]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/astconv/mod.rs
Rollup merge of #85018 - hi-rustin:rustin-patch-84637, r=estebank
[rust.git] / compiler / rustc_typeck / src / astconv / mod.rs
1 //! Conversion from AST representation of types to the `ty.rs` representation.
2 //! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
3 //! instance of `AstConv`.
4
5 mod errors;
6 mod generics;
7
8 use crate::bounds::Bounds;
9 use crate::collect::PlaceholderHirTyCollector;
10 use crate::errors::{
11     AmbiguousLifetimeBound, MultipleRelaxedDefaultBounds, TraitObjectDeclaredWithNoTraits,
12     TypeofReservedKeywordUsed, ValueOfAssociatedStructAlreadySpecified,
13 };
14 use crate::middle::resolve_lifetime as rl;
15 use crate::require_c_abi_if_c_variadic;
16 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
17 use rustc_errors::{struct_span_err, Applicability, ErrorReported, FatalError};
18 use rustc_hir as hir;
19 use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
20 use rustc_hir::def_id::{DefId, LocalDefId};
21 use rustc_hir::intravisit::{walk_generics, Visitor as _};
22 use rustc_hir::lang_items::LangItem;
23 use rustc_hir::{Constness, GenericArg, GenericArgs};
24 use rustc_middle::ty::subst::{self, InternalSubsts, Subst, SubstsRef};
25 use rustc_middle::ty::GenericParamDefKind;
26 use rustc_middle::ty::{self, Const, DefIdTree, Ty, TyCtxt, TypeFoldable};
27 use rustc_session::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
28 use rustc_span::lev_distance::find_best_match_for_name;
29 use rustc_span::symbol::{Ident, Symbol};
30 use rustc_span::{Span, DUMMY_SP};
31 use rustc_target::spec::abi;
32 use rustc_trait_selection::traits;
33 use rustc_trait_selection::traits::astconv_object_safety_violations;
34 use rustc_trait_selection::traits::error_reporting::report_object_safety_error;
35 use rustc_trait_selection::traits::wf::object_region_bounds;
36
37 use smallvec::SmallVec;
38 use std::array;
39 use std::collections::BTreeSet;
40 use std::slice;
41
42 #[derive(Debug)]
43 pub struct PathSeg(pub DefId, pub usize);
44
45 pub trait AstConv<'tcx> {
46     fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
47
48     fn item_def_id(&self) -> Option<DefId>;
49
50     fn default_constness_for_trait_bounds(&self) -> Constness;
51
52     /// Returns predicates in scope of the form `X: Foo<T>`, where `X`
53     /// is a type parameter `X` with the given id `def_id` and T
54     /// matches `assoc_name`. This is a subset of the full set of
55     /// predicates.
56     ///
57     /// This is used for one specific purpose: resolving "short-hand"
58     /// associated type references like `T::Item`. In principle, we
59     /// would do that by first getting the full set of predicates in
60     /// scope and then filtering down to find those that apply to `T`,
61     /// but this can lead to cycle errors. The problem is that we have
62     /// to do this resolution *in order to create the predicates in
63     /// the first place*. Hence, we have this "special pass".
64     fn get_type_parameter_bounds(
65         &self,
66         span: Span,
67         def_id: DefId,
68         assoc_name: Ident,
69     ) -> ty::GenericPredicates<'tcx>;
70
71     /// Returns the lifetime to use when a lifetime is omitted (and not elided).
72     fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
73     -> Option<ty::Region<'tcx>>;
74
75     /// Returns the type to use when a type is omitted.
76     fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
77
78     /// Returns `true` if `_` is allowed in type signatures in the current context.
79     fn allow_ty_infer(&self) -> bool;
80
81     /// Returns the const to use when a const is omitted.
82     fn ct_infer(
83         &self,
84         ty: Ty<'tcx>,
85         param: Option<&ty::GenericParamDef>,
86         span: Span,
87     ) -> &'tcx Const<'tcx>;
88
89     /// Projecting an associated type from a (potentially)
90     /// higher-ranked trait reference is more complicated, because of
91     /// the possibility of late-bound regions appearing in the
92     /// associated type binding. This is not legal in function
93     /// signatures for that reason. In a function body, we can always
94     /// handle it because we can use inference variables to remove the
95     /// late-bound regions.
