]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs
Rollup merge of #90895 - RalfJung:read-discriminant-valid, r=oli-obk
[rust.git] / compiler / rustc_typeck / src / check / fn_ctxt / _impl.rs
1 use crate::astconv::{
2     AstConv, CreateSubstsForGenericArgsCtxt, ExplicitLateBound, GenericArgCountMismatch,
3     GenericArgCountResult, IsMethodCall, PathSeg,
4 };
5 use crate::check::callee::{self, DeferredCallResolution};
6 use crate::check::method::{self, MethodCallee, SelfSource};
7 use crate::check::{BreakableCtxt, Diverges, Expectation, FnCtxt, LocalTy};
8
9 use rustc_ast::TraitObjectSyntax;
10 use rustc_data_structures::captures::Captures;
11 use rustc_data_structures::fx::FxHashSet;
12 use rustc_errors::{Applicability, DiagnosticBuilder, ErrorReported};
13 use rustc_hir as hir;
14 use rustc_hir::def::{CtorOf, DefKind, Res};
15 use rustc_hir::def_id::DefId;
16 use rustc_hir::lang_items::LangItem;
17 use rustc_hir::{ExprKind, GenericArg, Node, QPath, TyKind};
18 use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse};
19 use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282;
20 use rustc_infer::infer::{InferOk, InferResult};
21 use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability};
22 use rustc_middle::ty::fold::TypeFoldable;
23 use rustc_middle::ty::subst::{
24     self, GenericArgKind, InternalSubsts, Subst, SubstsRef, UserSelfTy, UserSubsts,
25 };
26 use rustc_middle::ty::{
27     self, AdtKind, CanonicalUserType, DefIdTree, GenericParamDefKind, ToPolyTraitRef, ToPredicate,
28     Ty, UserType,
29 };
30 use rustc_session::lint;
31 use rustc_session::lint::builtin::BARE_TRAIT_OBJECTS;
32 use rustc_span::edition::Edition;
33 use rustc_span::hygiene::DesugaringKind;
34 use rustc_span::source_map::{original_sp, DUMMY_SP};
35 use rustc_span::symbol::{kw, sym, Ident};
36 use rustc_span::{self, BytePos, MultiSpan, Span};
37 use rustc_trait_selection::infer::InferCtxtExt as _;
38 use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
39 use rustc_trait_selection::traits::{
40     self, ObligationCause, ObligationCauseCode, StatementAsExpression, TraitEngine, TraitEngineExt,
41     WellFormedLoc,
42 };
43
44 use std::collections::hash_map::Entry;
45 use std::iter;
46 use std::slice;
47
48 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
49     /// Produces warning on the given node, if the current point in the
50     /// function is unreachable, and there hasn't been another warning.
51     pub(in super::super) fn warn_if_unreachable(&self, id: hir::HirId, span: Span, kind: &str) {
52         // FIXME: Combine these two 'if' expressions into one once
53         // let chains are implemented
54         if let Diverges::Always { span: orig_span, custom_note } = self.diverges.get() {
55             // If span arose from a desugaring of `if` or `while`, then it is the condition itself,
56             // which diverges, that we are about to lint on. This gives suboptimal diagnostics.
57             // Instead, stop here so that the `if`- or `while`-expression's block is linted instead.
58             if !span.is_desugaring(DesugaringKind::CondTemporary)
59                 && !span.is_desugaring(DesugaringKind::Async)
60                 && !orig_span.is_desugaring(DesugaringKind::Await)
61             {
62                 self.diverges.set(Diverges::WarnedAlways);
63
64                 debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
65
66                 self.tcx().struct_span_lint_hir(lint::builtin::UNREACHABLE_CODE, id, span, |lint| {
67                     let msg = format!("unreachable {}", kind);
68                     lint.build(&msg)
69                         .span_label(span, &msg)
70                         .span_label(
71                             orig_span,
72                             custom_note
73                                 .unwrap_or("any code following this expression is unreachable"),
74                         )
75                         .emit();
76                 })
77             }
78         }
79     }
80
81     /// Resolves type and const variables in `ty` if possible. Unlike the infcx
82     /// version (resolve_vars_if_possible), this version will
83     /// also select obligations if it seems useful, in an effort
84     /// to get more type information.
85     pub(in super::super) fn resolve_vars_with_obligations(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
86         self.resolve_vars_with_obligations_and_mutate_fulfillment(ty, |_| {})
87     }
88
89     #[instrument(skip(self, mutate_fulfillment_errors), level = "debug")]
90     pub(in super::super) fn resolve_vars_with_obligations_and_mutate_fulfillment(
91         &self,
92         mut ty: Ty<'tcx>,
93         mutate_fulfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>),
94     ) -> Ty<'tcx> {
95         // No Infer()? Nothing needs doing.
96         if !ty.has_infer_types_or_consts() {
97             debug!("no inference var, nothing needs doing");
98             return ty;
99         }
100
101         // If `ty` is a type variable, see whether we already know what it is.
102         ty = self.resolve_vars_if_possible(ty);
103         if !ty.has_infer_types_or_consts() {
104             debug!(?ty);
105             return ty;
106         }
107
108         // If not, try resolving pending obligations as much as
109         // possible. This can help substantially when there are
110         // indirect dependencies that don't seem worth tracking
111         // precisely.
112         self.select_obligations_where_possible(false, mutate_fulfillment_errors);
113         ty = self.resolve_vars_if_possible(ty);
114
115         debug!(?ty);
116         ty
117     }
118
119     pub(in super::super) fn record_deferred_call_resolution(
120         &self,
121         closure_def_id: DefId,
122         r: DeferredCallResolution<'tcx>,
123     ) {
124         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
125         deferred_call_resolutions.entry(closure_def_id).or_default().push(r);
126     }
127
128     pub(in super::super) fn remove_deferred_call_resolutions(
129         &self,
130         closure_def_id: DefId,
131     ) -> Vec<DeferredCallResolution<'tcx>> {
132         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
133         deferred_call_resolutions.remove(&closure_def_id).unwrap_or_default()
134     }
135
136     pub fn tag(&self) -> String {
137         format!("{:p}", self)
138     }
139
140     pub fn local_ty(&self, span: Span, nid: hir::HirId) -> LocalTy<'tcx> {
141         self.locals.borrow().get(&nid).cloned().unwrap_or_else(|| {
142             span_bug!(span, "no type for local variable {}", self.tcx.hir().node_to_string(nid))
143         })
144     }
145
146     #[inline]
147     pub fn write_ty(&self, id: hir::HirId, ty: Ty<'tcx>) {
148         debug!("write_ty({:?}, {:?}) in fcx {}", id, self.resolve_vars_if_possible(ty), self.tag());
149         self.typeck_results.borrow_mut().node_types_mut().insert(id, ty);
150
151         if ty.references_error() {
152             self.has_errors.set(true);
153             self.set_tainted_by_errors();
154         }
155     }
156
157     pub fn write_field_index(&self, hir_id: hir::HirId, index: usize) {
158         self.typeck_results.borrow_mut().field_indices_mut().insert(hir_id, index);
159     }
160
161     pub(in super::super) fn write_resolution(
162         &self,
163         hir_id: hir::HirId,
164         r: Result<(DefKind, DefId), ErrorReported>,
165     ) {
166         self.typeck_results.borrow_mut().type_dependent_defs_mut().insert(hir_id, r);
167     }
168
169     pub fn write_method_call(&self, hir_id: hir::HirId, method: MethodCallee<'tcx>) {
170         debug!("write_method_call(hir_id={:?}, method={:?})", hir_id, method);
171         self.write_resolution(hir_id, Ok((DefKind::AssocFn, method.def_id)));
172         self.write_substs(hir_id, method.substs);
173
174         // When the method is confirmed, the `method.substs` includes
175         // parameters from not just the method, but also the impl of
176         // the method -- in particular, the `Self` type will be fully
177         // resolved. However, those are not something that the "user
178         // specified" -- i.e., those types come from the inferred type
179         // of the receiver, not something the user wrote. So when we
180         // create the user-substs, we want to replace those earlier
181         // types with just the types that the user actually wrote --
182         // that is, those that appear on the *method itself*.
