]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/expr.rs
Auto merge of #95224 - mjbshaw:patch-1, r=yaahc
[rust.git] / compiler / rustc_typeck / src / check / expr.rs
1 //! Type checking expressions.
2 //!
3 //! See `mod.rs` for more context on type checking in general.
4
5 use crate::astconv::AstConv as _;
6 use crate::check::cast;
7 use crate::check::coercion::CoerceMany;
8 use crate::check::fatally_break_rust;
9 use crate::check::method::SelfSource;
10 use crate::check::report_unexpected_variant_res;
11 use crate::check::BreakableCtxt;
12 use crate::check::Diverges;
13 use crate::check::DynamicCoerceMany;
14 use crate::check::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
15 use crate::check::FnCtxt;
16 use crate::check::Needs;
17 use crate::check::TupleArgumentsFlag::DontTupleArguments;
18 use crate::errors::{
19     FieldMultiplySpecifiedInInitializer, FunctionalRecordUpdateOnNonStruct,
20     YieldExprOutsideOfGenerator,
21 };
22 use crate::type_error_struct;
23
24 use crate::errors::{AddressOfTemporaryTaken, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive};
25 use rustc_ast as ast;
26 use rustc_data_structures::fx::FxHashMap;
27 use rustc_data_structures::stack::ensure_sufficient_stack;
28 use rustc_errors::Diagnostic;
29 use rustc_errors::ErrorGuaranteed;
30 use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticBuilder, DiagnosticId};
31 use rustc_hir as hir;
32 use rustc_hir::def::{CtorKind, DefKind, Res};
33 use rustc_hir::def_id::DefId;
34 use rustc_hir::intravisit::Visitor;
35 use rustc_hir::lang_items::LangItem;
36 use rustc_hir::{ExprKind, HirId, QPath};
37 use rustc_infer::infer;
38 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
39 use rustc_infer::infer::InferOk;
40 use rustc_middle::middle::stability;
41 use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
42 use rustc_middle::ty::error::ExpectedFound;
43 use rustc_middle::ty::error::TypeError::{FieldMisMatch, Sorts};
44 use rustc_middle::ty::subst::SubstsRef;
45 use rustc_middle::ty::{self, AdtKind, Ty, TypeFoldable};
46 use rustc_session::parse::feature_err;
47 use rustc_span::hygiene::DesugaringKind;
48 use rustc_span::lev_distance::find_best_match_for_name;
49 use rustc_span::source_map::Span;
50 use rustc_span::symbol::{kw, sym, Ident, Symbol};
51 use rustc_span::{BytePos, Pos};
52 use rustc_trait_selection::traits::{self, ObligationCauseCode};
53
54 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
55     fn check_expr_eq_type(&self, expr: &'tcx hir::Expr<'tcx>, expected: Ty<'tcx>) {
56         let ty = self.check_expr_with_hint(expr, expected);
57         self.demand_eqtype(expr.span, expected, ty);
58     }
59
60     pub fn check_expr_has_type_or_error(
61         &self,
62         expr: &'tcx hir::Expr<'tcx>,
63         expected: Ty<'tcx>,
64         extend_err: impl Fn(&mut Diagnostic),
65     ) -> Ty<'tcx> {
66         self.check_expr_meets_expectation_or_error(expr, ExpectHasType(expected), extend_err)
67     }
68
69     fn check_expr_meets_expectation_or_error(
70         &self,
71         expr: &'tcx hir::Expr<'tcx>,
72         expected: Expectation<'tcx>,
73         extend_err: impl Fn(&mut Diagnostic),
74     ) -> Ty<'tcx> {
75         let expected_ty = expected.to_option(&self).unwrap_or(self.tcx.types.bool);
76         let mut ty = self.check_expr_with_expectation(expr, expected);
77
78         // While we don't allow *arbitrary* coercions here, we *do* allow
79         // coercions from ! to `expected`.
80         if ty.is_never() {
81             assert!(
82                 !self.typeck_results.borrow().adjustments().contains_key(expr.hir_id),
83                 "expression with never type wound up being adjusted"
84             );
85             let adj_ty = self.next_ty_var(TypeVariableOrigin {
86                 kind: TypeVariableOriginKind::AdjustmentType,
87                 span: expr.span,
88             });
89             self.apply_adjustments(
90                 expr,
91                 vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
92             );
93             ty = adj_ty;
94         }
95
96         if let Some(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
97             let expr = expr.peel_drop_temps();
98             self.suggest_deref_ref_or_into(&mut err, expr, expected_ty, ty, None);
99             extend_err(&mut err);
100             err.emit();
101         }
102         ty
103     }
104
105     pub(super) fn check_expr_coercable_to_type(
106         &self,
107         expr: &'tcx hir::Expr<'tcx>,
108         expected: Ty<'tcx>,
109         expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
110     ) -> Ty<'tcx> {
111         let ty = self.check_expr_with_hint(expr, expected);
112         // checks don't need two phase
113         self.demand_coerce(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No)
114     }
115
116     pub(super) fn check_expr_with_hint(
117         &self,
118         expr: &'tcx hir::Expr<'tcx>,
119         expected: Ty<'tcx>,
120     ) -> Ty<'tcx> {
121         self.check_expr_with_expectation(expr, ExpectHasType(expected))
122     }
123
124     fn check_expr_with_expectation_and_needs(
125         &self,
126         expr: &'tcx hir::Expr<'tcx>,
127         expected: Expectation<'tcx>,
128         needs: Needs,
129     ) -> Ty<'tcx> {
130         let ty = self.check_expr_with_expectation(expr, expected);
131
132         // If the expression is used in a place whether mutable place is required
133         // e.g. LHS of assignment, perform the conversion.
134         if let Needs::MutPlace = needs {
135             self.convert_place_derefs_to_mutable(expr);
136         }
137
138         ty
139     }
140
141     pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
142         self.check_expr_with_expectation(expr, NoExpectation)
143     }
144
145     pub(super) fn check_expr_with_needs(
146         &self,
147         expr: &'tcx hir::Expr<'tcx>,
148         needs: Needs,
149     ) -> Ty<'tcx> {
150         self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
151     }
152
153     /// Invariant:
154     /// If an expression has any sub-expressions that result in a type error,
155     /// inspecting that expression's type with `ty.references_error()` will return
156     /// true. Likewise, if an expression is known to diverge, inspecting its
157     /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
158     /// strict, _|_ can appear in the type of an expression that does not,
159     /// itself, diverge: for example, fn() -> _|_.)
160     /// Note that inspecting a type's structure *directly* may expose the fact
161     /// that there are actually multiple representations for `Error`, so avoid
162     /// that when err needs to be handled differently.
163     #[instrument(skip(self, expr), level = "debug")]
164     pub(super) fn check_expr_with_expectation(
165         &self,
166         expr: &'tcx hir::Expr<'tcx>,
167         expected: Expectation<'tcx>,
168     ) -> Ty<'tcx> {
169         self.check_expr_with_expectation_and_args(expr, expected, &[])
170     }
171
172     /// Same as `check_expr_with_expectation`, but allows us to pass in the arguments of a
173     /// `ExprKind::Call` when evaluating its callee when it is an `ExprKind::Path`.
174     pub(super) fn check_expr_with_expectation_and_args(
175         &self,
176         expr: &'tcx hir::Expr<'tcx>,
177         expected: Expectation<'tcx>,
178         args: &'tcx [hir::Expr<'tcx>],
179     ) -> Ty<'tcx> {
180         if self.tcx().sess.verbose() {
181             // make this code only run with -Zverbose because it is probably slow
182             if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
183                 if !lint_str.contains('\n') {
184                     debug!("expr text: {lint_str}");
185                 } else {
186                     let mut lines = lint_str.lines();
187                     if let Some(line0) = lines.next() {
188                         let remaining_lines = lines.count();
189                         debug!("expr text: {line0}");
190                         debug!("expr text: ...(and {remaining_lines} more lines)");
191                     }
192                 }
193             }
194         }
195
196         // True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
197         // without the final expr (e.g. `try { return; }`). We don't want to generate an
198         // unreachable_code lint for it since warnings for autogenerated code are confusing.
199         let is_try_block_generated_unit_expr = match expr.kind {
200             ExprKind::Call(_, args) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {
201                 args.len() == 1 && args[0].span.is_desugaring(DesugaringKind::TryBlock)
202             }
203
204             _ => false,
205         };
206
207         // Warn for expressions after diverging siblings.
208         if !is_try_block_generated_unit_expr {
209             self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
210         }
211
212         // Hide the outer diverging and has_errors flags.
213         let old_diverges = self.diverges.replace(Diverges::Maybe);
214         let old_has_errors = self.has_errors.replace(false);
215
216         let ty = ensure_sufficient_stack(|| match &expr.kind {
217             hir::ExprKind::Path(
218                 qpath @ hir::QPath::Resolved(..) | qpath @ hir::QPath::TypeRelative(..),
219             ) => self.check_expr_path(qpath, expr, args),
220             _ => self.check_expr_kind(expr, expected),
221         });
222
223         // Warn for non-block expressions with diverging children.
224         match expr.kind {
225             ExprKind::Block(..)
226             | ExprKind::If(..)
227             | ExprKind::Let(..)
228             | ExprKind::Loop(..)
229             | ExprKind::Match(..) => {}
230             // If `expr` is a result of desugaring the try block and is an ok-wrapped
231             // diverging expression (e.g. it arose from desugaring of `try { return }`),
232             // we skip issuing a warning because it is autogenerated code.
233             ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
234             ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
235             ExprKind::MethodCall(segment, ..) => {
236                 self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
237             }
238             _ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
239         }
240
241         // Any expression that produces a value of type `!` must have diverged
242         if ty.is_never() {
243             self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
244         }
245
246         // Record the type, which applies it effects.
247         // We need to do this after the warning above, so that
248         // we don't warn for the diverging expression itself.
249         self.write_ty(expr.hir_id, ty);
250
251         // Combine the diverging and has_error flags.
252         self.diverges.set(self.diverges.get() | old_diverges);
253         self.has_errors.set(self.has_errors.get() | old_has_errors);
254
255         debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
256         debug!("... {:?}, expected is {:?}", ty, expected);
257
258         ty
259     }
260
261     #[instrument(skip(self, expr), level = "debug")]
262     fn check_expr_kind(
263         &self,
264         expr: &'tcx hir::Expr<'tcx>,
265         expected: Expectation<'tcx>,
266     ) -> Ty<'tcx> {
267         trace!("expr={:#?}", expr);
268
269         let tcx = self.tcx;
270         match expr.kind {
271             ExprKind::Box(subexpr) => self.check_expr_box(subexpr, expected),
272             ExprKind::Lit(ref lit) => self.check_lit(&lit, expected),
273             ExprKind::Binary(op, lhs, rhs) => self.check_binop(expr, op, lhs, rhs),
274             ExprKind::Assign(lhs, rhs, span) => {
275                 self.check_expr_assign(expr, expected, lhs, rhs, span)
276             }
277             ExprKind::AssignOp(op, lhs, rhs) => self.check_binop_assign(expr, op, lhs, rhs),
278             ExprKind::Unary(unop, oprnd) => self.check_expr_unary(unop, oprnd, expected, expr),
279             ExprKind::AddrOf(kind, mutbl, oprnd) => {
280                 self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
281             }
282             ExprKind::Path(QPath::LangItem(lang_item, _, hir_id)) => {
283                 self.check_lang_item_path(lang_item, expr, hir_id)
284             }
285             ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, &[]),
286             ExprKind::InlineAsm(asm) => self.check_expr_asm(asm),
287             ExprKind::Break(destination, ref expr_opt) => {
288                 self.check_expr_break(destination, expr_opt.as_deref(), expr)
289             }
290             ExprKind::Continue(destination) => {
291                 if destination.target_id.is_ok() {
292                     tcx.types.never
293                 } else {
294                     // There was an error; make type-check fail.
