]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/astconv/mod.rs
Rollup merge of #87288 - ijackson:rustdoc-theme, r=GuillaumeGomez
[rust.git] / compiler / rustc_typeck / src / astconv / mod.rs
1 //! Conversion from AST representation of types to the `ty.rs` representation.
2 //! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
3 //! instance of `AstConv`.
4
5 mod errors;
6 mod generics;
7
8 use crate::bounds::Bounds;
9 use crate::collect::PlaceholderHirTyCollector;
10 use crate::errors::{
11     AmbiguousLifetimeBound, MultipleRelaxedDefaultBounds, TraitObjectDeclaredWithNoTraits,
12     TypeofReservedKeywordUsed, ValueOfAssociatedStructAlreadySpecified,
13 };
14 use crate::middle::resolve_lifetime as rl;
15 use crate::require_c_abi_if_c_variadic;
16 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
17 use rustc_errors::{struct_span_err, Applicability, ErrorReported, FatalError};
18 use rustc_hir as hir;
19 use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
20 use rustc_hir::def_id::{DefId, LocalDefId};
21 use rustc_hir::intravisit::{walk_generics, Visitor as _};
22 use rustc_hir::lang_items::LangItem;
23 use rustc_hir::{Constness, GenericArg, GenericArgs};
24 use rustc_middle::ty::subst::{self, InternalSubsts, Subst, SubstsRef};
25 use rustc_middle::ty::GenericParamDefKind;
26 use rustc_middle::ty::{self, Const, DefIdTree, Ty, TyCtxt, TypeFoldable};
27 use rustc_session::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
28 use rustc_span::lev_distance::find_best_match_for_name;
29 use rustc_span::symbol::{Ident, Symbol};
30 use rustc_span::{Span, DUMMY_SP};
31 use rustc_target::spec::abi;
32 use rustc_trait_selection::traits;
33 use rustc_trait_selection::traits::astconv_object_safety_violations;
34 use rustc_trait_selection::traits::error_reporting::report_object_safety_error;
35 use rustc_trait_selection::traits::wf::object_region_bounds;
36
37 use smallvec::SmallVec;
38 use std::array;
39 use std::collections::BTreeSet;
40 use std::slice;
41
42 #[derive(Debug)]
43 pub struct PathSeg(pub DefId, pub usize);
44
45 pub trait AstConv<'tcx> {
46     fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
47
48     fn item_def_id(&self) -> Option<DefId>;
49
50     fn default_constness_for_trait_bounds(&self) -> Constness;
51
52     /// Returns predicates in scope of the form `X: Foo<T>`, where `X`
53     /// is a type parameter `X` with the given id `def_id` and T
54     /// matches `assoc_name`. This is a subset of the full set of
55     /// predicates.
56     ///
57     /// This is used for one specific purpose: resolving "short-hand"
58     /// associated type references like `T::Item`. In principle, we
59     /// would do that by first getting the full set of predicates in
60     /// scope and then filtering down to find those that apply to `T`,
61     /// but this can lead to cycle errors. The problem is that we have
62     /// to do this resolution *in order to create the predicates in
63     /// the first place*. Hence, we have this "special pass".
64     fn get_type_parameter_bounds(
65         &self,
66         span: Span,
67         def_id: DefId,
68         assoc_name: Ident,
69     ) -> ty::GenericPredicates<'tcx>;
70
71     /// Returns the lifetime to use when a lifetime is omitted (and not elided).
72     fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
73     -> Option<ty::Region<'tcx>>;
74
75     /// Returns the type to use when a type is omitted.
76     fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
77
78     /// Returns `true` if `_` is allowed in type signatures in the current context.
79     fn allow_ty_infer(&self) -> bool;
80
81     /// Returns the const to use when a const is omitted.
82     fn ct_infer(
83         &self,
84         ty: Ty<'tcx>,
85         param: Option<&ty::GenericParamDef>,
86         span: Span,
87     ) -> &'tcx Const<'tcx>;
88
89     /// Projecting an associated type from a (potentially)
90     /// higher-ranked trait reference is more complicated, because of
91     /// the possibility of late-bound regions appearing in the
92     /// associated type binding. This is not legal in function
93     /// signatures for that reason. In a function body, we can always
94     /// handle it because we can use inference variables to remove the
95     /// late-bound regions.
96     fn projected_ty_from_poly_trait_ref(
97         &self,
98         span: Span,
99         item_def_id: DefId,
100         item_segment: &hir::PathSegment<'_>,
101         poly_trait_ref: ty::PolyTraitRef<'tcx>,
102     ) -> Ty<'tcx>;
103
104     /// Normalize an associated type coming from the user.
105     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
106
107     /// Invoked when we encounter an error from some prior pass
108     /// (e.g., resolve) that is translated into a ty-error. This is
109     /// used to help suppress derived errors typeck might otherwise
110     /// report.
111     fn set_tainted_by_errors(&self);
112
113     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
114 }
115
116 pub enum SizedByDefault {
117     Yes,
118     No,
119 }
120
121 #[derive(Debug)]
122 struct ConvertedBinding<'a, 'tcx> {
123     hir_id: hir::HirId,
124     item_name: Ident,
125     kind: ConvertedBindingKind<'a, 'tcx>,
126     gen_args: &'a GenericArgs<'a>,
127     span: Span,
128 }
129
130 #[derive(Debug)]
131 enum ConvertedBindingKind<'a, 'tcx> {
132     Equality(Ty<'tcx>),
133     Constraint(&'a [hir::GenericBound<'a>]),
134 }
135
136 /// New-typed boolean indicating whether explicit late-bound lifetimes
137 /// are present in a set of generic arguments.
138 ///
139 /// For example if we have some method `fn f<'a>(&'a self)` implemented
140 /// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
141 /// is late-bound so should not be provided explicitly. Thus, if `f` is
142 /// instantiated with some generic arguments providing `'a` explicitly,
143 /// we taint those arguments with `ExplicitLateBound::Yes` so that we
144 /// can provide an appropriate diagnostic later.
145 #[derive(Copy, Clone, PartialEq)]
146 pub enum ExplicitLateBound {
147     Yes,
148     No,
149 }
150
151 #[derive(Copy, Clone, PartialEq)]
152 pub enum IsMethodCall {
153     Yes,
154     No,
155 }
156
157 /// Denotes the "position" of a generic argument, indicating if it is a generic type,
158 /// generic function or generic method call.
159 #[derive(Copy, Clone, PartialEq)]
160 pub(crate) enum GenericArgPosition {
161     Type,
162     Value, // e.g., functions
163     MethodCall,
164 }
165
166 /// A marker denoting that the generic arguments that were
167 /// provided did not match the respective generic parameters.
168 #[derive(Clone, Default)]
169 pub struct GenericArgCountMismatch {
170     /// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
171     pub reported: Option<ErrorReported>,
172     /// A list of spans of arguments provided that were not valid.
173     pub invalid_args: Vec<Span>,
174 }
175
176 /// Decorates the result of a generic argument count mismatch
177 /// check with whether explicit late bounds were provided.
178 #[derive(Clone)]
179 pub struct GenericArgCountResult {
180     pub explicit_late_bound: ExplicitLateBound,
181     pub correct: Result<(), GenericArgCountMismatch>,
182 }
183
184 pub trait CreateSubstsForGenericArgsCtxt<'a, 'tcx> {
185     fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'a>>, bool);
186
187     fn provided_kind(
188         &mut self,
189         param: &ty::GenericParamDef,
190         arg: &GenericArg<'_>,
191     ) -> subst::GenericArg<'tcx>;
192
193     fn inferred_kind(
194         &mut self,
195         substs: Option<&[subst::GenericArg<'tcx>]>,
196         param: &ty::GenericParamDef,
197         infer_args: bool,
198     ) -> subst::GenericArg<'tcx>;
199 }
200
201 impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
202     #[tracing::instrument(level = "debug", skip(self))]
203     pub fn ast_region_to_region(
204         &self,
205         lifetime: &hir::Lifetime,
206         def: Option<&ty::GenericParamDef>,
207     ) -> ty::Region<'tcx> {
208         let tcx = self.tcx();
209         let lifetime_name = |def_id| tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id));
210
211         let r = match tcx.named_region(lifetime.hir_id) {
212             Some(rl::Region::Static) => tcx.lifetimes.re_static,
213
214             Some(rl::Region::LateBound(debruijn, index, def_id, _)) => {
215                 let name = lifetime_name(def_id.expect_local());
216                 let br = ty::BoundRegion {
217                     var: ty::BoundVar::from_u32(index),
218                     kind: ty::BrNamed(def_id, name),
219                 };
220                 tcx.mk_region(ty::ReLateBound(debruijn, br))
221             }
222
223             Some(rl::Region::LateBoundAnon(debruijn, index, anon_index)) => {
224                 let br = ty::BoundRegion {
225                     var: ty::BoundVar::from_u32(index),
226                     kind: ty::BrAnon(anon_index),
227                 };
228                 tcx.mk_region(ty::ReLateBound(debruijn, br))
229             }
230
231             Some(rl::Region::EarlyBound(index, id, _)) => {
232                 let name = lifetime_name(id.expect_local());
233                 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: id, index, name }))
234             }
235
236             Some(rl::Region::Free(scope, id)) => {
237                 let name = lifetime_name(id.expect_local());
238                 tcx.mk_region(ty::ReFree(ty::FreeRegion {
239                     scope,
240                     bound_region: ty::BrNamed(id, name),
241                 }))
242
243                 // (*) -- not late-bound, won't change
244             }
245
246             None => {
247                 self.re_infer(def, lifetime.span).unwrap_or_else(|| {
248                     debug!(?lifetime, "unelided lifetime in signature");
249
250                     // This indicates an illegal lifetime
251                     // elision. `resolve_lifetime` should have
252                     // reported an error in this case -- but if
253                     // not, let's error out.
254                     tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
255
256                     // Supply some dummy value. We don't have an
257                     // `re_error`, annoyingly, so use `'static`.
258                     tcx.lifetimes.re_static
259                 })
260             }
261         };
262
263         debug!("ast_region_to_region(lifetime={:?}) yields {:?}", lifetime, r);
264
265         r
266     }
267
268     /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
269     /// returns an appropriate set of substitutions for this particular reference to `I`.
270     pub fn ast_path_substs_for_ty(
271         &self,
272         span: Span,
273         def_id: DefId,
274         item_segment: &hir::PathSegment<'_>,
275     ) -> SubstsRef<'tcx> {
276         let (substs, _) = self.create_substs_for_ast_path(
277             span,
278             def_id,
279             &[],
280             item_segment,
281             item_segment.args(),
282             item_segment.infer_args,
283             None,
284         );
285         let assoc_bindings = self.create_assoc_bindings_for_generic_args(item_segment.args());
286
287         if let Some(b) = assoc_bindings.first() {
288             Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
289         }
290
291         substs
292     }
293
294     /// Given the type/lifetime/const arguments provided to some path (along with
295     /// an implicit `Self`, if this is a trait reference), returns the complete
296     /// set of substitutions. This may involve applying defaulted type parameters.
