]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/check/compare_method.rs
Rollup merge of #100713 - Xiretza:parser-expr-session-diagnostics, r=estebank
[rust.git] / compiler / rustc_typeck / src / check / compare_method.rs
1 use super::potentially_plural_count;
2 use crate::errors::LifetimesOrBoundsMismatchOnTrait;
3 use crate::outlives::outlives_bounds::InferCtxtExt as _;
4 use rustc_data_structures::fx::FxHashSet;
5 use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId, ErrorGuaranteed};
6 use rustc_hir as hir;
7 use rustc_hir::def::{DefKind, Res};
8 use rustc_hir::intravisit;
9 use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
10 use rustc_infer::infer::outlives::env::OutlivesEnvironment;
11 use rustc_infer::infer::{self, TyCtxtInferExt};
12 use rustc_infer::traits::util;
13 use rustc_middle::ty::error::{ExpectedFound, TypeError};
14 use rustc_middle::ty::subst::{InternalSubsts, Subst};
15 use rustc_middle::ty::util::ExplicitSelf;
16 use rustc_middle::ty::{self, DefIdTree};
17 use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
18 use rustc_span::Span;
19 use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
20 use rustc_trait_selection::traits::{
21     self, ObligationCause, ObligationCauseCode, ObligationCtxt, Reveal,
22 };
23 use std::iter;
24
25 /// Checks that a method from an impl conforms to the signature of
26 /// the same method as declared in the trait.
27 ///
28 /// # Parameters
29 ///
30 /// - `impl_m`: type of the method we are checking
31 /// - `impl_m_span`: span to use for reporting errors
32 /// - `trait_m`: the method in the trait
33 /// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
34 pub(crate) fn compare_impl_method<'tcx>(
35     tcx: TyCtxt<'tcx>,
36     impl_m: &ty::AssocItem,
37     trait_m: &ty::AssocItem,
38     impl_trait_ref: ty::TraitRef<'tcx>,
39     trait_item_span: Option<Span>,
40 ) {
41     debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
42
43     let impl_m_span = tcx.def_span(impl_m.def_id);
44
45     if let Err(_) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref) {
46         return;
47     }
48
49     if let Err(_) = compare_number_of_generics(tcx, impl_m, impl_m_span, trait_m, trait_item_span) {
50         return;
51     }
52
53     if let Err(_) = compare_generic_param_kinds(tcx, impl_m, trait_m) {
54         return;
55     }
56
57     if let Err(_) =
58         compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
59     {
60         return;
61     }
62
63     if let Err(_) = compare_synthetic_generics(tcx, impl_m, trait_m) {
64         return;
65     }
66
67     if let Err(_) = compare_predicate_entailment(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
68     {
69         return;
70     }
71 }
72
73 /// This function is best explained by example. Consider a trait:
74 ///
75 ///     trait Trait<'t, T> {
76 ///         // `trait_m`
77 ///         fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
78 ///     }
79 ///
80 /// And an impl:
81 ///
82 ///     impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
83 ///          // `impl_m`
84 ///          fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
85 ///     }
86 ///
87 /// We wish to decide if those two method types are compatible.
88 /// For this we have to show that, assuming the bounds of the impl hold, the
89 /// bounds of `trait_m` imply the bounds of `impl_m`.
90 ///
91 /// We start out with `trait_to_impl_substs`, that maps the trait
92 /// type parameters to impl type parameters. This is taken from the
93 /// impl trait reference:
94 ///
95 ///     trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
96 ///
97 /// We create a mapping `dummy_substs` that maps from the impl type
98 /// parameters to fresh types and regions. For type parameters,
99 /// this is the identity transform, but we could as well use any
100 /// placeholder types. For regions, we convert from bound to free
101 /// regions (Note: but only early-bound regions, i.e., those
102 /// declared on the impl or used in type parameter bounds).
103 ///
104 ///     impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
105 ///
106 /// Now we can apply `placeholder_substs` to the type of the impl method
107 /// to yield a new function type in terms of our fresh, placeholder
108 /// types:
109 ///
110 ///     <'b> fn(t: &'i0 U0, m: &'b) -> Foo
111 ///
112 /// We now want to extract and substitute the type of the *trait*
113 /// method and compare it. To do so, we must create a compound
114 /// substitution by combining `trait_to_impl_substs` and
115 /// `impl_to_placeholder_substs`, and also adding a mapping for the method
116 /// type parameters. We extend the mapping to also include
117 /// the method parameters.
118 ///
119 ///     trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
120 ///
121 /// Applying this to the trait method type yields:
122 ///
123 ///     <'a> fn(t: &'i0 U0, m: &'a) -> Foo
124 ///
125 /// This type is also the same but the name of the bound region (`'a`
126 /// vs `'b`).  However, the normal subtyping rules on fn types handle
127 /// this kind of equivalency just fine.
128 ///
129 /// We now use these substitutions to ensure that all declared bounds are
130 /// satisfied by the implementation's method.
131 ///
132 /// We do this by creating a parameter environment which contains a
133 /// substitution corresponding to `impl_to_placeholder_substs`. We then build
134 /// `trait_to_placeholder_substs` and use it to convert the predicates contained
135 /// in the `trait_m` generics to the placeholder form.
136 ///
137 /// Finally we register each of these predicates as an obligation and check that
138 /// they hold.
139 fn compare_predicate_entailment<'tcx>(
140     tcx: TyCtxt<'tcx>,
141     impl_m: &ty::AssocItem,
142     impl_m_span: Span,
143     trait_m: &ty::AssocItem,
144     impl_trait_ref: ty::TraitRef<'tcx>,
145 ) -> Result<(), ErrorGuaranteed> {
146     let trait_to_impl_substs = impl_trait_ref.substs;
147
148     // This node-id should be used for the `body_id` field on each
149     // `ObligationCause` (and the `FnCtxt`).
150     //
151     // FIXME(@lcnr): remove that after removing `cause.body_id` from
152     // obligations.
153     let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
154     // We sometimes modify the span further down.
155     let mut cause = ObligationCause::new(
156         impl_m_span,
157         impl_m_hir_id,
158         ObligationCauseCode::CompareImplItemObligation {
159             impl_item_def_id: impl_m.def_id.expect_local(),
160             trait_item_def_id: trait_m.def_id,
161             kind: impl_m.kind,
162         },
163     );
164
165     // Create mapping from impl to placeholder.
166     let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
167
168     // Create mapping from trait to placeholder.
169     let trait_to_placeholder_substs =
170         impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
171     debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
172
173     let impl_m_generics = tcx.generics_of(impl_m.def_id);
174     let trait_m_generics = tcx.generics_of(trait_m.def_id);
175     let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
176     let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
177
178     // Check region bounds.
179     check_region_bounds_on_impl_item(tcx, impl_m, trait_m, &trait_m_generics, &impl_m_generics)?;
180
181     // Create obligations for each predicate declared by the impl
182     // definition in the context of the trait's parameter
183     // environment. We can't just use `impl_env.caller_bounds`,
184     // however, because we want to replace all late-bound regions with
185     // region variables.