295                     tcx.ty_error()
296                 }
297             }
298             ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
299             ExprKind::Let(let_expr) => self.check_expr_let(let_expr),
300             ExprKind::Loop(body, _, source, _) => {
301                 self.check_expr_loop(body, source, expected, expr)
302             }
303             ExprKind::Match(discrim, arms, match_src) => {
304                 self.check_match(expr, &discrim, arms, expected, match_src)
305             }
306             ExprKind::Closure(capture, decl, body_id, _, gen) => {
307                 self.check_expr_closure(expr, capture, &decl, body_id, gen, expected)
308             }
309             ExprKind::Block(body, _) => self.check_block_with_expected(&body, expected),
310             ExprKind::Call(callee, args) => self.check_call(expr, &callee, args, expected),
311             ExprKind::MethodCall(segment, args, _) => {
312                 self.check_method_call(expr, segment, args, expected)
313             }
314             ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
315             ExprKind::Type(e, t) => {
316                 let ty = self.to_ty_saving_user_provided_ty(&t);
317                 self.check_expr_eq_type(&e, ty);
318                 ty
319             }
320             ExprKind::If(cond, then_expr, opt_else_expr) => {
321                 self.check_then_else(cond, then_expr, opt_else_expr, expr.span, expected)
322             }
323             ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
324             ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
325             ExprKind::ConstBlock(ref anon_const) => {
326                 self.check_expr_const_block(anon_const, expected, expr)
327             }
328             ExprKind::Repeat(element, ref count) => {
329                 self.check_expr_repeat(element, count, expected, expr)
330             }
331             ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
332             ExprKind::Struct(qpath, fields, ref base_expr) => {
333                 self.check_expr_struct(expr, expected, qpath, fields, base_expr)
334             }
335             ExprKind::Field(base, field) => self.check_field(expr, &base, field),
336             ExprKind::Index(base, idx) => self.check_expr_index(base, idx, expr),
337             ExprKind::Yield(value, ref src) => self.check_expr_yield(value, expr, src),
338             hir::ExprKind::Err => tcx.ty_error(),
339         }
340     }
341
342     fn check_expr_box(&self, expr: &'tcx hir::Expr<'tcx>, expected: Expectation<'tcx>) -> Ty<'tcx> {
343         let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| match ty.kind() {
344             ty::Adt(def, _) if def.is_box() => Expectation::rvalue_hint(self, ty.boxed_ty()),
345             _ => NoExpectation,
346         });
347         let referent_ty = self.check_expr_with_expectation(expr, expected_inner);
348         self.require_type_is_sized(referent_ty, expr.span, traits::SizedBoxType);
349         self.tcx.mk_box(referent_ty)
350     }
351
352     fn check_expr_unary(
353         &self,
354         unop: hir::UnOp,
355         oprnd: &'tcx hir::Expr<'tcx>,
356         expected: Expectation<'tcx>,
357         expr: &'tcx hir::Expr<'tcx>,
358     ) -> Ty<'tcx> {
359         let tcx = self.tcx;
360         let expected_inner = match unop {
361             hir::UnOp::Not | hir::UnOp::Neg => expected,
362             hir::UnOp::Deref => NoExpectation,
363         };
364         let mut oprnd_t = self.check_expr_with_expectation(&oprnd, expected_inner);
365
366         if !oprnd_t.references_error() {
367             oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
368             match unop {
369                 hir::UnOp::Deref => {
370                     if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
371                         oprnd_t = ty;
372                     } else {
373                         let mut err = type_error_struct!(
374                             tcx.sess,
375                             expr.span,
376                             oprnd_t,
377                             E0614,
378                             "type `{oprnd_t}` cannot be dereferenced",
379                         );
380                         let sp = tcx.sess.source_map().start_point(expr.span);
381                         if let Some(sp) =
382                             tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
383                         {
384                             tcx.sess.parse_sess.expr_parentheses_needed(&mut err, *sp);
385                         }
386                         err.emit();
387                         oprnd_t = tcx.ty_error();
388                     }
389                 }
390                 hir::UnOp::Not => {
391                     let result = self.check_user_unop(expr, oprnd_t, unop);
392                     // If it's builtin, we can reuse the type, this helps inference.
393                     if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
394                         oprnd_t = result;
395                     }
396                 }
397                 hir::UnOp::Neg => {
398                     let result = self.check_user_unop(expr, oprnd_t, unop);
399                     // If it's builtin, we can reuse the type, this helps inference.
400                     if !oprnd_t.is_numeric() {
401                         oprnd_t = result;
402                     }
403                 }
404             }
405         }
406         oprnd_t
407     }
408
409     fn check_expr_addr_of(
410         &self,
411         kind: hir::BorrowKind,
412         mutbl: hir::Mutability,
413         oprnd: &'tcx hir::Expr<'tcx>,
414         expected: Expectation<'tcx>,
415         expr: &'tcx hir::Expr<'tcx>,
416     ) -> Ty<'tcx> {
417         let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
418             match ty.kind() {
419                 ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
420                     if oprnd.is_syntactic_place_expr() {
421                         // Places may legitimately have unsized types.
422                         // For example, dereferences of a fat pointer and
423                         // the last field of a struct can be unsized.
424                         ExpectHasType(*ty)
425                     } else {
426                         Expectation::rvalue_hint(self, *ty)
427                     }
428                 }
429                 _ => NoExpectation,
430             }
431         });
432         let ty =
433             self.check_expr_with_expectation_and_needs(&oprnd, hint, Needs::maybe_mut_place(mutbl));
434
435         let tm = ty::TypeAndMut { ty, mutbl };
436         match kind {
437             _ if tm.ty.references_error() => self.tcx.ty_error(),
438             hir::BorrowKind::Raw => {
439                 self.check_named_place_expr(oprnd);
440                 self.tcx.mk_ptr(tm)
441             }
442             hir::BorrowKind::Ref => {
443                 // Note: at this point, we cannot say what the best lifetime
444                 // is to use for resulting pointer.  We want to use the
445                 // shortest lifetime possible so as to avoid spurious borrowck
446                 // errors.  Moreover, the longest lifetime will depend on the
447                 // precise details of the value whose address is being taken
448                 // (and how long it is valid), which we don't know yet until
449                 // type inference is complete.
450                 //
451                 // Therefore, here we simply generate a region variable. The
452                 // region inferencer will then select a suitable value.
453                 // Finally, borrowck will infer the value of the region again,
454                 // this time with enough precision to check that the value
455                 // whose address was taken can actually be made to live as long
456                 // as it needs to live.
457                 let region = self.next_region_var(infer::AddrOfRegion(expr.span));
458                 self.tcx.mk_ref(region, tm)
459             }
460         }
461     }
462
463     /// Does this expression refer to a place that either:
464     /// * Is based on a local or static.
465     /// * Contains a dereference
466     /// Note that the adjustments for the children of `expr` should already
467     /// have been resolved.
468     fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
469         let is_named = oprnd.is_place_expr(|base| {
470             // Allow raw borrows if there are any deref adjustments.
471             //
472             // const VAL: (i32,) = (0,);
473             // const REF: &(i32,) = &(0,);
474             //
475             // &raw const VAL.0;            // ERROR
476             // &raw const REF.0;            // OK, same as &raw const (*REF).0;
477             //
478             // This is maybe too permissive, since it allows
479             // `let u = &raw const Box::new((1,)).0`, which creates an
480             // immediately dangling raw pointer.
481             self.typeck_results
482                 .borrow()
483                 .adjustments()
484                 .get(base.hir_id)
485                 .map_or(false, |x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
486         });
487         if !is_named {
488             self.tcx.sess.emit_err(AddressOfTemporaryTaken { span: oprnd.span });
489         }
490     }
491
492     fn check_lang_item_path(
493         &self,
494         lang_item: hir::LangItem,
495         expr: &'tcx hir::Expr<'tcx>,
496         hir_id: Option<hir::HirId>,
497     ) -> Ty<'tcx> {
498         self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id, hir_id).1
499     }
500
501     pub(crate) fn check_expr_path(
502         &self,
503         qpath: &'tcx hir::QPath<'tcx>,
504         expr: &'tcx hir::Expr<'tcx>,
505         args: &'tcx [hir::Expr<'tcx>],
506     ) -> Ty<'tcx> {
507         let tcx = self.tcx;
508         let (res, opt_ty, segs) =
509             self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
510         let ty = match res {
511             Res::Err => {
512                 self.set_tainted_by_errors();
513                 tcx.ty_error()
514             }
515             Res::Def(DefKind::Ctor(_, CtorKind::Fictive), _) => {
516                 report_unexpected_variant_res(tcx, res, expr.span);
517                 tcx.ty_error()
518             }
519             _ => self.instantiate_value_path(segs, opt_ty, res, expr.span, expr.hir_id).0,
520         };
521
522         if let ty::FnDef(..) = ty.kind() {
523             let fn_sig = ty.fn_sig(tcx);
524             if !tcx.features().unsized_fn_params {
525                 // We want to remove some Sized bounds from std functions,
526                 // but don't want to expose the removal to stable Rust.
527                 // i.e., we don't want to allow
528                 //
529                 // ```rust
530                 // drop as fn(str);
531                 // ```
532                 //
533                 // to work in stable even if the Sized bound on `drop` is relaxed.
534                 for i in 0..fn_sig.inputs().skip_binder().len() {
535                     // We just want to check sizedness, so instead of introducing
536                     // placeholder lifetimes with probing, we just replace higher lifetimes
537                     // with fresh vars.
538                     let span = args.get(i).map(|a| a.span).unwrap_or(expr.span);
539                     let input = self
540                         .replace_bound_vars_with_fresh_vars(
541                             span,
542                             infer::LateBoundRegionConversionTime::FnCall,
543                             fn_sig.input(i),
544                         )
545                         .0;
546                     self.require_type_is_sized_deferred(
547                         input,
548                         span,
549                         traits::SizedArgumentType(None),
550                     );
551                 }
552             }
553             // Here we want to prevent struct constructors from returning unsized types.
554             // There were two cases this happened: fn pointer coercion in stable
555             // and usual function call in presence of unsized_locals.
556             // Also, as we just want to check sizedness, instead of introducing
557             // placeholder lifetimes with probing, we just replace higher lifetimes
558             // with fresh vars.
559             let output = self
560                 .replace_bound_vars_with_fresh_vars(
561                     expr.span,
562                     infer::LateBoundRegionConversionTime::FnCall,
563                     fn_sig.output(),
564                 )
565                 .0;
566             self.require_type_is_sized_deferred(output, expr.span, traits::SizedReturnType);
567         }
568
569         // We always require that the type provided as the value for
570         // a type parameter outlives the moment of instantiation.
571         let substs = self.typeck_results.borrow().node_substs(expr.hir_id);
572         self.add_wf_bounds(substs, expr);
573
574         ty
575     }
576
577     fn check_expr_break(
578         &self,
579         destination: hir::Destination,
580         expr_opt: Option<&'tcx hir::Expr<'tcx>>,
581         expr: &'tcx hir::Expr<'tcx>,
582     ) -> Ty<'tcx> {
583         let tcx = self.tcx;
584         if let Ok(target_id) = destination.target_id {
585             let (e_ty, cause);
586             if let Some(e) = expr_opt {
587                 // If this is a break with a value, we need to type-check
588                 // the expression. Get an expected type from the loop context.