183         //
184         // As an example, if the user wrote something like
185         // `foo.bar::<u32>(...)` -- the `Self` type here will be the
186         // type of `foo` (possibly adjusted), but we don't want to
187         // include that. We want just the `[_, u32]` part.
188         if !method.substs.is_noop() {
189             let method_generics = self.tcx.generics_of(method.def_id);
190             if !method_generics.params.is_empty() {
191                 let user_type_annotation = self.infcx.probe(|_| {
192                     let user_substs = UserSubsts {
193                         substs: InternalSubsts::for_item(self.tcx, method.def_id, |param, _| {
194                             let i = param.index as usize;
195                             if i < method_generics.parent_count {
196                                 self.infcx.var_for_def(DUMMY_SP, param)
197                             } else {
198                                 method.substs[i]
199                             }
200                         }),
201                         user_self_ty: None, // not relevant here
202                     };
203
204                     self.infcx.canonicalize_user_type_annotation(UserType::TypeOf(
205                         method.def_id,
206                         user_substs,
207                     ))
208                 });
209
210                 debug!("write_method_call: user_type_annotation={:?}", user_type_annotation);
211                 self.write_user_type_annotation(hir_id, user_type_annotation);
212             }
213         }
214     }
215
216     pub fn write_substs(&self, node_id: hir::HirId, substs: SubstsRef<'tcx>) {
217         if !substs.is_noop() {
218             debug!("write_substs({:?}, {:?}) in fcx {}", node_id, substs, self.tag());
219
220             self.typeck_results.borrow_mut().node_substs_mut().insert(node_id, substs);
221         }
222     }
223
224     /// Given the substs that we just converted from the HIR, try to
225     /// canonicalize them and store them as user-given substitutions
226     /// (i.e., substitutions that must be respected by the NLL check).
227     ///
228     /// This should be invoked **before any unifications have
229     /// occurred**, so that annotations like `Vec<_>` are preserved
230     /// properly.
231     #[instrument(skip(self), level = "debug")]
232     pub fn write_user_type_annotation_from_substs(
233         &self,
234         hir_id: hir::HirId,
235         def_id: DefId,
236         substs: SubstsRef<'tcx>,
237         user_self_ty: Option<UserSelfTy<'tcx>>,
238     ) {
239         debug!("fcx {}", self.tag());
240
241         if self.can_contain_user_lifetime_bounds((substs, user_self_ty)) {
242             let canonicalized = self.infcx.canonicalize_user_type_annotation(UserType::TypeOf(
243                 def_id,
244                 UserSubsts { substs, user_self_ty },
245             ));
246             debug!(?canonicalized);
247             self.write_user_type_annotation(hir_id, canonicalized);
248         }
249     }
250
251     #[instrument(skip(self), level = "debug")]
252     pub fn write_user_type_annotation(
253         &self,
254         hir_id: hir::HirId,
255         canonical_user_type_annotation: CanonicalUserType<'tcx>,
256     ) {
257         debug!("fcx {}", self.tag());
258
259         if !canonical_user_type_annotation.is_identity() {
260             self.typeck_results
261                 .borrow_mut()
262                 .user_provided_types_mut()
263                 .insert(hir_id, canonical_user_type_annotation);
264         } else {
265             debug!("skipping identity substs");
266         }
267     }
268
269     #[instrument(skip(self, expr), level = "debug")]
270     pub fn apply_adjustments(&self, expr: &hir::Expr<'_>, adj: Vec<Adjustment<'tcx>>) {
271         debug!("expr = {:#?}", expr);
272
273         if adj.is_empty() {
274             return;
275         }
276
277         for a in &adj {
278             if let Adjust::NeverToAny = a.kind {
279                 if a.target.is_ty_var() {
280                     self.diverging_type_vars.borrow_mut().insert(a.target);
281                     debug!("apply_adjustments: adding `{:?}` as diverging type var", a.target);
282                 }
283             }
284         }
285
286         let autoborrow_mut = adj.iter().any(|adj| {
287             matches!(
288                 adj,
289                 &Adjustment {
290                     kind: Adjust::Borrow(AutoBorrow::Ref(_, AutoBorrowMutability::Mut { .. })),
291                     ..
292                 }
293             )
294         });
295
296         match self.typeck_results.borrow_mut().adjustments_mut().entry(expr.hir_id) {
297             Entry::Vacant(entry) => {
298                 entry.insert(adj);
299             }
300             Entry::Occupied(mut entry) => {
301                 debug!(" - composing on top of {:?}", entry.get());
302                 match (&entry.get()[..], &adj[..]) {
303                     // Applying any adjustment on top of a NeverToAny
304                     // is a valid NeverToAny adjustment, because it can't
305                     // be reached.
306                     (&[Adjustment { kind: Adjust::NeverToAny, .. }], _) => return,
307                     (&[
308                         Adjustment { kind: Adjust::Deref(_), .. },
309                         Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. },
310                     ], &[
311                         Adjustment { kind: Adjust::Deref(_), .. },
312                         .. // Any following adjustments are allowed.
313                     ]) => {
314                         // A reborrow has no effect before a dereference.
315                     }
316                     // FIXME: currently we never try to compose autoderefs
317                     // and ReifyFnPointer/UnsafeFnPointer, but we could.
318                     _ =>
319                         bug!("while adjusting {:?}, can't compose {:?} and {:?}",
320                              expr, entry.get(), adj)
321                 };
322                 *entry.get_mut() = adj;
323             }
324         }
325
326         // If there is an mutable auto-borrow, it is equivalent to `&mut <expr>`.
327         // In this case implicit use of `Deref` and `Index` within `<expr>` should
328         // instead be `DerefMut` and `IndexMut`, so fix those up.
329         if autoborrow_mut {
330             self.convert_place_derefs_to_mutable(expr);
331         }
332     }
333
334     /// Basically whenever we are converting from a type scheme into
335     /// the fn body space, we always want to normalize associated
336     /// types as well. This function combines the two.
337     fn instantiate_type_scheme<T>(&self, span: Span, substs: SubstsRef<'tcx>, value: T) -> T
338     where
339         T: TypeFoldable<'tcx>,
340     {
341         debug!("instantiate_type_scheme(value={:?}, substs={:?})", value, substs);
342         let value = value.subst(self.tcx, substs);
343         let result = self.normalize_associated_types_in(span, value);
344         debug!("instantiate_type_scheme = {:?}", result);
345         result
346     }
347
348     /// As `instantiate_type_scheme`, but for the bounds found in a
349     /// generic type scheme.
350     pub(in super::super) fn instantiate_bounds(
351         &self,
352         span: Span,
353         def_id: DefId,
354         substs: SubstsRef<'tcx>,
355     ) -> (ty::InstantiatedPredicates<'tcx>, Vec<Span>) {
356         let bounds = self.tcx.predicates_of(def_id);
357         let spans: Vec<Span> = bounds.predicates.iter().map(|(_, span)| *span).collect();
358         let result = bounds.instantiate(self.tcx, substs);
359         let result = self.normalize_associated_types_in(span, result);
360         debug!(
361             "instantiate_bounds(bounds={:?}, substs={:?}) = {:?}, {:?}",
362             bounds, substs, result, spans,
363         );
364         (result, spans)
365     }
366
367     /// Replaces the opaque types from the given value with type variables,
368     /// and records the `OpaqueTypeMap` for later use during writeback. See
369     /// `InferCtxt::instantiate_opaque_types` for more details.
370     #[instrument(skip(self, value_span), level = "debug")]
371     pub(in super::super) fn instantiate_opaque_types_from_value<T: TypeFoldable<'tcx>>(
372         &self,
373         value: T,
374         value_span: Span,
375     ) -> T {
376         self.register_infer_ok_obligations(self.instantiate_opaque_types(
377             self.body_id,
378             self.param_env,
379             value,
380             value_span,
381         ))
382     }
383
384     /// Convenience method which tracks extra diagnostic information for normalization
385     /// that occurs as a result of WF checking. The `hir_id` is the `HirId` of the hir item
386     /// whose type is being wf-checked - this is used to construct a more precise span if
387     /// an error occurs.
388     ///
389     /// It is never necessary to call this method - calling `normalize_associated_types_in` will
390     /// just result in a slightly worse diagnostic span, and will still be sound.
