]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs
Rollup merge of #93613 - crlf0710:rename_to_async_iter, r=yaahc
[rust.git] / compiler / rustc_typeck / src / check / fn_ctxt / _impl.rs
1 use crate::astconv::{
2     AstConv, CreateSubstsForGenericArgsCtxt, ExplicitLateBound, GenericArgCountMismatch,
3     GenericArgCountResult, IsMethodCall, PathSeg,
4 };
5 use crate::check::callee::{self, DeferredCallResolution};
6 use crate::check::method::{self, MethodCallee, SelfSource};
7 use crate::check::{BreakableCtxt, Diverges, Expectation, FnCtxt, LocalTy};
8
9 use rustc_data_structures::captures::Captures;
10 use rustc_data_structures::fx::FxHashSet;
11 use rustc_errors::{Applicability, DiagnosticBuilder, ErrorReported};
12 use rustc_hir as hir;
13 use rustc_hir::def::{CtorOf, DefKind, Res};
14 use rustc_hir::def_id::DefId;
15 use rustc_hir::lang_items::LangItem;
16 use rustc_hir::{ExprKind, GenericArg, Node, QPath};
17 use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse};
18 use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282;
19 use rustc_infer::infer::{InferOk, InferResult};
20 use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability};
21 use rustc_middle::ty::fold::TypeFoldable;
22 use rustc_middle::ty::subst::{
23     self, GenericArgKind, InternalSubsts, Subst, SubstsRef, UserSelfTy, UserSubsts,
24 };
25 use rustc_middle::ty::{
26     self, AdtKind, CanonicalUserType, DefIdTree, GenericParamDefKind, ToPolyTraitRef, ToPredicate,
27     Ty, UserType,
28 };
29 use rustc_session::lint;
30 use rustc_span::hygiene::DesugaringKind;
31 use rustc_span::source_map::{original_sp, DUMMY_SP};
32 use rustc_span::symbol::{kw, sym, Ident};
33 use rustc_span::{self, BytePos, MultiSpan, Span};
34 use rustc_trait_selection::infer::InferCtxtExt as _;
35 use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
36 use rustc_trait_selection::traits::{
37     self, ObligationCause, ObligationCauseCode, StatementAsExpression, TraitEngine, TraitEngineExt,
38     WellFormedLoc,
39 };
40
41 use std::collections::hash_map::Entry;
42 use std::iter;
43 use std::slice;
44
45 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
46     /// Produces warning on the given node, if the current point in the
47     /// function is unreachable, and there hasn't been another warning.
48     pub(in super::super) fn warn_if_unreachable(&self, id: hir::HirId, span: Span, kind: &str) {
49         // FIXME: Combine these two 'if' expressions into one once
50         // let chains are implemented
51         if let Diverges::Always { span: orig_span, custom_note } = self.diverges.get() {
52             // If span arose from a desugaring of `if` or `while`, then it is the condition itself,
53             // which diverges, that we are about to lint on. This gives suboptimal diagnostics.
54             // Instead, stop here so that the `if`- or `while`-expression's block is linted instead.
55             if !span.is_desugaring(DesugaringKind::CondTemporary)
56                 && !span.is_desugaring(DesugaringKind::Async)
57                 && !orig_span.is_desugaring(DesugaringKind::Await)
58             {
59                 self.diverges.set(Diverges::WarnedAlways);
60
61                 debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
62
63                 self.tcx().struct_span_lint_hir(lint::builtin::UNREACHABLE_CODE, id, span, |lint| {
64                     let msg = format!("unreachable {}", kind);
65                     lint.build(&msg)
66                         .span_label(span, &msg)
67                         .span_label(
68                             orig_span,
69                             custom_note
70                                 .unwrap_or("any code following this expression is unreachable"),
71                         )
72                         .emit();
73                 })
74             }
75         }
76     }
77
78     /// Resolves type and const variables in `ty` if possible. Unlike the infcx
79     /// version (resolve_vars_if_possible), this version will
80     /// also select obligations if it seems useful, in an effort
81     /// to get more type information.
82     pub(in super::super) fn resolve_vars_with_obligations(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
83         self.resolve_vars_with_obligations_and_mutate_fulfillment(ty, |_| {})
84     }
85
86     #[instrument(skip(self, mutate_fulfillment_errors), level = "debug")]
87     pub(in super::super) fn resolve_vars_with_obligations_and_mutate_fulfillment(
88         &self,
89         mut ty: Ty<'tcx>,
90         mutate_fulfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>),
91     ) -> Ty<'tcx> {
92         // No Infer()? Nothing needs doing.
93         if !ty.has_infer_types_or_consts() {
94             debug!("no inference var, nothing needs doing");
95             return ty;
96         }
97
98         // If `ty` is a type variable, see whether we already know what it is.
99         ty = self.resolve_vars_if_possible(ty);
100         if !ty.has_infer_types_or_consts() {
101             debug!(?ty);
102             return ty;
103         }
104
105         // If not, try resolving pending obligations as much as
106         // possible. This can help substantially when there are
107         // indirect dependencies that don't seem worth tracking
108         // precisely.
109         self.select_obligations_where_possible(false, mutate_fulfillment_errors);
110         ty = self.resolve_vars_if_possible(ty);
111
112         debug!(?ty);
113         ty
114     }
115
116     pub(in super::super) fn record_deferred_call_resolution(
117         &self,
118         closure_def_id: DefId,
119         r: DeferredCallResolution<'tcx>,
120     ) {
121         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
122         deferred_call_resolutions.entry(closure_def_id).or_default().push(r);
123     }
124
125     pub(in super::super) fn remove_deferred_call_resolutions(
126         &self,
127         closure_def_id: DefId,
128     ) -> Vec<DeferredCallResolution<'tcx>> {
129         let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
130         deferred_call_resolutions.remove(&closure_def_id).unwrap_or_default()
131     }
132
133     pub fn tag(&self) -> String {
134         format!("{:p}", self)
135     }
136
137     pub fn local_ty(&self, span: Span, nid: hir::HirId) -> LocalTy<'tcx> {
138         self.locals.borrow().get(&nid).cloned().unwrap_or_else(|| {
139             span_bug!(span, "no type for local variable {}", self.tcx.hir().node_to_string(nid))
140         })
141     }
142
143     #[inline]
144     pub fn write_ty(&self, id: hir::HirId, ty: Ty<'tcx>) {
145         debug!("write_ty({:?}, {:?}) in fcx {}", id, self.resolve_vars_if_possible(ty), self.tag());
146         self.typeck_results.borrow_mut().node_types_mut().insert(id, ty);
147
148         if ty.references_error() {
149             self.has_errors.set(true);
150             self.set_tainted_by_errors();
151         }
152     }
153
154     pub fn write_field_index(&self, hir_id: hir::HirId, index: usize) {
155         self.typeck_results.borrow_mut().field_indices_mut().insert(hir_id, index);
156     }
157
158     pub(in super::super) fn write_resolution(
159         &self,
160         hir_id: hir::HirId,
161         r: Result<(DefKind, DefId), ErrorReported>,
162     ) {
163         self.typeck_results.borrow_mut().type_dependent_defs_mut().insert(hir_id, r);
164     }
165
166     pub fn write_method_call(&self, hir_id: hir::HirId, method: MethodCallee<'tcx>) {
167         debug!("write_method_call(hir_id={:?}, method={:?})", hir_id, method);
168         self.write_resolution(hir_id, Ok((DefKind::AssocFn, method.def_id)));
169         self.write_substs(hir_id, method.substs);
170
171         // When the method is confirmed, the `method.substs` includes
172         // parameters from not just the method, but also the impl of
173         // the method -- in particular, the `Self` type will be fully
174         // resolved. However, those are not something that the "user
175         // specified" -- i.e., those types come from the inferred type
176         // of the receiver, not something the user wrote. So when we
177         // create the user-substs, we want to replace those earlier
178         // types with just the types that the user actually wrote --
179         // that is, those that appear on the *method itself*.
