mut Vec<(
1308             ty::Predicate<'tcx>,
1309             Option<ty::Predicate<'tcx>>,
1310             Option<ObligationCause<'tcx>>,
1311         )>,
1312         unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1313     ) -> Option<PickResult<'tcx>>
1314     where
1315         ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1316         'tcx: 'b,
1317     {
1318         let mut applicable_candidates: Vec<_> = probes
1319             .clone()
1320             .map(|probe| {
1321                 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1322             })
1323             .filter(|&(_, status)| status != ProbeResult::NoMatch)
1324             .collect();
1325
1326         debug!("applicable_candidates: {:?}", applicable_candidates);
1327
1328         if applicable_candidates.len() > 1 {
1329             if let Some(pick) =
1330                 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1331             {
1332                 return Some(Ok(pick));
1333             }
1334         }
1335
1336         if let Some(uc) = unstable_candidates {
1337             applicable_candidates.retain(|&(p, _)| {
1338                 if let stability::EvalResult::Deny { feature, .. } =
1339                     self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1340                 {
1341                     uc.push((p.clone(), feature));
1342                     return false;
1343                 }
1344                 true
1345             });
1346         }
1347
1348         if applicable_candidates.len() > 1 {
1349             let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1350             return Some(Err(MethodError::Ambiguity(sources)));
1351         }
1352
1353         applicable_candidates.pop().map(|(probe, status)| {
1354             if status == ProbeResult::Match {
1355                 Ok(probe.to_unadjusted_pick(self_ty))
1356             } else {
1357                 Err(MethodError::BadReturnType)
1358             }
1359         })
1360     }
1361
1362     fn emit_unstable_name_collision_hint(
1363         &self,
1364         stable_pick: &Pick<'_>,
1365         unstable_candidates: &[(Candidate<'tcx>, Symbol)],
1366     ) {
1367         self.tcx.struct_span_lint_hir(
1368             lint::builtin::UNSTABLE_NAME_COLLISIONS,
1369             self.scope_expr_id,
1370             self.span,
1371             |lint| {
1372                 let def_kind = stable_pick.item.kind.as_def_kind();
1373                 let mut diag = lint.build(&format!(
1374                     "{} {} with this name may be added to the standard library in the future",
1375                     def_kind.article(),
1376                     def_kind.descr(stable_pick.item.def_id),
1377                 ));
1378                 match (stable_pick.item.kind, stable_pick.item.container) {
1379                     (ty::AssocKind::Fn, _) => {
1380                         // FIXME: This should be a `span_suggestion` instead of `help`
1381                         // However `self.span` only
1382                         // highlights the method name, so we can't use it. Also consider reusing
1383                         // the code from `report_method_error()`.
1384                         diag.help(&format!(
1385                             "call with fully qualified syntax `{}(...)` to keep using the current \
1386                              method",
1387                             self.tcx.def_path_str(stable_pick.item.def_id),
1388                         ));
1389                     }
1390                     (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer(def_id)) => {
1391                         diag.span_suggestion(
1392                             self.span,
1393                             "use the fully qualified path to the associated const",
1394                             format!(
1395                                 "<{} as {}>::{}",
1396                                 stable_pick.self_ty,
1397                                 self.tcx.def_path_str(def_id),
1398                                 stable_pick.item.name
1399                             ),
1400                             Applicability::MachineApplicable,
1401                         );
1402                     }
1403                     _ => {}
1404                 }
1405                 if self.tcx.sess.is_nightly_build() {
1406                     for (candidate, feature) in unstable_candidates {
1407                         diag.help(&format!(
1408                             "add `#![feature({})]` to the crate attributes to enable `{}`",
1409                             feature,
1410                             self.tcx.def_path_str(candidate.item.def_id),
1411                         ));
1412                     }
1413                 }
1414
1415                 diag.emit();
1416             },
1417         );
1418     }
1419
1420     fn select_trait_candidate(
1421         &self,
1422         trait_ref: ty::TraitRef<'tcx>,
1423     ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1424         let cause = traits::ObligationCause::misc(self.span, self.body_id);
1425         let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1426         let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1427         traits::SelectionContext::new(self).select(&obligation)
1428     }
1429
1430     fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1431         match candidate.kind {
1432             InherentImplCandidate(..) => CandidateSource::Impl(candidate.item.container.id()),
1433             ObjectCandidate | WhereClauseCandidate(_) => {
1434                 CandidateSource::Trait(candidate.item.container.id())
1435             }
1436             TraitCandidate(trait_ref) => self.probe(|_| {
1437                 let _ = self
1438                     .at(&ObligationCause::dummy(), self.param_env)
1439                     .define_opaque_types(false)
1440                     .sup(candidate.xform_self_ty, self_ty);
1441                 match self.select_trait_candidate(trait_ref) {
1442                     Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1443                         // If only a single impl matches, make the error message point
1444                         // to that impl.