297     /// Also returns back constraints on associated types.
298     ///
299     /// Example:
300     ///
301     /// ```
302     /// T: std::ops::Index<usize, Output = u32>
303     /// ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
304     /// ```
305     ///
306     /// 1. The `self_ty` here would refer to the type `T`.
307     /// 2. The path in question is the path to the trait `std::ops::Index`,
308     ///    which will have been resolved to a `def_id`
309     /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
310     ///    parameters are returned in the `SubstsRef`, the associated type bindings like
311     ///    `Output = u32` are returned in the `Vec<ConvertedBinding...>` result.
312     ///
313     /// Note that the type listing given here is *exactly* what the user provided.
314     ///
315     /// For (generic) associated types
316     ///
317     /// ```
318     /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
319     /// ```
320     ///
321     /// We have the parent substs are the substs for the parent trait:
322     /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
323     /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
324     /// lists: `[Vec<u8>, u8, 'a]`.
325     #[tracing::instrument(level = "debug", skip(self, span))]
326     fn create_substs_for_ast_path<'a>(
327         &self,
328         span: Span,
329         def_id: DefId,
330         parent_substs: &[subst::GenericArg<'tcx>],
331         seg: &hir::PathSegment<'_>,
332         generic_args: &'a hir::GenericArgs<'_>,
333         infer_args: bool,
334         self_ty: Option<Ty<'tcx>>,
335     ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
336         // If the type is parameterized by this region, then replace this
337         // region with the current anon region binding (in other words,
338         // whatever & would get replaced with).
339
340         let tcx = self.tcx();
341         let generics = tcx.generics_of(def_id);
342         debug!("generics: {:?}", generics);
343
344         if generics.has_self {
345             if generics.parent.is_some() {
346                 // The parent is a trait so it should have at least one subst
347                 // for the `Self` type.
348                 assert!(!parent_substs.is_empty())
349             } else {
350                 // This item (presumably a trait) needs a self-type.
351                 assert!(self_ty.is_some());
352             }
353         } else {
354             assert!(self_ty.is_none() && parent_substs.is_empty());
355         }
356
357         let arg_count = Self::check_generic_arg_count(
358             tcx,
359             span,
360             def_id,
361             seg,
362             &generics,
363             &generic_args,
364             GenericArgPosition::Type,
365             self_ty.is_some(),
366             infer_args,
367         );
368
369         // Skip processing if type has no generic parameters.
370         // Traits always have `Self` as a generic parameter, which means they will not return early
371         // here and so associated type bindings will be handled regardless of whether there are any
372         // non-`Self` generic parameters.
373         if generics.params.len() == 0 {
374             return (tcx.intern_substs(&[]), arg_count);
375         }
376
377         let is_object = self_ty.map_or(false, |ty| ty == self.tcx().types.trait_object_dummy_self);
378
379         struct SubstsForAstPathCtxt<'a, 'tcx> {
380             astconv: &'a (dyn AstConv<'tcx> + 'a),
381             def_id: DefId,
382             generic_args: &'a GenericArgs<'a>,
383             span: Span,
384             missing_type_params: Vec<String>,
385             inferred_params: Vec<Span>,
386             infer_args: bool,
387             is_object: bool,
388         }
389
390         impl<'tcx, 'a> SubstsForAstPathCtxt<'tcx, 'a> {
391             fn default_needs_object_self(&mut self, param: &ty::GenericParamDef) -> bool {
392                 let tcx = self.astconv.tcx();
393                 if let GenericParamDefKind::Type { has_default, .. } = param.kind {
394                     if self.is_object && has_default {
395                         let default_ty = tcx.at(self.span).type_of(param.def_id);
396                         let self_param = tcx.types.self_param;
397                         if default_ty.walk().any(|arg| arg == self_param.into()) {
398                             // There is no suitable inference default for a type parameter
399                             // that references self, in an object type.
400                             return true;
401                         }
402                     }
403                 }
404
405                 false
406             }
407         }
408
409         impl<'a, 'tcx> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for SubstsForAstPathCtxt<'a, 'tcx> {
410             fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'a>>, bool) {
411                 if did == self.def_id {
412                     (Some(self.generic_args), self.infer_args)
413                 } else {
414                     // The last component of this tuple is unimportant.
415                     (None, false)
416                 }
417             }
418
419             fn provided_kind(
420                 &mut self,
421                 param: &ty::GenericParamDef,
422                 arg: &GenericArg<'_>,
423             ) -> subst::GenericArg<'tcx> {
424                 let tcx = self.astconv.tcx();
425                 match (&param.kind, arg) {
426                     (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
427                         self.astconv.ast_region_to_region(&lt, Some(param)).into()
428                     }
429                     (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
430                         if has_default {
431                             tcx.check_optional_stability(
432                                 param.def_id,
433                                 Some(arg.id()),
434                                 arg.span(),
435                                 None,
436                                 |_, _| {
437                                     // Default generic parameters may not be marked
438                                     // with stability attributes, i.e. when the
439                                     // default parameter was defined at the same time
440                                     // as the rest of the type. As such, we ignore missing
441                                     // stability attributes.
442                                 },
443                             )
444                         }
445                         if let (hir::TyKind::Infer, false) =
446                             (&ty.kind, self.astconv.allow_ty_infer())
447                         {
448                             self.inferred_params.push(ty.span);
449                             tcx.ty_error().into()
450                         } else {
451                             self.astconv.ast_ty_to_ty(&ty).into()
452                         }
453                     }
454                     (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
455                         ty::Const::from_opt_const_arg_anon_const(
456                             tcx,
457                             ty::WithOptConstParam {
458                                 did: tcx.hir().local_def_id(ct.value.hir_id),
459                                 const_param_did: Some(param.def_id),
460                             },
461                         )
462                         .into()
463                     }
464                     _ => unreachable!(),
465                 }
466             }
467
468             fn inferred_kind(
469                 &mut self,
470                 substs: Option<&[subst::GenericArg<'tcx>]>,
471                 param: &ty::GenericParamDef,
472                 infer_args: bool,
473             ) -> subst::GenericArg<'tcx> {
474                 let tcx = self.astconv.tcx();
475                 match param.kind {
476                     GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
477                     GenericParamDefKind::Type { has_default, .. } => {
478                         if !infer_args && has_default {
479                             // No type parameter provided, but a default exists.
480
481                             // If we are converting an object type, then the
482                             // `Self` parameter is unknown. However, some of the
483                             // other type parameters may reference `Self` in their
484                             // defaults. This will lead to an ICE if we are not
485                             // careful!
486                             if self.default_needs_object_self(param) {
487                                 self.missing_type_params.push(param.name.to_string());
488                                 tcx.ty_error().into()
489                             } else {
490                                 // This is a default type parameter.
491                                 self.astconv
492                                     .normalize_ty(
493                                         self.span,
494                                         tcx.at(self.span).type_of(param.def_id).subst_spanned(
495                                             tcx,
496                                             substs.unwrap(),
497                                             Some(self.span),
498                                         ),
499                                     )
500                                     .into()
501                             }
502                         } else if infer_args {
503                             // No type parameters were provided, we can infer all.
504                             let param = if !self.default_needs_object_self(param) {
505                                 Some(param)
506                             } else {
507                                 None
508                             };
509                             self.astconv.ty_infer(param, self.span).into()
510                         } else {
511                             // We've already errored above about the mismatch.
512                             tcx.ty_error().into()
513                         }
514                     }
515                     GenericParamDefKind::Const { has_default } => {
516                         let ty = tcx.at(self.span).type_of(param.def_id);
517                         if !infer_args && has_default {
518                             tcx.const_param_default(param.def_id)
519                                 .subst_spanned(tcx, substs.unwrap(), Some(self.span))
520                                 .into()
521                         } else {
522                             if infer_args {
523                                 self.astconv.ct_infer(ty, Some(param), self.span).into()
524                             } else {
525                                 // We've already errored above about the mismatch.
526                                 tcx.const_error(ty).into()
527                             }
528                         }
529                     }
530                 }
531             }
532         }
533
534         let mut substs_ctx = SubstsForAstPathCtxt {
535             astconv: self,
536             def_id,
537             span,
538             generic_args,
539             missing_type_params: vec![],
540             inferred_params: vec![],
541             infer_args,
542             is_object,
543         };
544         let substs = Self::create_substs_for_generic_args(
545             tcx,
546             def_id,
547             parent_substs,
548             self_ty.is_some(),
549             self_ty,
550             &arg_count,
551             &mut substs_ctx,
552         );
553
554         self.complain_about_missing_type_params(
555             substs_ctx.missing_type_params,
556             def_id,
557             span,
558             generic_args.args.is_empty(),
559         );
560
561         debug!(
562             "create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
563             generics, self_ty, substs
564         );
565
566         (substs, arg_count)
567     }
568
569     fn create_assoc_bindings_for_generic_args<'a>(
570         &self,
571         generic_args: &'a hir::GenericArgs<'_>,
572     ) -> Vec<ConvertedBinding<'a, 'tcx>> {
573         // Convert associated-type bindings or constraints into a separate vector.
574         // Example: Given this:
575         //
576         //     T: Iterator<Item = u32>
577         //
578         // The `T` is passed in as a self-type; the `Item = u32` is
579         // not a "type parameter" of the `Iterator` trait, but rather
580         // a restriction on `<T as Iterator>::Item`, so it is passed
581         // back separately.
582         let assoc_bindings = generic_args
583             .bindings
584             .iter()
585             .map(|binding| {
586                 let kind = match binding.kind {
587                     hir::TypeBindingKind::Equality { ref ty } => {
588                         ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty))
589                     }
590                     hir::TypeBindingKind::Constraint { ref bounds } => {
591                         ConvertedBindingKind::Constraint(bounds)
592                     }
593                 };
594                 ConvertedBinding {
595                     hir_id: binding.hir_id,
596                     item_name: binding.ident,
597                     kind,
598                     gen_args: binding.gen_args,
599                     span: binding.span,
600                 }
601             })
602             .collect();
603
604         assoc_bindings
605     }
606
607     crate fn create_substs_for_associated_item(
608         &self,
609         tcx: TyCtxt<'tcx>,
610         span: Span,
611         item_def_id: DefId,
612         item_segment: &hir::PathSegment<'_>,
613         parent_substs: SubstsRef<'tcx>,
614     ) -> SubstsRef<'tcx> {
615         debug!(
616             "create_substs_for_associated_item(span: {:?}, item_def_id: {:?}, item_segment: {:?}",
617             span, item_def_id, item_segment
618         );
619         if tcx.generics_of(item_def_id).params.is_empty() {
620             self.prohibit_generics(slice::from_ref(item_segment));
621
622             parent_substs
623         } else {
624             self.create_substs_for_ast_path(
625                 span,
626                 item_def_id,
627                 parent_substs,
628                 item_segment,
629                 item_segment.args(),
630                 item_segment.infer_args,
631                 None,
632             )
633             .0
634         }
635     }
636
637     /// Instantiates the path for the given trait reference, assuming that it's
638     /// bound to a valid trait type. Returns the `DefId` of the defining trait.