391     pub(in super::super) fn normalize_associated_types_in_wf<T>(
392         &self,
393         span: Span,
394         value: T,
395         loc: WellFormedLoc,
396     ) -> T
397     where
398         T: TypeFoldable<'tcx>,
399     {
400         self.inh.normalize_associated_types_in_with_cause(
401             ObligationCause::new(span, self.body_id, ObligationCauseCode::WellFormed(Some(loc))),
402             self.param_env,
403             value,
404         )
405     }
406
407     pub(in super::super) fn normalize_associated_types_in<T>(&self, span: Span, value: T) -> T
408     where
409         T: TypeFoldable<'tcx>,
410     {
411         self.inh.normalize_associated_types_in(span, self.body_id, self.param_env, value)
412     }
413
414     pub(in super::super) fn normalize_associated_types_in_as_infer_ok<T>(
415         &self,
416         span: Span,
417         value: T,
418     ) -> InferOk<'tcx, T>
419     where
420         T: TypeFoldable<'tcx>,
421     {
422         self.inh.partially_normalize_associated_types_in(
423             ObligationCause::misc(span, self.body_id),
424             self.param_env,
425             value,
426         )
427     }
428
429     pub fn require_type_meets(
430         &self,
431         ty: Ty<'tcx>,
432         span: Span,
433         code: traits::ObligationCauseCode<'tcx>,
434         def_id: DefId,
435     ) {
436         self.register_bound(ty, def_id, traits::ObligationCause::new(span, self.body_id, code));
437     }
438
439     pub fn require_type_is_sized(
440         &self,
441         ty: Ty<'tcx>,
442         span: Span,
443         code: traits::ObligationCauseCode<'tcx>,
444     ) {
445         if !ty.references_error() {
446             let lang_item = self.tcx.require_lang_item(LangItem::Sized, None);
447             self.require_type_meets(ty, span, code, lang_item);
448         }
449     }
450
451     pub fn require_type_is_sized_deferred(
452         &self,
453         ty: Ty<'tcx>,
454         span: Span,
455         code: traits::ObligationCauseCode<'tcx>,
456     ) {
457         if !ty.references_error() {
458             self.deferred_sized_obligations.borrow_mut().push((ty, span, code));
459         }
460     }
461
462     pub fn register_bound(
463         &self,
464         ty: Ty<'tcx>,
465         def_id: DefId,
466         cause: traits::ObligationCause<'tcx>,
467     ) {
468         if !ty.references_error() {
469             self.fulfillment_cx.borrow_mut().register_bound(
470                 self,
471                 self.param_env,
472                 ty,
473                 def_id,
474                 cause,
475             );
476         }
477     }
478
479     pub fn to_ty(&self, ast_t: &hir::Ty<'_>) -> Ty<'tcx> {
480         let t = <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_t);
481         self.register_wf_obligation(t.into(), ast_t.span, traits::MiscObligation);
482         t
483     }
484
485     pub fn to_ty_saving_user_provided_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
486         let ty = self.to_ty(ast_ty);
487         debug!("to_ty_saving_user_provided_ty: ty={:?}", ty);
488
489         if self.can_contain_user_lifetime_bounds(ty) {
490             let c_ty = self.infcx.canonicalize_response(UserType::Ty(ty));
491             debug!("to_ty_saving_user_provided_ty: c_ty={:?}", c_ty);
492             self.typeck_results.borrow_mut().user_provided_types_mut().insert(ast_ty.hir_id, c_ty);
493         }
494
495         ty
496     }
497
498     pub fn to_const(&self, ast_c: &hir::AnonConst) -> &'tcx ty::Const<'tcx> {
499         let const_def_id = self.tcx.hir().local_def_id(ast_c.hir_id);
500         let c = ty::Const::from_anon_const(self.tcx, const_def_id);
501         self.register_wf_obligation(
502             c.into(),
503             self.tcx.hir().span(ast_c.hir_id),
504             ObligationCauseCode::MiscObligation,
505         );
506         c
507     }
508
509     pub fn const_arg_to_const(
510         &self,
511         ast_c: &hir::AnonConst,
512         param_def_id: DefId,
513     ) -> &'tcx ty::Const<'tcx> {
514         let const_def = ty::WithOptConstParam {
515             did: self.tcx.hir().local_def_id(ast_c.hir_id),
516             const_param_did: Some(param_def_id),
517         };
518         let c = ty::Const::from_opt_const_arg_anon_const(self.tcx, const_def);
519         self.register_wf_obligation(
520             c.into(),
521             self.tcx.hir().span(ast_c.hir_id),
522             ObligationCauseCode::MiscObligation,
523         );
524         c
525     }
526
527     // If the type given by the user has free regions, save it for later, since
528     // NLL would like to enforce those. Also pass in types that involve
529     // projections, since those can resolve to `'static` bounds (modulo #54940,
530     // which hopefully will be fixed by the time you see this comment, dear
531     // reader, although I have my doubts). Also pass in types with inference
532     // types, because they may be repeated. Other sorts of things are already
533     // sufficiently enforced with erased regions. =)
534     fn can_contain_user_lifetime_bounds<T>(&self, t: T) -> bool
535     where
536         T: TypeFoldable<'tcx>,
537     {
538         t.has_free_regions(self.tcx) || t.has_projections() || t.has_infer_types()
539     }
540
541     pub fn node_ty(&self, id: hir::HirId) -> Ty<'tcx> {
542         match self.typeck_results.borrow().node_types().get(id) {
543             Some(&t) => t,
544             None if self.is_tainted_by_errors() => self.tcx.ty_error(),
545             None => {
546                 bug!(
547                     "no type for node {}: {} in fcx {}",
548                     id,
549                     self.tcx.hir().node_to_string(id),
550                     self.tag()
551                 );
552             }
553         }
554     }
555
556     pub fn node_ty_opt(&self, id: hir::HirId) -> Option<Ty<'tcx>> {
557         match self.typeck_results.borrow().node_types().get(id) {
558             Some(&t) => Some(t),
559             None if self.is_tainted_by_errors() => Some(self.tcx.ty_error()),
560             None => None,
561         }
562     }
563
564     /// Registers an obligation for checking later, during regionck, that `arg` is well-formed.
565     pub fn register_wf_obligation(
566         &self,
567         arg: subst::GenericArg<'tcx>,
568         span: Span,
569         code: traits::ObligationCauseCode<'tcx>,
570     ) {
571         // WF obligations never themselves fail, so no real need to give a detailed cause:
572         let cause = traits::ObligationCause::new(span, self.body_id, code);
573         self.register_predicate(traits::Obligation::new(
574             cause,
575             self.param_env,
576             ty::Binder::dummy(ty::PredicateKind::WellFormed(arg)).to_predicate(self.tcx),
577         ));
578     }
579
580     /// Registers obligations that all `substs` are well-formed.
581     pub fn add_wf_bounds(&self, substs: SubstsRef<'tcx>, expr: &hir::Expr<'_>) {
582         for arg in substs.iter().filter(|arg| {
583             matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
584         }) {
585             self.register_wf_obligation(arg, expr.span, traits::MiscObligation);
586         }
587     }
588
589     /// Given a fully substituted set of bounds (`generic_bounds`), and the values with which each
590     /// type/region parameter was instantiated (`substs`), creates and registers suitable
591     /// trait/region obligations.
592     ///
593     /// For example, if there is a function:
594     ///
595     /// ```
596     /// fn foo<'a,T:'a>(...)
597     /// ```
598     ///
599     /// and a reference:
600     ///
601     /// ```
602     /// let f = foo;
603     /// ```
604     ///
605     /// Then we will create a fresh region variable `'$0` and a fresh type variable `$1` for `'a`
606     /// and `T`. This routine will add a region obligation `$1:'$0` and register it locally.