1445                         CandidateSource::Impl(impl_data.impl_def_id)
1446                     }
1447                     _ => CandidateSource::Trait(candidate.item.container.id()),
1448                 }
1449             }),
1450         }
1451     }
1452
1453     fn consider_probe(
1454         &self,
1455         self_ty: Ty<'tcx>,
1456         probe: &Candidate<'tcx>,
1457         possibly_unsatisfied_predicates: &mut Vec<(
1458             ty::Predicate<'tcx>,
1459             Option<ty::Predicate<'tcx>>,
1460             Option<ObligationCause<'tcx>>,
1461         )>,
1462     ) -> ProbeResult {
1463         debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1464
1465         self.probe(|_| {
1466             // First check that the self type can be related.
1467             let sub_obligations = match self
1468                 .at(&ObligationCause::dummy(), self.param_env)
1469                 .define_opaque_types(false)
1470                 .sup(probe.xform_self_ty, self_ty)
1471             {
1472                 Ok(InferOk { obligations, value: () }) => obligations,
1473                 Err(err) => {
1474                     debug!("--> cannot relate self-types {:?}", err);
1475                     return ProbeResult::NoMatch;
1476                 }
1477             };
1478
1479             let mut result = ProbeResult::Match;
1480             let mut xform_ret_ty = probe.xform_ret_ty;
1481             debug!(?xform_ret_ty);
1482
1483             let selcx = &mut traits::SelectionContext::new(self);
1484             let cause = traits::ObligationCause::misc(self.span, self.body_id);
1485
1486             let mut parent_pred = None;
1487
1488             // If so, impls may carry other conditions (e.g., where
1489             // clauses) that must be considered. Make sure that those
1490             // match as well (or at least may match, sometimes we
1491             // don't have enough information to fully evaluate).
1492             match probe.kind {
1493                 InherentImplCandidate(ref substs, ref ref_obligations) => {
1494                     // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1495                     // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1496                     // for why this is necessary
1497                     let traits::Normalized {
1498                         value: normalized_xform_ret_ty,
1499                         obligations: normalization_obligations,
1500                     } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1501                     xform_ret_ty = normalized_xform_ret_ty;
1502                     debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1503
1504                     // Check whether the impl imposes obligations we have to worry about.
1505                     let impl_def_id = probe.item.container.id();
1506                     let impl_bounds = self.tcx.predicates_of(impl_def_id);
1507                     let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1508                     let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1509                         traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1510
1511                     // Convert the bounds into obligations.
1512                     let impl_obligations =
1513                         traits::predicates_for_generics(cause, self.param_env, impl_bounds);
1514
1515                     let candidate_obligations = impl_obligations
1516                         .chain(norm_obligations.into_iter())
1517                         .chain(ref_obligations.iter().cloned())
1518                         .chain(normalization_obligations.into_iter());
1519
1520                     // Evaluate those obligations to see if they might possibly hold.
1521                     for o in candidate_obligations {
1522                         let o = self.resolve_vars_if_possible(o);
1523                         if !self.predicate_may_hold(&o) {
1524                             result = ProbeResult::NoMatch;
1525                             possibly_unsatisfied_predicates.push((
1526                                 o.predicate,
1527                                 None,
1528                                 Some(o.cause),
1529                             ));
1530                         }
1531                     }
1532                 }
1533
1534                 ObjectCandidate | WhereClauseCandidate(..) => {
1535                     // These have no additional conditions to check.
1536                 }
1537
1538                 TraitCandidate(trait_ref) => {
1539                     if let Some(method_name) = self.method_name {
1540                         // Some trait methods are excluded for arrays before 2021.
1541                         // (`array.into_iter()` wants a slice iterator for compatibility.)