589                 let opt_coerce_to = {
590                     // We should release `enclosing_breakables` before the `check_expr_with_hint`
591                     // below, so can't move this block of code to the enclosing scope and share
592                     // `ctxt` with the second `enclosing_breakables` borrow below.
593                     let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
594                     match enclosing_breakables.opt_find_breakable(target_id) {
595                         Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
596                         None => {
597                             // Avoid ICE when `break` is inside a closure (#65383).
598                             return tcx.ty_error_with_message(
599                                 expr.span,
600                                 "break was outside loop, but no error was emitted",
601                             );
602                         }
603                     }
604                 };
605
606                 // If the loop context is not a `loop { }`, then break with
607                 // a value is illegal, and `opt_coerce_to` will be `None`.
608                 // Just set expectation to error in that case.
609                 let coerce_to = opt_coerce_to.unwrap_or_else(|| tcx.ty_error());
610
611                 // Recurse without `enclosing_breakables` borrowed.
612                 e_ty = self.check_expr_with_hint(e, coerce_to);
613                 cause = self.misc(e.span);
614             } else {
615                 // Otherwise, this is a break *without* a value. That's
616                 // always legal, and is equivalent to `break ()`.
617                 e_ty = tcx.mk_unit();
618                 cause = self.misc(expr.span);
619             }
620
621             // Now that we have type-checked `expr_opt`, borrow
622             // the `enclosing_loops` field and let's coerce the
623             // type of `expr_opt` into what is expected.
624             let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
625             let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
626                 // Avoid ICE when `break` is inside a closure (#65383).
627                 return tcx.ty_error_with_message(
628                     expr.span,
629                     "break was outside loop, but no error was emitted",
630                 );
631             };
632
633             if let Some(ref mut coerce) = ctxt.coerce {
634                 if let Some(ref e) = expr_opt {
635                     coerce.coerce(self, &cause, e, e_ty);
636                 } else {
637                     assert!(e_ty.is_unit());
638                     let ty = coerce.expected_ty();
639                     coerce.coerce_forced_unit(
640                         self,
641                         &cause,
642                         &mut |mut err| {
643                             self.suggest_mismatched_types_on_tail(
644                                 &mut err, expr, ty, e_ty, target_id,
645                             );
646                             if let Some(val) = ty_kind_suggestion(ty) {
647                                 let label = destination
648                                     .label
649                                     .map(|l| format!(" {}", l.ident))
650                                     .unwrap_or_else(String::new);
651                                 err.span_suggestion(
652                                     expr.span,
653                                     "give it a value of the expected type",
654                                     format!("break{label} {val}"),
655                                     Applicability::HasPlaceholders,
656                                 );
657                             }
658                         },
659                         false,
660                     );
661                 }
662             } else {
663                 // If `ctxt.coerce` is `None`, we can just ignore
664                 // the type of the expression.  This is because
665                 // either this was a break *without* a value, in
666                 // which case it is always a legal type (`()`), or
667                 // else an error would have been flagged by the
668                 // `loops` pass for using break with an expression
669                 // where you are not supposed to.
670                 assert!(expr_opt.is_none() || self.tcx.sess.has_errors().is_some());
671             }
672
673             // If we encountered a `break`, then (no surprise) it may be possible to break from the
674             // loop... unless the value being returned from the loop diverges itself, e.g.
675             // `break return 5` or `break loop {}`.
676             ctxt.may_break |= !self.diverges.get().is_always();
677
678             // the type of a `break` is always `!`, since it diverges
679             tcx.types.never
680         } else {
681             // Otherwise, we failed to find the enclosing loop;
682             // this can only happen if the `break` was not
683             // inside a loop at all, which is caught by the
684             // loop-checking pass.
685             let err = self.tcx.ty_error_with_message(
686                 expr.span,
687                 "break was outside loop, but no error was emitted",
688             );
689
690             // We still need to assign a type to the inner expression to
691             // prevent the ICE in #43162.
692             if let Some(e) = expr_opt {
693                 self.check_expr_with_hint(e, err);
694
695                 // ... except when we try to 'break rust;'.
696                 // ICE this expression in particular (see #43162).
697                 if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
698                     if path.segments.len() == 1 && path.segments[0].ident.name == sym::rust {
699                         fatally_break_rust(self.tcx.sess);
700                     }
701                 }
702             }
703
704             // There was an error; make type-check fail.
705             err
706         }
707     }
708
709     fn check_expr_return(
710         &self,
711         expr_opt: Option<&'tcx hir::Expr<'tcx>>,
712         expr: &'tcx hir::Expr<'tcx>,
713     ) -> Ty<'tcx> {
714         if self.ret_coercion.is_none() {
715             let mut err = ReturnStmtOutsideOfFnBody {
716                 span: expr.span,
717                 encl_body_span: None,
718                 encl_fn_span: None,
719             };
720
721             let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);
722
723             if let Some(hir::Node::Item(hir::Item {
724                 kind: hir::ItemKind::Fn(..),
725                 span: encl_fn_span,
726                 ..
727             }))
728             | Some(hir::Node::TraitItem(hir::TraitItem {
729                 kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
730                 span: encl_fn_span,
731                 ..
732             }))
733             | Some(hir::Node::ImplItem(hir::ImplItem {
734                 kind: hir::ImplItemKind::Fn(..),
735                 span: encl_fn_span,
736                 ..
737             })) = self.tcx.hir().find_by_def_id(encl_item_id)
738             {
739                 // We are inside a function body, so reporting "return statement
740                 // outside of function body" needs an explanation.
741
742                 let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);
743
744                 // If this didn't hold, we would not have to report an error in
745                 // the first place.
746                 assert_ne!(hir::HirId::make_owner(encl_item_id), encl_body_owner_id);
747
748                 let encl_body_id = self.tcx.hir().body_owned_by(encl_body_owner_id);
749                 let encl_body = self.tcx.hir().body(encl_body_id);
750
751                 err.encl_body_span = Some(encl_body.value.span);
752                 err.encl_fn_span = Some(*encl_fn_span);
753             }
754
755             self.tcx.sess.emit_err(err);
756
757             if let Some(e) = expr_opt {
758                 // We still have to type-check `e` (issue #86188), but calling
759                 // `check_return_expr` only works inside fn bodies.
760                 self.check_expr(e);
761             }
762         } else if let Some(e) = expr_opt {
763             if self.ret_coercion_span.get().is_none() {
764                 self.ret_coercion_span.set(Some(e.span));
765             }
766             self.check_return_expr(e, true);
767         } else {
768             let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
769             if self.ret_coercion_span.get().is_none() {
770                 self.ret_coercion_span.set(Some(expr.span));
771             }
772             let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
773             if let Some((fn_decl, _)) = self.get_fn_decl(expr.hir_id) {
774                 coercion.coerce_forced_unit(
775                     self,
776                     &cause,
777                     &mut |db| {
778                         let span = fn_decl.output.span();
779                         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
780                             db.span_label(
781                                 span,
782                                 format!("expected `{snippet}` because of this return type"),
783                             );
784                         }
785                     },
786                     true,
787                 );
788             } else {
789                 coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
790             }
791         }
792         self.tcx.types.never
793     }
794
795     /// `explicit_return` is `true` if we're checking an explicit `return expr`,
796     /// and `false` if we're checking a trailing expression.
797     pub(super) fn check_return_expr(
798         &self,
799         return_expr: &'tcx hir::Expr<'tcx>,
800         explicit_return: bool,
801     ) {
802         let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
803             span_bug!(return_expr.span, "check_return_expr called outside fn body")
804         });
805
806         let ret_ty = ret_coercion.borrow().expected_ty();
807         let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
808         let mut span = return_expr.span;
809         // Use the span of the trailing expression for our cause,
810         // not the span of the entire function
811         if !explicit_return {
812             if let ExprKind::Block(body, _) = return_expr.kind && let Some(last_expr) = body.expr {
813                 span = last_expr.span;
814             }
815         }
816         ret_coercion.borrow_mut().coerce(
817             self,
818             &self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
819             return_expr,
820             return_expr_ty,
821         );
822     }
823
824     pub(crate) fn check_lhs_assignable(
825         &self,
826         lhs: &'tcx hir::Expr<'tcx>,
827         err_code: &'static str,
828         op_span: Span,
829     ) {
830         if lhs.is_syntactic_place_expr() {
831             return;
832         }
833
834         // FIXME: Make this use SessionDiagnostic once error codes can be dynamically set.
835         let mut err = self.tcx.sess.struct_span_err_with_code(
836             op_span,
837             "invalid left-hand side of assignment",
838             DiagnosticId::Error(err_code.into()),
839         );
840         err.span_label(lhs.span, "cannot assign to this expression");
841
842         self.comes_from_while_condition(lhs.hir_id, |expr| {
843             err.span_suggestion_verbose(
844                 expr.span.shrink_to_lo(),
845                 "you might have meant to use pattern destructuring",
846                 "let ".to_string(),
847                 Applicability::MachineApplicable,
848             );
849         });
850
851         err.emit();
852     }
853
854     // Check if an expression `original_expr_id` comes from the condition of a while loop,
855     // as opposed from the body of a while loop, which we can naively check by iterating
856     // parents until we find a loop...
857     pub(super) fn comes_from_while_condition(
858         &self,
859         original_expr_id: HirId,
860         then: impl FnOnce(&hir::Expr<'_>),
861     ) {
862         let mut parent = self.tcx.hir().get_parent_node(original_expr_id);
863         while let Some(node) = self.tcx.hir().find(parent) {
864             match node {
865                 hir::Node::Expr(hir::Expr {
866                     kind:
867                         hir::ExprKind::Loop(
868                             hir::Block {
869                                 expr:
870                                     Some(hir::Expr {
871                                         kind:
872                                             hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
873                                         ..
874                                     }),
875                                 ..
876                             },
877                             _,
878                             hir::LoopSource::While,
879                             _,
880                         ),
881                     ..
882                 }) => {
883                     // Check if our original expression is a child of the condition of a while loop
884                     let expr_is_ancestor = std::iter::successors(Some(original_expr_id), |id| {
885                         self.tcx.hir().find_parent_node(*id)
886                     })
887                     .take_while(|id| *id != parent)
888                     .any(|id| id == expr.hir_id);
889                     // if it is, then we have a situation like `while Some(0) = value.get(0) {`,
890                     // where `while let` was more likely intended.
891                     if expr_is_ancestor {
892                         then(expr);
893                     }
894                     break;
895                 }
896                 hir::Node::Item(_)
897                 | hir::Node::ImplItem(_)
898                 | hir::Node::TraitItem(_)
899                 | hir::Node::Crate(_) => break,
900                 _ => {
901                     parent = self.tcx.hir().get_parent_node(parent);
902                 }
903             }
904         }
905     }
906
907     // A generic function for checking the 'then' and 'else' clauses in an 'if'
908     // or 'if-else' expression.
909     fn check_then_else(
910         &self,
911         cond_expr: &'tcx hir::Expr<'tcx>,
912         then_expr: &'tcx hir::Expr<'tcx>,
913         opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
914         sp: Span,
915         orig_expected: Expectation<'tcx>,
916     ) -> Ty<'tcx> {
917         let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
918
919         self.warn_if_unreachable(
920             cond_expr.hir_id,
921             then_expr.span,
922             "block in `if` or `while` expression",
923         );
924
925         let cond_diverges = self.diverges.get();
926         self.diverges.set(Diverges::Maybe);
927
928         let expected = orig_expected.adjust_for_branches(self);
929         let then_ty = self.check_expr_with_expectation(then_expr, expected);
930         let then_diverges = self.diverges.get();
931         self.diverges.set(Diverges::Maybe);
932
933         // We've already taken the expected type's preferences
934         // into account when typing the `then` branch. To figure
935         // out the initial shot at a LUB, we thus only consider
936         // `expected` if it represents a *hard* constraint
937         // (`only_has_type`); otherwise, we just go with a
938         // fresh type variable.