607     pub fn add_obligations_for_parameters(
608         &self,
609         cause: traits::ObligationCause<'tcx>,
610         predicates: ty::InstantiatedPredicates<'tcx>,
611     ) {
612         assert!(!predicates.has_escaping_bound_vars());
613
614         debug!("add_obligations_for_parameters(predicates={:?})", predicates);
615
616         for obligation in traits::predicates_for_generics(cause, self.param_env, predicates) {
617             self.register_predicate(obligation);
618         }
619     }
620
621     // FIXME(arielb1): use this instead of field.ty everywhere
622     // Only for fields! Returns <none> for methods>
623     // Indifferent to privacy flags
624     pub fn field_ty(
625         &self,
626         span: Span,
627         field: &'tcx ty::FieldDef,
628         substs: SubstsRef<'tcx>,
629     ) -> Ty<'tcx> {
630         self.normalize_associated_types_in(span, &field.ty(self.tcx, substs))
631     }
632
633     pub(in super::super) fn resolve_generator_interiors(&self, def_id: DefId) {
634         let mut generators = self.deferred_generator_interiors.borrow_mut();
635         for (body_id, interior, kind) in generators.drain(..) {
636             self.select_obligations_where_possible(false, |_| {});
637             crate::check::generator_interior::resolve_interior(
638                 self, def_id, body_id, interior, kind,
639             );
640         }
641     }
642
643     #[instrument(skip(self), level = "debug")]
644     pub(in super::super) fn select_all_obligations_or_error(&self) {
645         let errors = self
646             .fulfillment_cx
647             .borrow_mut()
648             .select_all_with_constness_or_error(&self, self.inh.constness);
649
650         if !errors.is_empty() {
651             self.report_fulfillment_errors(&errors, self.inh.body_id, false);
652         }
653     }
654
655     /// Select as many obligations as we can at present.
656     pub(in super::super) fn select_obligations_where_possible(
657         &self,
658         fallback_has_occurred: bool,
659         mutate_fulfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>),
660     ) {
661         let mut result = self
662             .fulfillment_cx
663             .borrow_mut()
664             .select_with_constness_where_possible(self, self.inh.constness);
665         if !result.is_empty() {
666             mutate_fulfillment_errors(&mut result);
667             self.report_fulfillment_errors(&result, self.inh.body_id, fallback_has_occurred);
668         }
669     }
670
671     /// For the overloaded place expressions (`*x`, `x[3]`), the trait
672     /// returns a type of `&T`, but the actual type we assign to the
673     /// *expression* is `T`. So this function just peels off the return
674     /// type by one layer to yield `T`.
675     pub(in super::super) fn make_overloaded_place_return_type(
676         &self,
677         method: MethodCallee<'tcx>,
678     ) -> ty::TypeAndMut<'tcx> {
679         // extract method return type, which will be &T;
680         let ret_ty = method.sig.output();
681
682         // method returns &T, but the type as visible to user is T, so deref
683         ret_ty.builtin_deref(true).unwrap()
684     }
685
686     #[instrument(skip(self), level = "debug")]
687     fn self_type_matches_expected_vid(
688         &self,
689         trait_ref: ty::PolyTraitRef<'tcx>,
690         expected_vid: ty::TyVid,
691     ) -> bool {
692         let self_ty = self.shallow_resolve(trait_ref.skip_binder().self_ty());
693         debug!(?self_ty);
694
695         match *self_ty.kind() {
696             ty::Infer(ty::TyVar(found_vid)) => {
697                 // FIXME: consider using `sub_root_var` here so we
698                 // can see through subtyping.
699                 let found_vid = self.root_var(found_vid);
700                 debug!("self_type_matches_expected_vid - found_vid={:?}", found_vid);
701                 expected_vid == found_vid
702             }
703             _ => false,
704         }
705     }
706
707     #[instrument(skip(self), level = "debug")]
708     pub(in super::super) fn obligations_for_self_ty<'b>(
709         &'b self,
710         self_ty: ty::TyVid,
711     ) -> impl Iterator<Item = (ty::PolyTraitRef<'tcx>, traits::PredicateObligation<'tcx>)>
712     + Captures<'tcx>
713     + 'b {
714         // FIXME: consider using `sub_root_var` here so we
715         // can see through subtyping.
716         let ty_var_root = self.root_var(self_ty);
717         trace!("pending_obligations = {:#?}", self.fulfillment_cx.borrow().pending_obligations());
718
719         self.fulfillment_cx
720             .borrow()
721             .pending_obligations()
722             .into_iter()
723             .filter_map(move |obligation| {
724                 let bound_predicate = obligation.predicate.kind();
725                 match bound_predicate.skip_binder() {
726                     ty::PredicateKind::Projection(data) => Some((
727                         bound_predicate.rebind(data).required_poly_trait_ref(self.tcx),
728                         obligation,
729                     )),
730                     ty::PredicateKind::Trait(data) => {
731                         Some((bound_predicate.rebind(data).to_poly_trait_ref(), obligation))
732                     }
733                     ty::PredicateKind::Subtype(..) => None,
734                     ty::PredicateKind::Coerce(..) => None,
735                     ty::PredicateKind::RegionOutlives(..) => None,
736                     ty::PredicateKind::TypeOutlives(..) => None,
737                     ty::PredicateKind::WellFormed(..) => None,
738                     ty::PredicateKind::ObjectSafe(..) => None,
739                     ty::PredicateKind::ConstEvaluatable(..) => None,
740                     ty::PredicateKind::ConstEquate(..) => None,
741                     // N.B., this predicate is created by breaking down a
742                     // `ClosureType: FnFoo()` predicate, where
743                     // `ClosureType` represents some `Closure`. It can't
744                     // possibly be referring to the current closure,
745                     // because we haven't produced the `Closure` for
746                     // this closure yet; this is exactly why the other
747                     // code is looking for a self type of an unresolved
748                     // inference variable.
749                     ty::PredicateKind::ClosureKind(..) => None,
750                     ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
751                 }
752             })
753             .filter(move |(tr, _)| self.self_type_matches_expected_vid(*tr, ty_var_root))
754     }
755
756     pub(in super::super) fn type_var_is_sized(&self, self_ty: ty::TyVid) -> bool {
757         self.obligations_for_self_ty(self_ty)
758             .any(|(tr, _)| Some(tr.def_id()) == self.tcx.lang_items().sized_trait())
759     }
760
761     pub(in super::super) fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> {
762         vec![self.tcx.ty_error(); len]
763     }
764
765     /// Unifies the output type with the expected type early, for more coercions
766     /// and forward type information on the input expressions.
767     #[instrument(skip(self, call_span), level = "debug")]
768     pub(in super::super) fn expected_inputs_for_expected_output(
769         &self,
770         call_span: Span,
771         expected_ret: Expectation<'tcx>,
772         formal_ret: Ty<'tcx>,
773         formal_args: &[Ty<'tcx>],
774     ) -> Vec<Ty<'tcx>> {
775         let formal_ret = self.resolve_vars_with_obligations(formal_ret);
776         let ret_ty = match expected_ret.only_has_type(self) {
777             Some(ret) => ret,
778             None => return Vec::new(),
779         };
780         let expect_args = self
781             .fudge_inference_if_ok(|| {
782                 // Attempt to apply a subtyping relationship between the formal
783                 // return type (likely containing type variables if the function
784                 // is polymorphic) and the expected return type.
785                 // No argument expectations are produced if unification fails.
786                 let origin = self.misc(call_span);
787                 let ures = self.at(&origin, self.param_env).sup(ret_ty, &formal_ret);
788
789                 // FIXME(#27336) can't use ? here, Try::from_error doesn't default
790                 // to identity so the resulting type is not constrained.
791                 match ures {
792                     Ok(ok) => {
793                         // Process any obligations locally as much as
794                         // we can.  We don't care if some things turn
795                         // out unconstrained or ambiguous, as we're
796                         // just trying to get hints here.
797                         let errors = self.save_and_restore_in_snapshot_flag(|_| {
798                             let mut fulfill = <dyn TraitEngine<'_>>::new(self.tcx);
799                             for obligation in ok.obligations {
800                                 fulfill.register_predicate_obligation(self, obligation);
801                             }
802                             fulfill.select_where_possible(self)
803                         });
804
805                         if !errors.is_empty() {
806                             return Err(());
807                         }
808                     }
809                     Err(_) => return Err(()),
810                 }
811
812                 // Record all the argument types, with the substitutions
813                 // produced from the above subtyping unification.