1542                         if self_ty.is_array() && !method_name.span.rust_2021() {
1543                             let trait_def = self.tcx.trait_def(trait_ref.def_id);
1544                             if trait_def.skip_array_during_method_dispatch {
1545                                 return ProbeResult::NoMatch;
1546                             }
1547                         }
1548                     }
1549                     let predicate =
1550                         ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1551                     parent_pred = Some(predicate);
1552                     let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1553                     if !self.predicate_may_hold(&obligation) {
1554                         result = ProbeResult::NoMatch;
1555                         if self.probe(|_| {
1556                             match self.select_trait_candidate(trait_ref) {
1557                                 Err(_) => return true,
1558                                 Ok(Some(impl_source))
1559                                     if !impl_source.borrow_nested_obligations().is_empty() =>
1560                                 {
1561                                     for obligation in impl_source.borrow_nested_obligations() {
1562                                         // Determine exactly which obligation wasn't met, so
1563                                         // that we can give more context in the error.
1564                                         if !self.predicate_may_hold(obligation) {
1565                                             let nested_predicate =
1566                                                 self.resolve_vars_if_possible(obligation.predicate);
1567                                             let predicate =
1568                                                 self.resolve_vars_if_possible(predicate);
1569                                             let p = if predicate == nested_predicate {
1570                                                 // Avoid "`MyStruct: Foo` which is required by
1571                                                 // `MyStruct: Foo`" in E0599.
1572                                                 None
1573                                             } else {
1574                                                 Some(predicate)
1575                                             };
1576                                             possibly_unsatisfied_predicates.push((
1577                                                 nested_predicate,
1578                                                 p,
1579                                                 Some(obligation.cause.clone()),
1580                                             ));
1581                                         }
1582                                     }
1583                                 }
1584                                 _ => {
1585                                     // Some nested subobligation of this predicate
1586                                     // failed.
1587                                     let predicate = self.resolve_vars_if_possible(predicate);
1588                                     possibly_unsatisfied_predicates.push((predicate, None, None));
1589                                 }
1590                             }
1591                             false
1592                         }) {
1593                             // This candidate's primary obligation doesn't even
1594                             // select - don't bother registering anything in
1595                             // `potentially_unsatisfied_predicates`.
1596                             return ProbeResult::NoMatch;
1597                         }
1598                     }
1599                 }
1600             }
1601
1602             // Evaluate those obligations to see if they might possibly hold.
1603             for o in sub_obligations {
1604                 let o = self.resolve_vars_if_possible(o);
1605                 if !self.predicate_may_hold(&o) {
1606                     result = ProbeResult::NoMatch;
1607                     possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
1608                 }
1609             }
1610
1611             if let ProbeResult::Match = result {
1612                 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1613                     let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1614                     debug!(
1615                         "comparing return_ty {:?} with xform ret ty {:?}",
1616                         return_ty, probe.xform_ret_ty
1617                     );
1618                     if self
1619                         .at(&ObligationCause::dummy(), self.param_env)
1620                         .define_opaque_types(false)
1621                         .sup(return_ty, xform_ret_ty)
1622                         .is_err()
1623                     {
1624                         return ProbeResult::BadReturnType;
1625                     }
1626                 }
1627             }
1628
1629             result
1630         })
1631     }
1632
1633     /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1634     /// same trait, but we don't know which impl to use. In this case, since in all cases the
1635     /// external interface of the method can be determined from the trait, it's ok not to decide.
1636     /// We can basically just collapse all of the probes for various impls into one where-clause
1637     /// probe. This will result in a pending obligation so when more type-info is available we can
1638     /// make the final decision.
1639     ///
1640     /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1641     ///
1642     /// ```ignore (illustrative)
1643     /// trait Foo { ... }
1644     /// impl Foo for Vec<i32> { ... }
1645     /// impl Foo for Vec<usize> { ... }
1646     /// ```
1647     ///
1648     /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1649     /// use, so it's ok to just commit to "using the method from the trait Foo".
1650     fn collapse_candidates_to_trait_pick(
1651         &self,
1652         self_ty: Ty<'tcx>,
1653         probes: &[(&Candidate<'tcx>, ProbeResult)],
1654     ) -> Option<Pick<'tcx>> {
1655         // Do all probes correspond to the same trait?
1656         let container = probes[0].0.item.container;
1657         if let ty::ImplContainer(_) = container {
1658             return None;
1659         }
1660         if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1661             return None;
1662         }
1663
1664         // FIXME: check the return type here somehow.