186     let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
187     let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
188
189     debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
190
191     // This is the only tricky bit of the new way we check implementation methods
192     // We need to build a set of predicates where only the method-level bounds
193     // are from the trait and we assume all other bounds from the implementation
194     // to be previously satisfied.
195     //
196     // We then register the obligations from the impl_m and check to see
197     // if all constraints hold.
198     hybrid_preds
199         .predicates
200         .extend(trait_m_predicates.instantiate_own(tcx, trait_to_placeholder_substs).predicates);
201
202     // Construct trait parameter environment and then shift it into the placeholder viewpoint.
203     // The key step here is to update the caller_bounds's predicates to be
204     // the new hybrid bounds we computed.
205     let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
206     let param_env = ty::ParamEnv::new(
207         tcx.intern_predicates(&hybrid_preds.predicates),
208         Reveal::UserFacing,
209         hir::Constness::NotConst,
210     );
211     let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
212
213     tcx.infer_ctxt().enter(|ref infcx| {
214         let ocx = ObligationCtxt::new(infcx);
215
216         debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());
217
218         let mut selcx = traits::SelectionContext::new(&infcx);
219         let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
220         for (predicate, span) in iter::zip(impl_m_own_bounds.predicates, impl_m_own_bounds.spans) {
221             let normalize_cause = traits::ObligationCause::misc(span, impl_m_hir_id);
222             let traits::Normalized { value: predicate, obligations } =
223                 traits::normalize(&mut selcx, param_env, normalize_cause, predicate);
224
225             ocx.register_obligations(obligations);
226             let cause = ObligationCause::new(
227                 span,
228                 impl_m_hir_id,
229                 ObligationCauseCode::CompareImplItemObligation {
230                     impl_item_def_id: impl_m.def_id.expect_local(),
231                     trait_item_def_id: trait_m.def_id,
232                     kind: impl_m.kind,
233                 },
234             );
235             ocx.register_obligation(traits::Obligation::new(cause, param_env, predicate));
236         }
237
238         // We now need to check that the signature of the impl method is
239         // compatible with that of the trait method. We do this by
240         // checking that `impl_fty <: trait_fty`.
241         //
242         // FIXME. Unfortunately, this doesn't quite work right now because
243         // associated type normalization is not integrated into subtype
244         // checks. For the comparison to be valid, we need to
245         // normalize the associated types in the impl/trait methods
246         // first. However, because function types bind regions, just
247         // calling `normalize_associated_types_in` would have no effect on
248         // any associated types appearing in the fn arguments or return
249         // type.
250
251         // Compute placeholder form of impl and trait method tys.
252         let tcx = infcx.tcx;
253
254         let mut wf_tys = FxHashSet::default();
255
256         let impl_sig = infcx.replace_bound_vars_with_fresh_vars(
257             impl_m_span,
258             infer::HigherRankedType,
259             tcx.fn_sig(impl_m.def_id),
260         );
261
262         let norm_cause = ObligationCause::misc(impl_m_span, impl_m_hir_id);
263         let impl_sig = ocx.normalize(norm_cause.clone(), param_env, impl_sig);
264         let impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(impl_sig));
265         debug!("compare_impl_method: impl_fty={:?}", impl_fty);
266
267         let trait_sig = tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs);
268         let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
269         // Next, add all inputs and output as well-formed tys. Importantly,
270         // we have to do this before normalization, since the normalized ty may
271         // not contain the input parameters. See issue #87748.
272         wf_tys.extend(trait_sig.inputs_and_output.iter());
273         let trait_sig = ocx.normalize(norm_cause, param_env, trait_sig);
274         // We also have to add the normalized trait signature
275         // as we don't normalize during implied bounds computation.
276         wf_tys.extend(trait_sig.inputs_and_output.iter());
277         let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
278
279         debug!("compare_impl_method: trait_fty={:?}", trait_fty);
280
281         // FIXME: We'd want to keep more accurate spans than "the method signature" when
282         // processing the comparison between the trait and impl fn, but we sadly lose them
283         // and point at the whole signature when a trait bound or specific input or output
284         // type would be more appropriate. In other places we have a `Vec<Span>`
285         // corresponding to their `Vec<Predicate>`, but we don't have that here.
286         // Fixing this would improve the output of test `issue-83765.rs`.
287         let sub_result = infcx
288             .at(&cause, param_env)
289             .sup(trait_fty, impl_fty)
290             .map(|infer_ok| ocx.register_infer_ok_obligations(infer_ok));
291
292         if let Err(terr) = sub_result {
293             debug!("sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);
294
295             let (impl_err_span, trait_err_span) =
296                 extract_spans_for_error_reporting(&infcx, terr, &cause, impl_m, trait_m);
297
298             cause.span = impl_err_span;
299
300             let mut diag = struct_span_err!(
301                 tcx.sess,
302                 cause.span(),
303                 E0053,
304                 "method `{}` has an incompatible type for trait",
305                 trait_m.name
306             );
307             match &terr {
308                 TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
309                     if trait_m.fn_has_self_parameter =>
310                 {
311                     let ty = trait_sig.inputs()[0];
312                     let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty())
313                     {
314                         ExplicitSelf::ByValue => "self".to_owned(),
315                         ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
316                         ExplicitSelf::ByReference(_, hir::Mutability::Mut) => {
317                             "&mut self".to_owned()
318                         }
319                         _ => format!("self: {ty}"),
320                     };
321
322                     // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
323                     // span points only at the type `Box<Self`>, but we want to cover the whole
324                     // argument pattern and type.
325                     let span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
326                         ImplItemKind::Fn(ref sig, body) => tcx
327                             .hir()
328                             .body_param_names(body)
329                             .zip(sig.decl.inputs.iter())
330                             .map(|(param, ty)| param.span.to(ty.span))
331                             .next()
332                             .unwrap_or(impl_err_span),
333                         _ => bug!("{:?} is not a method", impl_m),
334                     };
335
336                     diag.span_suggestion(
337                         span,
338                         "change the self-receiver type to match the trait",
339                         sugg,
340                         Applicability::MachineApplicable,
341                     );
342                 }
343                 TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
344                     if trait_sig.inputs().len() == *i {
345                         // Suggestion to change output type. We do not suggest in `async` functions
346                         // to avoid complex logic or incorrect output.