180         //
181         // As an example, if the user wrote something like
182         // `foo.bar::<u32>(...)` -- the `Self` type here will be the
183         // type of `foo` (possibly adjusted), but we don't want to
184         // include that. We want just the `[_, u32]` part.
185         if !method.substs.is_empty() {
186             let method_generics = self.tcx.generics_of(method.def_id);
187             if !method_generics.params.is_empty() {
188                 let user_type_annotation = self.infcx.probe(|_| {
189                     let user_substs = UserSubsts {
190                         substs: InternalSubsts::for_item(self.tcx, method.def_id, |param, _| {
191                             let i = param.index as usize;
192                             if i < method_generics.parent_count {
193                                 self.infcx.var_for_def(DUMMY_SP, param)
194                             } else {
195                                 method.substs[i]
196                             }
197                         }),
198                         user_self_ty: None, // not relevant here
199                     };
200
201                     self.infcx.canonicalize_user_type_annotation(UserType::TypeOf(
202                         method.def_id,
203                         user_substs,
204                     ))
205                 });
206
207                 debug!("write_method_call: user_type_annotation={:?}", user_type_annotation);
208                 self.write_user_type_annotation(hir_id, user_type_annotation);
209             }
210         }
211     }
212
213     pub fn write_substs(&self, node_id: hir::HirId, substs: SubstsRef<'tcx>) {
214         if !substs.is_empty() {
215             debug!("write_substs({:?}, {:?}) in fcx {}", node_id, substs, self.tag());
216
217             self.typeck_results.borrow_mut().node_substs_mut().insert(node_id, substs);
218         }
219     }
220
221     /// Given the substs that we just converted from the HIR, try to
222     /// canonicalize them and store them as user-given substitutions
223     /// (i.e., substitutions that must be respected by the NLL check).
224     ///
225     /// This should be invoked **before any unifications have
226     /// occurred**, so that annotations like `Vec<_>` are preserved
227     /// properly.
228     #[instrument(skip(self), level = "debug")]
229     pub fn write_user_type_annotation_from_substs(
230         &self,
231         hir_id: hir::HirId,
232         def_id: DefId,
233         substs: SubstsRef<'tcx>,
234         user_self_ty: Option<UserSelfTy<'tcx>>,
235     ) {
236         debug!("fcx {}", self.tag());
237
238         if Self::can_contain_user_lifetime_bounds((substs, user_self_ty)) {
239             let canonicalized = self.infcx.canonicalize_user_type_annotation(UserType::TypeOf(
240                 def_id,
241                 UserSubsts { substs, user_self_ty },
242             ));
243             debug!(?canonicalized);
244             self.write_user_type_annotation(hir_id, canonicalized);
245         }
246     }
247
248     #[instrument(skip(self), level = "debug")]
249     pub fn write_user_type_annotation(
250         &self,
251         hir_id: hir::HirId,
252         canonical_user_type_annotation: CanonicalUserType<'tcx>,
253     ) {
254         debug!("fcx {}", self.tag());
255
256         if !canonical_user_type_annotation.is_identity() {
257             self.typeck_results
258                 .borrow_mut()
259                 .user_provided_types_mut()
260                 .insert(hir_id, canonical_user_type_annotation);
261         } else {
262             debug!("skipping identity substs");
263         }
264     }
265
266     #[instrument(skip(self, expr), level = "debug")]
267     pub fn apply_adjustments(&self, expr: &hir::Expr<'_>, adj: Vec<Adjustment<'tcx>>) {
268         debug!("expr = {:#?}", expr);
269
270         if adj.is_empty() {
271             return;
272         }
273
274         for a in &adj {
275             if let Adjust::NeverToAny = a.kind {
276                 if a.target.is_ty_var() {
277                     self.diverging_type_vars.borrow_mut().insert(a.target);
278                     debug!("apply_adjustments: adding `{:?}` as diverging type var", a.target);
279                 }
280             }
281         }
282
283         let autoborrow_mut = adj.iter().any(|adj| {
284             matches!(
285                 adj,
286                 &Adjustment {
287                     kind: Adjust::Borrow(AutoBorrow::Ref(_, AutoBorrowMutability::Mut { .. })),
288                     ..
289                 }
290             )
291         });
292
293         match self.typeck_results.borrow_mut().adjustments_mut().entry(expr.hir_id) {
294             Entry::Vacant(entry) => {
295                 entry.insert(adj);
296             }
297             Entry::Occupied(mut entry) => {
298                 debug!(" - composing on top of {:?}", entry.get());
299                 match (&entry.get()[..], &adj[..]) {
300                     // Applying any adjustment on top of a NeverToAny
301                     // is a valid NeverToAny adjustment, because it can't
302                     // be reached.
303                     (&[Adjustment { kind: Adjust::NeverToAny, .. }], _) => return,
304                     (
305                         &[
306                             Adjustment { kind: Adjust::Deref(_), .. },
307                             Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. },
308                         ],
309                         &[
310                             Adjustment { kind: Adjust::Deref(_), .. },
311                             .., // Any following adjustments are allowed.
312                         ],
313                     ) => {
314                         // A reborrow has no effect before a dereference.
315                     }
316                     // FIXME: currently we never try to compose autoderefs
317                     // and ReifyFnPointer/UnsafeFnPointer, but we could.
318                     _ => bug!(
319                         "while adjusting {:?}, can't compose {:?} and {:?}",
320                         expr,
321                         entry.get(),
322                         adj
323                     ),
324                 };
325                 *entry.get_mut() = adj;
326             }
327         }
328
329         // If there is an mutable auto-borrow, it is equivalent to `&mut <expr>`.
330         // In this case implicit use of `Deref` and `Index` within `<expr>` should
331         // instead be `DerefMut` and `IndexMut`, so fix those up.
332         if autoborrow_mut {
333             self.convert_place_derefs_to_mutable(expr);
334         }
335     }
336
337     /// Basically whenever we are converting from a type scheme into
338     /// the fn body space, we always want to normalize associated
339     /// types as well. This function combines the two.
340     fn instantiate_type_scheme<T>(&self, span: Span, substs: SubstsRef<'tcx>, value: T) -> T
341     where
342         T: TypeFoldable<'tcx>,
343     {
344         debug!("instantiate_type_scheme(value={:?}, substs={:?})", value, substs);
345         let value = value.subst(self.tcx, substs);
346         let result = self.normalize_associated_types_in(span, value);
347         debug!("instantiate_type_scheme = {:?}", result);
348         result
349     }
350
351     /// As `instantiate_type_scheme`, but for the bounds found in a
352     /// generic type scheme.
353     pub(in super::super) fn instantiate_bounds(
354         &self,
355         span: Span,
356         def_id: DefId,
357         substs: SubstsRef<'tcx>,
358     ) -> (ty::InstantiatedPredicates<'tcx>, Vec<Span>) {
359         let bounds = self.tcx.predicates_of(def_id);
360         let spans: Vec<Span> = bounds.predicates.iter().map(|(_, span)| *span).collect();
361         let result = bounds.instantiate(self.tcx, substs);
362         let result = self.normalize_associated_types_in(span, result);
363         debug!(
364             "instantiate_bounds(bounds={:?}, substs={:?}) = {:?}, {:?}",
365             bounds, substs, result, spans,
366         );
367         (result, spans)
368     }
369
370     /// Replaces the opaque types from the given value with type variables,
371     /// and records the `OpaqueTypeMap` for later use during writeback. See
372     /// `InferCtxt::instantiate_opaque_types` for more details.