1665         // If so, just use this trait and call it a day.
1666         Some(Pick {
1667             item: probes[0].0.item,
1668             kind: TraitPick,
1669             import_ids: probes[0].0.import_ids.clone(),
1670             autoderefs: 0,
1671             autoref_or_ptr_adjustment: None,
1672             self_ty,
1673         })
1674     }
1675
1676     /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1677     /// candidate method where the method name may have been misspelled. Similarly to other
1678     /// Levenshtein based suggestions, we provide at most one such suggestion.
1679     fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1680         debug!("probing for method names similar to {:?}", self.method_name);
1681
1682         let steps = self.steps.clone();
1683         self.probe(|_| {
1684             let mut pcx = ProbeContext::new(
1685                 self.fcx,
1686                 self.span,
1687                 self.mode,
1688                 self.method_name,
1689                 self.return_type,
1690                 self.orig_steps_var_values.clone(),
1691                 steps,
1692                 IsSuggestion(true),
1693                 self.scope_expr_id,
1694             );
1695             pcx.allow_similar_names = true;
1696             pcx.assemble_inherent_candidates();
1697
1698             let method_names = pcx.candidate_method_names();
1699             pcx.allow_similar_names = false;
1700             let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1701                 .iter()
1702                 .filter_map(|&method_name| {
1703                     pcx.reset();
1704                     pcx.method_name = Some(method_name);
1705                     pcx.assemble_inherent_candidates();
1706                     pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1707                 })
1708                 .collect();
1709
1710             if applicable_close_candidates.is_empty() {
1711                 Ok(None)
1712             } else {
1713                 let best_name = {
1714                     let names = applicable_close_candidates
1715                         .iter()
1716                         .map(|cand| cand.name)
1717                         .collect::<Vec<Symbol>>();
1718                     find_best_match_for_name_with_substrings(
1719                         &names,
1720                         self.method_name.unwrap().name,
1721                         None,
1722                     )
1723                 }
1724                 .unwrap();
1725                 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1726             }
1727         })
1728     }
1729
1730     ///////////////////////////////////////////////////////////////////////////
1731     // MISCELLANY
1732     fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1733         // "Fast track" -- check for usage of sugar when in method call
1734         // mode.
1735         //
1736         // In Path mode (i.e., resolving a value like `T::next`), consider any
1737         // associated value (i.e., methods, constants) but not types.
1738         match self.mode {
1739             Mode::MethodCall => item.fn_has_self_parameter,
1740             Mode::Path => match item.kind {
1741                 ty::AssocKind::Type => false,
1742                 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1743             },
1744         }
1745         // FIXME -- check for types that deref to `Self`,
1746         // like `Rc<Self>` and so on.
1747         //
1748         // Note also that the current code will break if this type
1749         // includes any of the type parameters defined on the method
1750         // -- but this could be overcome.
1751     }
1752
1753     fn record_static_candidate(&mut self, source: CandidateSource) {
1754         self.static_candidates.push(source);
1755     }
1756
1757     #[instrument(level = "debug", skip(self))]
1758     fn xform_self_ty(
1759         &self,
1760         item: &ty::AssocItem,
1761         impl_ty: Ty<'tcx>,
1762         substs: SubstsRef<'tcx>,
1763     ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1764         if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1765             let sig = self.xform_method_sig(item.def_id, substs);
1766             (sig.inputs()[0], Some(sig.output()))
1767         } else {
1768             (impl_ty, None)
1769         }
1770     }
1771
1772     #[instrument(level = "debug", skip(self))]
1773     fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1774         let fn_sig = self.tcx.bound_fn_sig(method);
1775         debug!(?fn_sig);
1776
1777         assert!(!substs.has_escaping_bound_vars());
1778
1779         // It is possible for type parameters or early-bound lifetimes
1780         // to appear in the signature of `self`. The substitutions we
1781         // are given do not include type/lifetime parameters for the
1782         // method yet. So create fresh variables here for those too,
1783         // if there are any.
1784         let generics = self.tcx.generics_of(method);
1785         assert_eq!(substs.len(), generics.parent_count as usize);
1786
1787         let xform_fn_sig = if generics.params.is_empty() {
1788             fn_sig.subst(self.tcx, substs)
1789         } else {
1790             let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1791                 let i = param.index as usize;
1792                 if i < substs.len() {
1793                     substs[i]
1794                 } else {
1795                     match param.kind {
1796                         GenericParamDefKind::Lifetime => {
1797                             // In general, during probe we erase regions.