96     fn projected_ty_from_poly_trait_ref(
97         &self,
98         span: Span,
99         item_def_id: DefId,
100         item_segment: &hir::PathSegment<'_>,
101         poly_trait_ref: ty::PolyTraitRef<'tcx>,
102     ) -> Ty<'tcx>;
103
104     /// Normalize an associated type coming from the user.
105     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
106
107     /// Invoked when we encounter an error from some prior pass
108     /// (e.g., resolve) that is translated into a ty-error. This is
109     /// used to help suppress derived errors typeck might otherwise
110     /// report.
111     fn set_tainted_by_errors(&self);
112
113     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
114 }
115
116 pub enum SizedByDefault {
117     Yes,
118     No,
119 }
120
121 #[derive(Debug)]
122 struct ConvertedBinding<'a, 'tcx> {
123     hir_id: hir::HirId,
124     item_name: Ident,
125     kind: ConvertedBindingKind<'a, 'tcx>,
126     gen_args: &'a GenericArgs<'a>,
127     span: Span,
128 }
129
130 #[derive(Debug)]
131 enum ConvertedBindingKind<'a, 'tcx> {
132     Equality(Ty<'tcx>),
133     Constraint(&'a [hir::GenericBound<'a>]),
134 }
135
136 /// New-typed boolean indicating whether explicit late-bound lifetimes
137 /// are present in a set of generic arguments.
138 ///
139 /// For example if we have some method `fn f<'a>(&'a self)` implemented
140 /// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
141 /// is late-bound so should not be provided explicitly. Thus, if `f` is
142 /// instantiated with some generic arguments providing `'a` explicitly,
143 /// we taint those arguments with `ExplicitLateBound::Yes` so that we
144 /// can provide an appropriate diagnostic later.
145 #[derive(Copy, Clone, PartialEq)]
146 pub enum ExplicitLateBound {
147     Yes,
148     No,
149 }
150
151 #[derive(Copy, Clone, PartialEq)]
152 pub enum IsMethodCall {
153     Yes,
154     No,
155 }
156
157 /// Denotes the "position" of a generic argument, indicating if it is a generic type,
158 /// generic function or generic method call.
159 #[derive(Copy, Clone, PartialEq)]
160 pub(crate) enum GenericArgPosition {
161     Type,
162     Value, // e.g., functions
163     MethodCall,
164 }
165
166 /// A marker denoting that the generic arguments that were
167 /// provided did not match the respective generic parameters.
168 #[derive(Clone, Default)]
169 pub struct GenericArgCountMismatch {
170     /// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
171     pub reported: Option<ErrorReported>,
172     /// A list of spans of arguments provided that were not valid.
173     pub invalid_args: Vec<Span>,
174 }
175
176 /// Decorates the result of a generic argument count mismatch
177 /// check with whether explicit late bounds were provided.