639     /// The type _cannot_ be a type other than a trait type.
640     ///
641     /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
642     /// are disallowed. Otherwise, they are pushed onto the vector given.
643     pub fn instantiate_mono_trait_ref(
644         &self,
645         trait_ref: &hir::TraitRef<'_>,
646         self_ty: Ty<'tcx>,
647     ) -> ty::TraitRef<'tcx> {
648         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
649
650         self.ast_path_to_mono_trait_ref(
651             trait_ref.path.span,
652             trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
653             self_ty,
654             trait_ref.path.segments.last().unwrap(),
655         )
656     }
657
658     /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
659     /// a full trait reference. The resulting trait reference is returned. This may also generate
660     /// auxiliary bounds, which are added to `bounds`.
661     ///
662     /// Example:
663     ///
664     /// ```
665     /// poly_trait_ref = Iterator<Item = u32>
666     /// self_ty = Foo
667     /// ```
668     ///
669     /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
670     ///
671     /// **A note on binders:** against our usual convention, there is an implied bounder around
672     /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
673     /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
674     /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
675     /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
676     /// however.
677     #[tracing::instrument(level = "debug", skip(self, span, constness, bounds, speculative))]
678     pub fn instantiate_poly_trait_ref(
679         &self,
680         trait_ref: &hir::TraitRef<'_>,
681         span: Span,
682         constness: Constness,
683         self_ty: Ty<'tcx>,
684         bounds: &mut Bounds<'tcx>,
685         speculative: bool,
686     ) -> GenericArgCountResult {
687         let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
688
689         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
690
691         let tcx = self.tcx();
692         let bound_vars = tcx.late_bound_vars(trait_ref.hir_ref_id);
693         debug!(?bound_vars);
694
695         let (substs, arg_count) = self.create_substs_for_ast_trait_ref(
696             trait_ref.path.span,
697             trait_def_id,
698             self_ty,
699             trait_ref.path.segments.last().unwrap(),
700         );
701         let assoc_bindings = self
702             .create_assoc_bindings_for_generic_args(trait_ref.path.segments.last().unwrap().args());
703
704         let poly_trait_ref =
705             ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
706
707         debug!(?poly_trait_ref, ?assoc_bindings);
708         bounds.trait_bounds.push((poly_trait_ref, span, constness));
709
710         let mut dup_bindings = FxHashMap::default();
711         for binding in &assoc_bindings {
712             // Specify type to assert that error was already reported in `Err` case.
713             let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
714                 trait_ref.hir_ref_id,
715                 poly_trait_ref,
716                 binding,
717                 bounds,
718                 speculative,
719                 &mut dup_bindings,
720                 binding.span,
721             );
722             // Okay to ignore `Err` because of `ErrorReported` (see above).
723         }
724
725         arg_count
726     }
727
728     pub fn instantiate_lang_item_trait_ref(
729         &self,
730         lang_item: hir::LangItem,
731         span: Span,
732         hir_id: hir::HirId,
733         args: &GenericArgs<'_>,
734         self_ty: Ty<'tcx>,
735         bounds: &mut Bounds<'tcx>,
736     ) {
737         let trait_def_id = self.tcx().require_lang_item(lang_item, Some(span));
738
739         let (substs, _) = self.create_substs_for_ast_path(
740             span,
741             trait_def_id,
742             &[],
743             &hir::PathSegment::invalid(),
744             args,
745             false,
746             Some(self_ty),
747         );
748         let assoc_bindings = self.create_assoc_bindings_for_generic_args(args);
749         let tcx = self.tcx();
750         let bound_vars = tcx.late_bound_vars(hir_id);
751         let poly_trait_ref =
752             ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
753         bounds.trait_bounds.push((poly_trait_ref, span, Constness::NotConst));
754
755         let mut dup_bindings = FxHashMap::default();
756         for binding in assoc_bindings {
757             let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
758                 hir_id,
759                 poly_trait_ref,
760                 &binding,
761                 bounds,
762                 false,
763                 &mut dup_bindings,
764                 span,
765             );
766         }
767     }
768
769     fn ast_path_to_mono_trait_ref(
770         &self,
771         span: Span,
772         trait_def_id: DefId,
773         self_ty: Ty<'tcx>,
774         trait_segment: &hir::PathSegment<'_>,
775     ) -> ty::TraitRef<'tcx> {
776         let (substs, _) =
777             self.create_substs_for_ast_trait_ref(span, trait_def_id, self_ty, trait_segment);
778         let assoc_bindings = self.create_assoc_bindings_for_generic_args(trait_segment.args());
779         if let Some(b) = assoc_bindings.first() {
780             Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
781         }
782         ty::TraitRef::new(trait_def_id, substs)
783     }
784
785     #[tracing::instrument(level = "debug", skip(self, span))]
786     fn create_substs_for_ast_trait_ref<'a>(
787         &self,
788         span: Span,
789         trait_def_id: DefId,
790         self_ty: Ty<'tcx>,
791         trait_segment: &'a hir::PathSegment<'a>,
792     ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
793         self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);
794
795         self.create_substs_for_ast_path(
796             span,
797             trait_def_id,
798             &[],
799             trait_segment,
800             trait_segment.args(),
801             trait_segment.infer_args,
802             Some(self_ty),
803         )
804     }
805
806     fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
807         self.tcx()
808             .associated_items(trait_def_id)
809             .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
810             .is_some()
811     }
812
813     // Returns `true` if a bounds list includes `?Sized`.
814     pub fn is_unsized(&self, ast_bounds: &[hir::GenericBound<'_>], span: Span) -> bool {
815         let tcx = self.tcx();
816
817         // Try to find an unbound in bounds.
818         let mut unbound = None;
819         for ab in ast_bounds {
820             if let hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = ab {
821                 if unbound.is_none() {
822                     unbound = Some(&ptr.trait_ref);
823                 } else {
824                     tcx.sess.emit_err(MultipleRelaxedDefaultBounds { span });
825                 }
826             }
827         }
828
829         let kind_id = tcx.lang_items().require(LangItem::Sized);
830         match unbound {
831             Some(tpb) => {
832                 // FIXME(#8559) currently requires the unbound to be built-in.
833                 if let Ok(kind_id) = kind_id {
834                     if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
835                         tcx.sess.span_warn(
836                             span,
837                             "default bound relaxed for a type parameter, but \
838                              this does nothing because the given bound is not \
839                              a default; only `?Sized` is supported",
840                         );
841                         return false;
842                     }
843                 }
844             }
845             _ if kind_id.is_ok() => {
846                 return false;
847             }
848             // No lang item for `Sized`, so we can't add it as a bound.
849             None => {}
850         }
851
852         true
853     }
854
855     /// This helper takes a *converted* parameter type (`param_ty`)
856     /// and an *unconverted* list of bounds:
857     ///
858     /// ```text
859     /// fn foo<T: Debug>
860     ///        ^  ^^^^^ `ast_bounds` parameter, in HIR form
861     ///        |
862     ///        `param_ty`, in ty form
863     /// ```
864     ///
865     /// It adds these `ast_bounds` into the `bounds` structure.
866     ///
867     /// **A note on binders:** there is an implied binder around
868     /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
869     /// for more details.
870     #[tracing::instrument(level = "debug", skip(self, bounds))]
871     fn add_bounds(
872         &self,
873         param_ty: Ty<'tcx>,
874         ast_bounds: &[hir::GenericBound<'_>],
875         bounds: &mut Bounds<'tcx>,
876         bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
877     ) {
878         let constness = self.default_constness_for_trait_bounds();
879         for ast_bound in ast_bounds {
880             match *ast_bound {
881                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => {
882                     self.instantiate_poly_trait_ref(
883                         &b.trait_ref,
884                         b.span,
885                         constness,
886                         param_ty,
887                         bounds,
888                         false,
889                     );
890                 }
891                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::MaybeConst) => {
892                     self.instantiate_poly_trait_ref(
893                         &b.trait_ref,
894                         b.span,
895                         Constness::NotConst,
896                         param_ty,
897                         bounds,
898                         false,
899                     );
900                 }
901                 hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
902                 hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => self
903                     .instantiate_lang_item_trait_ref(
904                         lang_item, span, hir_id, args, param_ty, bounds,
905                     ),
906                 hir::GenericBound::Outlives(ref l) => bounds.region_bounds.push((
907                     ty::Binder::bind_with_vars(self.ast_region_to_region(l, None), bound_vars),
908                     l.span,
909                 )),
910             }
911         }
912     }
913
914     /// Translates a list of bounds from the HIR into the `Bounds` data structure.
915     /// The self-type for the bounds is given by `param_ty`.
916     ///
917     /// Example:
918     ///
919     /// ```
920     /// fn foo<T: Bar + Baz>() { }
921     ///        ^  ^^^^^^^^^ ast_bounds
922     ///        param_ty
923     /// ```
924     ///
925     /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
926     /// considered `Sized` unless there is an explicit `?Sized` bound.  This would be true in the
927     /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
928     ///
929     /// `span` should be the declaration size of the parameter.
930     pub fn compute_bounds(
931         &self,
932         param_ty: Ty<'tcx>,
933         ast_bounds: &[hir::GenericBound<'_>],
934         sized_by_default: SizedByDefault,
935         span: Span,
936     ) -> Bounds<'tcx> {
937         self.compute_bounds_inner(param_ty, &ast_bounds, sized_by_default, span)
938     }
939
940     /// Convert the bounds in `ast_bounds` that refer to traits which define an associated type
941     /// named `assoc_name` into ty::Bounds. Ignore the rest.