814                 Ok(formal_args.iter().map(|&ty| self.resolve_vars_if_possible(ty)).collect())
815             })
816             .unwrap_or_default();
817         debug!(?formal_args, ?formal_ret, ?expect_args, ?expected_ret);
818         expect_args
819     }
820
821     pub(in super::super) fn resolve_lang_item_path(
822         &self,
823         lang_item: hir::LangItem,
824         span: Span,
825         hir_id: hir::HirId,
826     ) -> (Res, Ty<'tcx>) {
827         let def_id = self.tcx.require_lang_item(lang_item, Some(span));
828         let def_kind = self.tcx.def_kind(def_id);
829
830         let item_ty = if let DefKind::Variant = def_kind {
831             self.tcx.type_of(self.tcx.parent(def_id).expect("variant w/out parent"))
832         } else {
833             self.tcx.type_of(def_id)
834         };
835         let substs = self.infcx.fresh_substs_for_item(span, def_id);
836         let ty = item_ty.subst(self.tcx, substs);
837
838         self.write_resolution(hir_id, Ok((def_kind, def_id)));
839         self.add_required_obligations(span, def_id, &substs);
840         (Res::Def(def_kind, def_id), ty)
841     }
842
843     /// Resolves an associated value path into a base type and associated constant, or method
844     /// resolution. The newly resolved definition is written into `type_dependent_defs`.
845     pub fn resolve_ty_and_res_fully_qualified_call(
846         &self,
847         qpath: &'tcx QPath<'tcx>,
848         hir_id: hir::HirId,
849         span: Span,
850     ) -> (Res, Option<Ty<'tcx>>, &'tcx [hir::PathSegment<'tcx>]) {
851         debug!(
852             "resolve_ty_and_res_fully_qualified_call: qpath={:?} hir_id={:?} span={:?}",
853             qpath, hir_id, span
854         );
855         let (ty, qself, item_segment) = match *qpath {
856             QPath::Resolved(ref opt_qself, ref path) => {
857                 return (
858                     path.res,
859                     opt_qself.as_ref().map(|qself| self.to_ty(qself)),
860                     path.segments,
861                 );
862             }
863             QPath::TypeRelative(ref qself, ref segment) => {
864                 // Don't use `self.to_ty`, since this will register a WF obligation.
865                 // If we're trying to call a non-existent method on a trait
866                 // (e.g. `MyTrait::missing_method`), then resolution will
867                 // give us a `QPath::TypeRelative` with a trait object as
868                 // `qself`. In that case, we want to avoid registering a WF obligation
869                 // for `dyn MyTrait`, since we don't actually need the trait
870                 // to be object-safe.
871                 // We manually call `register_wf_obligation` in the success path
872                 // below.
873                 (<dyn AstConv<'_>>::ast_ty_to_ty(self, qself), qself, segment)
874             }
875             QPath::LangItem(..) => {
876                 bug!("`resolve_ty_and_res_fully_qualified_call` called on `LangItem`")
877             }
878         };
879         if let Some(&cached_result) = self.typeck_results.borrow().type_dependent_defs().get(hir_id)
880         {
881             self.register_wf_obligation(ty.into(), qself.span, traits::WellFormed(None));
882             // Return directly on cache hit. This is useful to avoid doubly reporting
883             // errors with default match binding modes. See #44614.
884             let def = cached_result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id));
885             return (def, Some(ty), slice::from_ref(&**item_segment));
886         }
887         let item_name = item_segment.ident;
888         let result = self
889             .resolve_fully_qualified_call(span, item_name, ty, qself.span, hir_id)
890             .or_else(|error| {
891                 let result = match error {
892                     method::MethodError::PrivateMatch(kind, def_id, _) => Ok((kind, def_id)),
893                     _ => Err(ErrorReported),
894                 };
895
896                 // If we have a path like `MyTrait::missing_method`, then don't register
897                 // a WF obligation for `dyn MyTrait` when method lookup fails. Otherwise,
898                 // register a WF obligation so that we can detect any additional
899                 // errors in the self type.
900                 if !(matches!(error, method::MethodError::NoMatch(_)) && ty.is_trait()) {
901                     self.register_wf_obligation(ty.into(), qself.span, traits::WellFormed(None));
902                 }
903                 if item_name.name != kw::Empty {
904                     if let Some(mut e) = self.report_method_error(
905                         span,
906                         ty,
907                         item_name,
908                         SelfSource::QPath(qself),
909                         error,
910                         None,
911                     ) {
912                         e.emit();
913                     }
914                 }
915                 result
916             });
917
918         if result.is_ok() {
919             self.maybe_lint_bare_trait(qpath, hir_id, span);
920             self.register_wf_obligation(ty.into(), qself.span, traits::WellFormed(None));
921         }
922
923         // Write back the new resolution.
924         self.write_resolution(hir_id, result);
925         (
926             result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)),
927             Some(ty),
928             slice::from_ref(&**item_segment),
929         )
930     }
931
932     fn maybe_lint_bare_trait(&self, qpath: &QPath<'_>, hir_id: hir::HirId, span: Span) {
933         if let QPath::TypeRelative(self_ty, _) = qpath {
934             if let TyKind::TraitObject([poly_trait_ref, ..], _, TraitObjectSyntax::None) =
935                 self_ty.kind
936             {
937                 let msg = "trait objects without an explicit `dyn` are deprecated";
938                 let (sugg, app) = match self.tcx.sess.source_map().span_to_snippet(self_ty.span) {
939                     Ok(s) if poly_trait_ref.trait_ref.path.is_global() => {
940                         (format!("dyn ({})", s), Applicability::MachineApplicable)
941                     }
942                     Ok(s) => (format!("dyn {}", s), Applicability::MachineApplicable),
943                     Err(_) => ("dyn <type>".to_string(), Applicability::HasPlaceholders),
944                 };
945                 // Wrap in `<..>` if it isn't already.
946                 let sugg = match self.tcx.sess.source_map().span_to_snippet(span) {
947                     Ok(s) if s.starts_with('<') => sugg,
948                     _ => format!("<{}>", sugg),
949                 };
950                 let sugg_label = "use `dyn`";
951                 if self.sess().edition() >= Edition::Edition2021 {
952                     let mut err = rustc_errors::struct_span_err!(
953                         self.sess(),
954                         self_ty.span,
955                         E0782,
956                         "{}",
957                         msg,
958                     );
959                     err.span_suggestion(
960                         self_ty.span,
961                         sugg_label,
962                         sugg,
963                         Applicability::MachineApplicable,
964                     )
965                     .emit();
966                 } else {
967                     self.tcx.struct_span_lint_hir(
968                         BARE_TRAIT_OBJECTS,
969                         hir_id,
970                         self_ty.span,
971                         |lint| {
972                             let mut db = lint.build(msg);
973                             db.span_suggestion(self_ty.span, sugg_label, sugg, app);
974                             db.emit()
975                         },
976                     );
977                 }
978             }
979         }
980     }
981
982     /// Given a function `Node`, return its `FnDecl` if it exists, or `None` otherwise.
983     pub(in super::super) fn get_node_fn_decl(
984         &self,
985         node: Node<'tcx>,
986     ) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident, bool)> {
987         match node {
988             Node::Item(&hir::Item { ident, kind: hir::ItemKind::Fn(ref sig, ..), .. }) => {
989                 // This is less than ideal, it will not suggest a return type span on any
990                 // method called `main`, regardless of whether it is actually the entry point,
991                 // but it will still present it as the reason for the expected type.
992                 Some((&sig.decl, ident, ident.name != sym::main))
993             }
994             Node::TraitItem(&hir::TraitItem {
995                 ident,
996                 kind: hir::TraitItemKind::Fn(ref sig, ..),
997                 ..
998             }) => Some((&sig.decl, ident, true)),
999             Node::ImplItem(&hir::ImplItem {
1000                 ident,
1001                 kind: hir::ImplItemKind::Fn(ref sig, ..),
1002                 ..
1003             }) => Some((&sig.decl, ident, false)),
1004             _ => None,
1005         }
1006     }
1007
1008     /// Given a `HirId`, return the `FnDecl` of the method it is enclosed by and whether a
1009     /// suggestion can be made, `None` otherwise.
1010     pub fn get_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, bool)> {
1011         // Get enclosing Fn, if it is a function or a trait method, unless there's a `loop` or
1012         // `while` before reaching it, as block tail returns are not available in them.