1798                             self.tcx.lifetimes.re_erased.into()
1799                         }
1800                         GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1801                             self.var_for_def(self.span, param)
1802                         }
1803                     }
1804                 }
1805             });
1806             fn_sig.subst(self.tcx, substs)
1807         };
1808
1809         self.erase_late_bound_regions(xform_fn_sig)
1810     }
1811
1812     /// Gets the type of an impl and generate substitutions with inference vars.
1813     fn impl_ty_and_substs(
1814         &self,
1815         impl_def_id: DefId,
1816     ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
1817         (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1818     }
1819
1820     fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1821         InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1822             GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1823             GenericParamDefKind::Type { .. } => self
1824                 .next_ty_var(TypeVariableOrigin {
1825                     kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1826                     span: self.tcx.def_span(def_id),
1827                 })
1828                 .into(),
1829             GenericParamDefKind::Const { .. } => {
1830                 let span = self.tcx.def_span(def_id);
1831                 let origin = ConstVariableOrigin {
1832                     kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1833                     span,
1834                 };
1835                 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1836             }
1837         })
1838     }
1839
1840     /// Replaces late-bound-regions bound by `value` with `'static` using
1841     /// `ty::erase_late_bound_regions`.
1842     ///
1843     /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1844     /// method matching. It is reasonable during the probe phase because we don't consider region
1845     /// relationships at all. Therefore, we can just replace all the region variables with 'static
1846     /// rather than creating fresh region variables. This is nice for two reasons:
1847     ///
1848     /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1849     ///    particular method call, it winds up creating fewer types overall, which helps for memory
1850     ///    usage. (Admittedly, this is a rather small effect, though measurable.)
1851     ///
1852     /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1853     ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1854     ///    regions with actual region variables as is proper, we'd have to ensure that the same
1855     ///    region got replaced with the same variable, which requires a bit more coordination
1856     ///    and/or tracking the substitution and
1857     ///    so forth.
1858     fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1859     where
1860         T: TypeFoldable<'tcx>,
1861     {
1862         self.tcx.erase_late_bound_regions(value)
1863     }
1864
1865     /// Finds the method with the appropriate name (or return type, as the case may be). If
1866     /// `allow_similar_names` is set, find methods with close-matching names.
1867     // The length of the returned iterator is nearly always 0 or 1 and this
1868     // method is fairly hot.
1869     fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1870         if let Some(name) = self.method_name {
1871             if self.allow_similar_names {
1872                 let max_dist = max(name.as_str().len(), 3) / 3;
1873                 self.tcx
1874                     .associated_items(def_id)
1875                     .in_definition_order()
1876                     .filter(|x| {
1877                         if x.kind.namespace() != Namespace::ValueNS {
1878                             return false;
1879                         }
1880                         match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
1881                         {
1882                             Some(d) => d > 0,
1883                             None => false,
1884                         }
1885                     })
1886                     .copied()
1887                     .collect()
1888             } else {
1889                 self.fcx
1890                     .associated_value(def_id, name)
1891                     .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1892             }
1893         } else {
1894             self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1895         }
1896     }
1897 }
1898
1899 impl<'tcx> Candidate<'tcx> {
1900     fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
1901         Pick {
1902             item: self.item,
1903             kind: match self.kind {
1904                 InherentImplCandidate(..) => InherentImplPick,
1905                 ObjectCandidate => ObjectPick,
1906                 TraitCandidate(_) => TraitPick,
1907                 WhereClauseCandidate(ref trait_ref) => {
1908                     // Only trait derived from where-clauses should
1909                     // appear here, so they should not contain any
1910                     // inference variables or other artifacts. This
1911                     // means they are safe to put into the
1912                     // `WhereClausePick`.
1913                     assert!(
1914                         !trait_ref.skip_binder().substs.needs_infer()
1915                             && !trait_ref.skip_binder().substs.has_placeholders()
1916                     );
1917
1918                     WhereClausePick(*trait_ref)
1919                 }
1920             },
1921             import_ids: self.import_ids.clone(),
1922             autoderefs: 0,
1923             autoref_or_ptr_adjustment: None,
1924             self_ty,
1925         }
1926     }
1927 }