347                         match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
348                             ImplItemKind::Fn(ref sig, _)
349                                 if sig.header.asyncness == hir::IsAsync::NotAsync =>
350                             {
351                                 let msg = "change the output type to match the trait";
352                                 let ap = Applicability::MachineApplicable;
353                                 match sig.decl.output {
354                                     hir::FnRetTy::DefaultReturn(sp) => {
355                                         let sugg = format!("-> {} ", trait_sig.output());
356                                         diag.span_suggestion_verbose(sp, msg, sugg, ap);
357                                     }
358                                     hir::FnRetTy::Return(hir_ty) => {
359                                         let sugg = trait_sig.output();
360                                         diag.span_suggestion(hir_ty.span, msg, sugg, ap);
361                                     }
362                                 };
363                             }
364                             _ => {}
365                         };
366                     } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
367                         diag.span_suggestion(
368                             impl_err_span,
369                             "change the parameter type to match the trait",
370                             trait_ty,
371                             Applicability::MachineApplicable,
372                         );
373                     }
374                 }
375                 _ => {}
376             }
377
378             infcx.note_type_err(
379                 &mut diag,
380                 &cause,
381                 trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
382                 Some(infer::ValuePairs::Terms(ExpectedFound {
383                     expected: trait_fty.into(),
384                     found: impl_fty.into(),
385                 })),
386                 terr,
387                 false,
388                 false,
389             );
390
391             return Err(diag.emit());
392         }
393
394         // Check that all obligations are satisfied by the implementation's
395         // version.
396         let errors = ocx.select_all_or_error();
397         if !errors.is_empty() {
398             let reported = infcx.report_fulfillment_errors(&errors, None, false);
399             return Err(reported);
400         }
401
402         // Finally, resolve all regions. This catches wily misuses of
403         // lifetime parameters.
404         let outlives_environment = OutlivesEnvironment::with_bounds(
405             param_env,
406             Some(infcx),
407             infcx.implied_bounds_tys(param_env, impl_m_hir_id, wf_tys),
408         );
409         infcx.check_region_obligations_and_report_errors(
410             impl_m.def_id.expect_local(),
411             &outlives_environment,
412         );
413
414         Ok(())
415     })
416 }
417
418 fn check_region_bounds_on_impl_item<'tcx>(
419     tcx: TyCtxt<'tcx>,
420     impl_m: &ty::AssocItem,
421     trait_m: &ty::AssocItem,
422     trait_generics: &ty::Generics,
423     impl_generics: &ty::Generics,
424 ) -> Result<(), ErrorGuaranteed> {
425     let trait_params = trait_generics.own_counts().lifetimes;
426     let impl_params = impl_generics.own_counts().lifetimes;
427
428     debug!(
429         "check_region_bounds_on_impl_item: \
430             trait_generics={:?} \
431             impl_generics={:?}",
432         trait_generics, impl_generics
433     );
434
435     // Must have same number of early-bound lifetime parameters.
436     // Unfortunately, if the user screws up the bounds, then this
437     // will change classification between early and late.  E.g.,
438     // if in trait we have `<'a,'b:'a>`, and in impl we just have
439     // `<'a,'b>`, then we have 2 early-bound lifetime parameters
440     // in trait but 0 in the impl. But if we report "expected 2
441     // but found 0" it's confusing, because it looks like there
442     // are zero. Since I don't quite know how to phrase things at
443     // the moment, give a kind of vague error message.
444     if trait_params != impl_params {
445         let span = tcx
446             .hir()
447             .get_generics(impl_m.def_id.expect_local())
448             .expect("expected impl item to have generics or else we can't compare them")
449             .span;
450         let generics_span = if let Some(local_def_id) = trait_m.def_id.as_local() {
451             Some(
452                 tcx.hir()
453                     .get_generics(local_def_id)
454                     .expect("expected trait item to have generics or else we can't compare them")
455                     .span,
456             )
457         } else {
458             None
459         };
460
461         let reported = tcx.sess.emit_err(LifetimesOrBoundsMismatchOnTrait {
462             span,
463             item_kind: assoc_item_kind_str(impl_m),
464             ident: impl_m.ident(tcx),
465             generics_span,
466         });
467         return Err(reported);
468     }
469
470     Ok(())
471 }
472
473 #[instrument(level = "debug", skip(infcx))]
474 fn extract_spans_for_error_reporting<'a, 'tcx>(
475     infcx: &infer::InferCtxt<'a, 'tcx>,
476     terr: TypeError<'_>,
477     cause: &ObligationCause<'tcx>,
478     impl_m: &ty::AssocItem,
479     trait_m: &ty::AssocItem,
480 ) -> (Span, Option<Span>) {
481     let tcx = infcx.tcx;
482     let mut impl_args = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
483         ImplItemKind::Fn(ref sig, _) => {
484             sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
485         }
486         _ => bug!("{:?} is not a method", impl_m),
487     };
488     let trait_args =
489         trait_m.def_id.as_local().map(|def_id| match tcx.hir().expect_trait_item(def_id).kind {
490             TraitItemKind::Fn(ref sig, _) => {
491                 sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
492             }
493             _ => bug!("{:?} is not a TraitItemKind::Fn", trait_m),
494         });
495
496     match terr {
497         TypeError::ArgumentMutability(i) => {
498             (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
499         }
500         TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
501             (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
502         }
503         _ => (cause.span(), tcx.hir().span_if_local(trait_m.def_id)),
504     }
505 }
506
507 fn compare_self_type<'tcx>(
508     tcx: TyCtxt<'tcx>,
509     impl_m: &ty::AssocItem,
510     impl_m_span: Span,
511     trait_m: &ty::AssocItem,
512     impl_trait_ref: ty::TraitRef<'tcx>,
513 ) -> Result<(), ErrorGuaranteed> {
514     // Try to give more informative error messages about self typing
515     // mismatches.  Note that any mismatch will also be detected
516     // below, where we construct a canonical function type that
517     // includes the self parameter as a normal parameter.  It's just
518     // that the error messages you get out of this code are a bit more
519     // inscrutable, particularly for cases where one method has no
520     // self.
521
522     let self_string = |method: &ty::AssocItem| {
523         let untransformed_self_ty = match method.container {
524             ty::ImplContainer => impl_trait_ref.self_ty(),
525             ty::TraitContainer => tcx.types.self_param,
526         };
527         let self_arg_ty = tcx.fn_sig(method.def_id).input(0);
528         let param_env = ty::ParamEnv::reveal_all();
529
530         tcx.infer_ctxt().enter(|infcx| {
531             let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
532             let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
533             match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
534                 ExplicitSelf::ByValue => "self".to_owned(),
535                 ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
536                 ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
537                 _ => format!("self: {self_arg_ty}"),
538             }
539         })
540     };
541
542     match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
543         (false, false) | (true, true) => {}
544
545         (false, true) => {
546             let self_descr = self_string(impl_m);
547             let mut err = struct_span_err!(
548                 tcx.sess,
549                 impl_m_span,
550                 E0185,
551                 "method `{}` has a `{}` declaration in the impl, but not in the trait",
552                 trait_m.name,
553                 self_descr
554             );
555             err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
556             if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
557                 err.span_label(span, format!("trait method declared without `{self_descr}`"));
558             } else {
559                 err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
560             }
561             let reported = err.emit();
562             return Err(reported);
563         }
564
565         (true, false) => {
566             let self_descr = self_string(trait_m);
567             let mut err = struct_span_err!(
568                 tcx.sess,
569                 impl_m_span,
570                 E0186,
571                 "method `{}` has a `{}` declaration in the trait, but not in the impl",
572                 trait_m.name,
573                 self_descr
574             );
575             err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
576             if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
577                 err.span_label(span, format!("`{self_descr}` used in trait"));
578             } else {
579                 err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
580             }
581             let reported = err.emit();
582             return Err(reported);
583         }
584     }
585
586     Ok(())
587 }
588
589 /// Checks that the number of generics on a given assoc item in a trait impl is the same
590 /// as the number of generics on the respective assoc item in the trait definition.