1013         self.tcx.hir().get_return_block(blk_id).and_then(|blk_id| {
1014             let parent = self.tcx.hir().get(blk_id);
1015             self.get_node_fn_decl(parent).map(|(fn_decl, _, is_main)| (fn_decl, is_main))
1016         })
1017     }
1018
1019     pub(in super::super) fn note_internal_mutation_in_method(
1020         &self,
1021         err: &mut DiagnosticBuilder<'_>,
1022         expr: &hir::Expr<'_>,
1023         expected: Ty<'tcx>,
1024         found: Ty<'tcx>,
1025     ) {
1026         if found != self.tcx.types.unit {
1027             return;
1028         }
1029         if let ExprKind::MethodCall(path_segment, _, [rcvr, ..], _) = expr.kind {
1030             if self
1031                 .typeck_results
1032                 .borrow()
1033                 .expr_ty_adjusted_opt(rcvr)
1034                 .map_or(true, |ty| expected.peel_refs() != ty.peel_refs())
1035             {
1036                 return;
1037             }
1038             let mut sp = MultiSpan::from_span(path_segment.ident.span);
1039             sp.push_span_label(
1040                 path_segment.ident.span,
1041                 format!(
1042                     "this call modifies {} in-place",
1043                     match rcvr.kind {
1044                         ExprKind::Path(QPath::Resolved(
1045                             None,
1046                             hir::Path { segments: [segment], .. },
1047                         )) => format!("`{}`", segment.ident),
1048                         _ => "its receiver".to_string(),
1049                     }
1050                 ),
1051             );
1052             sp.push_span_label(
1053                 rcvr.span,
1054                 "you probably want to use this value after calling the method...".to_string(),
1055             );
1056             err.span_note(
1057                 sp,
1058                 &format!("method `{}` modifies its receiver in-place", path_segment.ident),
1059             );
1060             err.note(&format!("...instead of the `()` output of method `{}`", path_segment.ident));
1061         }
1062     }
1063
1064     pub(in super::super) fn note_need_for_fn_pointer(
1065         &self,
1066         err: &mut DiagnosticBuilder<'_>,
1067         expected: Ty<'tcx>,
1068         found: Ty<'tcx>,
1069     ) {
1070         let (sig, did, substs) = match (&expected.kind(), &found.kind()) {
1071             (ty::FnDef(did1, substs1), ty::FnDef(did2, substs2)) => {
1072                 let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
1073                 let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
1074                 if sig1 != sig2 {
1075                     return;
1076                 }
1077                 err.note(
1078                     "different `fn` items always have unique types, even if their signatures are \
1079                      the same",
1080                 );
1081                 (sig1, *did1, substs1)
1082             }
1083             (ty::FnDef(did, substs), ty::FnPtr(sig2)) => {
1084                 let sig1 = self.tcx.fn_sig(*did).subst(self.tcx, substs);
1085                 if sig1 != *sig2 {
1086                     return;
1087                 }
1088                 (sig1, *did, substs)
1089             }
1090             _ => return,
1091         };
1092         err.help(&format!("change the expected type to be function pointer `{}`", sig));
1093         err.help(&format!(
1094             "if the expected type is due to type inference, cast the expected `fn` to a function \
1095              pointer: `{} as {}`",
1096             self.tcx.def_path_str_with_substs(did, substs),
1097             sig
1098         ));
1099     }
1100
1101     pub(in super::super) fn could_remove_semicolon(
1102         &self,
1103         blk: &'tcx hir::Block<'tcx>,
1104         expected_ty: Ty<'tcx>,
1105     ) -> Option<(Span, StatementAsExpression)> {
1106         // Be helpful when the user wrote `{... expr;}` and
1107         // taking the `;` off is enough to fix the error.
1108         let last_stmt = blk.stmts.last()?;
1109         let last_expr = match last_stmt.kind {
1110             hir::StmtKind::Semi(ref e) => e,
1111             _ => return None,
1112         };
1113         let last_expr_ty = self.node_ty(last_expr.hir_id);
1114         let needs_box = match (last_expr_ty.kind(), expected_ty.kind()) {
1115             (ty::Opaque(last_def_id, _), ty::Opaque(exp_def_id, _))
1116                 if last_def_id == exp_def_id =>
1117             {
1118                 StatementAsExpression::CorrectType
1119             }
1120             (ty::Opaque(last_def_id, last_bounds), ty::Opaque(exp_def_id, exp_bounds)) => {
1121                 debug!(
1122                     "both opaque, likely future {:?} {:?} {:?} {:?}",
1123                     last_def_id, last_bounds, exp_def_id, exp_bounds
1124                 );
1125
1126                 let (last_local_id, exp_local_id) =
1127                     match (last_def_id.as_local(), exp_def_id.as_local()) {
1128                         (Some(last_hir_id), Some(exp_hir_id)) => (last_hir_id, exp_hir_id),
1129                         (_, _) => return None,
1130                     };
1131
1132                 let last_hir_id = self.tcx.hir().local_def_id_to_hir_id(last_local_id);
1133                 let exp_hir_id = self.tcx.hir().local_def_id_to_hir_id(exp_local_id);
1134
1135                 match (
1136                     &self.tcx.hir().expect_item(last_hir_id).kind,
1137                     &self.tcx.hir().expect_item(exp_hir_id).kind,
1138                 ) {
1139                     (
1140                         hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds: last_bounds, .. }),
1141                         hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds: exp_bounds, .. }),
1142                     ) if iter::zip(*last_bounds, *exp_bounds).all(|(left, right)| {
1143                         match (left, right) {
1144                             (
1145                                 hir::GenericBound::Trait(tl, ml),
1146                                 hir::GenericBound::Trait(tr, mr),
1147                             ) if tl.trait_ref.trait_def_id() == tr.trait_ref.trait_def_id()
1148                                 && ml == mr =>
1149                             {
1150                                 true
1151                             }
1152                             (
1153                                 hir::GenericBound::LangItemTrait(langl, _, _, argsl),
1154                                 hir::GenericBound::LangItemTrait(langr, _, _, argsr),
1155                             ) if langl == langr => {
1156                                 // FIXME: consider the bounds!
1157                                 debug!("{:?} {:?}", argsl, argsr);
1158                                 true
1159                             }
1160                             _ => false,
1161                         }
1162                     }) =>
1163                     {
1164                         StatementAsExpression::NeedsBoxing
1165                     }
1166                     _ => StatementAsExpression::CorrectType,
1167                 }
1168             }
1169             _ => StatementAsExpression::CorrectType,
1170         };
1171         if (matches!(last_expr_ty.kind(), ty::Error(_))
1172             || self.can_sub(self.param_env, last_expr_ty, expected_ty).is_err())
1173             && matches!(needs_box, StatementAsExpression::CorrectType)
1174         {
1175             return None;
1176         }
1177         let span = if last_stmt.span.from_expansion() {
1178             let mac_call = original_sp(last_stmt.span, blk.span);
1179             self.tcx.sess.source_map().mac_call_stmt_semi_span(mac_call)?
1180         } else {
1181             last_stmt.span.with_lo(last_stmt.span.hi() - BytePos(1))
1182         };
1183         Some((span, needs_box))
1184     }
1185
1186     // Instantiates the given path, which must refer to an item with the given
1187     // number of type parameters and type.