939         let coerce_to_ty = expected.coercion_target_type(self, sp);
940         let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
941
942         coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
943
944         if let Some(else_expr) = opt_else_expr {
945             let else_ty = if sp.desugaring_kind() == Some(DesugaringKind::LetElse) {
946                 // todo introduce `check_expr_with_expectation(.., Expectation::LetElse)`
947                 //   for errors that point to the offending expression rather than the entire block.
948                 //   We could use `check_expr_eq_type(.., tcx.types.never)`, but then there is no
949                 //   way to detect that the expected type originated from let-else and provide
950                 //   a customized error.
951                 let else_ty = self.check_expr(else_expr);
952                 let cause = self.cause(else_expr.span, ObligationCauseCode::LetElse);
953
954                 if let Some(mut err) =
955                     self.demand_eqtype_with_origin(&cause, self.tcx.types.never, else_ty)
956                 {
957                     err.emit();
958                     self.tcx.ty_error()
959                 } else {
960                     else_ty
961                 }
962             } else {
963                 self.check_expr_with_expectation(else_expr, expected)
964             };
965             let else_diverges = self.diverges.get();
966
967             let opt_suggest_box_span = self.opt_suggest_box_span(else_ty, orig_expected);
968             let if_cause =
969                 self.if_cause(sp, then_expr, else_expr, then_ty, else_ty, opt_suggest_box_span);
970
971             coerce.coerce(self, &if_cause, else_expr, else_ty);
972
973             // We won't diverge unless both branches do (or the condition does).
974             self.diverges.set(cond_diverges | then_diverges & else_diverges);
975         } else {
976             self.if_fallback_coercion(sp, then_expr, &mut coerce);
977
978             // If the condition is false we can't diverge.
979             self.diverges.set(cond_diverges);
980         }
981
982         let result_ty = coerce.complete(self);
983         if cond_ty.references_error() { self.tcx.ty_error() } else { result_ty }
984     }
985
986     /// Type check assignment expression `expr` of form `lhs = rhs`.
987     /// The expected type is `()` and is passed to the function for the purposes of diagnostics.
988     fn check_expr_assign(
989         &self,
990         expr: &'tcx hir::Expr<'tcx>,
991         expected: Expectation<'tcx>,
992         lhs: &'tcx hir::Expr<'tcx>,
993         rhs: &'tcx hir::Expr<'tcx>,
994         span: Span,
995     ) -> Ty<'tcx> {
996         let expected_ty = expected.coercion_target_type(self, expr.span);
997         if expected_ty == self.tcx.types.bool {
998             // The expected type is `bool` but this will result in `()` so we can reasonably
999             // say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
1000             // The likely cause of this is `if foo = bar { .. }`.
1001             let actual_ty = self.tcx.mk_unit();
1002             let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap();
1003             let lhs_ty = self.check_expr(&lhs);
1004             let rhs_ty = self.check_expr(&rhs);
1005             let (applicability, eq) = if self.can_coerce(rhs_ty, lhs_ty) {
1006                 (Applicability::MachineApplicable, true)
1007             } else {
1008                 (Applicability::MaybeIncorrect, false)
1009             };
1010             if !lhs.is_syntactic_place_expr() && !matches!(lhs.kind, hir::ExprKind::Lit(_)) {
1011                 // Do not suggest `if let x = y` as `==` is way more likely to be the intention.
1012                 let hir = self.tcx.hir();
1013                 if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
1014                     hir.get(hir.get_parent_node(hir.get_parent_node(expr.hir_id)))
1015                 {
1016                     err.span_suggestion_verbose(
1017                         expr.span.shrink_to_lo(),
1018                         "you might have meant to use pattern matching",
1019                         "let ".to_string(),
1020                         applicability,
1021                     );
1022                 };
1023             }
1024             if eq {
1025                 err.span_suggestion_verbose(
1026                     span,
1027                     "you might have meant to compare for equality",
1028                     "==".to_string(),
1029                     applicability,
1030                 );
1031             }
1032
1033             // If the assignment expression itself is ill-formed, don't
1034             // bother emitting another error
1035             if lhs_ty.references_error() || rhs_ty.references_error() {
1036                 err.delay_as_bug()
1037             } else {
1038                 err.emit();
1039             }
1040             return self.tcx.ty_error();
1041         }
1042
1043         self.check_lhs_assignable(lhs, "E0070", span);
1044
1045         let lhs_ty = self.check_expr_with_needs(&lhs, Needs::MutPlace);
1046         let rhs_ty = self.check_expr_coercable_to_type(&rhs, lhs_ty, Some(lhs));
1047
1048         self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
1049
1050         if lhs_ty.references_error() || rhs_ty.references_error() {
1051             self.tcx.ty_error()
1052         } else {
1053             self.tcx.mk_unit()
1054         }
1055     }
1056
1057     fn check_expr_let(&self, let_expr: &'tcx hir::Let<'tcx>) -> Ty<'tcx> {
1058         // for let statements, this is done in check_stmt
1059         let init = let_expr.init;
1060         self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
1061         // otherwise check exactly as a let statement
1062         self.check_decl(let_expr.into());
1063         // but return a bool, for this is a boolean expression
1064         self.tcx.types.bool
1065     }
1066
1067     fn check_expr_loop(
1068         &self,
1069         body: &'tcx hir::Block<'tcx>,
1070         source: hir::LoopSource,
1071         expected: Expectation<'tcx>,
1072         expr: &'tcx hir::Expr<'tcx>,
1073     ) -> Ty<'tcx> {
1074         let coerce = match source {
1075             // you can only use break with a value from a normal `loop { }`
1076             hir::LoopSource::Loop => {
1077                 let coerce_to = expected.coercion_target_type(self, body.span);
1078                 Some(CoerceMany::new(coerce_to))
1079             }
1080
1081             hir::LoopSource::While | hir::LoopSource::ForLoop => None,
1082         };
1083
1084         let ctxt = BreakableCtxt {
1085             coerce,
1086             may_break: false, // Will get updated if/when we find a `break`.
1087         };
1088
1089         let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
1090             self.check_block_no_value(&body);
1091         });
1092
1093         if ctxt.may_break {
1094             // No way to know whether it's diverging because
1095             // of a `break` or an outer `break` or `return`.
1096             self.diverges.set(Diverges::Maybe);
1097         }
1098
1099         // If we permit break with a value, then result type is
1100         // the LUB of the breaks (possibly ! if none); else, it
1101         // is nil. This makes sense because infinite loops
1102         // (which would have type !) are only possible iff we
1103         // permit break with a value [1].
1104         if ctxt.coerce.is_none() && !ctxt.may_break {
1105             // [1]
1106             self.tcx.sess.delay_span_bug(body.span, "no coercion, but loop may not break");
1107         }
1108         ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.mk_unit())
1109     }
1110
1111     /// Checks a method call.
1112     fn check_method_call(
1113         &self,
1114         expr: &'tcx hir::Expr<'tcx>,
1115         segment: &hir::PathSegment<'_>,
1116         args: &'tcx [hir::Expr<'tcx>],
1117         expected: Expectation<'tcx>,
1118     ) -> Ty<'tcx> {
1119         let rcvr = &args[0];
1120         let rcvr_t = self.check_expr(&rcvr);
1121         // no need to check for bot/err -- callee does that
1122         let rcvr_t = self.structurally_resolved_type(args[0].span, rcvr_t);
1123         let span = segment.ident.span;
1124
1125         let method = match self.lookup_method(rcvr_t, segment, span, expr, rcvr, args) {
1126             Ok(method) => {
1127                 // We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
1128                 // trigger this codepath causing `structurally_resolved_type` to emit an error.
1129
1130                 self.write_method_call(expr.hir_id, method);
1131                 Ok(method)
1132             }
1133             Err(error) => {
1134                 if segment.ident.name != kw::Empty {
1135                     if let Some(mut err) = self.report_method_error(
1136                         span,
1137                         rcvr_t,
1138                         segment.ident,
1139                         SelfSource::MethodCall(&args[0]),
1140                         error,
1141                         Some(args),
1142                     ) {
1143                         err.emit();
1144                     }
1145                 }
1146                 Err(())
1147             }
1148         };
1149
1150         // Call the generic checker.
1151         self.check_method_argument_types(
1152             span,
1153             expr,
1154             method,
1155             &args[1..],
1156             DontTupleArguments,
1157             expected,
1158         )
1159     }
1160
1161     fn check_expr_cast(
1162         &self,
1163         e: &'tcx hir::Expr<'tcx>,
1164         t: &'tcx hir::Ty<'tcx>,
1165         expr: &'tcx hir::Expr<'tcx>,
1166     ) -> Ty<'tcx> {
1167         // Find the type of `e`. Supply hints based on the type we are casting to,
1168         // if appropriate.
1169         let t_cast = self.to_ty_saving_user_provided_ty(t);
1170         let t_cast = self.resolve_vars_if_possible(t_cast);
1171         let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
1172         let t_expr = self.resolve_vars_if_possible(t_expr);
1173
1174         // Eagerly check for some obvious errors.
1175         if t_expr.references_error() || t_cast.references_error() {
1176             self.tcx.ty_error()
1177         } else {
1178             // Defer other checks until we're done type checking.
1179             let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
1180             match cast::CastCheck::new(self, e, t_expr, t_cast, t.span, expr.span) {
1181                 Ok(cast_check) => {
1182                     debug!(
1183                         "check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
1184                         t_cast, t_expr, cast_check,
1185                     );
1186                     deferred_cast_checks.push(cast_check);
1187                     t_cast
1188                 }
1189                 Err(_) => self.tcx.ty_error(),
1190             }
1191         }
1192     }
1193
1194     fn check_expr_array(
1195         &self,
1196         args: &'tcx [hir::Expr<'tcx>],
1197         expected: Expectation<'tcx>,
1198         expr: &'tcx hir::Expr<'tcx>,
1199     ) -> Ty<'tcx> {
1200         let element_ty = if !args.is_empty() {
1201             let coerce_to = expected
1202                 .to_option(self)
1203                 .and_then(|uty| match *uty.kind() {
1204                     ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1205                     _ => None,
1206                 })
1207                 .unwrap_or_else(|| {
1208                     self.next_ty_var(TypeVariableOrigin {
1209                         kind: TypeVariableOriginKind::TypeInference,
1210                         span: expr.span,
1211                     })
1212                 });
1213             let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
1214             assert_eq!(self.diverges.get(), Diverges::Maybe);
1215             for e in args {
1216                 let e_ty = self.check_expr_with_hint(e, coerce_to);
1217                 let cause = self.misc(e.span);
1218                 coerce.coerce(self, &cause, e, e_ty);
1219             }
1220             coerce.complete(self)
1221         } else {
1222             self.next_ty_var(TypeVariableOrigin {
1223                 kind: TypeVariableOriginKind::TypeInference,
1224                 span: expr.span,
1225             })
1226         };
1227         self.tcx.mk_array(element_ty, args.len() as u64)
1228     }
1229
1230     fn check_expr_const_block(
1231         &self,
1232         anon_const: &'tcx hir::AnonConst,
1233         expected: Expectation<'tcx>,
1234         _expr: &'tcx hir::Expr<'tcx>,
1235     ) -> Ty<'tcx> {
1236         let body = self.tcx.hir().body(anon_const.body);
1237
1238         // Create a new function context.