373     #[instrument(skip(self, value_span), level = "debug")]
374     pub(in super::super) fn instantiate_opaque_types_from_value<T: TypeFoldable<'tcx>>(
375         &self,
376         value: T,
377         value_span: Span,
378     ) -> T {
379         self.register_infer_ok_obligations(self.instantiate_opaque_types(
380             self.body_id,
381             self.param_env,
382             value,
383             value_span,
384         ))
385     }
386
387     /// Convenience method which tracks extra diagnostic information for normalization
388     /// that occurs as a result of WF checking. The `hir_id` is the `HirId` of the hir item
389     /// whose type is being wf-checked - this is used to construct a more precise span if
390     /// an error occurs.
391     ///
392     /// It is never necessary to call this method - calling `normalize_associated_types_in` will
393     /// just result in a slightly worse diagnostic span, and will still be sound.
394     pub(in super::super) fn normalize_associated_types_in_wf<T>(
395         &self,
396         span: Span,
397         value: T,
398         loc: WellFormedLoc,
399     ) -> T
400     where
401         T: TypeFoldable<'tcx>,
402     {
403         self.inh.normalize_associated_types_in_with_cause(
404             ObligationCause::new(span, self.body_id, ObligationCauseCode::WellFormed(Some(loc))),
405             self.param_env,
406             value,
407         )
408     }
409
410     pub(in super::super) fn normalize_associated_types_in<T>(&self, span: Span, value: T) -> T
411     where
412         T: TypeFoldable<'tcx>,
413     {
414         self.inh.normalize_associated_types_in(span, self.body_id, self.param_env, value)
415     }
416
417     pub(in super::super) fn normalize_associated_types_in_as_infer_ok<T>(
418         &self,
419         span: Span,
420         value: T,
421     ) -> InferOk<'tcx, T>
422     where
423         T: TypeFoldable<'tcx>,
424     {
425         self.inh.partially_normalize_associated_types_in(
426             ObligationCause::misc(span, self.body_id),
427             self.param_env,
428             value,
429         )
430     }
431
432     pub fn require_type_meets(
433         &self,
434         ty: Ty<'tcx>,
435         span: Span,
436         code: traits::ObligationCauseCode<'tcx>,
437         def_id: DefId,
438     ) {
439         self.register_bound(ty, def_id, traits::ObligationCause::new(span, self.body_id, code));
440     }
441
442     pub fn require_type_is_sized(
443         &self,
444         ty: Ty<'tcx>,
445         span: Span,
446         code: traits::ObligationCauseCode<'tcx>,
447     ) {
448         if !ty.references_error() {
449             let lang_item = self.tcx.require_lang_item(LangItem::Sized, None);
450             self.require_type_meets(ty, span, code, lang_item);
451         }
452     }
453
454     pub fn require_type_is_sized_deferred(
455         &self,
456         ty: Ty<'tcx>,
457         span: Span,
458         code: traits::ObligationCauseCode<'tcx>,
459     ) {
460         if !ty.references_error() {
461             self.deferred_sized_obligations.borrow_mut().push((ty, span, code));
462         }
463     }
464
465     pub fn register_bound(
466         &self,
467         ty: Ty<'tcx>,
468         def_id: DefId,
469         cause: traits::ObligationCause<'tcx>,
470     ) {
471         if !ty.references_error() {
472             self.fulfillment_cx.borrow_mut().register_bound(
473                 self,
474                 self.param_env,
475                 ty,
476                 def_id,
477                 cause,
478             );
479         }
480     }
481
482     pub fn to_ty(&self, ast_t: &hir::Ty<'_>) -> Ty<'tcx> {
483         let t = <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_t);
484         self.register_wf_obligation(t.into(), ast_t.span, traits::MiscObligation);
485         t
486     }
487
488     pub fn to_ty_saving_user_provided_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
489         let ty = self.to_ty(ast_ty);
490         debug!("to_ty_saving_user_provided_ty: ty={:?}", ty);
491
492         if Self::can_contain_user_lifetime_bounds(ty) {
493             let c_ty = self.infcx.canonicalize_response(UserType::Ty(ty));
494             debug!("to_ty_saving_user_provided_ty: c_ty={:?}", c_ty);
495             self.typeck_results.borrow_mut().user_provided_types_mut().insert(ast_ty.hir_id, c_ty);
496         }
497
498         ty
499     }
500
501     pub fn array_length_to_const(&self, length: &hir::ArrayLen) -> ty::Const<'tcx> {
502         match length {
503             &hir::ArrayLen::Infer(_, span) => self.ct_infer(self.tcx.types.usize, None, span),
504             hir::ArrayLen::Body(anon_const) => self.to_const(anon_const),
505         }
506     }
507
508     pub fn to_const(&self, ast_c: &hir::AnonConst) -> ty::Const<'tcx> {
509         let const_def_id = self.tcx.hir().local_def_id(ast_c.hir_id);
510         let c = ty::Const::from_anon_const(self.tcx, const_def_id);
511         self.register_wf_obligation(
512             c.into(),
513             self.tcx.hir().span(ast_c.hir_id),
514             ObligationCauseCode::MiscObligation,
515         );
516         c
517     }
518
519     pub fn const_arg_to_const(
520         &self,
521         ast_c: &hir::AnonConst,
522         param_def_id: DefId,
523     ) -> ty::Const<'tcx> {
524         let const_def = ty::WithOptConstParam {
525             did: self.tcx.hir().local_def_id(ast_c.hir_id),
526             const_param_did: Some(param_def_id),
527         };
528         let c = ty::Const::from_opt_const_arg_anon_const(self.tcx, const_def);
529         self.register_wf_obligation(
530             c.into(),
531             self.tcx.hir().span(ast_c.hir_id),
532             ObligationCauseCode::MiscObligation,
533         );
534         c
535     }
536
537     // If the type given by the user has free regions, save it for later, since
538     // NLL would like to enforce those. Also pass in types that involve
539     // projections, since those can resolve to `'static` bounds (modulo #54940,
540     // which hopefully will be fixed by the time you see this comment, dear
541     // reader, although I have my doubts). Also pass in types with inference
542     // types, because they may be repeated. Other sorts of things are already
543     // sufficiently enforced with erased regions. =)
544     fn can_contain_user_lifetime_bounds<T>(t: T) -> bool
545     where
546         T: TypeFoldable<'tcx>,
547     {
548         t.has_free_regions() || t.has_projections() || t.has_infer_types()
549     }
550
551     pub fn node_ty(&self, id: hir::HirId) -> Ty<'tcx> {
552         match self.typeck_results.borrow().node_types().get(id) {
553             Some(&t) => t,
554             None if self.is_tainted_by_errors() => self.tcx.ty_error(),
555             None => {
556                 bug!(
557                     "no type for node {}: {} in fcx {}",
558                     id,
559                     self.tcx.hir().node_to_string(id),
560                     self.tag()
561                 );
562             }
563         }
564     }
565
566     pub fn node_ty_opt(&self, id: hir::HirId) -> Option<Ty<'tcx>> {
567         match self.typeck_results.borrow().node_types().get(id) {
568             Some(&t) => Some(t),
569             None if self.is_tainted_by_errors() => Some(self.tcx.ty_error()),
570             None => None,
571         }
572     }
573
574     /// Registers an obligation for checking later, during regionck, that `arg` is well-formed.
575     pub fn register_wf_obligation(
576         &self,
577         arg: subst::GenericArg<'tcx>,
578         span: Span,
579         code: traits::ObligationCauseCode<'tcx>,
580     ) {
581         // WF obligations never themselves fail, so no real need to give a detailed cause:
582         let cause = traits::ObligationCause::new(span, self.body_id, code);
583         self.register_predicate(traits::Obligation::new(
584             cause,
585             self.param_env,
586             ty::Binder::dummy(ty::PredicateKind::WellFormed(arg)).to_predicate(self.tcx),
587         ));
588     }
589
590     /// Registers obligations that all `substs` are well-formed.