1188     #[instrument(skip(self, span), level = "debug")]
1189     pub fn instantiate_value_path(
1190         &self,
1191         segments: &[hir::PathSegment<'_>],
1192         self_ty: Option<Ty<'tcx>>,
1193         res: Res,
1194         span: Span,
1195         hir_id: hir::HirId,
1196     ) -> (Ty<'tcx>, Res) {
1197         let tcx = self.tcx;
1198
1199         let path_segs = match res {
1200             Res::Local(_) | Res::SelfCtor(_) => vec![],
1201             Res::Def(kind, def_id) => <dyn AstConv<'_>>::def_ids_for_value_path_segments(
1202                 self, segments, self_ty, kind, def_id,
1203             ),
1204             _ => bug!("instantiate_value_path on {:?}", res),
1205         };
1206
1207         let mut user_self_ty = None;
1208         let mut is_alias_variant_ctor = false;
1209         match res {
1210             Res::Def(DefKind::Ctor(CtorOf::Variant, _), _)
1211                 if let Some(self_ty) = self_ty =>
1212             {
1213                 let adt_def = self_ty.ty_adt_def().unwrap();
1214                 user_self_ty = Some(UserSelfTy { impl_def_id: adt_def.did, self_ty });
1215                 is_alias_variant_ctor = true;
1216             }
1217             Res::Def(DefKind::AssocFn | DefKind::AssocConst, def_id) => {
1218                 let container = tcx.associated_item(def_id).container;
1219                 debug!(?def_id, ?container);
1220                 match container {
1221                     ty::TraitContainer(trait_did) => {
1222                         callee::check_legal_trait_for_method_call(tcx, span, None, span, trait_did)
1223                     }
1224                     ty::ImplContainer(impl_def_id) => {
1225                         if segments.len() == 1 {
1226                             // `<T>::assoc` will end up here, and so
1227                             // can `T::assoc`. It this came from an
1228                             // inherent impl, we need to record the
1229                             // `T` for posterity (see `UserSelfTy` for
1230                             // details).
1231                             let self_ty = self_ty.expect("UFCS sugared assoc missing Self");
1232                             user_self_ty = Some(UserSelfTy { impl_def_id, self_ty });
1233                         }
1234                     }
1235                 }
1236             }
1237             _ => {}
1238         }
1239
1240         // Now that we have categorized what space the parameters for each
1241         // segment belong to, let's sort out the parameters that the user
1242         // provided (if any) into their appropriate spaces. We'll also report
1243         // errors if type parameters are provided in an inappropriate place.
1244
1245         let generic_segs: FxHashSet<_> = path_segs.iter().map(|PathSeg(_, index)| index).collect();
1246         let generics_has_err = <dyn AstConv<'_>>::prohibit_generics(
1247             self,
1248             segments.iter().enumerate().filter_map(|(index, seg)| {
1249                 if !generic_segs.contains(&index) || is_alias_variant_ctor {
1250                     Some(seg)
1251                 } else {
1252                     None
1253                 }
1254             }),
1255         );
1256
1257         if let Res::Local(hid) = res {
1258             let ty = self.local_ty(span, hid).decl_ty;
1259             let ty = self.normalize_associated_types_in(span, ty);
1260             self.write_ty(hir_id, ty);
1261             return (ty, res);
1262         }
1263
1264         if generics_has_err {
1265             // Don't try to infer type parameters when prohibited generic arguments were given.
1266             user_self_ty = None;
1267         }
1268
1269         // Now we have to compare the types that the user *actually*
1270         // provided against the types that were *expected*. If the user
1271         // did not provide any types, then we want to substitute inference
1272         // variables. If the user provided some types, we may still need
1273         // to add defaults. If the user provided *too many* types, that's
1274         // a problem.
1275
1276         let mut infer_args_for_err = FxHashSet::default();
1277
1278         let mut explicit_late_bound = ExplicitLateBound::No;
1279         for &PathSeg(def_id, index) in &path_segs {
1280             let seg = &segments[index];
1281             let generics = tcx.generics_of(def_id);
1282
1283             // Argument-position `impl Trait` is treated as a normal generic
1284             // parameter internally, but we don't allow users to specify the
1285             // parameter's value explicitly, so we have to do some error-
1286             // checking here.
1287             let arg_count = <dyn AstConv<'_>>::check_generic_arg_count_for_call(
1288                 tcx,
1289                 span,
1290                 def_id,
1291                 &generics,
1292                 seg,
1293                 IsMethodCall::No,
1294             );
1295
1296             if let ExplicitLateBound::Yes = arg_count.explicit_late_bound {
1297                 explicit_late_bound = ExplicitLateBound::Yes;
1298             }
1299
1300             if let Err(GenericArgCountMismatch { reported: Some(_), .. }) = arg_count.correct {
1301                 infer_args_for_err.insert(index);
1302                 self.set_tainted_by_errors(); // See issue #53251.
1303             }
1304         }
1305
1306         let has_self = path_segs
1307             .last()
1308             .map(|PathSeg(def_id, _)| tcx.generics_of(*def_id).has_self)
1309             .unwrap_or(false);
1310
1311         let (res, self_ctor_substs) = if let Res::SelfCtor(impl_def_id) = res {
1312             let ty = self.normalize_ty(span, tcx.at(span).type_of(impl_def_id));
1313             match *ty.kind() {
1314                 ty::Adt(adt_def, substs) if adt_def.has_ctor() => {
1315                     let variant = adt_def.non_enum_variant();
1316                     let ctor_def_id = variant.ctor_def_id.unwrap();
1317                     (
1318                         Res::Def(DefKind::Ctor(CtorOf::Struct, variant.ctor_kind), ctor_def_id),
1319                         Some(substs),
1320                     )
1321                 }
1322                 _ => {
1323                     let mut err = tcx.sess.struct_span_err(
1324                         span,
1325                         "the `Self` constructor can only be used with tuple or unit structs",
1326                     );
1327                     if let Some(adt_def) = ty.ty_adt_def() {
1328                         match adt_def.adt_kind() {
1329                             AdtKind::Enum => {
1330                                 err.help("did you mean to use one of the enum's variants?");
1331                             }
1332                             AdtKind::Struct | AdtKind::Union => {
1333                                 err.span_suggestion(
1334                                     span,
1335                                     "use curly brackets",
1336                                     String::from("Self { /* fields */ }"),
1337                                     Applicability::HasPlaceholders,
1338                                 );
1339                             }
1340                         }
1341                     }
1342                     err.emit();
1343
1344                     return (tcx.ty_error(), res);
1345                 }
1346             }
1347         } else {
1348             (res, None)
1349         };
1350         let def_id = res.def_id();
1351
1352         // The things we are substituting into the type should not contain
1353         // escaping late-bound regions, and nor should the base type scheme.
1354         let ty = tcx.type_of(def_id);
1355
1356         let arg_count = GenericArgCountResult {
1357             explicit_late_bound,
1358             correct: if infer_args_for_err.is_empty() {
1359                 Ok(())
1360             } else {
1361                 Err(GenericArgCountMismatch::default())
1362             },
1363         };
1364
1365         struct CreateCtorSubstsContext<'a, 'tcx> {
1366             fcx: &'a FnCtxt<'a, 'tcx>,
1367             span: Span,
1368             path_segs: &'a [PathSeg],
1369             infer_args_for_err: &'a FxHashSet<usize>,
1370             segments: &'a [hir::PathSegment<'a>],
1371         }
1372         impl<'tcx, 'a> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for CreateCtorSubstsContext<'a, 'tcx> {
1373             fn args_for_def_id(
1374                 &mut self,
1375                 def_id: DefId,
1376             ) -> (Option<&'a hir::GenericArgs<'a>>, bool) {
1377                 if let Some(&PathSeg(_, index)) =
1378                     self.path_segs.iter().find(|&PathSeg(did, _)| *did == def_id)
1379                 {
1380                     // If we've encountered an `impl Trait`-related error, we're just
1381                     // going to infer the arguments for better error messages.
1382                     if !self.infer_args_for_err.contains(&index) {
1383                         // Check whether the user has provided generic arguments.
1384                         if let Some(ref data) = self.segments[index].args {
1385                             return (Some(data), self.segments[index].infer_args);
1386                         }
1387                     }
1388                     return (None, self.segments[index].infer_args);
1389                 }
1390
1391                 (None, true)
1392             }
1393
1394             fn provided_kind(
1395                 &mut self,
1396                 param: &ty::GenericParamDef,
1397                 arg: &GenericArg<'_>,
1398             ) -> subst::GenericArg<'tcx> {
1399                 match (&param.kind, arg) {
1400                     (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
1401                         <dyn AstConv<'_>>::ast_region_to_region(self.fcx, lt, Some(param)).into()
1402                     }
1403                     (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => {
1404                         self.fcx.to_ty(ty).into()
1405                     }
1406                     (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
1407                         self.fcx.const_arg_to_const(&ct.value, param.def_id).into()
1408                     }
1409                     (GenericParamDefKind::Type { .. }, GenericArg::Infer(inf)) => {
1410                         self.fcx.ty_infer(Some(param), inf.span).into()
1411                     }
1412                     (GenericParamDefKind::Const { .. }, GenericArg::Infer(inf)) => {
1413                         let tcx = self.fcx.tcx();
1414                         self.fcx.ct_infer(tcx.type_of(param.def_id), Some(param), inf.span).into()
1415                     }
1416                     _ => unreachable!(),
1417                 }
1418             }
1419
1420             fn inferred_kind(
1421                 &mut self,
1422                 substs: Option<&[subst::GenericArg<'tcx>]>,
1423                 param: &ty::GenericParamDef,
1424                 infer_args: bool,
1425             ) -> subst::GenericArg<'tcx> {
1426                 let tcx = self.fcx.tcx();
1427                 match param.kind {
1428                     GenericParamDefKind::Lifetime => {
1429                         self.fcx.re_infer(Some(param), self.span).unwrap().into()
1430                     }
1431                     GenericParamDefKind::Type { has_default, .. } => {
1432                         if !infer_args && has_default {
1433                             // If we have a default, then we it doesn't matter that we're not
1434                             // inferring the type arguments: we provide the default where any
1435                             // is missing.