942     pub fn compute_bounds_that_match_assoc_type(
943         &self,
944         param_ty: Ty<'tcx>,
945         ast_bounds: &[hir::GenericBound<'_>],
946         sized_by_default: SizedByDefault,
947         span: Span,
948         assoc_name: Ident,
949     ) -> Bounds<'tcx> {
950         let mut result = Vec::new();
951
952         for ast_bound in ast_bounds {
953             if let Some(trait_ref) = ast_bound.trait_ref() {
954                 if let Some(trait_did) = trait_ref.trait_def_id() {
955                     if self.tcx().trait_may_define_assoc_type(trait_did, assoc_name) {
956                         result.push(ast_bound.clone());
957                     }
958                 }
959             }
960         }
961
962         self.compute_bounds_inner(param_ty, &result, sized_by_default, span)
963     }
964
965     fn compute_bounds_inner(
966         &self,
967         param_ty: Ty<'tcx>,
968         ast_bounds: &[hir::GenericBound<'_>],
969         sized_by_default: SizedByDefault,
970         span: Span,
971     ) -> Bounds<'tcx> {
972         let mut bounds = Bounds::default();
973
974         self.add_bounds(param_ty, ast_bounds, &mut bounds, ty::List::empty());
975
976         bounds.implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
977             if !self.is_unsized(ast_bounds, span) { Some(span) } else { None }
978         } else {
979             None
980         };
981
982         bounds
983     }
984
985     /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
986     /// onto `bounds`.
987     ///
988     /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
989     /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
990     /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
991     #[tracing::instrument(
992         level = "debug",
993         skip(self, bounds, speculative, dup_bindings, path_span)
994     )]
995     fn add_predicates_for_ast_type_binding(
996         &self,
997         hir_ref_id: hir::HirId,
998         trait_ref: ty::PolyTraitRef<'tcx>,
999         binding: &ConvertedBinding<'_, 'tcx>,
1000         bounds: &mut Bounds<'tcx>,
1001         speculative: bool,
1002         dup_bindings: &mut FxHashMap<DefId, Span>,
1003         path_span: Span,
1004     ) -> Result<(), ErrorReported> {
1005         // Given something like `U: SomeTrait<T = X>`, we want to produce a
1006         // predicate like `<U as SomeTrait>::T = X`. This is somewhat
1007         // subtle in the event that `T` is defined in a supertrait of
1008         // `SomeTrait`, because in that case we need to upcast.
1009         //
1010         // That is, consider this case:
1011         //
1012         // ```
1013         // trait SubTrait: SuperTrait<i32> { }
1014         // trait SuperTrait<A> { type T; }
1015         //
1016         // ... B: SubTrait<T = foo> ...
1017         // ```
1018         //
1019         // We want to produce `<B as SuperTrait<i32>>::T == foo`.
1020
1021         let tcx = self.tcx();
1022
1023         let candidate =
1024             if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
1025                 // Simple case: X is defined in the current trait.
1026                 trait_ref
1027             } else {
1028                 // Otherwise, we have to walk through the supertraits to find
1029                 // those that do.
1030                 self.one_bound_for_assoc_type(
1031                     || traits::supertraits(tcx, trait_ref),
1032                     || trait_ref.print_only_trait_path().to_string(),
1033                     binding.item_name,
1034                     path_span,
1035                     || match binding.kind {
1036                         ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
1037                         _ => None,
1038                     },
1039                 )?
1040             };
1041
1042         let (assoc_ident, def_scope) =
1043             tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
1044
1045         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
1046         // of calling `filter_by_name_and_kind`.
1047         let assoc_ty = tcx
1048             .associated_items(candidate.def_id())
1049             .filter_by_name_unhygienic(assoc_ident.name)
1050             .find(|i| {
1051                 i.kind == ty::AssocKind::Type && i.ident.normalize_to_macros_2_0() == assoc_ident
1052             })
1053             .expect("missing associated type");
1054
1055         if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
1056             tcx.sess
1057                 .struct_span_err(
1058                     binding.span,
1059                     &format!("associated type `{}` is private", binding.item_name),
1060                 )
1061                 .span_label(binding.span, "private associated type")
1062                 .emit();
1063         }
1064         tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span, None);
1065
1066         if !speculative {
1067             dup_bindings
1068                 .entry(assoc_ty.def_id)
1069                 .and_modify(|prev_span| {
1070                     self.tcx().sess.emit_err(ValueOfAssociatedStructAlreadySpecified {
1071                         span: binding.span,
1072                         prev_span: *prev_span,
1073                         item_name: binding.item_name,
1074                         def_path: tcx.def_path_str(assoc_ty.container.id()),
1075                     });
1076                 })
1077                 .or_insert(binding.span);
1078         }
1079
1080         // Include substitutions for generic parameters of associated types
1081         let projection_ty = candidate.map_bound(|trait_ref| {
1082             let ident = Ident::new(assoc_ty.ident.name, binding.item_name.span);
1083             let item_segment = hir::PathSegment {
1084                 ident,
1085                 hir_id: Some(binding.hir_id),
1086                 res: None,
1087                 args: Some(binding.gen_args),
1088                 infer_args: false,
1089             };
1090
1091             let substs_trait_ref_and_assoc_item = self.create_substs_for_associated_item(
1092                 tcx,
1093                 path_span,
1094                 assoc_ty.def_id,
1095                 &item_segment,
1096                 trait_ref.substs,
1097             );
1098
1099             debug!(
1100                 "add_predicates_for_ast_type_binding: substs for trait-ref and assoc_item: {:?}",
1101                 substs_trait_ref_and_assoc_item
1102             );
1103
1104             ty::ProjectionTy {
1105                 item_def_id: assoc_ty.def_id,
1106                 substs: substs_trait_ref_and_assoc_item,
1107             }
1108         });
1109
1110         if !speculative {
1111             // Find any late-bound regions declared in `ty` that are not
1112             // declared in the trait-ref or assoc_ty. These are not well-formed.
1113             //
1114             // Example:
1115             //
1116             //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
1117             //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
1118             if let ConvertedBindingKind::Equality(ty) = binding.kind {
1119                 let late_bound_in_trait_ref =
1120                     tcx.collect_constrained_late_bound_regions(&projection_ty);
1121                 let late_bound_in_ty =
1122                     tcx.collect_referenced_late_bound_regions(&trait_ref.rebind(ty));
1123                 debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
1124                 debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
1125
1126                 // FIXME: point at the type params that don't have appropriate lifetimes:
1127                 // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
1128                 //                         ----  ----     ^^^^^^^
1129                 self.validate_late_bound_regions(
1130                     late_bound_in_trait_ref,
1131                     late_bound_in_ty,
1132                     |br_name| {
1133                         struct_span_err!(
1134                             tcx.sess,
1135                             binding.span,
1136                             E0582,
1137                             "binding for associated type `{}` references {}, \
1138                              which does not appear in the trait input types",
1139                             binding.item_name,
1140                             br_name
1141                         )
1142                     },
1143                 );
1144             }
1145         }
1146
1147         match binding.kind {
1148             ConvertedBindingKind::Equality(ref ty) => {
1149                 // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
1150                 // the "projection predicate" for:
1151                 //
1152                 // `<T as Iterator>::Item = u32`
1153                 bounds.projection_bounds.push((
1154                     projection_ty.map_bound(|projection_ty| {
1155                         debug!(
1156                             "add_predicates_for_ast_type_binding: projection_ty {:?}, substs: {:?}",
1157                             projection_ty, projection_ty.substs
1158                         );
1159                         ty::ProjectionPredicate { projection_ty, ty }
1160                     }),
1161                     binding.span,
1162                 ));
1163             }
1164             ConvertedBindingKind::Constraint(ast_bounds) => {
1165                 // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
1166                 //
1167                 // `<T as Iterator>::Item: Debug`
1168                 //
1169                 // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
1170                 // parameter to have a skipped binder.
1171                 let param_ty = tcx.mk_ty(ty::Projection(projection_ty.skip_binder()));
1172                 self.add_bounds(param_ty, ast_bounds, bounds, candidate.bound_vars());
1173             }
1174         }
1175         Ok(())
1176     }
1177
1178     fn ast_path_to_ty(
1179         &self,
1180         span: Span,
1181         did: DefId,
1182         item_segment: &hir::PathSegment<'_>,
1183     ) -> Ty<'tcx> {
1184         let substs = self.ast_path_substs_for_ty(span, did, item_segment);
1185         self.normalize_ty(span, self.tcx().at(span).type_of(did).subst(self.tcx(), substs))
1186     }
1187
1188     fn conv_object_ty_poly_trait_ref(
1189         &self,
1190         span: Span,
1191         trait_bounds: &[hir::PolyTraitRef<'_>],
1192         lifetime: &hir::Lifetime,
1193         borrowed: bool,
1194     ) -> Ty<'tcx> {
1195         let tcx = self.tcx();
1196
1197         let mut bounds = Bounds::default();
1198         let mut potential_assoc_types = Vec::new();
1199         let dummy_self = self.tcx().types.trait_object_dummy_self;
1200         for trait_bound in trait_bounds.iter().rev() {
1201             if let GenericArgCountResult {
1202                 correct:
1203                     Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
1204                 ..
1205             } = self.instantiate_poly_trait_ref(
1206                 &trait_bound.trait_ref,
1207                 trait_bound.span,
1208                 Constness::NotConst,
1209                 dummy_self,
1210                 &mut bounds,
1211                 false,
1212             ) {
1213                 potential_assoc_types.extend(cur_potential_assoc_types);
1214             }
1215         }
1216
1217         // Expand trait aliases recursively and check that only one regular (non-auto) trait
1218         // is used and no 'maybe' bounds are used.
1219         let expanded_traits =
1220             traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
1221         let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
1222             expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
1223         if regular_traits.len() > 1 {
1224             let first_trait = &regular_traits[0];
1225             let additional_trait = &regular_traits[1];
1226             let mut err = struct_span_err!(
1227                 tcx.sess,
1228                 additional_trait.bottom().1,
1229                 E0225,
1230                 "only auto traits can be used as additional traits in a trait object"
1231             );
1232             additional_trait.label_with_exp_info(
1233                 &mut err,
1234                 "additional non-auto trait",
1235                 "additional use",
1236             );
1237             first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
1238             err.help(&format!(
1239                 "consider creating a new trait with all of these as super-traits and using that \
1240                  trait here instead: `trait NewTrait: {} {{}}`",
1241                 regular_traits
1242                     .iter()
1243                     .map(|t| t.trait_ref().print_only_trait_path().to_string())
1244                     .collect::<Vec<_>>()
1245                     .join(" + "),
1246             ));
1247             err.note(
1248                 "auto-traits like `Send` and `Sync` are traits that have special properties; \
1249                  for more information on them, visit \
1250                  <https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
1251             );
1252             err.emit();
1253         }
1254
1255         if regular_traits.is_empty() && auto_traits.is_empty() {
1256             tcx.sess.emit_err(TraitObjectDeclaredWithNoTraits { span });
1257             return tcx.ty_error();
1258         }
1259
1260         // Check that there are no gross object safety violations;
1261         // most importantly, that the supertraits don't contain `Self`,
1262         // to avoid ICEs.