591 ///
592 /// For example this code emits the errors in the following code:
593 /// ```
594 /// trait Trait {
595 ///     fn foo();
596 ///     type Assoc<T>;
597 /// }
598 ///
599 /// impl Trait for () {
600 ///     fn foo<T>() {}
601 ///     //~^ error
602 ///     type Assoc = u32;
603 ///     //~^ error
604 /// }
605 /// ```
606 ///
607 /// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
608 /// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
609 /// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
610 fn compare_number_of_generics<'tcx>(
611     tcx: TyCtxt<'tcx>,
612     impl_: &ty::AssocItem,
613     _impl_span: Span,
614     trait_: &ty::AssocItem,
615     trait_span: Option<Span>,
616 ) -> Result<(), ErrorGuaranteed> {
617     let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
618     let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
619
620     // This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
621     // in `compare_generic_param_kinds` which will give a nicer error message than something like:
622     // "expected 1 type parameter, found 0 type parameters"
623     if (trait_own_counts.types + trait_own_counts.consts)
624         == (impl_own_counts.types + impl_own_counts.consts)
625     {
626         return Ok(());
627     }
628
629     let matchings = [
630         ("type", trait_own_counts.types, impl_own_counts.types),
631         ("const", trait_own_counts.consts, impl_own_counts.consts),
632     ];
633
634     let item_kind = assoc_item_kind_str(impl_);
635
636     let mut err_occurred = None;
637     for (kind, trait_count, impl_count) in matchings {
638         if impl_count != trait_count {
639             let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
640                 let mut spans = generics
641                     .params
642                     .iter()
643                     .filter(|p| match p.kind {
644                         hir::GenericParamKind::Lifetime {
645                             kind: hir::LifetimeParamKind::Elided,
646                         } => {
647                             // A fn can have an arbitrary number of extra elided lifetimes for the
648                             // same signature.
649                             !matches!(kind, ty::AssocKind::Fn)
650                         }
651                         _ => true,
652                     })
653                     .map(|p| p.span)
654                     .collect::<Vec<Span>>();
655                 if spans.is_empty() {
656                     spans = vec![generics.span]
657                 }
658                 spans
659             };
660             let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
661                 let trait_item = tcx.hir().expect_trait_item(def_id);
662                 let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
663                 let impl_trait_spans: Vec<Span> = trait_item
664                     .generics
665                     .params
666                     .iter()
667                     .filter_map(|p| match p.kind {
668                         GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
669                         _ => None,
670                     })
671                     .collect();
672                 (Some(arg_spans), impl_trait_spans)
673             } else {
674                 (trait_span.map(|s| vec![s]), vec![])
675             };
676
677             let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
678             let impl_item_impl_trait_spans: Vec<Span> = impl_item
679                 .generics
680                 .params
681                 .iter()
682                 .filter_map(|p| match p.kind {
683                     GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
684                     _ => None,
685                 })
686                 .collect();
687             let spans = arg_spans(impl_.kind, impl_item.generics);
688             let span = spans.first().copied();
689
690             let mut err = tcx.sess.struct_span_err_with_code(
691                 spans,
692                 &format!(
693                     "{} `{}` has {} {kind} parameter{} but its trait \
694                      declaration has {} {kind} parameter{}",
695                     item_kind,
696                     trait_.name,
697                     impl_count,
698                     pluralize!(impl_count),
699                     trait_count,
700                     pluralize!(trait_count),
701                     kind = kind,
702                 ),
703                 DiagnosticId::Error("E0049".into()),
704             );
705
706             let mut suffix = None;
707
708             if let Some(spans) = trait_spans {
709                 let mut spans = spans.iter();
710                 if let Some(span) = spans.next() {
711                     err.span_label(
712                         *span,
713                         format!(
714                             "expected {} {} parameter{}",
715                             trait_count,
716                             kind,
717                             pluralize!(trait_count),
718                         ),
719                     );
720                 }
721                 for span in spans {
722                     err.span_label(*span, "");
723                 }
724             } else {
725                 suffix = Some(format!(", expected {trait_count}"));
726             }
727
728             if let Some(span) = span {
729                 err.span_label(
730                     span,
731                     format!(
732                         "found {} {} parameter{}{}",
733                         impl_count,
734                         kind,
735                         pluralize!(impl_count),
736                         suffix.unwrap_or_else(String::new),
737                     ),
738                 );
739             }
740
741             for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
742                 err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
743             }
744
745             let reported = err.emit();
746             err_occurred = Some(reported);
747         }
748     }
749
750     if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
751 }
752
753 fn compare_number_of_method_arguments<'tcx>(
754     tcx: TyCtxt<'tcx>,
755     impl_m: &ty::AssocItem,
756     impl_m_span: Span,
757     trait_m: &ty::AssocItem,
758     trait_item_span: Option<Span>,
759 ) -> Result<(), ErrorGuaranteed> {
760     let impl_m_fty = tcx.fn_sig(impl_m.def_id);
761     let trait_m_fty = tcx.fn_sig(trait_m.def_id);
762     let trait_number_args = trait_m_fty.inputs().skip_binder().len();
763     let impl_number_args = impl_m_fty.inputs().skip_binder().len();
764     if trait_number_args != impl_number_args {
765         let trait_span = if let Some(def_id) = trait_m.def_id.as_local() {
766             match tcx.hir().expect_trait_item(def_id).kind {
767                 TraitItemKind::Fn(ref trait_m_sig, _) => {
768                     let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
769                     if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
770                         Some(if pos == 0 {
771                             arg.span
772                         } else {
773                             arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
774                         })
775                     } else {
776                         trait_item_span
777                     }
778                 }
779                 _ => bug!("{:?} is not a method", impl_m),
780             }
781         } else {
782             trait_item_span
783         };
784         let impl_span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
785             ImplItemKind::Fn(ref impl_m_sig, _) => {
786                 let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
787                 if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
788                     if pos == 0 {
789                         arg.span
790                     } else {
791                         arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
792                     }
793                 } else {
794                     impl_m_span
795                 }
796             }
797             _ => bug!("{:?} is not a method", impl_m),
798         };
799         let mut err = struct_span_err!(
800             tcx.sess,
801             impl_span,
802             E0050,
803             "method `{}` has {} but the declaration in trait `{}` has {}",
804             trait_m.name,
805             potentially_plural_count(impl_number_args, "parameter"),
806             tcx.def_path_str(trait_m.def_id),
807             trait_number_args
808         );
809         if let Some(trait_span) = trait_span {
810             err.span_label(
811                 trait_span,
812                 format!(
813                     "trait requires {}",
814                     potentially_plural_count(trait_number_args, "parameter")
815                 ),
816             );
817         } else {
818             err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
819         }
820         err.span_label(
821             impl_span,
822             format!(
823                 "expected {}, found {}",
824                 potentially_plural_count(trait_number_args, "parameter"),
825                 impl_number_args
826             ),
827         );
828         let reported = err.emit();
829         return Err(reported);
830     }
831
832     Ok(())
833 }
834
835 fn compare_synthetic_generics<'tcx>(
836     tcx: TyCtxt<'tcx>,
837     impl_m: &ty::AssocItem,
838     trait_m: &ty::AssocItem,
839 ) -> Result<(), ErrorGuaranteed> {
840     // FIXME(chrisvittal) Clean up this function, list of FIXME items:
841     //     1. Better messages for the span labels
842     //     2. Explanation as to what is going on
843     // If we get here, we already have the same number of generics, so the zip will
844     // be okay.