1239         let fcx = FnCtxt::new(self, self.param_env.with_const(), body.value.hir_id);
1240         crate::check::GatherLocalsVisitor::new(&fcx).visit_body(body);
1241
1242         let ty = fcx.check_expr_with_expectation(&body.value, expected);
1243         fcx.require_type_is_sized(ty, body.value.span, traits::ConstSized);
1244         fcx.write_ty(anon_const.hir_id, ty);
1245         ty
1246     }
1247
1248     fn check_expr_repeat(
1249         &self,
1250         element: &'tcx hir::Expr<'tcx>,
1251         count: &'tcx hir::ArrayLen,
1252         expected: Expectation<'tcx>,
1253         _expr: &'tcx hir::Expr<'tcx>,
1254     ) -> Ty<'tcx> {
1255         let tcx = self.tcx;
1256         let count = self.array_length_to_const(count);
1257
1258         let uty = match expected {
1259             ExpectHasType(uty) => match *uty.kind() {
1260                 ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1261                 _ => None,
1262             },
1263             _ => None,
1264         };
1265
1266         let (element_ty, t) = match uty {
1267             Some(uty) => {
1268                 self.check_expr_coercable_to_type(&element, uty, None);
1269                 (uty, uty)
1270             }
1271             None => {
1272                 let ty = self.next_ty_var(TypeVariableOrigin {
1273                     kind: TypeVariableOriginKind::MiscVariable,
1274                     span: element.span,
1275                 });
1276                 let element_ty = self.check_expr_has_type_or_error(&element, ty, |_| {});
1277                 (element_ty, ty)
1278             }
1279         };
1280
1281         if element_ty.references_error() {
1282             return tcx.ty_error();
1283         }
1284
1285         tcx.mk_ty(ty::Array(t, count))
1286     }
1287
1288     fn check_expr_tuple(
1289         &self,
1290         elts: &'tcx [hir::Expr<'tcx>],
1291         expected: Expectation<'tcx>,
1292         expr: &'tcx hir::Expr<'tcx>,
1293     ) -> Ty<'tcx> {
1294         let flds = expected.only_has_type(self).and_then(|ty| {
1295             let ty = self.resolve_vars_with_obligations(ty);
1296             match ty.kind() {
1297                 ty::Tuple(flds) => Some(&flds[..]),
1298                 _ => None,
1299             }
1300         });
1301
1302         let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
1303             Some(fs) if i < fs.len() => {
1304                 let ety = fs[i];
1305                 self.check_expr_coercable_to_type(&e, ety, None);
1306                 ety
1307             }
1308             _ => self.check_expr_with_expectation(&e, NoExpectation),
1309         });
1310         let tuple = self.tcx.mk_tup(elt_ts_iter);
1311         if tuple.references_error() {
1312             self.tcx.ty_error()
1313         } else {
1314             self.require_type_is_sized(tuple, expr.span, traits::TupleInitializerSized);
1315             tuple
1316         }
1317     }
1318
1319     fn check_expr_struct(
1320         &self,
1321         expr: &hir::Expr<'_>,
1322         expected: Expectation<'tcx>,
1323         qpath: &QPath<'_>,
1324         fields: &'tcx [hir::ExprField<'tcx>],
1325         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1326     ) -> Ty<'tcx> {
1327         // Find the relevant variant
1328         let Some((variant, adt_ty)) = self.check_struct_path(qpath, expr.hir_id) else {
1329             self.check_struct_fields_on_error(fields, base_expr);
1330             return self.tcx.ty_error();
1331         };
1332
1333         // Prohibit struct expressions when non-exhaustive flag is set.
1334         let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
1335         if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
1336             self.tcx
1337                 .sess
1338                 .emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
1339         }
1340
1341         self.check_expr_struct_fields(
1342             adt_ty,
1343             expected,
1344             expr.hir_id,
1345             qpath.span(),
1346             variant,
1347             fields,
1348             base_expr,
1349             expr.span,
1350         );
1351
1352         self.require_type_is_sized(adt_ty, expr.span, traits::StructInitializerSized);
1353         adt_ty
1354     }
1355
1356     fn check_expr_struct_fields(
1357         &self,
1358         adt_ty: Ty<'tcx>,
1359         expected: Expectation<'tcx>,
1360         expr_id: hir::HirId,
1361         span: Span,
1362         variant: &'tcx ty::VariantDef,
1363         ast_fields: &'tcx [hir::ExprField<'tcx>],
1364         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1365         expr_span: Span,
1366     ) {
1367         let tcx = self.tcx;
1368
1369         let adt_ty_hint = self
1370             .expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty])
1371             .get(0)
1372             .cloned()
1373             .unwrap_or(adt_ty);
1374         // re-link the regions that EIfEO can erase.
1375         self.demand_eqtype(span, adt_ty_hint, adt_ty);
1376
1377         let (substs, adt_kind, kind_name) = match adt_ty.kind() {
1378             ty::Adt(adt, substs) => (substs, adt.adt_kind(), adt.variant_descr()),
1379             _ => span_bug!(span, "non-ADT passed to check_expr_struct_fields"),
1380         };
1381
1382         let mut remaining_fields = variant
1383             .fields
1384             .iter()
1385             .enumerate()
1386             .map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
1387             .collect::<FxHashMap<_, _>>();
1388
1389         let mut seen_fields = FxHashMap::default();
1390
1391         let mut error_happened = false;
1392
1393         // Type-check each field.
1394         for field in ast_fields {
1395             let ident = tcx.adjust_ident(field.ident, variant.def_id);
1396             let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
1397                 seen_fields.insert(ident, field.span);
1398                 self.write_field_index(field.hir_id, i);
1399
1400                 // We don't look at stability attributes on
1401                 // struct-like enums (yet...), but it's definitely not
1402                 // a bug to have constructed one.
1403                 if adt_kind != AdtKind::Enum {
1404                     tcx.check_stability(v_field.did, Some(expr_id), field.span, None);
1405                 }
1406
1407                 self.field_ty(field.span, v_field, substs)
1408             } else {
1409                 error_happened = true;
1410                 if let Some(prev_span) = seen_fields.get(&ident) {
1411                     tcx.sess.emit_err(FieldMultiplySpecifiedInInitializer {
1412                         span: field.ident.span,
1413                         prev_span: *prev_span,
1414                         ident,
1415                     });
1416                 } else {
1417                     self.report_unknown_field(
1418                         adt_ty, variant, field, ast_fields, kind_name, expr_span,
1419                     );
1420                 }
1421
1422                 tcx.ty_error()
1423             };
1424
1425             // Make sure to give a type to the field even if there's
1426             // an error, so we can continue type-checking.
1427             self.check_expr_coercable_to_type(&field.expr, field_type, None);
1428         }
1429
1430         // Make sure the programmer specified correct number of fields.
1431         if kind_name == "union" {
1432             if ast_fields.len() != 1 {
1433                 struct_span_err!(
1434                     tcx.sess,
1435                     span,
1436                     E0784,
1437                     "union expressions should have exactly one field",
1438                 )
1439                 .emit();
1440             }
1441         }
1442
1443         // If check_expr_struct_fields hit an error, do not attempt to populate
1444         // the fields with the base_expr. This could cause us to hit errors later
1445         // when certain fields are assumed to exist that in fact do not.
1446         if error_happened {
1447             return;
1448         }
1449
1450         if let Some(base_expr) = base_expr {
1451             // FIXME: We are currently creating two branches here in order to maintain
1452             // consistency. But they should be merged as much as possible.
1453             let fru_tys = if self.tcx.features().type_changing_struct_update {
1454                 let base_ty = self.check_expr(base_expr);
1455                 match adt_ty.kind() {
1456                     ty::Adt(adt, substs) if adt.is_struct() => {
1457                         match base_ty.kind() {
1458                             ty::Adt(base_adt, base_subs) if adt == base_adt => {
1459                                 variant
1460                                     .fields
1461                                     .iter()
1462                                     .map(|f| {
1463                                         let fru_ty = self.normalize_associated_types_in(
1464                                             expr_span,
1465                                             self.field_ty(base_expr.span, f, base_subs),
1466                                         );
1467                                         let ident = self
1468                                             .tcx
1469                                             .adjust_ident(f.ident(self.tcx), variant.def_id);
1470                                         if let Some(_) = remaining_fields.remove(&ident) {
1471                                             let target_ty =
1472                                                 self.field_ty(base_expr.span, f, substs);
1473                                             let cause = self.misc(base_expr.span);
1474                                             match self
1475                                                 .at(&cause, self.param_env)
1476                                                 .sup(target_ty, fru_ty)
1477                                             {
1478                                                 Ok(InferOk { obligations, value: () }) => {
1479                                                     self.register_predicates(obligations)
1480                                                 }
1481                                                 // FIXME: Need better diagnostics for `FieldMisMatch` error
1482                                                 Err(_) => {
1483                                                     self.report_mismatched_types(
1484                                                         &cause,
1485                                                         target_ty,
1486                                                         fru_ty,
1487                                                         FieldMisMatch(variant.name, ident.name),
1488                                                     )
1489                                                     .emit();
1490                                                 }
1491                                             }
1492                                         }
1493                                         fru_ty
1494                                     })
1495                                     .collect()
1496                             }
1497                             _ => {
1498                                 self.report_mismatched_types(
1499                                     &self.misc(base_expr.span),
1500                                     adt_ty,
1501                                     base_ty,
1502                                     Sorts(ExpectedFound::new(true, adt_ty, base_ty)),
1503                                 )
1504                                 .emit();
1505                                 return;
1506                             }
1507                         }
1508                     }
1509                     _ => {
1510                         self.tcx
1511                             .sess
1512                             .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
1513                         return;
1514                     }
1515                 }
1516             } else {
1517                 self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
1518                     let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
1519                     let same_adt = match (adt_ty.kind(), base_ty.kind()) {
1520                         (ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt => true,
1521                         _ => false,
1522                     };
1523                     if self.tcx.sess.is_nightly_build() && same_adt {
1524                         feature_err(
1525                             &self.tcx.sess.parse_sess,
1526                             sym::type_changing_struct_update,
1527                             base_expr.span,
1528                             "type changing struct updating is experimental",
1529                         )
1530                         .emit();
1531                     }
1532                 });
1533                 match adt_ty.kind() {
1534                     ty::Adt(adt, substs) if adt.is_struct() => variant
1535                         .fields
1536                         .iter()
1537                         .map(|f| {
1538                             self.normalize_associated_types_in(expr_span, f.ty(self.tcx, substs))
1539                         })
1540                         .collect(),
1541                     _ => {
1542                         self.tcx
1543                             .sess
1544                             .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
1545                         return;
1546                     }
1547                 }
1548             };
1549             self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr_id, fru_tys);
1550         } else if kind_name != "union" && !remaining_fields.is_empty() {
1551             let inaccessible_remaining_fields = remaining_fields.iter().any(|(_, (_, field))| {
1552                 !field.vis.is_accessible_from(tcx.parent_module(expr_id).to_def_id(), tcx)
1553             });
1554
1555             if inaccessible_remaining_fields {
1556                 self.report_inaccessible_fields(adt_ty, span);
1557             } else {
1558                 self.report_missing_fields(
1559                     adt_ty,
1560                     span,
1561                     remaining_fields,
1562                     variant,
1563                     ast_fields,
1564                     substs,
1565                 );
1566             }
1567         }
1568     }
1569
1570     fn check_struct_fields_on_error(
1571         &self,
1572         fields: &'tcx [hir::ExprField<'tcx>],
1573         base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
1574     ) {
1575         for field in fields {
1576             self.check_expr(&field.expr);
1577         }
1578         if let Some(base) = *base_expr {
1579             self.check_expr(&base);
1580         }
1581     }
1582
1583     /// Report an error for a struct field expression when there are fields which aren't provided.