1263         for item in &regular_traits {
1264             let object_safety_violations =
1265                 astconv_object_safety_violations(tcx, item.trait_ref().def_id());
1266             if !object_safety_violations.is_empty() {
1267                 report_object_safety_error(
1268                     tcx,
1269                     span,
1270                     item.trait_ref().def_id(),
1271                     &object_safety_violations[..],
1272                 )
1273                 .emit();
1274                 return tcx.ty_error();
1275             }
1276         }
1277
1278         // Use a `BTreeSet` to keep output in a more consistent order.
1279         let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
1280
1281         let regular_traits_refs_spans = bounds
1282             .trait_bounds
1283             .into_iter()
1284             .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
1285
1286         for (base_trait_ref, span, constness) in regular_traits_refs_spans {
1287             assert_eq!(constness, Constness::NotConst);
1288
1289             for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
1290                 debug!(
1291                     "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
1292                     obligation.predicate
1293                 );
1294
1295                 let bound_predicate = obligation.predicate.kind();
1296                 match bound_predicate.skip_binder() {
1297                     ty::PredicateKind::Trait(pred, _) => {
1298                         let pred = bound_predicate.rebind(pred);
1299                         associated_types.entry(span).or_default().extend(
1300                             tcx.associated_items(pred.def_id())
1301                                 .in_definition_order()
1302                                 .filter(|item| item.kind == ty::AssocKind::Type)
1303                                 .map(|item| item.def_id),
1304                         );
1305                     }
1306                     ty::PredicateKind::Projection(pred) => {
1307                         let pred = bound_predicate.rebind(pred);
1308                         // A `Self` within the original bound will be substituted with a
1309                         // `trait_object_dummy_self`, so check for that.
1310                         let references_self =
1311                             pred.skip_binder().ty.walk().any(|arg| arg == dummy_self.into());
1312
1313                         // If the projection output contains `Self`, force the user to
1314                         // elaborate it explicitly to avoid a lot of complexity.
1315                         //
1316                         // The "classicaly useful" case is the following:
1317                         // ```
1318                         //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1319                         //         type MyOutput;
1320                         //     }
1321                         // ```
1322                         //
1323                         // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
1324                         // but actually supporting that would "expand" to an infinitely-long type
1325                         // `fix $ Ï„ â†’ dyn MyTrait<MyOutput = X, Output = <Ï„ as MyTrait>::MyOutput`.
1326                         //
1327                         // Instead, we force the user to write
1328                         // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
1329                         // the discussion in #56288 for alternatives.
1330                         if !references_self {
1331                             // Include projections defined on supertraits.
1332                             bounds.projection_bounds.push((pred, span));
1333                         }
1334                     }
1335                     _ => (),
1336                 }
1337             }
1338         }
1339
1340         for (projection_bound, _) in &bounds.projection_bounds {
1341             for def_ids in associated_types.values_mut() {
1342                 def_ids.remove(&projection_bound.projection_def_id());
1343             }
1344         }
1345
1346         self.complain_about_missing_associated_types(
1347             associated_types,
1348             potential_assoc_types,
1349             trait_bounds,
1350         );
1351
1352         // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
1353         // `dyn Trait + Send`.
1354         // We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
1355         // the bounds
1356         let mut duplicates = FxHashSet::default();
1357         auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
1358         debug!("regular_traits: {:?}", regular_traits);
1359         debug!("auto_traits: {:?}", auto_traits);
1360
1361         // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
1362         let existential_trait_refs = regular_traits.iter().map(|i| {
1363             i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
1364                 if trait_ref.self_ty() != dummy_self {
1365                     // FIXME: There appears to be a missing filter on top of `expand_trait_aliases`,
1366                     // which picks up non-supertraits where clauses - but also, the object safety
1367                     // completely ignores trait aliases, which could be object safety hazards. We
1368                     // `delay_span_bug` here to avoid an ICE in stable even when the feature is
1369                     // disabled. (#66420)
1370                     tcx.sess.delay_span_bug(
1371                         DUMMY_SP,
1372                         &format!(
1373                             "trait_ref_to_existential called on {:?} with non-dummy Self",
1374                             trait_ref,
1375                         ),
1376                     );
1377                 }
1378                 ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
1379             })
1380         });
1381         let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
1382             bound.map_bound(|b| {
1383                 if b.projection_ty.self_ty() != dummy_self {
1384                     tcx.sess.delay_span_bug(
1385                         DUMMY_SP,
1386                         &format!("trait_ref_to_existential called on {:?} with non-dummy Self", b),
1387                     );
1388                 }
1389                 ty::ExistentialProjection::erase_self_ty(tcx, b)
1390             })
1391         });
1392
1393         let regular_trait_predicates = existential_trait_refs
1394             .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
1395         let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
1396             ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
1397         });
1398         // N.b. principal, projections, auto traits
1399         // FIXME: This is actually wrong with multiple principals in regards to symbol mangling
1400         let mut v = regular_trait_predicates
1401             .chain(
1402                 existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
1403             )
1404             .chain(auto_trait_predicates)
1405             .collect::<SmallVec<[_; 8]>>();
1406         v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
1407         v.dedup();
1408         let existential_predicates = tcx.mk_poly_existential_predicates(v.into_iter());
1409
1410         // Use explicitly-specified region bound.
1411         let region_bound = if !lifetime.is_elided() {
1412             self.ast_region_to_region(lifetime, None)
1413         } else {
1414             self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
1415                 if tcx.named_region(lifetime.hir_id).is_some() {
1416                     self.ast_region_to_region(lifetime, None)
1417                 } else {
1418                     self.re_infer(None, span).unwrap_or_else(|| {
1419                         let mut err = struct_span_err!(
1420                             tcx.sess,
1421                             span,
1422                             E0228,
1423                             "the lifetime bound for this object type cannot be deduced \
1424                              from context; please supply an explicit bound"
1425                         );
1426                         if borrowed {
1427                             // We will have already emitted an error E0106 complaining about a
1428                             // missing named lifetime in `&dyn Trait`, so we elide this one.
1429                             err.delay_as_bug();
1430                         } else {
1431                             err.emit();
1432                         }
1433                         tcx.lifetimes.re_static
1434                     })
1435                 }
1436             })
1437         };
1438         debug!("region_bound: {:?}", region_bound);
1439
1440         let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1441         debug!("trait_object_type: {:?}", ty);
1442         ty
1443     }
1444
1445     fn report_ambiguous_associated_type(
1446         &self,
1447         span: Span,
1448         type_str: &str,
1449         trait_str: &str,
1450         name: Symbol,
1451     ) {
1452         let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
1453         if let (true, Ok(snippet)) = (
1454             self.tcx()
1455                 .sess
1456                 .confused_type_with_std_module
1457                 .borrow()
1458                 .keys()
1459                 .any(|full_span| full_span.contains(span)),
1460             self.tcx().sess.source_map().span_to_snippet(span),
1461         ) {
1462             err.span_suggestion(
1463                 span,
1464                 "you are looking for the module in `std`, not the primitive type",
1465                 format!("std::{}", snippet),
1466                 Applicability::MachineApplicable,
1467             );
1468         } else {
1469             err.span_suggestion(
1470                 span,
1471                 "use fully-qualified syntax",
1472                 format!("<{} as {}>::{}", type_str, trait_str, name),
1473                 Applicability::HasPlaceholders,
1474             );
1475         }
1476         err.emit();
1477     }
1478
1479     // Search for a bound on a type parameter which includes the associated item
1480     // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
1481     // This function will fail if there are no suitable bounds or there is
1482     // any ambiguity.
1483     fn find_bound_for_assoc_item(
1484         &self,
1485         ty_param_def_id: LocalDefId,
1486         assoc_name: Ident,
1487         span: Span,
1488     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported> {
1489         let tcx = self.tcx();
1490
1491         debug!(
1492             "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
1493             ty_param_def_id, assoc_name, span,
1494         );
1495
1496         let predicates = &self
1497             .get_type_parameter_bounds(span, ty_param_def_id.to_def_id(), assoc_name)
1498             .predicates;
1499
1500         debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
1501
1502         let param_hir_id = tcx.hir().local_def_id_to_hir_id(ty_param_def_id);
1503         let param_name = tcx.hir().ty_param_name(param_hir_id);
1504         self.one_bound_for_assoc_type(
1505             || {
1506                 traits::transitive_bounds_that_define_assoc_type(
1507                     tcx,
1508                     predicates.iter().filter_map(|(p, _)| {
1509                         p.to_opt_poly_trait_ref().map(|trait_ref| trait_ref.value)
1510                     }),
1511                     assoc_name,
1512                 )
1513             },
1514             || param_name.to_string(),
1515             assoc_name,
1516             span,
1517             || None,
1518         )
1519     }
1520
1521     // Checks that `bounds` contains exactly one element and reports appropriate
1522     // errors otherwise.
1523     fn one_bound_for_assoc_type<I>(
1524         &self,
1525         all_candidates: impl Fn() -> I,
1526         ty_param_name: impl Fn() -> String,
1527         assoc_name: Ident,
1528         span: Span,
1529         is_equality: impl Fn() -> Option<String>,
1530     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1531     where
1532         I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
1533     {
1534         let mut matching_candidates = all_candidates()
1535             .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
1536
1537         let bound = match matching_candidates.next() {
1538             Some(bound) => bound,
1539             None => {
1540                 self.complain_about_assoc_type_not_found(
1541                     all_candidates,
1542                     &ty_param_name(),
1543                     assoc_name,
1544                     span,
1545                 );
1546                 return Err(ErrorReported);
1547             }
1548         };
1549
1550         debug!("one_bound_for_assoc_type: bound = {:?}", bound);
1551
1552         if let Some(bound2) = matching_candidates.next() {
1553             debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);
1554
1555             let is_equality = is_equality();
1556             let bounds = array::IntoIter::new([bound, bound2]).chain(matching_candidates);
1557             let mut err = if is_equality.is_some() {
1558                 // More specific Error Index entry.