1436                             let default = tcx.type_of(param.def_id);
1437                             self.fcx
1438                                 .normalize_ty(
1439                                     self.span,
1440                                     default.subst_spanned(tcx, substs.unwrap(), Some(self.span)),
1441                                 )
1442                                 .into()
1443                         } else {
1444                             // If no type arguments were provided, we have to infer them.
1445                             // This case also occurs as a result of some malformed input, e.g.
1446                             // a lifetime argument being given instead of a type parameter.
1447                             // Using inference instead of `Error` gives better error messages.
1448                             self.fcx.var_for_def(self.span, param)
1449                         }
1450                     }
1451                     GenericParamDefKind::Const { has_default, .. } => {
1452                         if !infer_args && has_default {
1453                             tcx.const_param_default(param.def_id)
1454                                 .subst_spanned(tcx, substs.unwrap(), Some(self.span))
1455                                 .into()
1456                         } else {
1457                             self.fcx.var_for_def(self.span, param)
1458                         }
1459                     }
1460                 }
1461             }
1462         }
1463
1464         let substs = self_ctor_substs.unwrap_or_else(|| {
1465             <dyn AstConv<'_>>::create_substs_for_generic_args(
1466                 tcx,
1467                 def_id,
1468                 &[][..],
1469                 has_self,
1470                 self_ty,
1471                 &arg_count,
1472                 &mut CreateCtorSubstsContext {
1473                     fcx: self,
1474                     span,
1475                     path_segs: &path_segs,
1476                     infer_args_for_err: &infer_args_for_err,
1477                     segments,
1478                 },
1479             )
1480         });
1481         assert!(!substs.has_escaping_bound_vars());
1482         assert!(!ty.has_escaping_bound_vars());
1483
1484         // First, store the "user substs" for later.
1485         self.write_user_type_annotation_from_substs(hir_id, def_id, substs, user_self_ty);
1486
1487         self.add_required_obligations(span, def_id, &substs);
1488
1489         // Substitute the values for the type parameters into the type of
1490         // the referenced item.
1491         let ty_substituted = self.instantiate_type_scheme(span, &substs, ty);
1492
1493         if let Some(UserSelfTy { impl_def_id, self_ty }) = user_self_ty {
1494             // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
1495             // is inherent, there is no `Self` parameter; instead, the impl needs
1496             // type parameters, which we can infer by unifying the provided `Self`
1497             // with the substituted impl type.
1498             // This also occurs for an enum variant on a type alias.
1499             let ty = tcx.type_of(impl_def_id);
1500
1501             let impl_ty = self.instantiate_type_scheme(span, &substs, ty);
1502             match self.at(&self.misc(span), self.param_env).eq(impl_ty, self_ty) {
1503                 Ok(ok) => self.register_infer_ok_obligations(ok),
1504                 Err(_) => {
1505                     self.tcx.sess.delay_span_bug(
1506                         span,
1507                         &format!(
1508                         "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?",
1509                         self_ty,
1510                         impl_ty,
1511                     ),
1512                     );
1513                 }
1514             }
1515         }
1516
1517         debug!("instantiate_value_path: type of {:?} is {:?}", hir_id, ty_substituted);
1518         self.write_substs(hir_id, substs);
1519
1520         (ty_substituted, res)
1521     }
1522
1523     /// Add all the obligations that are required, substituting and normalized appropriately.
1524     #[tracing::instrument(level = "debug", skip(self, span, def_id, substs))]
1525     fn add_required_obligations(&self, span: Span, def_id: DefId, substs: &SubstsRef<'tcx>) {
1526         let (bounds, spans) = self.instantiate_bounds(span, def_id, &substs);
1527
1528         for (i, mut obligation) in traits::predicates_for_generics(
1529             traits::ObligationCause::new(span, self.body_id, traits::ItemObligation(def_id)),
1530             self.param_env,
1531             bounds,
1532         )
1533         .enumerate()
1534         {
1535             // This makes the error point at the bound, but we want to point at the argument
1536             if let Some(span) = spans.get(i) {
1537                 obligation.cause.make_mut().code = traits::BindingObligation(def_id, *span);
1538             }
1539             self.register_predicate(obligation);
1540         }
1541     }
1542
1543     /// Resolves `typ` by a single level if `typ` is a type variable.
1544     /// If no resolution is possible, then an error is reported.
1545     /// Numeric inference variables may be left unresolved.
1546     pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
1547         let ty = self.resolve_vars_with_obligations(ty);
1548         if !ty.is_ty_var() {
1549             ty
1550         } else {
1551             if !self.is_tainted_by_errors() {
1552                 self.emit_inference_failure_err((**self).body_id, sp, ty.into(), vec![], E0282)
1553                     .note("type must be known at this point")
1554                     .emit();
1555             }
1556             let err = self.tcx.ty_error();
1557             self.demand_suptype(sp, err, ty);
1558             err
1559         }
1560     }
1561
1562     pub(in super::super) fn with_breakable_ctxt<F: FnOnce() -> R, R>(
1563         &self,
1564         id: hir::HirId,
1565         ctxt: BreakableCtxt<'tcx>,
1566         f: F,
1567     ) -> (BreakableCtxt<'tcx>, R) {
1568         let index;
1569         {
1570             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
1571             index = enclosing_breakables.stack.len();
1572             enclosing_breakables.by_id.insert(id, index);
1573             enclosing_breakables.stack.push(ctxt);
1574         }
1575         let result = f();
1576         let ctxt = {
1577             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
1578             debug_assert!(enclosing_breakables.stack.len() == index + 1);
1579             enclosing_breakables.by_id.remove(&id).expect("missing breakable context");
1580             enclosing_breakables.stack.pop().expect("missing breakable context")
1581         };
1582         (ctxt, result)
1583     }
1584
1585     /// Instantiate a QueryResponse in a probe context, without a
1586     /// good ObligationCause.
1587     pub(in super::super) fn probe_instantiate_query_response(
1588         &self,
1589         span: Span,
1590         original_values: &OriginalQueryValues<'tcx>,
1591         query_result: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>,
1592     ) -> InferResult<'tcx, Ty<'tcx>> {
1593         self.instantiate_query_response_and_region_obligations(
1594             &traits::ObligationCause::misc(span, self.body_id),
1595             self.param_env,
1596             original_values,
1597             query_result,
1598         )
1599     }
1600
1601     /// Returns `true` if an expression is contained inside the LHS of an assignment expression.
1602     pub(in super::super) fn expr_in_place(&self, mut expr_id: hir::HirId) -> bool {
1603         let mut contained_in_place = false;
1604
1605         while let hir::Node::Expr(parent_expr) =
1606             self.tcx.hir().get(self.tcx.hir().get_parent_node(expr_id))
1607         {
1608             match &parent_expr.kind {
1609                 hir::ExprKind::Assign(lhs, ..) | hir::ExprKind::AssignOp(_, lhs, ..) => {
1610                     if lhs.hir_id == expr_id {
1611                         contained_in_place = true;
1612                         break;
1613                     }
1614                 }
1615                 _ => (),
1616             }
1617             expr_id = parent_expr.hir_id;
1618         }
1619
1620         contained_in_place
1621     }
1622 }