178 #[derive(Clone)]
179 pub struct GenericArgCountResult {
180     pub explicit_late_bound: ExplicitLateBound,
181     pub correct: Result<(), GenericArgCountMismatch>,
182 }
183
184 pub trait CreateSubstsForGenericArgsCtxt<'a, 'tcx> {
185     fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'a>>, bool);
186
187     fn provided_kind(
188         &mut self,
189         param: &ty::GenericParamDef,
190         arg: &GenericArg<'_>,
191     ) -> subst::GenericArg<'tcx>;
192
193     fn inferred_kind(
194         &mut self,
195         substs: Option<&[subst::GenericArg<'tcx>]>,
196         param: &ty::GenericParamDef,
197         infer_args: bool,
198     ) -> subst::GenericArg<'tcx>;
199 }
200
201 impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
202     #[tracing::instrument(level = "debug", skip(self))]
203     pub fn ast_region_to_region(
204         &self,
205         lifetime: &hir::Lifetime,
206         def: Option<&ty::GenericParamDef>,
207     ) -> ty::Region<'tcx> {
208         let tcx = self.tcx();
209         let lifetime_name = |def_id| tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id));
210
211         let r = match tcx.named_region(lifetime.hir_id) {
212             Some(rl::Region::Static) => tcx.lifetimes.re_static,
213
214             Some(rl::Region::LateBound(debruijn, index, def_id, _)) => {
215                 let name = lifetime_name(def_id.expect_local());
216                 let br = ty::BoundRegion {
217                     var: ty::BoundVar::from_u32(index),
218                     kind: ty::BrNamed(def_id, name),
219                 };
220                 tcx.mk_region(ty::ReLateBound(debruijn, br))
221             }
222
223             Some(rl::Region::LateBoundAnon(debruijn, index, anon_index)) => {
224                 let br = ty::BoundRegion {
225                     var: ty::BoundVar::from_u32(index),
226                     kind: ty::BrAnon(anon_index),
227                 };
228                 tcx.mk_region(ty::ReLateBound(debruijn, br))
229             }
230
231             Some(rl::Region::EarlyBound(index, id, _)) => {
232                 let name = lifetime_name(id.expect_local());
233                 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: id, index, name }))
234             }
235
236             Some(rl::Region::Free(scope, id)) => {
237                 let name = lifetime_name(id.expect_local());
238                 tcx.mk_region(ty::ReFree(ty::FreeRegion {
239                     scope,
240                     bound_region: ty::BrNamed(id, name),
241                 }))
242
243                 // (*) -- not late-bound, won't change
244             }
245
246             None => {
247                 self.re_infer(def, lifetime.span).unwrap_or_else(|| {
248                     debug!(?lifetime, "unelided lifetime in signature");
249
250                     // This indicates an illegal lifetime
251                     // elision. `resolve_lifetime` should have
252                     // reported an error in this case -- but if
253                     // not, let's error out.
254                     tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
255
256                     // Supply some dummy value. We don't have an
257                     // `re_error`, annoyingly, so use `'static`.
258                     tcx.lifetimes.re_static
259                 })
260             }
261         };
262
263         debug!("ast_region_to_region(lifetime={:?}) yields {:?}", lifetime, r);
264
265         r
266     }
267
268     /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
269     /// returns an appropriate set of substitutions for this particular reference to `I`.
270     pub fn ast_path_substs_for_ty(
271         &self,
272         span: Span,
273         def_id: DefId,
274         item_segment: &hir::PathSegment<'_>,
275     ) -> SubstsRef<'tcx> {
276         let (substs, _) = self.create_substs_for_ast_path(
277             span,
278             def_id,
279             &[],
280             item_segment,
281             item_segment.args(),
282             item_segment.infer_args,
283             None,
284         );
285         let assoc_bindings = self.create_assoc_bindings_for_generic_args(item_segment.args());
286
287         if let Some(b) = assoc_bindings.first() {
288             Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
289         }
290
291         substs
292     }
293
294     /// Given the type/lifetime/const arguments provided to some path (along with
295     /// an implicit `Self`, if this is a trait reference), returns the complete
296     /// set of substitutions. This may involve applying defaulted type parameters.
297     /// Also returns back constraints on associated types.
298     ///
299     /// Example:
300     ///
301     /// ```
302     /// T: std::ops::Index<usize, Output = u32>
303     /// ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
304     /// ```
305     ///
306     /// 1. The `self_ty` here would refer to the type `T`.
307     /// 2. The path in question is the path to the trait `std::ops::Index`,
308     ///    which will have been resolved to a `def_id`
309     /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
310     ///    parameters are returned in the `SubstsRef`, the associated type bindings like
311     ///    `Output = u32` are returned in the `Vec<ConvertedBinding...>` result.
312     ///
313     /// Note that the type listing given here is *exactly* what the user provided.
314     ///
315     /// For (generic) associated types
316     ///
317     /// ```
318     /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
319     /// ```
320     ///
321     /// We have the parent substs are the substs for the parent trait:
322     /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
323     /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
324     /// lists: `[Vec<u8>, u8, 'a]`.