845     let mut error_found = None;
846     let impl_m_generics = tcx.generics_of(impl_m.def_id);
847     let trait_m_generics = tcx.generics_of(trait_m.def_id);
848     let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
849         GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
850         GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
851     });
852     let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
853         GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
854         GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
855     });
856     for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
857         iter::zip(impl_m_type_params, trait_m_type_params)
858     {
859         if impl_synthetic != trait_synthetic {
860             let impl_def_id = impl_def_id.expect_local();
861             let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_def_id);
862             let impl_span = tcx.hir().span(impl_hir_id);
863             let trait_span = tcx.def_span(trait_def_id);
864             let mut err = struct_span_err!(
865                 tcx.sess,
866                 impl_span,
867                 E0643,
868                 "method `{}` has incompatible signature for trait",
869                 trait_m.name
870             );
871             err.span_label(trait_span, "declaration in trait here");
872             match (impl_synthetic, trait_synthetic) {
873                 // The case where the impl method uses `impl Trait` but the trait method uses
874                 // explicit generics
875                 (true, false) => {
876                     err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
877                     (|| {
878                         // try taking the name from the trait impl
879                         // FIXME: this is obviously suboptimal since the name can already be used
880                         // as another generic argument
881                         let new_name = tcx.sess.source_map().span_to_snippet(trait_span).ok()?;
882                         let trait_m = trait_m.def_id.as_local()?;
883                         let trait_m = tcx.hir().trait_item(hir::TraitItemId { def_id: trait_m });
884
885                         let impl_m = impl_m.def_id.as_local()?;
886                         let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
887
888                         // in case there are no generics, take the spot between the function name
889                         // and the opening paren of the argument list
890                         let new_generics_span =
891                             tcx.sess.source_map().generate_fn_name_span(impl_span)?.shrink_to_hi();
892                         // in case there are generics, just replace them
893                         let generics_span =
894                             impl_m.generics.span.substitute_dummy(new_generics_span);
895                         // replace with the generics from the trait
896                         let new_generics =
897                             tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
898
899                         err.multipart_suggestion(
900                             "try changing the `impl Trait` argument to a generic parameter",
901                             vec![
902                                 // replace `impl Trait` with `T`
903                                 (impl_span, new_name),
904                                 // replace impl method generics with trait method generics
905                                 // This isn't quite right, as users might have changed the names
906                                 // of the generics, but it works for the common case
907                                 (generics_span, new_generics),
908                             ],
909                             Applicability::MaybeIncorrect,
910                         );
911                         Some(())
912                     })();
913                 }
914                 // The case where the trait method uses `impl Trait`, but the impl method uses
915                 // explicit generics.
916                 (false, true) => {
917                     err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
918                     (|| {
919                         let impl_m = impl_m.def_id.as_local()?;
920                         let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
921                         let input_tys = match impl_m.kind {
922                             hir::ImplItemKind::Fn(ref sig, _) => sig.decl.inputs,
923                             _ => unreachable!(),
924                         };
925                         struct Visitor(Option<Span>, hir::def_id::LocalDefId);
926                         impl<'v> intravisit::Visitor<'v> for Visitor {
927                             fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
928                                 intravisit::walk_ty(self, ty);
929                                 if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
930                                     ty.kind
931                                     && let Res::Def(DefKind::TyParam, def_id) = path.res
932                                     && def_id == self.1.to_def_id()
933                                 {
934                                     self.0 = Some(ty.span);
935                                 }
936                             }
937                         }
938                         let mut visitor = Visitor(None, impl_def_id);
939                         for ty in input_tys {
940                             intravisit::Visitor::visit_ty(&mut visitor, ty);
941                         }
942                         let span = visitor.0?;
943
944                         let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
945                         let bounds = bounds.first()?.span().to(bounds.last()?.span());
946                         let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
947
948                         err.multipart_suggestion(
949                             "try removing the generic parameter and using `impl Trait` instead",
950                             vec![
951                                 // delete generic parameters
952                                 (impl_m.generics.span, String::new()),
953                                 // replace param usage with `impl Trait`
954                                 (span, format!("impl {bounds}")),
955                             ],
956                             Applicability::MaybeIncorrect,
957                         );
958                         Some(())
959                     })();
960                 }
961                 _ => unreachable!(),
962             }
963             let reported = err.emit();
964             error_found = Some(reported);
965         }
966     }
967     if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
968 }
969
970 /// Checks that all parameters in the generics of a given assoc item in a trait impl have
971 /// the same kind as the respective generic parameter in the trait def.
972 ///
973 /// For example all 4 errors in the following code are emitted here:
974 /// ```
975 /// trait Foo {
976 ///     fn foo<const N: u8>();
977 ///     type bar<const N: u8>;
978 ///     fn baz<const N: u32>();
979 ///     type blah<T>;
980 /// }
981 ///
982 /// impl Foo for () {
983 ///     fn foo<const N: u64>() {}
984 ///     //~^ error
985 ///     type bar<const N: u64> {}
986 ///     //~^ error
987 ///     fn baz<T>() {}
988 ///     //~^ error
989 ///     type blah<const N: i64> = u32;
990 ///     //~^ error
991 /// }
992 /// ```
993 ///
994 /// This function does not handle lifetime parameters
995 fn compare_generic_param_kinds<'tcx>(
996     tcx: TyCtxt<'tcx>,
997     impl_item: &ty::AssocItem,
998     trait_item: &ty::AssocItem,
999 ) -> Result<(), ErrorGuaranteed> {
1000     assert_eq!(impl_item.kind, trait_item.kind);
1001
1002     let ty_const_params_of = |def_id| {
1003         tcx.generics_of(def_id).params.iter().filter(|param| {
1004             matches!(
1005                 param.kind,
1006                 GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
1007             )
1008         })
1009     };
1010
1011     for (param_impl, param_trait) in
1012         iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
1013     {
1014         use GenericParamDefKind::*;
1015         if match (&param_impl.kind, &param_trait.kind) {
1016             (Const { .. }, Const { .. })
1017                 if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
1018             {
1019                 true
1020             }
1021             (Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
1022             // this is exhaustive so that anyone adding new generic param kinds knows
1023             // to make sure this error is reported for them.