1584     ///
1585     /// ```text
1586     /// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
1587     ///  --> src/main.rs:8:5
1588     ///   |
1589     /// 8 |     foo::Foo {};
1590     ///   |     ^^^^^^^^ missing `you_can_use_this_field`
1591     ///
1592     /// error: aborting due to previous error
1593     /// ```
1594     fn report_missing_fields(
1595         &self,
1596         adt_ty: Ty<'tcx>,
1597         span: Span,
1598         remaining_fields: FxHashMap<Ident, (usize, &ty::FieldDef)>,
1599         variant: &'tcx ty::VariantDef,
1600         ast_fields: &'tcx [hir::ExprField<'tcx>],
1601         substs: SubstsRef<'tcx>,
1602     ) {
1603         let len = remaining_fields.len();
1604
1605         let mut displayable_field_names: Vec<&str> =
1606             remaining_fields.keys().map(|ident| ident.as_str()).collect();
1607         // sorting &str primitives here, sort_unstable is ok
1608         displayable_field_names.sort_unstable();
1609
1610         let mut truncated_fields_error = String::new();
1611         let remaining_fields_names = match &displayable_field_names[..] {
1612             [field1] => format!("`{}`", field1),
1613             [field1, field2] => format!("`{field1}` and `{field2}`"),
1614             [field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
1615             _ => {
1616                 truncated_fields_error =
1617                     format!(" and {} other field{}", len - 3, pluralize!(len - 3));
1618                 displayable_field_names
1619                     .iter()
1620                     .take(3)
1621                     .map(|n| format!("`{n}`"))
1622                     .collect::<Vec<_>>()
1623                     .join(", ")
1624             }
1625         };
1626
1627         let mut err = struct_span_err!(
1628             self.tcx.sess,
1629             span,
1630             E0063,
1631             "missing field{} {}{} in initializer of `{}`",
1632             pluralize!(len),
1633             remaining_fields_names,
1634             truncated_fields_error,
1635             adt_ty
1636         );
1637         err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
1638
1639         // If the last field is a range literal, but it isn't supposed to be, then they probably
1640         // meant to use functional update syntax.
1641         //
1642         // I don't use 'is_range_literal' because only double-sided, half-open ranges count.
1643         if let Some((
1644             last,
1645             ExprKind::Struct(
1646                 QPath::LangItem(LangItem::Range, ..),
1647                 &[ref range_start, ref range_end],
1648                 _,
1649             ),
1650         )) = ast_fields.last().map(|last| (last, &last.expr.kind)) &&
1651         let variant_field =
1652             variant.fields.iter().find(|field| field.ident(self.tcx) == last.ident) &&
1653         let range_def_id = self.tcx.lang_items().range_struct() &&
1654         variant_field
1655             .and_then(|field| field.ty(self.tcx, substs).ty_adt_def())
1656             .map(|adt| adt.did())
1657             != range_def_id
1658         {
1659             let instead = self
1660                 .tcx
1661                 .sess
1662                 .source_map()
1663                 .span_to_snippet(range_end.expr.span)
1664                 .map(|s| format!(" from `{s}`"))
1665                 .unwrap_or(String::new());
1666             err.span_suggestion(
1667                 range_start.span.shrink_to_hi(),
1668                 &format!("to set the remaining fields{instead}, separate the last named field with a comma"),
1669                 ",".to_string(),
1670                 Applicability::MaybeIncorrect,
1671             );
1672         }
1673
1674         err.emit();
1675     }
1676
1677     /// Report an error for a struct field expression when there are invisible fields.
1678     ///
1679     /// ```text
1680     /// error: cannot construct `Foo` with struct literal syntax due to inaccessible fields
1681     ///  --> src/main.rs:8:5
1682     ///   |
1683     /// 8 |     foo::Foo {};
1684     ///   |     ^^^^^^^^
1685     ///
1686     /// error: aborting due to previous error
1687     /// ```
1688     fn report_inaccessible_fields(&self, adt_ty: Ty<'tcx>, span: Span) {
1689         self.tcx.sess.span_err(
1690             span,
1691             &format!(
1692                 "cannot construct `{adt_ty}` with struct literal syntax due to inaccessible fields",
1693             ),
1694         );
1695     }
1696
1697     fn report_unknown_field(
1698         &self,
1699         ty: Ty<'tcx>,
1700         variant: &'tcx ty::VariantDef,
1701         field: &hir::ExprField<'_>,
1702         skip_fields: &[hir::ExprField<'_>],
1703         kind_name: &str,
1704         expr_span: Span,
1705     ) {
1706         if variant.is_recovered() {
1707             self.set_tainted_by_errors();
1708             return;
1709         }
1710         let mut err = self.type_error_struct_with_diag(
1711             field.ident.span,
1712             |actual| match ty.kind() {
1713                 ty::Adt(adt, ..) if adt.is_enum() => struct_span_err!(
1714                     self.tcx.sess,
1715                     field.ident.span,
1716                     E0559,
1717                     "{} `{}::{}` has no field named `{}`",
1718                     kind_name,
1719                     actual,
1720                     variant.name,
1721                     field.ident
1722                 ),
1723                 _ => struct_span_err!(
1724                     self.tcx.sess,
1725                     field.ident.span,
1726                     E0560,
1727                     "{} `{}` has no field named `{}`",
1728                     kind_name,
1729                     actual,
1730                     field.ident
1731                 ),
1732             },
1733             ty,
1734         );
1735
1736         let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
1737         match variant.ctor_kind {
1738             CtorKind::Fn => match ty.kind() {
1739                 ty::Adt(adt, ..) if adt.is_enum() => {
1740                     err.span_label(
1741                         variant_ident_span,
1742                         format!(
1743                             "`{adt}::{variant}` defined here",
1744                             adt = ty,
1745                             variant = variant.name,
1746                         ),
1747                     );
1748                     err.span_label(field.ident.span, "field does not exist");
1749                     err.span_suggestion_verbose(
1750                         expr_span,
1751                         &format!(
1752                             "`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
1753                             adt = ty,
1754                             variant = variant.name,
1755                         ),
1756                         format!(
1757                             "{adt}::{variant}(/* fields */)",
1758                             adt = ty,
1759                             variant = variant.name,
1760                         ),
1761                         Applicability::HasPlaceholders,
1762                     );
1763                 }
1764                 _ => {
1765                     err.span_label(variant_ident_span, format!("`{adt}` defined here", adt = ty));
1766                     err.span_label(field.ident.span, "field does not exist");
1767                     err.span_suggestion_verbose(
1768                         expr_span,
1769                         &format!(
1770                             "`{adt}` is a tuple {kind_name}, use the appropriate syntax",
1771                             adt = ty,
1772                             kind_name = kind_name,
1773                         ),
1774                         format!("{adt}(/* fields */)", adt = ty),
1775                         Applicability::HasPlaceholders,
1776                     );
1777                 }
1778             },
1779             _ => {
1780                 // prevent all specified fields from being suggested
1781                 let skip_fields = skip_fields.iter().map(|x| x.ident.name);
1782                 if let Some(field_name) = self.suggest_field_name(
1783                     variant,
1784                     field.ident.name,
1785                     skip_fields.collect(),
1786                     expr_span,
1787                 ) {
1788                     err.span_suggestion(
1789                         field.ident.span,
1790                         "a field with a similar name exists",
1791                         field_name.to_string(),
1792                         Applicability::MaybeIncorrect,
1793                     );
1794                 } else {
1795                     match ty.kind() {
1796                         ty::Adt(adt, ..) => {
1797                             if adt.is_enum() {
1798                                 err.span_label(
1799                                     field.ident.span,
1800                                     format!("`{}::{}` does not have this field", ty, variant.name),
1801                                 );
1802                             } else {
1803                                 err.span_label(
1804                                     field.ident.span,
1805                                     format!("`{ty}` does not have this field"),
1806                                 );
1807                             }
1808                             let available_field_names =
1809                                 self.available_field_names(variant, expr_span);
1810                             if !available_field_names.is_empty() {
1811                                 err.note(&format!(
1812                                     "available fields are: {}",
1813                                     self.name_series_display(available_field_names)
1814                                 ));
1815                             }
1816                         }
1817                         _ => bug!("non-ADT passed to report_unknown_field"),
1818                     }
1819                 };
1820             }
1821         }
1822         err.emit();
1823     }
1824
1825     // Return a hint about the closest match in field names
1826     fn suggest_field_name(
1827         &self,
1828         variant: &'tcx ty::VariantDef,
1829         field: Symbol,
1830         skip: Vec<Symbol>,
1831         // The span where stability will be checked
1832         span: Span,
1833     ) -> Option<Symbol> {
1834         let names = variant
1835             .fields
1836             .iter()
1837             .filter_map(|field| {
1838                 // ignore already set fields and private fields from non-local crates
1839                 // and unstable fields.
1840                 if skip.iter().any(|&x| x == field.name)
1841                     || (!variant.def_id.is_local() && !field.vis.is_public())
1842                     || matches!(
1843                         self.tcx.eval_stability(field.did, None, span, None),
1844                         stability::EvalResult::Deny { .. }
1845                     )
1846                 {
1847                     None
1848                 } else {
1849                     Some(field.name)
1850                 }
1851             })
1852             .collect::<Vec<Symbol>>();
1853
1854         find_best_match_for_name(&names, field, None)
1855     }
1856
1857     fn available_field_names(
1858         &self,
1859         variant: &'tcx ty::VariantDef,
1860         access_span: Span,
1861     ) -> Vec<Symbol> {
1862         variant
1863             .fields
1864             .iter()
1865             .filter(|field| {
1866                 let def_scope = self
1867                     .tcx
1868                     .adjust_ident_and_get_scope(field.ident(self.tcx), variant.def_id, self.body_id)
1869                     .1;
1870                 field.vis.is_accessible_from(def_scope, self.tcx)
1871                     && !matches!(
1872                         self.tcx.eval_stability(field.did, None, access_span, None),
1873                         stability::EvalResult::Deny { .. }
1874                     )
1875             })
1876             .filter(|field| !self.tcx.is_doc_hidden(field.did))
1877             .map(|field| field.name)
1878             .collect()
1879     }
1880
1881     fn name_series_display(&self, names: Vec<Symbol>) -> String {
1882         // dynamic limit, to never omit just one field
1883         let limit = if names.len() == 6 { 6 } else { 5 };
1884         let mut display =
1885             names.iter().take(limit).map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
1886         if names.len() > limit {
1887             display = format!("{} ... and {} others", display, names.len() - limit);
1888         }
1889         display
1890     }
1891
1892     // Check field access expressions
1893     fn check_field(
1894         &self,
1895         expr: &'tcx hir::Expr<'tcx>,
1896         base: &'tcx hir::Expr<'tcx>,
1897         field: Ident,
1898     ) -> Ty<'tcx> {
1899         debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
1900         let expr_t = self.check_expr(base);
1901         let expr_t = self.structurally_resolved_type(base.span, expr_t);
1902         let mut private_candidate = None;
1903         let mut autoderef = self.autoderef(expr.span, expr_t);
1904         while let Some((base_t, _)) = autoderef.next() {
1905             debug!("base_t: {:?}", base_t);
1906             match base_t.kind() {
1907                 ty::Adt(base_def, substs) if !base_def.is_enum() => {
1908                     debug!("struct named {:?}", base_t);
1909                     let (ident, def_scope) =
1910                         self.tcx.adjust_ident_and_get_scope(field, base_def.did(), self.body_id);
1911                     let fields = &base_def.non_enum_variant().fields;
1912                     if let Some(index) = fields
1913                         .iter()
1914                         .position(|f| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
1915                     {
1916                         let field = &fields[index];
1917                         let field_ty = self.field_ty(expr.span, field, substs);
1918                         // Save the index of all fields regardless of their visibility in case
1919                         // of error recovery.