325     #[tracing::instrument(level = "debug", skip(self, span))]
326     fn create_substs_for_ast_path<'a>(
327         &self,
328         span: Span,
329         def_id: DefId,
330         parent_substs: &[subst::GenericArg<'tcx>],
331         seg: &hir::PathSegment<'_>,
332         generic_args: &'a hir::GenericArgs<'_>,
333         infer_args: bool,
334         self_ty: Option<Ty<'tcx>>,
335     ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
336         // If the type is parameterized by this region, then replace this
337         // region with the current anon region binding (in other words,
338         // whatever & would get replaced with).
339
340         let tcx = self.tcx();
341         let generics = tcx.generics_of(def_id);
342         debug!("generics: {:?}", generics);
343
344         if generics.has_self {
345             if generics.parent.is_some() {
346                 // The parent is a trait so it should have at least one subst
347                 // for the `Self` type.
348                 assert!(!parent_substs.is_empty())
349             } else {
350                 // This item (presumably a trait) needs a self-type.
351                 assert!(self_ty.is_some());
352             }
353         } else {
354             assert!(self_ty.is_none() && parent_substs.is_empty());
355         }
356
357         let arg_count = Self::check_generic_arg_count(
358             tcx,
359             span,
360             def_id,
361             seg,
362             &generics,
363             &generic_args,
364             GenericArgPosition::Type,
365             self_ty.is_some(),
366             infer_args,
367         );
368
369         // Skip processing if type has no generic parameters.
370         // Traits always have `Self` as a generic parameter, which means they will not return early
371         // here and so associated type bindings will be handled regardless of whether there are any
372         // non-`Self` generic parameters.
373         if generics.params.len() == 0 {
374             return (tcx.intern_substs(&[]), arg_count);
375         }
376
377         let is_object = self_ty.map_or(false, |ty| ty == self.tcx().types.trait_object_dummy_self);
378
379         struct SubstsForAstPathCtxt<'a, 'tcx> {
380             astconv: &'a (dyn AstConv<'tcx> + 'a),
381             def_id: DefId,
382             generic_args: &'a GenericArgs<'a>,
383             span: Span,
384             missing_type_params: Vec<String>,
385             inferred_params: Vec<Span>,
386             infer_args: bool,
387             is_object: bool,
388         }
389
390         impl<'tcx, 'a> SubstsForAstPathCtxt<'tcx, 'a> {
391             fn default_needs_object_self(&mut self, param: &ty::GenericParamDef) -> bool {
392                 let tcx = self.astconv.tcx();
393                 if let GenericParamDefKind::Type { has_default, .. } = param.kind {
394                     if self.is_object && has_default {
395                         let default_ty = tcx.at(self.span).type_of(param.def_id);
396                         let self_param = tcx.types.self_param;
397                         if default_ty.walk().any(|arg| arg == self_param.into()) {
398                             // There is no suitable inference default for a type parameter
399                             // that references self, in an object type.
400                             return true;
401                         }
402                     }
403                 }
404
405                 false
406             }
407         }
408
409         impl<'a, 'tcx> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for SubstsForAstPathCtxt<'a, 'tcx> {
410             fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'a>>, bool) {
411                 if did == self.def_id {
412                     (Some(self.generic_args), self.infer_args)
413                 } else {
414                     // The last component of this tuple is unimportant.
415                     (None, false)
416                 }
417             }
418
419             fn provided_kind(
420                 &mut self,
421                 param: &ty::GenericParamDef,
422                 arg: &GenericArg<'_>,
423             ) -> subst::GenericArg<'tcx> {
424                 let tcx = self.astconv.tcx();
425                 match (&param.kind, arg) {
426                     (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
427                         self.astconv.ast_region_to_region(&lt, Some(param)).into()
428                     }
429                     (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
430                         if has_default {
431                             tcx.check_optional_stability(
432                                 param.def_id,
433                                 Some(arg.id()),
434                                 arg.span(),
435                                 None,
436                                 |_, _| {
437                                     // Default generic parameters may not be marked
438                                     // with stability attributes, i.e. when the
439                                     // default parameter was defined at the same time
440                                     // as the rest of the type. As such, we ignore missing
441                                     // stability attributes.