1024             (Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
1025             (Lifetime { .. }, _) | (_, Lifetime { .. }) => unreachable!(),
1026         } {
1027             let param_impl_span = tcx.def_span(param_impl.def_id);
1028             let param_trait_span = tcx.def_span(param_trait.def_id);
1029
1030             let mut err = struct_span_err!(
1031                 tcx.sess,
1032                 param_impl_span,
1033                 E0053,
1034                 "{} `{}` has an incompatible generic parameter for trait `{}`",
1035                 assoc_item_kind_str(&impl_item),
1036                 trait_item.name,
1037                 &tcx.def_path_str(tcx.parent(trait_item.def_id))
1038             );
1039
1040             let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
1041                 Const { .. } => {
1042                     format!("{} const parameter of type `{}`", prefix, tcx.type_of(param.def_id))
1043                 }
1044                 Type { .. } => format!("{} type parameter", prefix),
1045                 Lifetime { .. } => unreachable!(),
1046             };
1047
1048             let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
1049             err.span_label(trait_header_span, "");
1050             err.span_label(param_trait_span, make_param_message("expected", param_trait));
1051
1052             let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
1053             err.span_label(impl_header_span, "");
1054             err.span_label(param_impl_span, make_param_message("found", param_impl));
1055
1056             let reported = err.emit();
1057             return Err(reported);
1058         }
1059     }
1060
1061     Ok(())
1062 }
1063
1064 pub(crate) fn compare_const_impl<'tcx>(
1065     tcx: TyCtxt<'tcx>,
1066     impl_c: &ty::AssocItem,
1067     impl_c_span: Span,
1068     trait_c: &ty::AssocItem,
1069     impl_trait_ref: ty::TraitRef<'tcx>,
1070 ) {
1071     debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
1072
1073     tcx.infer_ctxt().enter(|infcx| {
1074         let param_env = tcx.param_env(impl_c.def_id);
1075         let ocx = ObligationCtxt::new(&infcx);
1076
1077         // The below is for the most part highly similar to the procedure
1078         // for methods above. It is simpler in many respects, especially
1079         // because we shouldn't really have to deal with lifetimes or
1080         // predicates. In fact some of this should probably be put into
1081         // shared functions because of DRY violations...
1082         let trait_to_impl_substs = impl_trait_ref.substs;
1083
1084         // Create a parameter environment that represents the implementation's
1085         // method.
1086         let impl_c_hir_id = tcx.hir().local_def_id_to_hir_id(impl_c.def_id.expect_local());
1087
1088         // Compute placeholder form of impl and trait const tys.
1089         let impl_ty = tcx.type_of(impl_c.def_id);
1090         let trait_ty = tcx.bound_type_of(trait_c.def_id).subst(tcx, trait_to_impl_substs);
1091         let mut cause = ObligationCause::new(
1092             impl_c_span,
1093             impl_c_hir_id,
1094             ObligationCauseCode::CompareImplItemObligation {
1095                 impl_item_def_id: impl_c.def_id.expect_local(),
1096                 trait_item_def_id: trait_c.def_id,
1097                 kind: impl_c.kind,
1098             },
1099         );
1100
1101         // There is no "body" here, so just pass dummy id.
1102         let impl_ty = ocx.normalize(cause.clone(), param_env, impl_ty);
1103
1104         debug!("compare_const_impl: impl_ty={:?}", impl_ty);
1105
1106         let trait_ty = ocx.normalize(cause.clone(), param_env, trait_ty);
1107
1108         debug!("compare_const_impl: trait_ty={:?}", trait_ty);
1109
1110         let err = infcx
1111             .at(&cause, param_env)
1112             .sup(trait_ty, impl_ty)
1113             .map(|ok| ocx.register_infer_ok_obligations(ok));
1114
1115         if let Err(terr) = err {
1116             debug!(
1117                 "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
1118                 impl_ty, trait_ty
1119             );
1120
1121             // Locate the Span containing just the type of the offending impl
1122             match tcx.hir().expect_impl_item(impl_c.def_id.expect_local()).kind {
1123                 ImplItemKind::Const(ref ty, _) => cause.span = ty.span,
1124                 _ => bug!("{:?} is not a impl const", impl_c),
1125             }
1126
1127             let mut diag = struct_span_err!(
1128                 tcx.sess,
1129                 cause.span,
1130                 E0326,
1131                 "implemented const `{}` has an incompatible type for trait",
1132                 trait_c.name
1133             );
1134
1135             let trait_c_span = trait_c.def_id.as_local().map(|trait_c_def_id| {
1136                 // Add a label to the Span containing just the type of the const
1137                 match tcx.hir().expect_trait_item(trait_c_def_id).kind {
1138                     TraitItemKind::Const(ref ty, _) => ty.span,
1139                     _ => bug!("{:?} is not a trait const", trait_c),
1140                 }
1141             });
1142
1143             infcx.note_type_err(
1144                 &mut diag,
1145                 &cause,
1146                 trait_c_span.map(|span| (span, "type in trait".to_owned())),
1147                 Some(infer::ValuePairs::Terms(ExpectedFound {
1148                     expected: trait_ty.into(),
1149                     found: impl_ty.into(),
1150                 })),
1151                 terr,
1152                 false,
1153                 false,
1154             );
1155             diag.emit();
1156         }
1157
1158         // Check that all obligations are satisfied by the implementation's
1159         // version.
1160         let errors = ocx.select_all_or_error();
1161         if !errors.is_empty() {
1162             infcx.report_fulfillment_errors(&errors, None, false);
1163             return;
1164         }
1165
1166         let outlives_environment = OutlivesEnvironment::new(param_env);
1167         infcx.check_region_obligations_and_report_errors(
1168             impl_c.def_id.expect_local(),
1169             &outlives_environment,
1170         );
1171     });
1172 }
1173
1174 pub(crate) fn compare_ty_impl<'tcx>(
1175     tcx: TyCtxt<'tcx>,
1176     impl_ty: &ty::AssocItem,
1177     impl_ty_span: Span,
1178     trait_ty: &ty::AssocItem,
1179     impl_trait_ref: ty::TraitRef<'tcx>,
1180     trait_item_span: Option<Span>,
1181 ) {
1182     debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
1183
1184     let _: Result<(), ErrorGuaranteed> = (|| {
1185         compare_number_of_generics(tcx, impl_ty, impl_ty_span, trait_ty, trait_item_span)?;
1186
1187         compare_generic_param_kinds(tcx, impl_ty, trait_ty)?;
1188
1189         let sp = tcx.def_span(impl_ty.def_id);
1190         compare_type_predicate_entailment(tcx, impl_ty, sp, trait_ty, impl_trait_ref)?;
1191
1192         check_type_bounds(tcx, trait_ty, impl_ty, impl_ty_span, impl_trait_ref)
1193     })();
1194 }
1195
1196 /// The equivalent of [compare_predicate_entailment], but for associated types
1197 /// instead of associated functions.