591     pub fn add_wf_bounds(&self, substs: SubstsRef<'tcx>, expr: &hir::Expr<'_>) {
592         for arg in substs.iter().filter(|arg| {
593             matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
594         }) {
595             self.register_wf_obligation(arg, expr.span, traits::MiscObligation);
596         }
597     }
598
599     // FIXME(arielb1): use this instead of field.ty everywhere
600     // Only for fields! Returns <none> for methods>
601     // Indifferent to privacy flags
602     pub fn field_ty(
603         &self,
604         span: Span,
605         field: &'tcx ty::FieldDef,
606         substs: SubstsRef<'tcx>,
607     ) -> Ty<'tcx> {
608         self.normalize_associated_types_in(span, field.ty(self.tcx, substs))
609     }
610
611     pub(in super::super) fn resolve_generator_interiors(&self, def_id: DefId) {
612         let mut generators = self.deferred_generator_interiors.borrow_mut();
613         for (body_id, interior, kind) in generators.drain(..) {
614             self.select_obligations_where_possible(false, |_| {});
615             crate::check::generator_interior::resolve_interior(
616                 self, def_id, body_id, interior, kind,
617             );
618         }
619     }
620
621     #[instrument(skip(self), level = "debug")]
622     pub(in super::super) fn select_all_obligations_or_error(&self) {
623         let errors = self.fulfillment_cx.borrow_mut().select_all_or_error(&self);
624
625         if !errors.is_empty() {
626             self.report_fulfillment_errors(&errors, self.inh.body_id, false);
627         }
628     }
629
630     /// Select as many obligations as we can at present.
631     pub(in super::super) fn select_obligations_where_possible(
632         &self,
633         fallback_has_occurred: bool,
634         mutate_fulfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>),
635     ) {
636         let mut result = self.fulfillment_cx.borrow_mut().select_where_possible(self);
637         if !result.is_empty() {
638             mutate_fulfillment_errors(&mut result);
639             self.report_fulfillment_errors(&result, self.inh.body_id, fallback_has_occurred);
640         }
641     }
642
643     /// For the overloaded place expressions (`*x`, `x[3]`), the trait
644     /// returns a type of `&T`, but the actual type we assign to the
645     /// *expression* is `T`. So this function just peels off the return
646     /// type by one layer to yield `T`.
647     pub(in super::super) fn make_overloaded_place_return_type(
648         &self,
649         method: MethodCallee<'tcx>,
650     ) -> ty::TypeAndMut<'tcx> {
651         // extract method return type, which will be &T;
652         let ret_ty = method.sig.output();
653
654         // method returns &T, but the type as visible to user is T, so deref
655         ret_ty.builtin_deref(true).unwrap()
656     }
657
658     #[instrument(skip(self), level = "debug")]
659     fn self_type_matches_expected_vid(
660         &self,
661         trait_ref: ty::PolyTraitRef<'tcx>,
662         expected_vid: ty::TyVid,
663     ) -> bool {
664         let self_ty = self.shallow_resolve(trait_ref.skip_binder().self_ty());
665         debug!(?self_ty);
666
667         match *self_ty.kind() {
668             ty::Infer(ty::TyVar(found_vid)) => {
669                 // FIXME: consider using `sub_root_var` here so we
670                 // can see through subtyping.
671                 let found_vid = self.root_var(found_vid);
672                 debug!("self_type_matches_expected_vid - found_vid={:?}", found_vid);
673                 expected_vid == found_vid
674             }
675             _ => false,
676         }
677     }
678
679     #[instrument(skip(self), level = "debug")]
680     pub(in super::super) fn obligations_for_self_ty<'b>(
681         &'b self,
682         self_ty: ty::TyVid,
683     ) -> impl Iterator<Item = (ty::PolyTraitRef<'tcx>, traits::PredicateObligation<'tcx>)>
684     + Captures<'tcx>
685     + 'b {
686         // FIXME: consider using `sub_root_var` here so we
687         // can see through subtyping.
688         let ty_var_root = self.root_var(self_ty);
689         trace!("pending_obligations = {:#?}", self.fulfillment_cx.borrow().pending_obligations());
690
691         self.fulfillment_cx
692             .borrow()
693             .pending_obligations()
694             .into_iter()
695             .filter_map(move |obligation| {
696                 let bound_predicate = obligation.predicate.kind();
697                 match bound_predicate.skip_binder() {
698                     ty::PredicateKind::Projection(data) => Some((
699                         bound_predicate.rebind(data).required_poly_trait_ref(self.tcx),
700                         obligation,
701                     )),
702                     ty::PredicateKind::Trait(data) => {
703                         Some((bound_predicate.rebind(data).to_poly_trait_ref(), obligation))
704                     }
705                     ty::PredicateKind::Subtype(..) => None,
706                     ty::PredicateKind::Coerce(..) => None,
707                     ty::PredicateKind::RegionOutlives(..) => None,
708                     ty::PredicateKind::TypeOutlives(..) => None,
709                     ty::PredicateKind::WellFormed(..) => None,
710                     ty::PredicateKind::ObjectSafe(..) => None,
711                     ty::PredicateKind::ConstEvaluatable(..) => None,
712                     ty::PredicateKind::ConstEquate(..) => None,
713                     // N.B., this predicate is created by breaking down a
714                     // `ClosureType: FnFoo()` predicate, where
715                     // `ClosureType` represents some `Closure`. It can't
716                     // possibly be referring to the current closure,
717                     // because we haven't produced the `Closure` for
718                     // this closure yet; this is exactly why the other
719                     // code is looking for a self type of an unresolved
720                     // inference variable.
721                     ty::PredicateKind::ClosureKind(..) => None,
722                     ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
723                 }
724             })
725             .filter(move |(tr, _)| self.self_type_matches_expected_vid(*tr, ty_var_root))
726     }
727
728     pub(in super::super) fn type_var_is_sized(&self, self_ty: ty::TyVid) -> bool {
729         self.obligations_for_self_ty(self_ty)
730             .any(|(tr, _)| Some(tr.def_id()) == self.tcx.lang_items().sized_trait())
731     }
732
733     pub(in super::super) fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> {
734         vec![self.tcx.ty_error(); len]
735     }
736
737     /// Unifies the output type with the expected type early, for more coercions
738     /// and forward type information on the input expressions.
739     #[instrument(skip(self, call_span), level = "debug")]
740     pub(in super::super) fn expected_inputs_for_expected_output(
741         &self,
742         call_span: Span,
743         expected_ret: Expectation<'tcx>,
744         formal_ret: Ty<'tcx>,
745         formal_args: &[Ty<'tcx>],
746     ) -> Vec<Ty<'tcx>> {
747         let formal_ret = self.resolve_vars_with_obligations(formal_ret);
748         let ret_ty = match expected_ret.only_has_type(self) {
749             Some(ret) => ret,
750             None => return Vec::new(),
751         };
752         let expect_args = self
753             .fudge_inference_if_ok(|| {
754                 // Attempt to apply a subtyping relationship between the formal
755                 // return type (likely containing type variables if the function
756                 // is polymorphic) and the expected return type.
757                 // No argument expectations are produced if unification fails.
758                 let origin = self.misc(call_span);
759                 let ures = self.at(&origin, self.param_env).sup(ret_ty, formal_ret);
760
761                 // FIXME(#27336) can't use ? here, Try::from_error doesn't default
762                 // to identity so the resulting type is not constrained.
763                 match ures {
764                     Ok(ok) => {
765                         // Process any obligations locally as much as
766                         // we can.  We don't care if some things turn
767                         // out unconstrained or ambiguous, as we're
768                         // just trying to get hints here.
769                         let errors = self.save_and_restore_in_snapshot_flag(|_| {
770                             let mut fulfill = <dyn TraitEngine<'_>>::new(self.tcx);
771                             for obligation in ok.obligations {
772                                 fulfill.register_predicate_obligation(self, obligation);
773                             }
774                             fulfill.select_where_possible(self)
775                         });
776
777                         if !errors.is_empty() {
778                             return Err(());
779                         }
780                     }
781                     Err(_) => return Err(()),
782                 }
783
784                 // Record all the argument types, with the substitutions
785                 // produced from the above subtyping unification.