442                                 },
443                             )
444                         }
445                         if let (hir::TyKind::Infer, false) =
446                             (&ty.kind, self.astconv.allow_ty_infer())
447                         {
448                             self.inferred_params.push(ty.span);
449                             tcx.ty_error().into()
450                         } else {
451                             self.astconv.ast_ty_to_ty(&ty).into()
452                         }
453                     }
454                     (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
455                         ty::Const::from_opt_const_arg_anon_const(
456                             tcx,
457                             ty::WithOptConstParam {
458                                 did: tcx.hir().local_def_id(ct.value.hir_id),
459                                 const_param_did: Some(param.def_id),
460                             },
461                         )
462                         .into()
463                     }
464                     _ => unreachable!(),
465                 }
466             }
467
468             fn inferred_kind(
469                 &mut self,
470                 substs: Option<&[subst::GenericArg<'tcx>]>,
471                 param: &ty::GenericParamDef,
472                 infer_args: bool,
473             ) -> subst::GenericArg<'tcx> {
474                 let tcx = self.astconv.tcx();
475                 match param.kind {
476                     GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
477                     GenericParamDefKind::Type { has_default, .. } => {
478                         if !infer_args && has_default {
479                             // No type parameter provided, but a default exists.
480
481                             // If we are converting an object type, then the
482                             // `Self` parameter is unknown. However, some of the
483                             // other type parameters may reference `Self` in their
484                             // defaults. This will lead to an ICE if we are not
485                             // careful!
486                             if self.default_needs_object_self(param) {
487                                 self.missing_type_params.push(param.name.to_string());
488                                 tcx.ty_error().into()
489                             } else {
490                                 // This is a default type parameter.
491                                 self.astconv
492                                     .normalize_ty(
493                                         self.span,
494                                         tcx.at(self.span).type_of(param.def_id).subst_spanned(
495                                             tcx,
496                                             substs.unwrap(),
497                                             Some(self.span),
498                                         ),
499                                     )
500                                     .into()
501                             }
502                         } else if infer_args {
503                             // No type parameters were provided, we can infer all.
504                             let param = if !self.default_needs_object_self(param) {
505                                 Some(param)
506                             } else {
507                                 None
508                             };
509                             self.astconv.ty_infer(param, self.span).into()
510                         } else {
511                             // We've already errored above about the mismatch.
512                             tcx.ty_error().into()
513                         }
514                     }
515                     GenericParamDefKind::Const { has_default } => {
516                         let ty = tcx.at(self.span).type_of(param.def_id);
517                         if !infer_args && has_default {
518                             tcx.const_param_default(param.def_id)
519                                 .subst_spanned(tcx, substs.unwrap(), Some(self.span))
520                                 .into()
521                         } else {
522                             if infer_args {
523                                 self.astconv.ct_infer(ty, Some(param), self.span).into()
524                             } else {
525                                 // We've already errored above about the mismatch.
526                                 tcx.const_error(ty).into()
527                             }
528                         }
529                     }
530                 }
531             }
532         }
533
534         let mut substs_ctx = SubstsForAstPathCtxt {
535             astconv: self,
536             def_id,
537             span,
538             generic_args,
539             missing_type_params: vec![],
540             inferred_params: vec![],
541             infer_args,
542             is_object,
543         };
544         let substs = Self::create_substs_for_generic_args(
545             tcx,
546             def_id,
547             parent_substs,
548             self_ty.is_some(),
549             self_ty,
550             &arg_count,
551             &mut substs_ctx,
552         );
553
554         self.complain_about_missing_type_params(
555             substs_ctx.missing_type_params,
556             def_id,
557             span,
558             generic_args.args.is_empty(),
559         );
560
561         debug!(
562             "create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
563             generics, self_ty, substs
564         );
565
566         (substs, arg_count)
567     }
568
569     fn create_assoc_bindings_for_generic_args<'a>(
570         &self,
571         generic_args: &'a hir::GenericArgs<'_>,
572     ) -> Vec<ConvertedBinding<'a, 'tcx>> {
573         // Convert associated-type bindings or constraints into a separate vector.