1920                         self.write_field_index(expr.hir_id, index);
1921                         let adjustments = self.adjust_steps(&autoderef);
1922                         if field.vis.is_accessible_from(def_scope, self.tcx) {
1923                             self.apply_adjustments(base, adjustments);
1924                             self.register_predicates(autoderef.into_obligations());
1925
1926                             self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
1927                             return field_ty;
1928                         }
1929                         private_candidate = Some((adjustments, base_def.did(), field_ty));
1930                     }
1931                 }
1932                 ty::Tuple(tys) => {
1933                     let fstr = field.as_str();
1934                     if let Ok(index) = fstr.parse::<usize>() {
1935                         if fstr == index.to_string() {
1936                             if let Some(&field_ty) = tys.get(index) {
1937                                 let adjustments = self.adjust_steps(&autoderef);
1938                                 self.apply_adjustments(base, adjustments);
1939                                 self.register_predicates(autoderef.into_obligations());
1940
1941                                 self.write_field_index(expr.hir_id, index);
1942                                 return field_ty;
1943                             }
1944                         }
1945                     }
1946                 }
1947                 _ => {}
1948             }
1949         }
1950         self.structurally_resolved_type(autoderef.span(), autoderef.final_ty(false));
1951
1952         if let Some((adjustments, did, field_ty)) = private_candidate {
1953             // (#90483) apply adjustments to avoid ExprUseVisitor from
1954             // creating erroneous projection.
1955             self.apply_adjustments(base, adjustments);
1956             self.ban_private_field_access(expr, expr_t, field, did);
1957             return field_ty;
1958         }
1959
1960         if field.name == kw::Empty {
1961         } else if self.method_exists(field, expr_t, expr.hir_id, true) {
1962             self.ban_take_value_of_method(expr, expr_t, field);
1963         } else if !expr_t.is_primitive_ty() {
1964             self.ban_nonexisting_field(field, base, expr, expr_t);
1965         } else {
1966             type_error_struct!(
1967                 self.tcx().sess,
1968                 field.span,
1969                 expr_t,
1970                 E0610,
1971                 "`{expr_t}` is a primitive type and therefore doesn't have fields",
1972             )
1973             .emit();
1974         }
1975
1976         self.tcx().ty_error()
1977     }
1978
1979     fn suggest_await_on_field_access(
1980         &self,
1981         err: &mut Diagnostic,
1982         field_ident: Ident,
1983         base: &'tcx hir::Expr<'tcx>,
1984         ty: Ty<'tcx>,
1985     ) {
1986         let output_ty = match self.infcx.get_impl_future_output_ty(ty) {
1987             Some(output_ty) => self.resolve_vars_if_possible(output_ty),
1988             _ => return,
1989         };
1990         let mut add_label = true;
1991         if let ty::Adt(def, _) = output_ty.skip_binder().kind() {
1992             // no field access on enum type
1993             if !def.is_enum() {
1994                 if def
1995                     .non_enum_variant()
1996                     .fields
1997                     .iter()
1998                     .any(|field| field.ident(self.tcx) == field_ident)
1999                 {
2000                     add_label = false;
2001                     err.span_label(
2002                         field_ident.span,
2003                         "field not available in `impl Future`, but it is available in its `Output`",
2004                     );
2005                     err.span_suggestion_verbose(
2006                         base.span.shrink_to_hi(),
2007                         "consider `await`ing on the `Future` and access the field of its `Output`",
2008                         ".await".to_string(),
2009                         Applicability::MaybeIncorrect,
2010                     );
2011                 }
2012             }
2013         }
2014         if add_label {
2015             err.span_label(field_ident.span, &format!("field not found in `{ty}`"));
2016         }
2017     }
2018
2019     fn ban_nonexisting_field(
2020         &self,
2021         field: Ident,
2022         base: &'tcx hir::Expr<'tcx>,
2023         expr: &'tcx hir::Expr<'tcx>,
2024         expr_t: Ty<'tcx>,
2025     ) {
2026         debug!(
2027             "ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, expr_ty={:?}",
2028             field, base, expr, expr_t
2029         );
2030         let mut err = self.no_such_field_err(field, expr_t, base.hir_id);
2031
2032         match *expr_t.peel_refs().kind() {
2033             ty::Array(_, len) => {
2034                 self.maybe_suggest_array_indexing(&mut err, expr, base, field, len);
2035             }
2036             ty::RawPtr(..) => {
2037                 self.suggest_first_deref_field(&mut err, expr, base, field);
2038             }
2039             ty::Adt(def, _) if !def.is_enum() => {
2040                 self.suggest_fields_on_recordish(&mut err, def, field, expr.span);
2041             }
2042             ty::Param(param_ty) => {
2043                 self.point_at_param_definition(&mut err, param_ty);
2044             }
2045             ty::Opaque(_, _) => {
2046                 self.suggest_await_on_field_access(&mut err, field, base, expr_t.peel_refs());
2047             }
2048             _ => {}
2049         }
2050
2051         if field.name == kw::Await {
2052             // We know by construction that `<expr>.await` is either on Rust 2015
2053             // or results in `ExprKind::Await`. Suggest switching the edition to 2018.
2054             err.note("to `.await` a `Future`, switch to Rust 2018 or later");
2055             err.help_use_latest_edition();
2056         }
2057
2058         err.emit();
2059     }
2060
2061     fn ban_private_field_access(
2062         &self,
2063         expr: &hir::Expr<'_>,
2064         expr_t: Ty<'tcx>,
2065         field: Ident,
2066         base_did: DefId,
2067     ) {
2068         let struct_path = self.tcx().def_path_str(base_did);
2069         let kind_name = self.tcx().def_kind(base_did).descr(base_did);
2070         let mut err = struct_span_err!(
2071             self.tcx().sess,
2072             field.span,
2073             E0616,
2074             "field `{field}` of {kind_name} `{struct_path}` is private",
2075         );
2076         err.span_label(field.span, "private field");
2077         // Also check if an accessible method exists, which is often what is meant.
2078         if self.method_exists(field, expr_t, expr.hir_id, false) && !self.expr_in_place(expr.hir_id)
2079         {
2080             self.suggest_method_call(
2081                 &mut err,
2082                 &format!("a method `{field}` also exists, call it with parentheses"),
2083                 field,
2084                 expr_t,
2085                 expr,
2086                 None,
2087             );
2088         }
2089         err.emit();
2090     }
2091
2092     fn ban_take_value_of_method(&self, expr: &hir::Expr<'_>, expr_t: Ty<'tcx>, field: Ident) {
2093         let mut err = type_error_struct!(
2094             self.tcx().sess,
2095             field.span,
2096             expr_t,
2097             E0615,
2098             "attempted to take value of method `{field}` on type `{expr_t}`",
2099         );
2100         err.span_label(field.span, "method, not a field");
2101         let expr_is_call =
2102             if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
2103                 self.tcx.hir().get(self.tcx.hir().get_parent_node(expr.hir_id))
2104             {
2105                 expr.hir_id == callee.hir_id
2106             } else {
2107                 false
2108             };
2109         let expr_snippet =
2110             self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or(String::new());
2111         let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
2112         let after_open = expr.span.lo() + rustc_span::BytePos(1);
2113         let before_close = expr.span.hi() - rustc_span::BytePos(1);
2114
2115         if expr_is_call && is_wrapped {
2116             err.multipart_suggestion(
2117                 "remove wrapping parentheses to call the method",
2118                 vec![
2119                     (expr.span.with_hi(after_open), String::new()),
2120                     (expr.span.with_lo(before_close), String::new()),
2121                 ],
2122                 Applicability::MachineApplicable,
2123             );
2124         } else if !self.expr_in_place(expr.hir_id) {
2125             // Suggest call parentheses inside the wrapping parentheses
2126             let span = if is_wrapped {
2127                 expr.span.with_lo(after_open).with_hi(before_close)
2128             } else {
2129                 expr.span
2130             };
2131             self.suggest_method_call(
2132                 &mut err,
2133                 "use parentheses to call the method",
2134                 field,
2135                 expr_t,
2136                 expr,
2137                 Some(span),
2138             );
2139         } else {
2140             let mut found = false;
2141
2142             if let ty::RawPtr(ty_and_mut) = expr_t.kind()
2143                 && let ty::Adt(adt_def, _) = ty_and_mut.ty.kind()
2144             {
2145                 if adt_def.variants().len() == 1
2146                     && adt_def
2147                         .variants()
2148                         .iter()
2149                         .next()
2150                         .unwrap()
2151                         .fields
2152                         .iter()
2153                         .any(|f| f.ident(self.tcx) == field)
2154                 {
2155                     if let Some(dot_loc) = expr_snippet.rfind('.') {
2156                         found = true;
2157                         err.span_suggestion(
2158                             expr.span.with_hi(expr.span.lo() + BytePos::from_usize(dot_loc)),
2159                             "to access the field, dereference first",
2160                             format!("(*{})", &expr_snippet[0..dot_loc]),
2161                             Applicability::MaybeIncorrect,
2162                         );
2163                     }
2164                 }
2165             }
2166
2167             if !found {
2168                 err.help("methods are immutable and cannot be assigned to");
2169             }
2170         }
2171
2172         err.emit();
2173     }
2174
2175     fn point_at_param_definition(&self, err: &mut Diagnostic, param: ty::ParamTy) {
2176         let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
2177         let generic_param = generics.type_param(&param, self.tcx);
2178         if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
2179             return;
2180         }
2181         let param_def_id = generic_param.def_id;
2182         let param_hir_id = match param_def_id.as_local() {
2183             Some(x) => self.tcx.hir().local_def_id_to_hir_id(x),
2184             None => return,
2185         };
2186         let param_span = self.tcx.hir().span(param_hir_id);
2187         let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());
2188
2189         err.span_label(param_span, &format!("type parameter '{param_name}' declared here"));
2190     }
2191
2192     fn suggest_fields_on_recordish(
2193         &self,
2194         err: &mut Diagnostic,
2195         def: ty::AdtDef<'tcx>,
2196         field: Ident,
2197         access_span: Span,
2198     ) {
2199         if let Some(suggested_field_name) =
2200             self.suggest_field_name(def.non_enum_variant(), field.name, vec![], access_span)
2201         {
2202             err.span_suggestion(
2203                 field.span,
2204                 "a field with a similar name exists",
2205                 suggested_field_name.to_string(),
2206                 Applicability::MaybeIncorrect,
2207             );
2208         } else {
2209             err.span_label(field.span, "unknown field");
2210             let struct_variant_def = def.non_enum_variant();
2211             let field_names = self.available_field_names(struct_variant_def, access_span);
2212             if !field_names.is_empty() {
2213                 err.note(&format!(
2214                     "available fields are: {}",
2215                     self.name_series_display(field_names),
2216                 ));
2217             }
2218         }
2219     }
2220
2221     fn maybe_suggest_array_indexing(
2222         &self,
2223         err: &mut Diagnostic,
2224         expr: &hir::Expr<'_>,
2225         base: &hir::Expr<'_>,
2226         field: Ident,
2227         len: ty::Const<'tcx>,
2228     ) {
2229         if let (Some(len), Ok(user_index)) =
2230             (len.try_eval_usize(self.tcx, self.param_env), field.as_str().parse::<u64>())
2231             && let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
2232         {
2233             let help = "instead of using tuple indexing, use array indexing";
2234             let suggestion = format!("{base}[{field}]");
2235             let applicability = if len < user_index {
2236                 Applicability::MachineApplicable
2237             } else {
2238                 Applicability::MaybeIncorrect