1559                 struct_span_err!(
1560                     self.tcx().sess,
1561                     span,
1562                     E0222,
1563                     "ambiguous associated type `{}` in bounds of `{}`",
1564                     assoc_name,
1565                     ty_param_name()
1566                 )
1567             } else {
1568                 struct_span_err!(
1569                     self.tcx().sess,
1570                     span,
1571                     E0221,
1572                     "ambiguous associated type `{}` in bounds of `{}`",
1573                     assoc_name,
1574                     ty_param_name()
1575                 )
1576             };
1577             err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
1578
1579             let mut where_bounds = vec![];
1580             for bound in bounds {
1581                 let bound_id = bound.def_id();
1582                 let bound_span = self
1583                     .tcx()
1584                     .associated_items(bound_id)
1585                     .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
1586                     .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
1587
1588                 if let Some(bound_span) = bound_span {
1589                     err.span_label(
1590                         bound_span,
1591                         format!(
1592                             "ambiguous `{}` from `{}`",
1593                             assoc_name,
1594                             bound.print_only_trait_path(),
1595                         ),
1596                     );
1597                     if let Some(constraint) = &is_equality {
1598                         where_bounds.push(format!(
1599                             "        T: {trait}::{assoc} = {constraint}",
1600                             trait=bound.print_only_trait_path(),
1601                             assoc=assoc_name,
1602                             constraint=constraint,
1603                         ));
1604                     } else {
1605                         err.span_suggestion(
1606                             span,
1607                             "use fully qualified syntax to disambiguate",
1608                             format!(
1609                                 "<{} as {}>::{}",
1610                                 ty_param_name(),
1611                                 bound.print_only_trait_path(),
1612                                 assoc_name,
1613                             ),
1614                             Applicability::MaybeIncorrect,
1615                         );
1616                     }
1617                 } else {
1618                     err.note(&format!(
1619                         "associated type `{}` could derive from `{}`",
1620                         ty_param_name(),
1621                         bound.print_only_trait_path(),
1622                     ));
1623                 }
1624             }
1625             if !where_bounds.is_empty() {
1626                 err.help(&format!(
1627                     "consider introducing a new type parameter `T` and adding `where` constraints:\
1628                      \n    where\n        T: {},\n{}",
1629                     ty_param_name(),
1630                     where_bounds.join(",\n"),
1631                 ));
1632             }
1633             err.emit();
1634             if !where_bounds.is_empty() {
1635                 return Err(ErrorReported);
1636             }
1637         }
1638         Ok(bound)
1639     }
1640
1641     // Create a type from a path to an associated type.
1642     // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
1643     // and item_segment is the path segment for `D`. We return a type and a def for
1644     // the whole path.
1645     // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
1646     // parameter or `Self`.
1647     // NOTE: When this function starts resolving `Trait::AssocTy` successfully
1648     // it should also start reportint the `BARE_TRAIT_OBJECTS` lint.
1649     pub fn associated_path_to_ty(
1650         &self,
1651         hir_ref_id: hir::HirId,
1652         span: Span,
1653         qself_ty: Ty<'tcx>,
1654         qself_res: Res,
1655         assoc_segment: &hir::PathSegment<'_>,
1656         permit_variants: bool,
1657     ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
1658         let tcx = self.tcx();
1659         let assoc_ident = assoc_segment.ident;
1660
1661         debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
1662
1663         // Check if we have an enum variant.
1664         let mut variant_resolution = None;
1665         if let ty::Adt(adt_def, _) = qself_ty.kind() {
1666             if adt_def.is_enum() {
1667                 let variant_def = adt_def
1668                     .variants
1669                     .iter()
1670                     .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did));
1671                 if let Some(variant_def) = variant_def {
1672                     if permit_variants {
1673                         tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
1674                         self.prohibit_generics(slice::from_ref(assoc_segment));
1675                         return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
1676                     } else {
1677                         variant_resolution = Some(variant_def.def_id);
1678                     }
1679                 }
1680             }
1681         }
1682
1683         // Find the type of the associated item, and the trait where the associated
1684         // item is declared.
1685         let bound = match (&qself_ty.kind(), qself_res) {
1686             (_, Res::SelfTy(Some(_), Some((impl_def_id, _)))) => {
1687                 // `Self` in an impl of a trait -- we have a concrete self type and a
1688                 // trait reference.
1689                 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
1690                     Some(trait_ref) => trait_ref,
1691                     None => {
1692                         // A cycle error occurred, most likely.
1693                         return Err(ErrorReported);
1694                     }
1695                 };
1696
1697                 self.one_bound_for_assoc_type(
1698                     || traits::supertraits(tcx, ty::Binder::dummy(trait_ref)),
1699                     || "Self".to_string(),
1700                     assoc_ident,
1701                     span,
1702                     || None,
1703                 )?
1704             }
1705             (
1706                 &ty::Param(_),
1707                 Res::SelfTy(Some(param_did), None) | Res::Def(DefKind::TyParam, param_did),
1708             ) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
1709             _ => {
1710                 if variant_resolution.is_some() {
1711                     // Variant in type position
1712                     let msg = format!("expected type, found variant `{}`", assoc_ident);
1713                     tcx.sess.span_err(span, &msg);
1714                 } else if qself_ty.is_enum() {
1715                     let mut err = struct_span_err!(
1716                         tcx.sess,
1717                         assoc_ident.span,
1718                         E0599,
1719                         "no variant named `{}` found for enum `{}`",
1720                         assoc_ident,
1721                         qself_ty,
1722                     );
1723
1724                     let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
1725                     if let Some(suggested_name) = find_best_match_for_name(
1726                         &adt_def
1727                             .variants
1728                             .iter()
1729                             .map(|variant| variant.ident.name)
1730                             .collect::<Vec<Symbol>>(),
1731                         assoc_ident.name,
1732                         None,
1733                     ) {
1734                         err.span_suggestion(
1735                             assoc_ident.span,
1736                             "there is a variant with a similar name",
1737                             suggested_name.to_string(),
1738                             Applicability::MaybeIncorrect,
1739                         );
1740                     } else {
1741                         err.span_label(
1742                             assoc_ident.span,
1743                             format!("variant not found in `{}`", qself_ty),
1744                         );
1745                     }
1746
1747                     if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
1748                         let sp = tcx.sess.source_map().guess_head_span(sp);
1749                         err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
1750                     }
1751
1752                     err.emit();
1753                 } else if !qself_ty.references_error() {
1754                     // Don't print `TyErr` to the user.
1755                     self.report_ambiguous_associated_type(
1756                         span,
1757                         &qself_ty.to_string(),
1758                         "Trait",
1759                         assoc_ident.name,
1760                     );
1761                 }
1762                 return Err(ErrorReported);
1763             }
1764         };
1765
1766         let trait_did = bound.def_id();
1767         let (assoc_ident, def_scope) =
1768             tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
1769
1770         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
1771         // of calling `filter_by_name_and_kind`.
1772         let item = tcx
1773             .associated_items(trait_did)
1774             .in_definition_order()
1775             .find(|i| {
1776                 i.kind.namespace() == Namespace::TypeNS
1777                     && i.ident.normalize_to_macros_2_0() == assoc_ident
1778             })
1779             .expect("missing associated type");
1780
1781         let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
1782         let ty = self.normalize_ty(span, ty);
1783
1784         let kind = DefKind::AssocTy;
1785         if !item.vis.is_accessible_from(def_scope, tcx) {
1786             let kind = kind.descr(item.def_id);
1787             let msg = format!("{} `{}` is private", kind, assoc_ident);
1788             tcx.sess
1789                 .struct_span_err(span, &msg)
1790                 .span_label(span, &format!("private {}", kind))
1791                 .emit();
1792         }
1793         tcx.check_stability(item.def_id, Some(hir_ref_id), span, None);
1794
1795         if let Some(variant_def_id) = variant_resolution {
1796             tcx.struct_span_lint_hir(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
1797                 let mut err = lint.build("ambiguous associated item");
1798                 let mut could_refer_to = |kind: DefKind, def_id, also| {
1799                     let note_msg = format!(
1800                         "`{}` could{} refer to the {} defined here",
1801                         assoc_ident,
1802                         also,
1803                         kind.descr(def_id)
1804                     );
1805                     err.span_note(tcx.def_span(def_id), &note_msg);
1806                 };
1807
1808                 could_refer_to(DefKind::Variant, variant_def_id, "");
1809                 could_refer_to(kind, item.def_id, " also");
1810
1811                 err.span_suggestion(
1812                     span,
1813                     "use fully-qualified syntax",
1814                     format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
1815                     Applicability::MachineApplicable,
1816                 );
1817
1818                 err.emit();
1819             });
1820         }
1821         Ok((ty, kind, item.def_id))
1822     }
1823
1824     fn qpath_to_ty(
1825         &self,
1826         span: Span,
1827         opt_self_ty: Option<Ty<'tcx>>,
1828         item_def_id: DefId,
1829         trait_segment: &hir::PathSegment<'_>,
1830         item_segment: &hir::PathSegment<'_>,
1831     ) -> Ty<'tcx> {
1832         let tcx = self.tcx();
1833
1834         let trait_def_id = tcx.parent(item_def_id).unwrap();
1835
1836         debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
1837
1838         let self_ty = if let Some(ty) = opt_self_ty {
1839             ty
1840         } else {
1841             let path_str = tcx.def_path_str(trait_def_id);
1842
1843             let def_id = self.item_def_id();
1844
1845             debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
1846
1847             let parent_def_id = def_id
1848                 .and_then(|def_id| {
1849                     def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id))
1850                 })
1851                 .map(|hir_id| tcx.hir().get_parent_did(hir_id).to_def_id());
1852
1853             debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
1854
1855             // If the trait in segment is the same as the trait defining the item,
1856             // use the `<Self as ..>` syntax in the error.
1857             let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
1858             let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
1859
1860             let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
1861                 "Self"
1862             } else {
1863                 "Type"
1864             };
1865
1866             self.report_ambiguous_associated_type(
1867                 span,
1868                 type_name,
1869                 &path_str,
1870                 item_segment.ident.name,
1871             );
1872             return tcx.ty_error();
1873         };
1874
1875         debug!("qpath_to_ty: self_type={:?}", self_ty);
1876
1877         let trait_ref = self.ast_path_to_mono_trait_ref(span, trait_def_id, self_ty, trait_segment);
1878
1879         let item_substs = self.create_substs_for_associated_item(
1880             tcx,
1881             span,
1882             item_def_id,
1883             item_segment,
1884             trait_ref.substs,
1885         );
1886
1887         debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1888
1889         self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
1890     }
1891
1892     pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment<'a>>>(
1893         &self,
1894         segments: T,
1895     ) -> bool {
1896         let mut has_err = false;
1897         for segment in segments {
1898             let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
1899             for arg in segment.args().args {
1900                 let (span, kind) = match arg {
1901                     hir::GenericArg::Lifetime(lt) => {
1902                         if err_for_lt {
1903                             continue;
1904                         }
1905                         err_for_lt = true;
1906                         has_err = true;
1907                         (lt.span, "lifetime")
1908                     }
1909                     hir::GenericArg::Type(ty) => {
1910                         if err_for_ty {
1911                             continue;
1912                         }
1913                         err_for_ty = true;
1914                         has_err = true;
1915                         (ty.span, "type")
1916                     }
1917                     hir::GenericArg::Const(ct) => {
1918                         if err_for_ct {
1919                             continue;
1920                         }
1921                         err_for_ct = true;
1922                         has_err = true;
1923                         (ct.span, "const")
1924                     }
1925                 };
1926                 let mut err = struct_span_err!(
1927                     self.tcx().sess,
1928                     span,
1929                     E0109,
1930                     "{} arguments are not allowed for this type",
1931                     kind,
1932                 );
1933                 err.span_label(span, format!("{} argument not allowed", kind));
1934                 err.emit();
1935                 if err_for_lt && err_for_ty && err_for_ct {
1936                     break;
1937                 }
1938             }
1939
1940             // Only emit the first error to avoid overloading the user with error messages.