574         // Example: Given this:
575         //
576         //     T: Iterator<Item = u32>
577         //
578         // The `T` is passed in as a self-type; the `Item = u32` is
579         // not a "type parameter" of the `Iterator` trait, but rather
580         // a restriction on `<T as Iterator>::Item`, so it is passed
581         // back separately.
582         let assoc_bindings = generic_args
583             .bindings
584             .iter()
585             .map(|binding| {
586                 let kind = match binding.kind {
587                     hir::TypeBindingKind::Equality { ref ty } => {
588                         ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty))
589                     }
590                     hir::TypeBindingKind::Constraint { ref bounds } => {
591                         ConvertedBindingKind::Constraint(bounds)
592                     }
593                 };
594                 ConvertedBinding {
595                     hir_id: binding.hir_id,
596                     item_name: binding.ident,
597                     kind,
598                     gen_args: binding.gen_args,
599                     span: binding.span,
600                 }
601             })
602             .collect();
603
604         assoc_bindings
605     }
606
607     crate fn create_substs_for_associated_item(
608         &self,
609         tcx: TyCtxt<'tcx>,
610         span: Span,
611         item_def_id: DefId,
612         item_segment: &hir::PathSegment<'_>,
613         parent_substs: SubstsRef<'tcx>,
614     ) -> SubstsRef<'tcx> {
615         debug!(
616             "create_substs_for_associated_item(span: {:?}, item_def_id: {:?}, item_segment: {:?}",
617             span, item_def_id, item_segment
618         );
619         if tcx.generics_of(item_def_id).params.is_empty() {
620             self.prohibit_generics(slice::from_ref(item_segment));
621
622             parent_substs
623         } else {
624             self.create_substs_for_ast_path(
625                 span,
626                 item_def_id,
627                 parent_substs,
628                 item_segment,
629                 item_segment.args(),
630                 item_segment.infer_args,
631                 None,
632             )
633             .0
634         }
635     }
636
637     /// Instantiates the path for the given trait reference, assuming that it's
638     /// bound to a valid trait type. Returns the `DefId` of the defining trait.
639     /// The type _cannot_ be a type other than a trait type.
640     ///
641     /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
642     /// are disallowed. Otherwise, they are pushed onto the vector given.
643     pub fn instantiate_mono_trait_ref(
644         &self,
645         trait_ref: &hir::TraitRef<'_>,
646         self_ty: Ty<'tcx>,
647     ) -> ty::TraitRef<'tcx> {
648         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
649
650         self.ast_path_to_mono_trait_ref(
651             trait_ref.path.span,
652             trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
653             self_ty,
654             trait_ref.path.segments.last().unwrap(),
655         )
656     }
657
658     /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
659     /// a full trait reference. The resulting trait reference is returned. This may also generate
660     /// auxiliary bounds, which are added to `bounds`.
661     ///
662     /// Example:
663     ///
664     /// ```
665     /// poly_trait_ref = Iterator<Item = u32>
666     /// self_ty = Foo
667     /// ```
668     ///
669     /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
670     ///
671     /// **A note on binders:** against our usual convention, there is an implied bounder around
672     /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
673     /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
674     /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
675     /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
676     /// however.
677     #[tracing::instrument(level = "debug", skip(self, span, constness, bounds, speculative))]
678     pub fn instantiate_poly_trait_ref(
679         &self,
680         trait_ref: &hir::TraitRef<'_>,
681         span: Span,
682         constness: Constness,
683         self_ty: Ty<'tcx>,
684         bounds: &mut Bounds<'tcx>,
685         speculative: bool,
686     ) -> GenericArgCountResult {
687         let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
688
689         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
690
691         let tcx = self.tcx();
692         let bound_vars = tcx.late_bound_vars(trait_ref.hir_ref_id);
693         debug!(?bound_vars);
694
695         let (substs, arg_count) = self.create_substs_for_ast_trait_ref(
696             trait_ref.path.span,
697             trait_def_id,
698             self_ty,
699             trait_ref.path.segments.last().unwrap(),
700         );
701         let assoc_bindings = self
702             .create_assoc_bindings_for_generic_args(trait_ref.path.segments.last().unwrap().args());
703
704         let poly_trait_ref =
705             ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
706
707         debug!(?poly_trait_ref, ?assoc_bindings);
708         bounds.trait_bounds.push((poly_trait_ref, span, constness));
709
710         let mut dup_bindings = FxHashMap::default();
711         for binding in &assoc_bindings {
712             // Specify type to assert that error was already reported in `Err` case.