786                 Ok(formal_args.iter().map(|&ty| self.resolve_vars_if_possible(ty)).collect())
787             })
788             .unwrap_or_default();
789         debug!(?formal_args, ?formal_ret, ?expect_args, ?expected_ret);
790         expect_args
791     }
792
793     pub(in super::super) fn resolve_lang_item_path(
794         &self,
795         lang_item: hir::LangItem,
796         span: Span,
797         hir_id: hir::HirId,
798         expr_hir_id: Option<hir::HirId>,
799     ) -> (Res, Ty<'tcx>) {
800         let def_id = self.tcx.require_lang_item(lang_item, Some(span));
801         let def_kind = self.tcx.def_kind(def_id);
802
803         let item_ty = if let DefKind::Variant = def_kind {
804             self.tcx.type_of(self.tcx.parent(def_id).expect("variant w/out parent"))
805         } else {
806             self.tcx.type_of(def_id)
807         };
808         let substs = self.infcx.fresh_substs_for_item(span, def_id);
809         let ty = item_ty.subst(self.tcx, substs);
810
811         self.write_resolution(hir_id, Ok((def_kind, def_id)));
812         self.add_required_obligations_with_code(
813             span,
814             def_id,
815             &substs,
816             match lang_item {
817                 hir::LangItem::IntoFutureIntoFuture => {
818                     ObligationCauseCode::AwaitableExpr(expr_hir_id)
819                 }
820                 hir::LangItem::IteratorNext | hir::LangItem::IntoIterIntoIter => {
821                     ObligationCauseCode::ForLoopIterator
822                 }
823                 hir::LangItem::TryTraitFromOutput
824                 | hir::LangItem::TryTraitFromResidual
825                 | hir::LangItem::TryTraitBranch => ObligationCauseCode::QuestionMark,
826                 _ => traits::ItemObligation(def_id),
827             },
828         );
829         (Res::Def(def_kind, def_id), ty)
830     }
831
832     /// Resolves an associated value path into a base type and associated constant, or method
833     /// resolution. The newly resolved definition is written into `type_dependent_defs`.
834     pub fn resolve_ty_and_res_fully_qualified_call(
835         &self,
836         qpath: &'tcx QPath<'tcx>,
837         hir_id: hir::HirId,
838         span: Span,
839     ) -> (Res, Option<Ty<'tcx>>, &'tcx [hir::PathSegment<'tcx>]) {
840         debug!(
841             "resolve_ty_and_res_fully_qualified_call: qpath={:?} hir_id={:?} span={:?}",
842             qpath, hir_id, span
843         );
844         let (ty, qself, item_segment) = match *qpath {
845             QPath::Resolved(ref opt_qself, ref path) => {
846                 return (
847                     path.res,
848                     opt_qself.as_ref().map(|qself| self.to_ty(qself)),
849                     path.segments,
850                 );
851             }
852             QPath::TypeRelative(ref qself, ref segment) => {
853                 // Don't use `self.to_ty`, since this will register a WF obligation.
854                 // If we're trying to call a non-existent method on a trait
855                 // (e.g. `MyTrait::missing_method`), then resolution will
856                 // give us a `QPath::TypeRelative` with a trait object as
857                 // `qself`. In that case, we want to avoid registering a WF obligation
858                 // for `dyn MyTrait`, since we don't actually need the trait
859                 // to be object-safe.
860                 // We manually call `register_wf_obligation` in the success path
861                 // below.
862                 (<dyn AstConv<'_>>::ast_ty_to_ty_in_path(self, qself), qself, segment)
863             }
864             QPath::LangItem(..) => {
865                 bug!("`resolve_ty_and_res_fully_qualified_call` called on `LangItem`")
866             }
867         };
868         if let Some(&cached_result) = self.typeck_results.borrow().type_dependent_defs().get(hir_id)
869         {
870             self.register_wf_obligation(ty.into(), qself.span, traits::WellFormed(None));
871             // Return directly on cache hit. This is useful to avoid doubly reporting
872             // errors with default match binding modes. See #44614.
873             let def = cached_result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id));
874             return (def, Some(ty), slice::from_ref(&**item_segment));
875         }
876         let item_name = item_segment.ident;
877         let result = self
878             .resolve_fully_qualified_call(span, item_name, ty, qself.span, hir_id)
879             .or_else(|error| {
880                 let result = match error {
881                     method::MethodError::PrivateMatch(kind, def_id, _) => Ok((kind, def_id)),
882                     _ => Err(ErrorReported),
883                 };
884
885                 // If we have a path like `MyTrait::missing_method`, then don't register
886                 // a WF obligation for `dyn MyTrait` when method lookup fails. Otherwise,
887                 // register a WF obligation so that we can detect any additional
888                 // errors in the self type.
889                 if !(matches!(error, method::MethodError::NoMatch(_)) && ty.is_trait()) {
890                     self.register_wf_obligation(ty.into(), qself.span, traits::WellFormed(None));
891                 }
892                 if item_name.name != kw::Empty {
893                     if let Some(mut e) = self.report_method_error(
894                         span,
895                         ty,
896                         item_name,
897                         SelfSource::QPath(qself),
898                         error,
899                         None,
900                     ) {
901                         e.emit();
902                     }
903                 }
904                 result
905             });
906
907         if result.is_ok() {
908             self.register_wf_obligation(ty.into(), qself.span, traits::WellFormed(None));
909         }
910
911         // Write back the new resolution.
912         self.write_resolution(hir_id, result);
913         (
914             result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)),
915             Some(ty),
916             slice::from_ref(&**item_segment),
917         )
918     }
919
920     /// Given a function `Node`, return its `FnDecl` if it exists, or `None` otherwise.
921     pub(in super::super) fn get_node_fn_decl(
922         &self,
923         node: Node<'tcx>,
924     ) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident, bool)> {
925         match node {
926             Node::Item(&hir::Item { ident, kind: hir::ItemKind::Fn(ref sig, ..), .. }) => {
927                 // This is less than ideal, it will not suggest a return type span on any
928                 // method called `main`, regardless of whether it is actually the entry point,
929                 // but it will still present it as the reason for the expected type.
930                 Some((&sig.decl, ident, ident.name != sym::main))
931             }
932             Node::TraitItem(&hir::TraitItem {
933                 ident,
934                 kind: hir::TraitItemKind::Fn(ref sig, ..),
935                 ..
936             }) => Some((&sig.decl, ident, true)),
937             Node::ImplItem(&hir::ImplItem {
938                 ident,
939                 kind: hir::ImplItemKind::Fn(ref sig, ..),
940                 ..
941             }) => Some((&sig.decl, ident, false)),
942             _ => None,
943         }
944     }
945
946     /// Given a `HirId`, return the `FnDecl` of the method it is enclosed by and whether a
947     /// suggestion can be made, `None` otherwise.
948     pub fn get_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, bool)> {
949         // Get enclosing Fn, if it is a function or a trait method, unless there's a `loop` or
950         // `while` before reaching it, as block tail returns are not available in them.