1198 fn compare_type_predicate_entailment<'tcx>(
1199     tcx: TyCtxt<'tcx>,
1200     impl_ty: &ty::AssocItem,
1201     impl_ty_span: Span,
1202     trait_ty: &ty::AssocItem,
1203     impl_trait_ref: ty::TraitRef<'tcx>,
1204 ) -> Result<(), ErrorGuaranteed> {
1205     let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
1206     let trait_to_impl_substs =
1207         impl_substs.rebase_onto(tcx, impl_ty.container_id(tcx), impl_trait_ref.substs);
1208
1209     let impl_ty_generics = tcx.generics_of(impl_ty.def_id);
1210     let trait_ty_generics = tcx.generics_of(trait_ty.def_id);
1211     let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
1212     let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
1213
1214     check_region_bounds_on_impl_item(
1215         tcx,
1216         impl_ty,
1217         trait_ty,
1218         &trait_ty_generics,
1219         &impl_ty_generics,
1220     )?;
1221
1222     let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
1223
1224     if impl_ty_own_bounds.is_empty() {
1225         // Nothing to check.
1226         return Ok(());
1227     }
1228
1229     // This `HirId` should be used for the `body_id` field on each
1230     // `ObligationCause` (and the `FnCtxt`). This is what
1231     // `regionck_item` expects.
1232     let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
1233     debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
1234
1235     // The predicates declared by the impl definition, the trait and the
1236     // associated type in the trait are assumed.
1237     let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
1238     let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
1239     hybrid_preds
1240         .predicates
1241         .extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);
1242
1243     debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
1244
1245     let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
1246     let param_env = ty::ParamEnv::new(
1247         tcx.intern_predicates(&hybrid_preds.predicates),
1248         Reveal::UserFacing,
1249         hir::Constness::NotConst,
1250     );
1251     let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
1252     tcx.infer_ctxt().enter(|infcx| {
1253         let ocx = ObligationCtxt::new(&infcx);
1254
1255         debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());
1256
1257         let mut selcx = traits::SelectionContext::new(&infcx);
1258
1259         assert_eq!(impl_ty_own_bounds.predicates.len(), impl_ty_own_bounds.spans.len());
1260         for (span, predicate) in
1261             std::iter::zip(impl_ty_own_bounds.spans, impl_ty_own_bounds.predicates)
1262         {
1263             let cause = ObligationCause::misc(span, impl_ty_hir_id);
1264             let traits::Normalized { value: predicate, obligations } =
1265                 traits::normalize(&mut selcx, param_env, cause, predicate);
1266
1267             let cause = ObligationCause::new(
1268                 span,
1269                 impl_ty_hir_id,
1270                 ObligationCauseCode::CompareImplItemObligation {
1271                     impl_item_def_id: impl_ty.def_id.expect_local(),
1272                     trait_item_def_id: trait_ty.def_id,
1273                     kind: impl_ty.kind,
1274                 },
1275             );
1276             ocx.register_obligations(obligations);
1277             ocx.register_obligation(traits::Obligation::new(cause, param_env, predicate));
1278         }
1279
1280         // Check that all obligations are satisfied by the implementation's
1281         // version.
1282         let errors = ocx.select_all_or_error();
1283         if !errors.is_empty() {
1284             let reported = infcx.report_fulfillment_errors(&errors, None, false);
1285             return Err(reported);
1286         }
1287
1288         // Finally, resolve all regions. This catches wily misuses of
1289         // lifetime parameters.
1290         let outlives_environment = OutlivesEnvironment::new(param_env);
1291         infcx.check_region_obligations_and_report_errors(
1292             impl_ty.def_id.expect_local(),
1293             &outlives_environment,
1294         );
1295
1296         Ok(())
1297     })
1298 }
1299
1300 /// Validate that `ProjectionCandidate`s created for this associated type will
1301 /// be valid.
1302 ///
1303 /// Usually given
1304 ///
1305 /// trait X { type Y: Copy } impl X for T { type Y = S; }
1306 ///
1307 /// We are able to normalize `<T as X>::U` to `S`, and so when we check the
1308 /// impl is well-formed we have to prove `S: Copy`.
1309 ///
1310 /// For default associated types the normalization is not possible (the value
1311 /// from the impl could be overridden). We also can't normalize generic
1312 /// associated types (yet) because they contain bound parameters.
1313 #[tracing::instrument(level = "debug", skip(tcx))]
1314 pub fn check_type_bounds<'tcx>(
1315     tcx: TyCtxt<'tcx>,
1316     trait_ty: &ty::AssocItem,
1317     impl_ty: &ty::AssocItem,
1318     impl_ty_span: Span,
1319     impl_trait_ref: ty::TraitRef<'tcx>,
1320 ) -> Result<(), ErrorGuaranteed> {
1321     // Given
1322     //
1323     // impl<A, B> Foo<u32> for (A, B) {
1324     //     type Bar<C> =...
1325     // }
1326     //
1327     // - `impl_trait_ref` would be `<(A, B) as Foo<u32>>
1328     // - `impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
1329     // - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
1330     //    the *trait* with the generic associated type parameters (as bound vars).
1331     //
1332     // A note regarding the use of bound vars here:
1333     // Imagine as an example
1334     // ```
1335     // trait Family {
1336     //     type Member<C: Eq>;
1337     // }
1338     //
1339     // impl Family for VecFamily {
1340     //     type Member<C: Eq> = i32;
1341     // }
1342     // ```
1343     // Here, we would generate
1344     // ```notrust
1345     // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
1346     // ```
1347     // when we really would like to generate
1348     // ```notrust
1349     // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
1350     // ```
1351     // But, this is probably fine, because although the first clause can be used with types C that
1352     // do not implement Eq, for it to cause some kind of problem, there would have to be a
1353     // VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
1354     // Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
1355     // elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
1356     // the trait (notably, that X: Eq and T: Family).