713             let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
714                 trait_ref.hir_ref_id,
715                 poly_trait_ref,
716                 binding,
717                 bounds,
718                 speculative,
719                 &mut dup_bindings,
720                 binding.span,
721             );
722             // Okay to ignore `Err` because of `ErrorReported` (see above).
723         }
724
725         arg_count
726     }
727
728     pub fn instantiate_lang_item_trait_ref(
729         &self,
730         lang_item: hir::LangItem,
731         span: Span,
732         hir_id: hir::HirId,
733         args: &GenericArgs<'_>,
734         self_ty: Ty<'tcx>,
735         bounds: &mut Bounds<'tcx>,
736     ) {
737         let trait_def_id = self.tcx().require_lang_item(lang_item, Some(span));
738
739         let (substs, _) = self.create_substs_for_ast_path(
740             span,
741             trait_def_id,
742             &[],
743             &hir::PathSegment::invalid(),
744             args,
745             false,
746             Some(self_ty),
747         );
748         let assoc_bindings = self.create_assoc_bindings_for_generic_args(args);
749         let tcx = self.tcx();
750         let bound_vars = tcx.late_bound_vars(hir_id);
751         let poly_trait_ref =
752             ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
753         bounds.trait_bounds.push((poly_trait_ref, span, Constness::NotConst));
754
755         let mut dup_bindings = FxHashMap::default();
756         for binding in assoc_bindings {
757             let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
758                 hir_id,
759                 poly_trait_ref,
760                 &binding,
761                 bounds,
762                 false,
763                 &mut dup_bindings,
764                 span,
765             );
766         }
767     }
768
769     fn ast_path_to_mono_trait_ref(
770         &self,
771         span: Span,
772         trait_def_id: DefId,
773         self_ty: Ty<'tcx>,
774         trait_segment: &hir::PathSegment<'_>,
775     ) -> ty::TraitRef<'tcx> {
776         let (substs, _) =
777             self.create_substs_for_ast_trait_ref(span, trait_def_id, self_ty, trait_segment);
778         let assoc_bindings = self.create_assoc_bindings_for_generic_args(trait_segment.args());
779         if let Some(b) = assoc_bindings.first() {
780             Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
781         }
782         ty::TraitRef::new(trait_def_id, substs)
783     }
784
785     #[tracing::instrument(level = "debug", skip(self, span))]
786     fn create_substs_for_ast_trait_ref<'a>(
787         &self,
788         span: Span,
789         trait_def_id: DefId,
790         self_ty: Ty<'tcx>,
791         trait_segment: &'a hir::PathSegment<'a>,
792     ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
793         self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);
794
795         self.create_substs_for_ast_path(
796             span,
797             trait_def_id,
798             &[],
799             trait_segment,
800             trait_segment.args(),
801             trait_segment.infer_args,
802             Some(self_ty),
803         )
804     }
805
806     fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
807         self.tcx()
808             .associated_items(trait_def_id)
809             .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
810             .is_some()
811     }
812
813     // Returns `true` if a bounds list includes `?Sized`.
814     pub fn is_unsized(&self, ast_bounds: &[hir::GenericBound<'_>], span: Span) -> bool {
815         let tcx = self.tcx();
816
817         // Try to find an unbound in bounds.