951         self.tcx.hir().get_return_block(blk_id).and_then(|blk_id| {
952             let parent = self.tcx.hir().get(blk_id);
953             self.get_node_fn_decl(parent).map(|(fn_decl, _, is_main)| (fn_decl, is_main))
954         })
955     }
956
957     pub(in super::super) fn note_internal_mutation_in_method(
958         &self,
959         err: &mut DiagnosticBuilder<'_>,
960         expr: &hir::Expr<'_>,
961         expected: Ty<'tcx>,
962         found: Ty<'tcx>,
963     ) {
964         if found != self.tcx.types.unit {
965             return;
966         }
967         if let ExprKind::MethodCall(path_segment, [rcvr, ..], _) = expr.kind {
968             if self
969                 .typeck_results
970                 .borrow()
971                 .expr_ty_adjusted_opt(rcvr)
972                 .map_or(true, |ty| expected.peel_refs() != ty.peel_refs())
973             {
974                 return;
975             }
976             let mut sp = MultiSpan::from_span(path_segment.ident.span);
977             sp.push_span_label(
978                 path_segment.ident.span,
979                 format!(
980                     "this call modifies {} in-place",
981                     match rcvr.kind {
982                         ExprKind::Path(QPath::Resolved(
983                             None,
984                             hir::Path { segments: [segment], .. },
985                         )) => format!("`{}`", segment.ident),
986                         _ => "its receiver".to_string(),
987                     }
988                 ),
989             );
990             sp.push_span_label(
991                 rcvr.span,
992                 "you probably want to use this value after calling the method...".to_string(),
993             );
994             err.span_note(
995                 sp,
996                 &format!("method `{}` modifies its receiver in-place", path_segment.ident),
997             );
998             err.note(&format!("...instead of the `()` output of method `{}`", path_segment.ident));
999         }
1000     }
1001
1002     pub(in super::super) fn note_need_for_fn_pointer(
1003         &self,
1004         err: &mut DiagnosticBuilder<'_>,
1005         expected: Ty<'tcx>,
1006         found: Ty<'tcx>,
1007     ) {
1008         let (sig, did, substs) = match (&expected.kind(), &found.kind()) {
1009             (ty::FnDef(did1, substs1), ty::FnDef(did2, substs2)) => {
1010                 let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
1011                 let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
1012                 if sig1 != sig2 {
1013                     return;
1014                 }
1015                 err.note(
1016                     "different `fn` items always have unique types, even if their signatures are \
1017                      the same",
1018                 );
1019                 (sig1, *did1, substs1)
1020             }
1021             (ty::FnDef(did, substs), ty::FnPtr(sig2)) => {
1022                 let sig1 = self.tcx.fn_sig(*did).subst(self.tcx, substs);
1023                 if sig1 != *sig2 {
1024                     return;
1025                 }
1026                 (sig1, *did, substs)
1027             }
1028             _ => return,
1029         };
1030         err.help(&format!("change the expected type to be function pointer `{}`", sig));
1031         err.help(&format!(
1032             "if the expected type is due to type inference, cast the expected `fn` to a function \
1033              pointer: `{} as {}`",
1034             self.tcx.def_path_str_with_substs(did, substs),
1035             sig
1036         ));
1037     }
1038
1039     pub(in super::super) fn could_remove_semicolon(
1040         &self,
1041         blk: &'tcx hir::Block<'tcx>,
1042         expected_ty: Ty<'tcx>,
1043     ) -> Option<(Span, StatementAsExpression)> {
1044         // Be helpful when the user wrote `{... expr;}` and
1045         // taking the `;` off is enough to fix the error.
1046         let last_stmt = blk.stmts.last()?;
1047         let last_expr = match last_stmt.kind {
1048             hir::StmtKind::Semi(ref e) => e,
1049             _ => return None,
1050         };
1051         let last_expr_ty = self.node_ty(last_expr.hir_id);
1052         let needs_box = match (last_expr_ty.kind(), expected_ty.kind()) {
1053             (ty::Opaque(last_def_id, _), ty::Opaque(exp_def_id, _))
1054                 if last_def_id == exp_def_id =>
1055             {
1056                 StatementAsExpression::CorrectType
1057             }
1058             (ty::Opaque(last_def_id, last_bounds), ty::Opaque(exp_def_id, exp_bounds)) => {
1059                 debug!(
1060                     "both opaque, likely future {:?} {:?} {:?} {:?}",
1061                     last_def_id, last_bounds, exp_def_id, exp_bounds
1062                 );
1063
1064                 let (last_local_id, exp_local_id) =
1065                     match (last_def_id.as_local(), exp_def_id.as_local()) {
1066                         (Some(last_hir_id), Some(exp_hir_id)) => (last_hir_id, exp_hir_id),
1067                         (_, _) => return None,
1068                     };
1069
1070                 match (
1071                     &self.tcx.hir().expect_item(last_local_id).kind,
1072                     &self.tcx.hir().expect_item(exp_local_id).kind,
1073                 ) {
1074                     (
1075                         hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds: last_bounds, .. }),
1076                         hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds: exp_bounds, .. }),
1077                     ) if iter::zip(*last_bounds, *exp_bounds).all(|(left, right)| {
1078                         match (left, right) {
1079                             (
1080                                 hir::GenericBound::Trait(tl, ml),
1081                                 hir::GenericBound::Trait(tr, mr),
1082                             ) if tl.trait_ref.trait_def_id() == tr.trait_ref.trait_def_id()
1083                                 && ml == mr =>
1084                             {
1085                                 true
1086                             }
1087                             (
1088                                 hir::GenericBound::LangItemTrait(langl, _, _, argsl),
1089                                 hir::GenericBound::LangItemTrait(langr, _, _, argsr),
1090                             ) if langl == langr => {
1091                                 // FIXME: consider the bounds!
1092                                 debug!("{:?} {:?}", argsl, argsr);
1093                                 true
1094                             }
1095                             _ => false,
1096                         }
1097                     }) =>
1098                     {
1099                         StatementAsExpression::NeedsBoxing
1100                     }
1101                     _ => StatementAsExpression::CorrectType,
1102                 }
1103             }
1104             _ => StatementAsExpression::CorrectType,
1105         };
1106         if (matches!(last_expr_ty.kind(), ty::Error(_))
1107             || self.can_sub(self.param_env, last_expr_ty, expected_ty).is_err())
1108             && matches!(needs_box, StatementAsExpression::CorrectType)
1109         {
1110             return None;
1111         }
1112         let span = if last_stmt.span.from_expansion() {
1113             let mac_call = original_sp(last_stmt.span, blk.span);
1114             self.tcx.sess.source_map().mac_call_stmt_semi_span(mac_call)?
1115         } else {
1116             last_stmt.span.with_lo(last_stmt.span.hi() - BytePos(1))
1117         };
1118         Some((span, needs_box))
1119     }
1120
1121     // Instantiates the given path, which must refer to an item with the given
1122     // number of type parameters and type.
1123     #[instrument(skip(self, span), level = "debug")]
1124     pub fn instantiate_value_path(
1125         &self,
1126         segments: &[hir::PathSegment<'_>],
1127         self_ty: Option<Ty<'tcx>>,
1128         res: Res,
1129         span: Span,
1130         hir_id: hir::HirId,
1131     ) -> (Ty<'tcx>, Res) {
1132         let tcx = self.tcx;
1133
1134         let path_segs = match res {
1135             Res::Local(_) | Res::SelfCtor(_) => vec![],
1136             Res::Def(kind, def_id) => <dyn AstConv<'_>>::def_ids_for_value_path_segments(
1137                 self, segments, self_ty, kind, def_id,
1138             ),
1139             _ => bug!("instantiate_value_path on {:?}", res),
1140         };
1141
1142         let mut user_self_ty = None;
1143         let mut is_alias_variant_ctor = false;
1144         match res {
1145             Res::Def(DefKind::Ctor(CtorOf::Variant, _), _)
1146                 if let Some(self_ty) = self_ty =>
1147             {
1148                 let adt_def = self_ty.ty_adt_def().unwrap();
1149                 user_self_ty = Some(UserSelfTy { impl_def_id: adt_def.did, self_ty });
1150                 is_alias_variant_ctor = true;
1151             }
1152             Res::Def(DefKind::AssocFn | DefKind::AssocConst, def_id) => {
1153                 let container = tcx.associated_item(def_id).container;
1154                 debug!(?def_id, ?container);
1155                 match container {
1156                     ty::TraitContainer(trait_did) => {
1157                         callee::check_legal_trait_for_method_call(tcx, span, None, span, trait_did)
1158                     }
1159                     ty::ImplContainer(impl_def_id) => {
1160                         if segments.len() == 1 {
1161                             // `<T>::assoc` will end up here, and so
1162                             // can `T::assoc`. It this came from an
1163                             // inherent impl, we need to record the
1164                             // `T` for posterity (see `UserSelfTy` for
1165                             // details).