2239             };
2240             err.span_suggestion(expr.span, help, suggestion, applicability);
2241         }
2242     }
2243
2244     fn suggest_first_deref_field(
2245         &self,
2246         err: &mut Diagnostic,
2247         expr: &hir::Expr<'_>,
2248         base: &hir::Expr<'_>,
2249         field: Ident,
2250     ) {
2251         if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span) {
2252             let msg = format!("`{base}` is a raw pointer; try dereferencing it");
2253             let suggestion = format!("(*{base}).{field}");
2254             err.span_suggestion(expr.span, &msg, suggestion, Applicability::MaybeIncorrect);
2255         }
2256     }
2257
2258     fn no_such_field_err(
2259         &self,
2260         field: Ident,
2261         expr_t: Ty<'tcx>,
2262         id: HirId,
2263     ) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
2264         let span = field.span;
2265         debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);
2266
2267         let mut err = type_error_struct!(
2268             self.tcx().sess,
2269             field.span,
2270             expr_t,
2271             E0609,
2272             "no field `{field}` on type `{expr_t}`",
2273         );
2274
2275         // try to add a suggestion in case the field is a nested field of a field of the Adt
2276         if let Some((fields, substs)) = self.get_field_candidates(span, expr_t) {
2277             for candidate_field in fields.iter() {
2278                 if let Some(field_path) = self.check_for_nested_field(
2279                     span,
2280                     field,
2281                     candidate_field,
2282                     substs,
2283                     vec![],
2284                     self.tcx.parent_module(id).to_def_id(),
2285                 ) {
2286                     let field_path_str = field_path
2287                         .iter()
2288                         .map(|id| id.name.to_ident_string())
2289                         .collect::<Vec<String>>()
2290                         .join(".");
2291                     debug!("field_path_str: {:?}", field_path_str);
2292
2293                     err.span_suggestion_verbose(
2294                         field.span.shrink_to_lo(),
2295                         "one of the expressions' fields has a field of the same name",
2296                         format!("{field_path_str}."),
2297                         Applicability::MaybeIncorrect,
2298                     );
2299                 }
2300             }
2301         }
2302         err
2303     }
2304
2305     fn get_field_candidates(
2306         &self,
2307         span: Span,
2308         base_t: Ty<'tcx>,
2309     ) -> Option<(&Vec<ty::FieldDef>, SubstsRef<'tcx>)> {
2310         debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_t);
2311
2312         for (base_t, _) in self.autoderef(span, base_t) {
2313             match base_t.kind() {
2314                 ty::Adt(base_def, substs) if !base_def.is_enum() => {
2315                     let fields = &base_def.non_enum_variant().fields;
2316                     // For compile-time reasons put a limit on number of fields we search
2317                     if fields.len() > 100 {
2318                         return None;
2319                     }
2320                     return Some((fields, substs));
2321                 }
2322                 _ => {}
2323             }
2324         }
2325         None
2326     }
2327
2328     /// This method is called after we have encountered a missing field error to recursively
2329     /// search for the field
2330     fn check_for_nested_field(
2331         &self,
2332         span: Span,
2333         target_field: Ident,
2334         candidate_field: &ty::FieldDef,
2335         subst: SubstsRef<'tcx>,
2336         mut field_path: Vec<Ident>,
2337         id: DefId,
2338     ) -> Option<Vec<Ident>> {
2339         debug!(
2340             "check_for_nested_field(span: {:?}, candidate_field: {:?}, field_path: {:?}",
2341             span, candidate_field, field_path
2342         );
2343
2344         if candidate_field.ident(self.tcx) == target_field {
2345             Some(field_path)
2346         } else if field_path.len() > 3 {
2347             // For compile-time reasons and to avoid infinite recursion we only check for fields
2348             // up to a depth of three
2349             None
2350         } else {
2351             // recursively search fields of `candidate_field` if it's a ty::Adt
2352
2353             field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
2354             let field_ty = candidate_field.ty(self.tcx, subst);
2355             if let Some((nested_fields, subst)) = self.get_field_candidates(span, field_ty) {
2356                 for field in nested_fields.iter() {
2357                     let accessible = field.vis.is_accessible_from(id, self.tcx);
2358                     if accessible {
2359                         let ident = field.ident(self.tcx).normalize_to_macros_2_0();
2360                         if ident == target_field {
2361                             return Some(field_path);
2362                         }
2363                         let field_path = field_path.clone();
2364                         if let Some(path) = self.check_for_nested_field(
2365                             span,
2366                             target_field,
2367                             field,
2368                             subst,
2369                             field_path,
2370                             id,
2371                         ) {
2372                             return Some(path);
2373                         }
2374                     }
2375                 }
2376             }
2377             None
2378         }
2379     }
2380
2381     fn check_expr_index(
2382         &self,
2383         base: &'tcx hir::Expr<'tcx>,
2384         idx: &'tcx hir::Expr<'tcx>,
2385         expr: &'tcx hir::Expr<'tcx>,
2386     ) -> Ty<'tcx> {
2387         let base_t = self.check_expr(&base);
2388         let idx_t = self.check_expr(&idx);
2389
2390         if base_t.references_error() {
2391             base_t
2392         } else if idx_t.references_error() {
2393             idx_t
2394         } else {
2395             let base_t = self.structurally_resolved_type(base.span, base_t);
2396             match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
2397                 Some((index_ty, element_ty)) => {
2398                     // two-phase not needed because index_ty is never mutable
2399                     self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
2400                     element_ty
2401                 }
2402                 None => {
2403                     let mut err = type_error_struct!(
2404                         self.tcx.sess,
2405                         expr.span,
2406                         base_t,
2407                         E0608,
2408                         "cannot index into a value of type `{base_t}`",
2409                     );
2410                     // Try to give some advice about indexing tuples.
2411                     if let ty::Tuple(..) = base_t.kind() {
2412                         let mut needs_note = true;
2413                         // If the index is an integer, we can show the actual
2414                         // fixed expression:
2415                         if let ExprKind::Lit(ref lit) = idx.kind {
2416                             if let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node {
2417                                 let snip = self.tcx.sess.source_map().span_to_snippet(base.span);
2418                                 if let Ok(snip) = snip {
2419                                     err.span_suggestion(
2420                                         expr.span,
2421                                         "to access tuple elements, use",
2422                                         format!("{snip}.{i}"),
2423                                         Applicability::MachineApplicable,
2424                                     );
2425                                     needs_note = false;
2426                                 }
2427                             }
2428                         }
2429                         if needs_note {
2430                             err.help(
2431                                 "to access tuple elements, use tuple indexing \
2432                                         syntax (e.g., `tuple.0`)",
2433                             );
2434                         }
2435                     }
2436                     err.emit();
2437                     self.tcx.ty_error()
2438                 }
2439             }
2440         }
2441     }
2442
2443     fn check_expr_yield(
2444         &self,
2445         value: &'tcx hir::Expr<'tcx>,
2446         expr: &'tcx hir::Expr<'tcx>,
2447         src: &'tcx hir::YieldSource,
2448     ) -> Ty<'tcx> {
2449         match self.resume_yield_tys {
2450             Some((resume_ty, yield_ty)) => {
2451                 self.check_expr_coercable_to_type(&value, yield_ty, None);
2452
2453                 resume_ty
2454             }
2455             // Given that this `yield` expression was generated as a result of lowering a `.await`,
2456             // we know that the yield type must be `()`; however, the context won't contain this
2457             // information. Hence, we check the source of the yield expression here and check its
2458             // value's type against `()` (this check should always hold).
2459             None if src.is_await() => {
2460                 self.check_expr_coercable_to_type(&value, self.tcx.mk_unit(), None);
2461                 self.tcx.mk_unit()
2462             }
2463             _ => {
2464                 self.tcx.sess.emit_err(YieldExprOutsideOfGenerator { span: expr.span });
2465                 // Avoid expressions without types during writeback (#78653).
2466                 self.check_expr(value);
2467                 self.tcx.mk_unit()
2468             }
2469         }
2470     }
2471
2472     fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
2473         let needs = if is_input { Needs::None } else { Needs::MutPlace };
2474         let ty = self.check_expr_with_needs(expr, needs);
2475         self.require_type_is_sized(ty, expr.span, traits::InlineAsmSized);
2476
2477         if !is_input && !expr.is_syntactic_place_expr() {
2478             let mut err = self.tcx.sess.struct_span_err(expr.span, "invalid asm output");
2479             err.span_label(expr.span, "cannot assign to this expression");
2480             err.emit();
2481         }
2482
2483         // If this is an input value, we require its type to be fully resolved
2484         // at this point. This allows us to provide helpful coercions which help
2485         // pass the type candidate list in a later pass.
2486         //
2487         // We don't require output types to be resolved at this point, which
2488         // allows them to be inferred based on how they are used later in the
2489         // function.
2490         if is_input {
2491             let ty = self.structurally_resolved_type(expr.span, ty);
2492             match *ty.kind() {
2493                 ty::FnDef(..) => {
2494                     let fnptr_ty = self.tcx.mk_fn_ptr(ty.fn_sig(self.tcx));
2495                     self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
2496                 }
2497                 ty::Ref(_, base_ty, mutbl) => {
2498                     let ptr_ty = self.tcx.mk_ptr(ty::TypeAndMut { ty: base_ty, mutbl });
2499                     self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
2500                 }
2501                 _ => {}
2502             }
2503         }
2504     }
2505
2506     fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
2507         for (op, _op_sp) in asm.operands {
2508             match op {
2509                 hir::InlineAsmOperand::In { expr, .. } => {
2510                     self.check_expr_asm_operand(expr, true);
2511                 }
2512                 hir::InlineAsmOperand::Out { expr: Some(expr), .. }
2513                 | hir::InlineAsmOperand::InOut { expr, .. } => {
2514                     self.check_expr_asm_operand(expr, false);
2515                 }
2516                 hir::InlineAsmOperand::Out { expr: None, .. } => {}
2517                 hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
2518                     self.check_expr_asm_operand(in_expr, true);
2519                     if let Some(out_expr) = out_expr {
2520                         self.check_expr_asm_operand(out_expr, false);
2521                     }
2522                 }
2523                 hir::InlineAsmOperand::Const { anon_const } => {
2524                     self.to_const(anon_const);
2525                 }
2526                 hir::InlineAsmOperand::Sym { expr } => {
2527                     self.check_expr(expr);
2528                 }
2529             }
2530         }
2531         if asm.options.contains(ast::InlineAsmOptions::NORETURN) {
2532             self.tcx.types.never
2533         } else {
2534             self.tcx.mk_unit()
2535         }
2536     }
2537 }
2538
2539 pub(super) fn ty_kind_suggestion(ty: Ty<'_>) -> Option<&'static str> {
2540     Some(match ty.kind() {
2541         ty::Bool => "true",
2542         ty::Char => "'a'",
2543         ty::Int(_) | ty::Uint(_) => "42",
2544         ty::Float(_) => "3.14159",
2545         ty::Error(_) | ty::Never => return None,
2546         _ => "value",
2547     })
2548 }