1941             if let [binding, ..] = segment.args().bindings {
1942                 has_err = true;
1943                 Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
1944             }
1945         }
1946         has_err
1947     }
1948
1949     // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
1950     pub fn def_ids_for_value_path_segments(
1951         &self,
1952         segments: &[hir::PathSegment<'_>],
1953         self_ty: Option<Ty<'tcx>>,
1954         kind: DefKind,
1955         def_id: DefId,
1956     ) -> Vec<PathSeg> {
1957         // We need to extract the type parameters supplied by the user in
1958         // the path `path`. Due to the current setup, this is a bit of a
1959         // tricky-process; the problem is that resolve only tells us the
1960         // end-point of the path resolution, and not the intermediate steps.
1961         // Luckily, we can (at least for now) deduce the intermediate steps
1962         // just from the end-point.
1963         //
1964         // There are basically five cases to consider:
1965         //
1966         // 1. Reference to a constructor of a struct:
1967         //
1968         //        struct Foo<T>(...)
1969         //
1970         //    In this case, the parameters are declared in the type space.
1971         //
1972         // 2. Reference to a constructor of an enum variant:
1973         //
1974         //        enum E<T> { Foo(...) }
1975         //
1976         //    In this case, the parameters are defined in the type space,
1977         //    but may be specified either on the type or the variant.
1978         //
1979         // 3. Reference to a fn item or a free constant:
1980         //
1981         //        fn foo<T>() { }
1982         //
1983         //    In this case, the path will again always have the form
1984         //    `a::b::foo::<T>` where only the final segment should have
1985         //    type parameters. However, in this case, those parameters are
1986         //    declared on a value, and hence are in the `FnSpace`.
1987         //
1988         // 4. Reference to a method or an associated constant:
1989         //
1990         //        impl<A> SomeStruct<A> {
1991         //            fn foo<B>(...)
1992         //        }
1993         //
1994         //    Here we can have a path like
1995         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
1996         //    may appear in two places. The penultimate segment,
1997         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
1998         //    final segment, `foo::<B>` contains parameters in fn space.
1999         //
2000         // The first step then is to categorize the segments appropriately.
2001
2002         let tcx = self.tcx();
2003
2004         assert!(!segments.is_empty());
2005         let last = segments.len() - 1;
2006
2007         let mut path_segs = vec![];
2008
2009         match kind {
2010             // Case 1. Reference to a struct constructor.
2011             DefKind::Ctor(CtorOf::Struct, ..) => {
2012                 // Everything but the final segment should have no
2013                 // parameters at all.
2014                 let generics = tcx.generics_of(def_id);
2015                 // Variant and struct constructors use the
2016                 // generics of their parent type definition.
2017                 let generics_def_id = generics.parent.unwrap_or(def_id);
2018                 path_segs.push(PathSeg(generics_def_id, last));
2019             }
2020
2021             // Case 2. Reference to a variant constructor.
2022             DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
2023                 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
2024                 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
2025                     debug_assert!(adt_def.is_enum());
2026                     (adt_def.did, last)
2027                 } else if last >= 1 && segments[last - 1].args.is_some() {
2028                     // Everything but the penultimate segment should have no
2029                     // parameters at all.
2030                     let mut def_id = def_id;
2031
2032                     // `DefKind::Ctor` -> `DefKind::Variant`
2033                     if let DefKind::Ctor(..) = kind {
2034                         def_id = tcx.parent(def_id).unwrap()
2035                     }
2036
2037                     // `DefKind::Variant` -> `DefKind::Enum`
2038                     let enum_def_id = tcx.parent(def_id).unwrap();
2039                     (enum_def_id, last - 1)
2040                 } else {
2041                     // FIXME: lint here recommending `Enum::<...>::Variant` form
2042                     // instead of `Enum::Variant::<...>` form.
2043
2044                     // Everything but the final segment should have no
2045                     // parameters at all.
2046                     let generics = tcx.generics_of(def_id);
2047                     // Variant and struct constructors use the
2048                     // generics of their parent type definition.
2049                     (generics.parent.unwrap_or(def_id), last)
2050                 };
2051                 path_segs.push(PathSeg(generics_def_id, index));
2052             }
2053
2054             // Case 3. Reference to a top-level value.
2055             DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static => {
2056                 path_segs.push(PathSeg(def_id, last));
2057             }
2058
2059             // Case 4. Reference to a method or associated const.
2060             DefKind::AssocFn | DefKind::AssocConst => {
2061                 if segments.len() >= 2 {
2062                     let generics = tcx.generics_of(def_id);
2063                     path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
2064                 }
2065                 path_segs.push(PathSeg(def_id, last));
2066             }
2067
2068             kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
2069         }
2070
2071         debug!("path_segs = {:?}", path_segs);
2072
2073         path_segs
2074     }
2075
2076     // Check a type `Path` and convert it to a `Ty`.
2077     pub fn res_to_ty(
2078         &self,
2079         opt_self_ty: Option<Ty<'tcx>>,
2080         path: &hir::Path<'_>,
2081         permit_variants: bool,
2082     ) -> Ty<'tcx> {
2083         let tcx = self.tcx();
2084
2085         debug!(
2086             "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
2087             path.res, opt_self_ty, path.segments
2088         );
2089
2090         let span = path.span;
2091         match path.res {
2092             Res::Def(DefKind::OpaqueTy, did) => {
2093                 // Check for desugared `impl Trait`.
2094                 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
2095                 let item_segment = path.segments.split_last().unwrap();
2096                 self.prohibit_generics(item_segment.1);
2097                 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
2098                 self.normalize_ty(span, tcx.mk_opaque(did, substs))
2099             }
2100             Res::Def(
2101                 DefKind::Enum
2102                 | DefKind::TyAlias
2103                 | DefKind::Struct
2104                 | DefKind::Union
2105                 | DefKind::ForeignTy,
2106                 did,
2107             ) => {
2108                 assert_eq!(opt_self_ty, None);
2109                 self.prohibit_generics(path.segments.split_last().unwrap().1);
2110                 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
2111             }
2112             Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
2113                 // Convert "variant type" as if it were a real type.
2114                 // The resulting `Ty` is type of the variant's enum for now.
2115                 assert_eq!(opt_self_ty, None);
2116
2117                 let path_segs =
2118                     self.def_ids_for_value_path_segments(&path.segments, None, kind, def_id);
2119                 let generic_segs: FxHashSet<_> =
2120                     path_segs.iter().map(|PathSeg(_, index)| index).collect();
2121                 self.prohibit_generics(path.segments.iter().enumerate().filter_map(
2122                     |(index, seg)| {
2123                         if !generic_segs.contains(&index) { Some(seg) } else { None }
2124                     },
2125                 ));
2126
2127                 let PathSeg(def_id, index) = path_segs.last().unwrap();
2128                 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
2129             }
2130             Res::Def(DefKind::TyParam, def_id) => {
2131                 assert_eq!(opt_self_ty, None);
2132                 self.prohibit_generics(path.segments);
2133
2134                 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2135                 let item_id = tcx.hir().get_parent_node(hir_id);
2136                 let item_def_id = tcx.hir().local_def_id(item_id);
2137                 let generics = tcx.generics_of(item_def_id);
2138                 let index = generics.param_def_id_to_index[&def_id];
2139                 tcx.mk_ty_param(index, tcx.hir().name(hir_id))
2140             }
2141             Res::SelfTy(Some(_), None) => {
2142                 // `Self` in trait or type alias.
2143                 assert_eq!(opt_self_ty, None);
2144                 self.prohibit_generics(path.segments);
2145                 tcx.types.self_param
2146             }
2147             Res::SelfTy(_, Some((def_id, forbid_generic))) => {
2148                 // `Self` in impl (we know the concrete type).
2149                 assert_eq!(opt_self_ty, None);
2150                 self.prohibit_generics(path.segments);
2151                 // Try to evaluate any array length constants.
2152                 let normalized_ty = self.normalize_ty(span, tcx.at(span).type_of(def_id));
2153                 if forbid_generic && normalized_ty.needs_subst() {
2154                     let mut err = tcx.sess.struct_span_err(
2155                         path.span,
2156                         "generic `Self` types are currently not permitted in anonymous constants",
2157                     );
2158                     if let Some(hir::Node::Item(&hir::Item {
2159                         kind: hir::ItemKind::Impl(ref impl_),
2160                         ..
2161                     })) = tcx.hir().get_if_local(def_id)
2162                     {
2163                         err.span_note(impl_.self_ty.span, "not a concrete type");
2164                     }
2165                     err.emit();
2166                     tcx.ty_error()
2167                 } else {
2168                     normalized_ty
2169                 }
2170             }
2171             Res::Def(DefKind::AssocTy, def_id) => {
2172                 debug_assert!(path.segments.len() >= 2);
2173                 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
2174                 self.qpath_to_ty(
2175                     span,
2176                     opt_self_ty,
2177                     def_id,
2178                     &path.segments[path.segments.len() - 2],
2179                     path.segments.last().unwrap(),
2180                 )
2181             }
2182             Res::PrimTy(prim_ty) => {
2183                 assert_eq!(opt_self_ty, None);
2184                 self.prohibit_generics(path.segments);
2185                 match prim_ty {
2186                     hir::PrimTy::Bool => tcx.types.bool,
2187                     hir::PrimTy::Char => tcx.types.char,
2188                     hir::PrimTy::Int(it) => tcx.mk_mach_int(ty::int_ty(it)),
2189                     hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(ty::uint_ty(uit)),
2190                     hir::PrimTy::Float(ft) => tcx.mk_mach_float(ty::float_ty(ft)),
2191                     hir::PrimTy::Str => tcx.types.str_,
2192                 }
2193             }
2194             Res::Err => {
2195                 self.set_tainted_by_errors();
2196                 self.tcx().ty_error()
2197             }
2198             _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
2199         }
2200     }
2201
2202     /// Parses the programmer's textual representation of a type into our
2203     /// internal notion of a type.
2204     pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
2205         self.ast_ty_to_ty_inner(ast_ty, false)
2206     }
2207
2208     /// Turns a `hir::Ty` into a `Ty`. For diagnostics' purposes we keep track of whether trait
2209     /// objects are borrowed like `&dyn Trait` to avoid emitting redundant errors.