1166                             let self_ty = self_ty.expect("UFCS sugared assoc missing Self");
1167                             user_self_ty = Some(UserSelfTy { impl_def_id, self_ty });
1168                         }
1169                     }
1170                 }
1171             }
1172             _ => {}
1173         }
1174
1175         // Now that we have categorized what space the parameters for each
1176         // segment belong to, let's sort out the parameters that the user
1177         // provided (if any) into their appropriate spaces. We'll also report
1178         // errors if type parameters are provided in an inappropriate place.
1179
1180         let generic_segs: FxHashSet<_> = path_segs.iter().map(|PathSeg(_, index)| index).collect();
1181         let generics_has_err = <dyn AstConv<'_>>::prohibit_generics(
1182             self,
1183             segments.iter().enumerate().filter_map(|(index, seg)| {
1184                 if !generic_segs.contains(&index) || is_alias_variant_ctor {
1185                     Some(seg)
1186                 } else {
1187                     None
1188                 }
1189             }),
1190         );
1191
1192         if let Res::Local(hid) = res {
1193             let ty = self.local_ty(span, hid).decl_ty;
1194             let ty = self.normalize_associated_types_in(span, ty);
1195             self.write_ty(hir_id, ty);
1196             return (ty, res);
1197         }
1198
1199         if generics_has_err {
1200             // Don't try to infer type parameters when prohibited generic arguments were given.
1201             user_self_ty = None;
1202         }
1203
1204         // Now we have to compare the types that the user *actually*
1205         // provided against the types that were *expected*. If the user
1206         // did not provide any types, then we want to substitute inference
1207         // variables. If the user provided some types, we may still need
1208         // to add defaults. If the user provided *too many* types, that's
1209         // a problem.
1210
1211         let mut infer_args_for_err = FxHashSet::default();
1212
1213         let mut explicit_late_bound = ExplicitLateBound::No;
1214         for &PathSeg(def_id, index) in &path_segs {
1215             let seg = &segments[index];
1216             let generics = tcx.generics_of(def_id);
1217
1218             // Argument-position `impl Trait` is treated as a normal generic
1219             // parameter internally, but we don't allow users to specify the
1220             // parameter's value explicitly, so we have to do some error-
1221             // checking here.
1222             let arg_count = <dyn AstConv<'_>>::check_generic_arg_count_for_call(
1223                 tcx,
1224                 span,
1225                 def_id,
1226                 &generics,
1227                 seg,
1228                 IsMethodCall::No,
1229             );
1230
1231             if let ExplicitLateBound::Yes = arg_count.explicit_late_bound {
1232                 explicit_late_bound = ExplicitLateBound::Yes;
1233             }
1234
1235             if let Err(GenericArgCountMismatch { reported: Some(_), .. }) = arg_count.correct {
1236                 infer_args_for_err.insert(index);
1237                 self.set_tainted_by_errors(); // See issue #53251.
1238             }
1239         }
1240
1241         let has_self = path_segs
1242             .last()
1243             .map(|PathSeg(def_id, _)| tcx.generics_of(*def_id).has_self)
1244             .unwrap_or(false);
1245
1246         let (res, self_ctor_substs) = if let Res::SelfCtor(impl_def_id) = res {
1247             let ty = self.normalize_ty(span, tcx.at(span).type_of(impl_def_id));
1248             match *ty.kind() {
1249                 ty::Adt(adt_def, substs) if adt_def.has_ctor() => {
1250                     let variant = adt_def.non_enum_variant();
1251                     let ctor_def_id = variant.ctor_def_id.unwrap();
1252                     (
1253                         Res::Def(DefKind::Ctor(CtorOf::Struct, variant.ctor_kind), ctor_def_id),
1254                         Some(substs),
1255                     )
1256                 }
1257                 _ => {
1258                     let mut err = tcx.sess.struct_span_err(
1259                         span,
1260                         "the `Self` constructor can only be used with tuple or unit structs",
1261                     );
1262                     if let Some(adt_def) = ty.ty_adt_def() {
1263                         match adt_def.adt_kind() {
1264                             AdtKind::Enum => {
1265                                 err.help("did you mean to use one of the enum's variants?");
1266                             }
1267                             AdtKind::Struct | AdtKind::Union => {
1268                                 err.span_suggestion(
1269                                     span,
1270                                     "use curly brackets",
1271                                     String::from("Self { /* fields */ }"),
1272                                     Applicability::HasPlaceholders,
1273                                 );
1274                             }
1275                         }
1276                     }
1277                     err.emit();
1278
1279                     return (tcx.ty_error(), res);
1280                 }
1281             }
1282         } else {
1283             (res, None)
1284         };
1285         let def_id = res.def_id();
1286
1287         // The things we are substituting into the type should not contain
1288         // escaping late-bound regions, and nor should the base type scheme.
1289         let ty = tcx.type_of(def_id);
1290
1291         let arg_count = GenericArgCountResult {
1292             explicit_late_bound,
1293             correct: if infer_args_for_err.is_empty() {
1294                 Ok(())
1295             } else {
1296                 Err(GenericArgCountMismatch::default())
1297             },
1298         };
1299
1300         struct CreateCtorSubstsContext<'a, 'tcx> {
1301             fcx: &'a FnCtxt<'a, 'tcx>,
1302             span: Span,
1303             path_segs: &'a [PathSeg],
1304             infer_args_for_err: &'a FxHashSet<usize>,
1305             segments: &'a [hir::PathSegment<'a>],
1306         }
1307         impl<'tcx, 'a> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for CreateCtorSubstsContext<'a, 'tcx> {
1308             fn args_for_def_id(
1309                 &mut self,
1310                 def_id: DefId,
1311             ) -> (Option<&'a hir::GenericArgs<'a>>, bool) {
1312                 if let Some(&PathSeg(_, index)) =
1313                     self.path_segs.iter().find(|&PathSeg(did, _)| *did == def_id)
1314                 {
1315                     // If we've encountered an `impl Trait`-related error, we're just
1316                     // going to infer the arguments for better error messages.
1317                     if !self.infer_args_for_err.contains(&index) {
1318                         // Check whether the user has provided generic arguments.
1319                         if let Some(ref data) = self.segments[index].args {
1320                             return (Some(data), self.segments[index].infer_args);
1321                         }
1322                     }
1323                     return (None, self.segments[index].infer_args);
1324                 }
1325
1326                 (None, true)
1327             }
1328
1329             fn provided_kind(
1330                 &mut self,
1331                 param: &ty::GenericParamDef,
1332                 arg: &GenericArg<'_>,
1333             ) -> subst::GenericArg<'tcx> {
1334                 match (&param.kind, arg) {
1335                     (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
1336                         <dyn AstConv<'_>>::ast_region_to_region(self.fcx, lt, Some(param)).into()
1337                     }
1338                     (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => {
1339                         self.fcx.to_ty(ty).into()
1340                     }
1341                     (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
1342                         self.fcx.const_arg_to_const(&ct.value, param.def_id).into()
1343                     }
1344                     (GenericParamDefKind::Type { .. }, GenericArg::Infer(inf)) => {
1345                         self.fcx.ty_infer(Some(param), inf.span).into()
1346                     }
1347                     (GenericParamDefKind::Const { .. }, GenericArg::Infer(inf)) => {
1348                         let tcx = self.fcx.tcx();
1349                         self.fcx.ct_infer(tcx.type_of(param.def_id), Some(param), inf.span).into()
1350                     }
1351                     _ => unreachable!(),
1352                 }
1353             }
1354
1355             fn inferred_kind(
1356                 &mut self,
1357                 substs: Option<&[subst::GenericArg<'tcx>]>,
1358                 param: &ty::GenericParamDef,
1359                 infer_args: bool,
1360             ) -> subst::GenericArg<'tcx> {
1361                 let tcx = self.fcx.tcx();
1362                 match param.kind {
1363                     GenericParamDefKind::Lifetime => {
1364                         self.fcx.re_infer(Some(param), self.span).unwrap().into()
1365                     }
1366                     GenericParamDefKind::Type { has_default, .. } => {
1367                         if !infer_args && has_default {
1368                             // If we have a default, then we it doesn't matter that we're not
1369                             // inferring the type arguments: we provide the default where any
1370                             // is missing.