1357     let defs: &ty::Generics = tcx.generics_of(impl_ty.def_id);
1358     let mut substs = smallvec::SmallVec::with_capacity(defs.count());
1359     if let Some(def_id) = defs.parent {
1360         let parent_defs = tcx.generics_of(def_id);
1361         InternalSubsts::fill_item(&mut substs, tcx, parent_defs, &mut |param, _| {
1362             tcx.mk_param_from_def(param)
1363         });
1364     }
1365     let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
1366         smallvec::SmallVec::with_capacity(defs.count());
1367     InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param.kind {
1368         GenericParamDefKind::Type { .. } => {
1369             let kind = ty::BoundTyKind::Param(param.name);
1370             let bound_var = ty::BoundVariableKind::Ty(kind);
1371             bound_vars.push(bound_var);
1372             tcx.mk_ty(ty::Bound(
1373                 ty::INNERMOST,
1374                 ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
1375             ))
1376             .into()
1377         }
1378         GenericParamDefKind::Lifetime => {
1379             let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
1380             let bound_var = ty::BoundVariableKind::Region(kind);
1381             bound_vars.push(bound_var);
1382             tcx.mk_region(ty::ReLateBound(
1383                 ty::INNERMOST,
1384                 ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
1385             ))
1386             .into()
1387         }
1388         GenericParamDefKind::Const { .. } => {
1389             let bound_var = ty::BoundVariableKind::Const;
1390             bound_vars.push(bound_var);
1391             tcx.mk_const(ty::ConstS {
1392                 ty: tcx.type_of(param.def_id),
1393                 kind: ty::ConstKind::Bound(
1394                     ty::INNERMOST,
1395                     ty::BoundVar::from_usize(bound_vars.len() - 1),
1396                 ),
1397             })
1398             .into()
1399         }
1400     });
1401     let bound_vars = tcx.mk_bound_variable_kinds(bound_vars.into_iter());
1402     let impl_ty_substs = tcx.intern_substs(&substs);
1403     let container_id = impl_ty.container_id(tcx);
1404
1405     let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
1406     let impl_ty_value = tcx.type_of(impl_ty.def_id);
1407
1408     let param_env = tcx.param_env(impl_ty.def_id);
1409
1410     // When checking something like
1411     //
1412     // trait X { type Y: PartialEq<<Self as X>::Y> }
1413     // impl X for T { default type Y = S; }
1414     //
1415     // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
1416     // we want <T as X>::Y to normalize to S. This is valid because we are
1417     // checking the default value specifically here. Add this equality to the
1418     // ParamEnv for normalization specifically.
1419     let normalize_param_env = {
1420         let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
1421         match impl_ty_value.kind() {
1422             ty::Projection(proj)
1423                 if proj.item_def_id == trait_ty.def_id && proj.substs == rebased_substs =>
1424             {
1425                 // Don't include this predicate if the projected type is
1426                 // exactly the same as the projection. This can occur in
1427                 // (somewhat dubious) code like this:
1428                 //
1429                 // impl<T> X for T where T: X { type Y = <T as X>::Y; }
1430             }
1431             _ => predicates.push(
1432                 ty::Binder::bind_with_vars(
1433                     ty::ProjectionPredicate {
1434                         projection_ty: ty::ProjectionTy {
1435                             item_def_id: trait_ty.def_id,
1436                             substs: rebased_substs,
1437                         },
1438                         term: impl_ty_value.into(),
1439                     },
1440                     bound_vars,
1441                 )
1442                 .to_predicate(tcx),
1443             ),
1444         };
1445         ty::ParamEnv::new(
1446             tcx.intern_predicates(&predicates),
1447             Reveal::UserFacing,
1448             param_env.constness(),
1449         )
1450     };
1451     debug!(?normalize_param_env);
1452
1453     let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
1454     let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
1455     let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
1456
1457     tcx.infer_ctxt().enter(move |infcx| {
1458         let ocx = ObligationCtxt::new(&infcx);
1459
1460         let assumed_wf_types =
1461             ocx.assumed_wf_types(param_env, impl_ty_span, impl_ty.def_id.expect_local());
1462
1463         let mut selcx = traits::SelectionContext::new(&infcx);
1464         let normalize_cause = ObligationCause::new(
1465             impl_ty_span,
1466             impl_ty_hir_id,
1467             ObligationCauseCode::CheckAssociatedTypeBounds {
1468                 impl_item_def_id: impl_ty.def_id.expect_local(),
1469                 trait_item_def_id: trait_ty.def_id,
1470             },
1471         );
1472         let mk_cause = |span: Span| {
1473             let code = if span.is_dummy() {
1474                 traits::ItemObligation(trait_ty.def_id)
1475             } else {
1476                 traits::BindingObligation(trait_ty.def_id, span)
1477             };
1478             ObligationCause::new(impl_ty_span, impl_ty_hir_id, code)
1479         };
1480
1481         let obligations = tcx
1482             .bound_explicit_item_bounds(trait_ty.def_id)
1483             .transpose_iter()
1484             .map(|e| e.map_bound(|e| *e).transpose_tuple2())
1485             .map(|(bound, span)| {
1486                 debug!(?bound);
1487                 // this is where opaque type is found
1488                 let concrete_ty_bound = bound.subst(tcx, rebased_substs);
1489                 debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);
1490
1491                 traits::Obligation::new(mk_cause(span.0), param_env, concrete_ty_bound)
1492             })
1493             .collect();
1494         debug!("check_type_bounds: item_bounds={:?}", obligations);
1495
1496         for mut obligation in util::elaborate_obligations(tcx, obligations) {
1497             let traits::Normalized { value: normalized_predicate, obligations } = traits::normalize(
1498                 &mut selcx,
1499                 normalize_param_env,
1500                 normalize_cause.clone(),
1501                 obligation.predicate,
1502             );
1503             debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
1504             obligation.predicate = normalized_predicate;
1505
1506             ocx.register_obligations(obligations);
1507             ocx.register_obligation(obligation);
1508         }
1509         // Check that all obligations are satisfied by the implementation's
1510         // version.
1511         let errors = ocx.select_all_or_error();
1512         if !errors.is_empty() {
1513             let reported = infcx.report_fulfillment_errors(&errors, None, false);
1514             return Err(reported);
1515         }
1516
1517         // Finally, resolve all regions. This catches wily misuses of
1518         // lifetime parameters.
1519         let implied_bounds = infcx.implied_bounds_tys(param_env, impl_ty_hir_id, assumed_wf_types);
1520         let outlives_environment =
1521             OutlivesEnvironment::with_bounds(param_env, Some(&infcx), implied_bounds);
1522
1523         infcx.check_region_obligations_and_report_errors(
1524             impl_ty.def_id.expect_local(),
1525             &outlives_environment,
1526         );
1527
1528         let constraints = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
1529         for (key, value) in constraints {
1530             infcx
1531                 .report_mismatched_types(
1532                     &ObligationCause::misc(
1533                         value.hidden_type.span,
1534                         tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local()),
1535                     ),
1536                     tcx.mk_opaque(key.def_id.to_def_id(), key.substs),
1537                     value.hidden_type.ty,
1538                     TypeError::Mismatch,
1539                 )
1540                 .emit();
1541         }
1542
1543         Ok(())
1544     })
1545 }
1546
1547 fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
1548     match impl_item.kind {
1549         ty::AssocKind::Const => "const",
1550         ty::AssocKind::Fn => "method",
1551         ty::AssocKind::Type => "type",
1552     }
1553 }