2210     #[tracing::instrument(level = "debug", skip(self))]
2211     fn ast_ty_to_ty_inner(&self, ast_ty: &hir::Ty<'_>, borrowed: bool) -> Ty<'tcx> {
2212         let tcx = self.tcx();
2213
2214         let result_ty = match ast_ty.kind {
2215             hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(&ty)),
2216             hir::TyKind::Ptr(ref mt) => {
2217                 tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(&mt.ty), mutbl: mt.mutbl })
2218             }
2219             hir::TyKind::Rptr(ref region, ref mt) => {
2220                 let r = self.ast_region_to_region(region, None);
2221                 debug!(?r);
2222                 let t = self.ast_ty_to_ty_inner(&mt.ty, true);
2223                 tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
2224             }
2225             hir::TyKind::Never => tcx.types.never,
2226             hir::TyKind::Tup(ref fields) => {
2227                 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
2228             }
2229             hir::TyKind::BareFn(ref bf) => {
2230                 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
2231
2232                 tcx.mk_fn_ptr(self.ty_of_fn(
2233                     ast_ty.hir_id,
2234                     bf.unsafety,
2235                     bf.abi,
2236                     &bf.decl,
2237                     &hir::Generics::empty(),
2238                     None,
2239                     Some(ast_ty),
2240                 ))
2241             }
2242             hir::TyKind::TraitObject(ref bounds, ref lifetime, _) => {
2243                 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime, borrowed)
2244             }
2245             hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
2246                 debug!(?maybe_qself, ?path);
2247                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
2248                 self.res_to_ty(opt_self_ty, path, false)
2249             }
2250             hir::TyKind::OpaqueDef(item_id, ref lifetimes) => {
2251                 let opaque_ty = tcx.hir().item(item_id);
2252                 let def_id = item_id.def_id.to_def_id();
2253
2254                 match opaque_ty.kind {
2255                     hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
2256                         self.impl_trait_ty_to_ty(def_id, lifetimes, impl_trait_fn.is_some())
2257                     }
2258                     ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
2259                 }
2260             }
2261             hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
2262                 debug!(?qself, ?segment);
2263                 let ty = self.ast_ty_to_ty(qself);
2264
2265                 let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
2266                     path.res
2267                 } else {
2268                     Res::Err
2269                 };
2270                 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
2271                     .map(|(ty, _, _)| ty)
2272                     .unwrap_or_else(|_| tcx.ty_error())
2273             }
2274             hir::TyKind::Path(hir::QPath::LangItem(lang_item, span)) => {
2275                 let def_id = tcx.require_lang_item(lang_item, Some(span));
2276                 let (substs, _) = self.create_substs_for_ast_path(
2277                     span,
2278                     def_id,
2279                     &[],
2280                     &hir::PathSegment::invalid(),
2281                     &GenericArgs::none(),
2282                     true,
2283                     None,
2284                 );
2285                 self.normalize_ty(span, tcx.at(span).type_of(def_id).subst(tcx, substs))
2286             }
2287             hir::TyKind::Array(ref ty, ref length) => {
2288                 let length_def_id = tcx.hir().local_def_id(length.hir_id);
2289                 let length = ty::Const::from_anon_const(tcx, length_def_id);
2290                 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
2291                 self.normalize_ty(ast_ty.span, array_ty)
2292             }
2293             hir::TyKind::Typeof(ref e) => {
2294                 tcx.sess.emit_err(TypeofReservedKeywordUsed { span: ast_ty.span });
2295                 tcx.type_of(tcx.hir().local_def_id(e.hir_id))
2296             }
2297             hir::TyKind::Infer => {
2298                 // Infer also appears as the type of arguments or return
2299                 // values in a ExprKind::Closure, or as
2300                 // the type of local variables. Both of these cases are
2301                 // handled specially and will not descend into this routine.
2302                 self.ty_infer(None, ast_ty.span)
2303             }
2304             hir::TyKind::Err => tcx.ty_error(),
2305         };
2306
2307         debug!(?result_ty);
2308
2309         self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
2310         result_ty
2311     }
2312
2313     fn impl_trait_ty_to_ty(
2314         &self,
2315         def_id: DefId,
2316         lifetimes: &[hir::GenericArg<'_>],
2317         replace_parent_lifetimes: bool,
2318     ) -> Ty<'tcx> {
2319         debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
2320         let tcx = self.tcx();
2321
2322         let generics = tcx.generics_of(def_id);
2323
2324         debug!("impl_trait_ty_to_ty: generics={:?}", generics);
2325         let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
2326             if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
2327                 // Our own parameters are the resolved lifetimes.
2328                 match param.kind {
2329                     GenericParamDefKind::Lifetime => {
2330                         if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
2331                             self.ast_region_to_region(lifetime, None).into()
2332                         } else {
2333                             bug!()
2334                         }
2335                     }
2336                     _ => bug!(),
2337                 }
2338             } else {
2339                 match param.kind {
2340                     // For RPIT (return position impl trait), only lifetimes
2341                     // mentioned in the impl Trait predicate are captured by
2342                     // the opaque type, so the lifetime parameters from the
2343                     // parent item need to be replaced with `'static`.
2344                     //
2345                     // For `impl Trait` in the types of statics, constants,
2346                     // locals and type aliases. These capture all parent
2347                     // lifetimes, so they can use their identity subst.
2348                     GenericParamDefKind::Lifetime if replace_parent_lifetimes => {
2349                         tcx.lifetimes.re_static.into()
2350                     }
2351                     _ => tcx.mk_param_from_def(param),
2352                 }
2353             }
2354         });
2355         debug!("impl_trait_ty_to_ty: substs={:?}", substs);
2356
2357         let ty = tcx.mk_opaque(def_id, substs);
2358         debug!("impl_trait_ty_to_ty: {}", ty);
2359         ty
2360     }
2361
2362     pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
2363         match ty.kind {
2364             hir::TyKind::Infer if expected_ty.is_some() => {
2365                 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
2366                 expected_ty.unwrap()
2367             }
2368             _ => self.ast_ty_to_ty(ty),
2369         }
2370     }
2371
2372     pub fn ty_of_fn(
2373         &self,
2374         hir_id: hir::HirId,
2375         unsafety: hir::Unsafety,
2376         abi: abi::Abi,
2377         decl: &hir::FnDecl<'_>,
2378         generics: &hir::Generics<'_>,
2379         ident_span: Option<Span>,
2380         hir_ty: Option<&hir::Ty<'_>>,
2381     ) -> ty::PolyFnSig<'tcx> {
2382         debug!("ty_of_fn");
2383
2384         let tcx = self.tcx();
2385         let bound_vars = tcx.late_bound_vars(hir_id);
2386         debug!(?bound_vars);
2387
2388         // We proactively collect all the inferred type params to emit a single error per fn def.
2389         let mut visitor = PlaceholderHirTyCollector::default();
2390         for ty in decl.inputs {
2391             visitor.visit_ty(ty);
2392         }
2393         walk_generics(&mut visitor, generics);
2394
2395         let input_tys = decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
2396         let output_ty = match decl.output {
2397             hir::FnRetTy::Return(ref output) => {
2398                 visitor.visit_ty(output);
2399                 self.ast_ty_to_ty(output)
2400             }
2401             hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
2402         };
2403
2404         debug!("ty_of_fn: output_ty={:?}", output_ty);
2405
2406         let fn_ty = tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, unsafety, abi);
2407         let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);
2408
2409         if !self.allow_ty_infer() {
2410             // We always collect the spans for placeholder types when evaluating `fn`s, but we
2411             // only want to emit an error complaining about them if infer types (`_`) are not
2412             // allowed. `allow_ty_infer` gates this behavior. We check for the presence of
2413             // `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.
2414
2415             crate::collect::placeholder_type_error(
2416                 tcx,
2417                 ident_span.map(|sp| sp.shrink_to_hi()),
2418                 generics.params,
2419                 visitor.0,
2420                 true,
2421                 hir_ty,
2422                 "function",
2423             );
2424         }
2425
2426         // Find any late-bound regions declared in return type that do
2427         // not appear in the arguments. These are not well-formed.
2428         //
2429         // Example:
2430         //     for<'a> fn() -> &'a str <-- 'a is bad
2431         //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
2432         let inputs = bare_fn_ty.inputs();
2433         let late_bound_in_args =
2434             tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
2435         let output = bare_fn_ty.output();
2436         let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
2437
2438         self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
2439             struct_span_err!(
2440                 tcx.sess,
2441                 decl.output.span(),
2442                 E0581,
2443                 "return type references {}, which is not constrained by the fn input types",
2444                 br_name
2445             )
2446         });
2447
2448         bare_fn_ty
2449     }
2450
2451     fn validate_late_bound_regions(
2452         &self,
2453         constrained_regions: FxHashSet<ty::BoundRegionKind>,
2454         referenced_regions: FxHashSet<ty::BoundRegionKind>,
2455         generate_err: impl Fn(&str) -> rustc_errors::DiagnosticBuilder<'tcx>,
2456     ) {
2457         for br in referenced_regions.difference(&constrained_regions) {
2458             let br_name = match *br {
2459                 ty::BrNamed(_, name) => format!("lifetime `{}`", name),
2460                 ty::BrAnon(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
2461             };
2462
2463             let mut err = generate_err(&br_name);
2464
2465             if let ty::BrAnon(_) = *br {
2466                 // The only way for an anonymous lifetime to wind up
2467                 // in the return type but **also** be unconstrained is
2468                 // if it only appears in "associated types" in the
2469                 // input. See #47511 and #62200 for examples. In this case,
2470                 // though we can easily give a hint that ought to be
2471                 // relevant.
2472                 err.note(
2473                     "lifetimes appearing in an associated type are not considered constrained",
2474                 );
2475             }
2476
2477             err.emit();
2478         }
2479     }
2480
2481     /// Given the bounds on an object, determines what single region bound (if any) we can
2482     /// use to summarize this type. The basic idea is that we will use the bound the user
2483     /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2484     /// for region bounds. It may be that we can derive no bound at all, in which case
2485     /// we return `None`.
2486     fn compute_object_lifetime_bound(
2487         &self,
2488         span: Span,
2489         existential_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
2490     ) -> Option<ty::Region<'tcx>> // if None, use the default
2491     {
2492         let tcx = self.tcx();
2493
2494         debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
2495
2496         // No explicit region bound specified. Therefore, examine trait
2497         // bounds and see if we can derive region bounds from those.
2498         let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
2499
2500         // If there are no derived region bounds, then report back that we
2501         // can find no region bound. The caller will use the default.
2502         if derived_region_bounds.is_empty() {
2503             return None;
2504         }
2505
2506         // If any of the derived region bounds are 'static, that is always
2507         // the best choice.
2508         if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
2509             return Some(tcx.lifetimes.re_static);
2510         }
2511
2512         // Determine whether there is exactly one unique region in the set
2513         // of derived region bounds. If so, use that. Otherwise, report an
2514         // error.
2515         let r = derived_region_bounds[0];
2516         if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
2517             tcx.sess.emit_err(AmbiguousLifetimeBound { span });
2518         }
2519         Some(r)
2520     }
2521 }