1371                             let default = tcx.type_of(param.def_id);
1372                             self.fcx
1373                                 .normalize_ty(
1374                                     self.span,
1375                                     default.subst_spanned(tcx, substs.unwrap(), Some(self.span)),
1376                                 )
1377                                 .into()
1378                         } else {
1379                             // If no type arguments were provided, we have to infer them.
1380                             // This case also occurs as a result of some malformed input, e.g.
1381                             // a lifetime argument being given instead of a type parameter.
1382                             // Using inference instead of `Error` gives better error messages.
1383                             self.fcx.var_for_def(self.span, param)
1384                         }
1385                     }
1386                     GenericParamDefKind::Const { has_default, .. } => {
1387                         if !infer_args && has_default {
1388                             tcx.const_param_default(param.def_id)
1389                                 .subst_spanned(tcx, substs.unwrap(), Some(self.span))
1390                                 .into()
1391                         } else {
1392                             self.fcx.var_for_def(self.span, param)
1393                         }
1394                     }
1395                 }
1396             }
1397         }
1398
1399         let substs = self_ctor_substs.unwrap_or_else(|| {
1400             <dyn AstConv<'_>>::create_substs_for_generic_args(
1401                 tcx,
1402                 def_id,
1403                 &[],
1404                 has_self,
1405                 self_ty,
1406                 &arg_count,
1407                 &mut CreateCtorSubstsContext {
1408                     fcx: self,
1409                     span,
1410                     path_segs: &path_segs,
1411                     infer_args_for_err: &infer_args_for_err,
1412                     segments,
1413                 },
1414             )
1415         });
1416         assert!(!substs.has_escaping_bound_vars());
1417         assert!(!ty.has_escaping_bound_vars());
1418
1419         // First, store the "user substs" for later.
1420         self.write_user_type_annotation_from_substs(hir_id, def_id, substs, user_self_ty);
1421
1422         self.add_required_obligations(span, def_id, &substs);
1423
1424         // Substitute the values for the type parameters into the type of
1425         // the referenced item.
1426         let ty_substituted = self.instantiate_type_scheme(span, &substs, ty);
1427
1428         if let Some(UserSelfTy { impl_def_id, self_ty }) = user_self_ty {
1429             // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
1430             // is inherent, there is no `Self` parameter; instead, the impl needs
1431             // type parameters, which we can infer by unifying the provided `Self`
1432             // with the substituted impl type.
1433             // This also occurs for an enum variant on a type alias.
1434             let ty = tcx.type_of(impl_def_id);
1435
1436             let impl_ty = self.instantiate_type_scheme(span, &substs, ty);
1437             match self.at(&self.misc(span), self.param_env).eq(impl_ty, self_ty) {
1438                 Ok(ok) => self.register_infer_ok_obligations(ok),
1439                 Err(_) => {
1440                     self.tcx.sess.delay_span_bug(
1441                         span,
1442                         &format!(
1443                         "instantiate_value_path: (UFCS) {:?} was a subtype of {:?} but now is not?",
1444                         self_ty,
1445                         impl_ty,
1446                     ),
1447                     );
1448                 }
1449             }
1450         }
1451
1452         debug!("instantiate_value_path: type of {:?} is {:?}", hir_id, ty_substituted);
1453         self.write_substs(hir_id, substs);
1454
1455         (ty_substituted, res)
1456     }
1457
1458     /// Add all the obligations that are required, substituting and normalized appropriately.
1459     crate fn add_required_obligations(&self, span: Span, def_id: DefId, substs: &SubstsRef<'tcx>) {
1460         self.add_required_obligations_with_code(
1461             span,
1462             def_id,
1463             substs,
1464             traits::ItemObligation(def_id),
1465         )
1466     }
1467
1468     #[tracing::instrument(level = "debug", skip(self, span, def_id, substs))]
1469     fn add_required_obligations_with_code(
1470         &self,
1471         span: Span,
1472         def_id: DefId,
1473         substs: &SubstsRef<'tcx>,
1474         code: ObligationCauseCode<'tcx>,
1475     ) {
1476         let (bounds, _) = self.instantiate_bounds(span, def_id, &substs);
1477
1478         for obligation in traits::predicates_for_generics(
1479             traits::ObligationCause::new(span, self.body_id, code),
1480             self.param_env,
1481             bounds,
1482         ) {
1483             self.register_predicate(obligation);
1484         }
1485     }
1486
1487     /// Resolves `typ` by a single level if `typ` is a type variable.
1488     /// If no resolution is possible, then an error is reported.
1489     /// Numeric inference variables may be left unresolved.
1490     pub fn structurally_resolved_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
1491         let ty = self.resolve_vars_with_obligations(ty);
1492         if !ty.is_ty_var() {
1493             ty
1494         } else {
1495             if !self.is_tainted_by_errors() {
1496                 self.emit_inference_failure_err((**self).body_id, sp, ty.into(), vec![], E0282)
1497                     .note("type must be known at this point")
1498                     .emit();
1499             }
1500             let err = self.tcx.ty_error();
1501             self.demand_suptype(sp, err, ty);
1502             err
1503         }
1504     }
1505
1506     pub(in super::super) fn with_breakable_ctxt<F: FnOnce() -> R, R>(
1507         &self,
1508         id: hir::HirId,
1509         ctxt: BreakableCtxt<'tcx>,
1510         f: F,
1511     ) -> (BreakableCtxt<'tcx>, R) {
1512         let index;
1513         {
1514             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
1515             index = enclosing_breakables.stack.len();
1516             enclosing_breakables.by_id.insert(id, index);
1517             enclosing_breakables.stack.push(ctxt);
1518         }
1519         let result = f();
1520         let ctxt = {
1521             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
1522             debug_assert!(enclosing_breakables.stack.len() == index + 1);
1523             enclosing_breakables.by_id.remove(&id).expect("missing breakable context");
1524             enclosing_breakables.stack.pop().expect("missing breakable context")
1525         };
1526         (ctxt, result)
1527     }
1528
1529     /// Instantiate a QueryResponse in a probe context, without a
1530     /// good ObligationCause.
1531     pub(in super::super) fn probe_instantiate_query_response(
1532         &self,
1533         span: Span,
1534         original_values: &OriginalQueryValues<'tcx>,
1535         query_result: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>,
1536     ) -> InferResult<'tcx, Ty<'tcx>> {
1537         self.instantiate_query_response_and_region_obligations(
1538             &traits::ObligationCause::misc(span, self.body_id),
1539             self.param_env,
1540             original_values,
1541             query_result,
1542         )
1543     }
1544
1545     /// Returns `true` if an expression is contained inside the LHS of an assignment expression.
1546     pub(in super::super) fn expr_in_place(&self, mut expr_id: hir::HirId) -> bool {
1547         let mut contained_in_place = false;
1548
1549         while let hir::Node::Expr(parent_expr) =
1550             self.tcx.hir().get(self.tcx.hir().get_parent_node(expr_id))
1551         {
1552             match &parent_expr.kind {
1553                 hir::ExprKind::Assign(lhs, ..) | hir::ExprKind::AssignOp(_, lhs, ..) => {
1554                     if lhs.hir_id == expr_id {
1555                         contained_in_place = true;
1556                         break;
1557                     }
1558                 }
1559                 _ => (),
1560             }
1561             expr_id = parent_expr.hir_id;
1562         }
1563
1564         contained_in_place
1565     }
1566 }