818         let mut unbound = None;
819         for ab in ast_bounds {
820             if let hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = ab {
821                 if unbound.is_none() {
822                     unbound = Some(&ptr.trait_ref);
823                 } else {
824                     tcx.sess.emit_err(MultipleRelaxedDefaultBounds { span });
825                 }
826             }
827         }
828
829         let kind_id = tcx.lang_items().require(LangItem::Sized);
830         match unbound {
831             Some(tpb) => {
832                 // FIXME(#8559) currently requires the unbound to be built-in.
833                 if let Ok(kind_id) = kind_id {
834                     if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
835                         tcx.sess.span_warn(
836                             span,
837                             "default bound relaxed for a type parameter, but \
838                              this does nothing because the given bound is not \
839                              a default; only `?Sized` is supported",
840                         );
841                     }
842                 }
843             }
844             _ if kind_id.is_ok() => {
845                 return false;
846             }
847             // No lang item for `Sized`, so we can't add it as a bound.
848             None => {}
849         }
850
851         true
852     }
853
854     /// This helper takes a *converted* parameter type (`param_ty`)
855     /// and an *unconverted* list of bounds:
856     ///
857     /// ```text
858     /// fn foo<T: Debug>
859     ///        ^  ^^^^^ `ast_bounds` parameter, in HIR form
860     ///        |
861     ///        `param_ty`, in ty form
862     /// ```
863     ///
864     /// It adds these `ast_bounds` into the `bounds` structure.
865     ///
866     /// **A note on binders:** there is an implied binder around
867     /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
868     /// for more details.
869     #[tracing::instrument(level = "debug", skip(self, bounds))]
870     fn add_bounds(
871         &self,
872         param_ty: Ty<'tcx>,
873         ast_bounds: &[hir::GenericBound<'_>],
874         bounds: &mut Bounds<'tcx>,
875         bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
876     ) {
877         let constness = self.default_constness_for_trait_bounds();
878         for ast_bound in ast_bounds {
879             match *ast_bound {
880                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => {
881                     self.instantiate_poly_trait_ref(
882                         &b.trait_ref,
883                         b.span,
884                         constness,
885                         param_ty,
886                         bounds,
887                         false,
888                     );
889                 }
890                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::MaybeConst) => {
891                     self.instantiate_poly_trait_ref(
892                         &b.trait_ref,
893                         b.span,
894                         Constness::NotConst,
895                         param_ty,
896                         bounds,
897                         false,
898                     );
899                 }
900                 hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
901                 hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => self
902                     .instantiate_lang_item_trait_ref(
903                         lang_item, span, hir_id, args, param_ty, bounds,
904                     ),
905                 hir::GenericBound::Outlives(ref l) => bounds.region_bounds.push((
906                     ty::Binder::bind_with_vars(self.ast_region_to_region(l, None), bound_vars),
907                     l.span,
908                 )),
909             }
910         }
911     }
912
913     /// Translates a list of bounds from the HIR into the `Bounds` data structure.
914     /// The self-type for the bounds is given by `param_ty`.
915     ///
916     /// Example:
917     ///
918     /// ```
919     /// fn foo<T: Bar + Baz>() { }
920     ///        ^  ^^^^^^^^^ ast_bounds
921     ///        param_ty
922     /// ```
923     ///
924     /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
925     /// considered `Sized` unless there is an explicit `?Sized` bound.  This would be true in the
926     /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
927     ///
928     /// `span` should be the declaration size of the parameter.
929     pub fn compute_bounds(
930         &self,
931         param_ty: Ty<'tcx>,
932         ast_bounds: &[hir::GenericBound<'_>],
933         sized_by_default: SizedByDefault,
934         span: Span,
935     ) -> Bounds<'tcx> {
936         self.compute_bounds_inner(param_ty, &ast_bounds, sized_by_default, span)
937     }
938
939     /// Convert the bounds in `ast_bounds` that refer to traits which define an associated type
940     /// named `assoc_name` into ty::Bounds. Ignore the rest.
941     pub fn compute_bounds_that_match_assoc_type(
942         &self,
943         param_ty: Ty<'tcx>,
944         ast_bounds: &[hir::GenericBound<'_>],
945         sized_by_default: SizedByDefault,
946         span: Span,
947         assoc_name: Ident,
948     ) -> Bounds<'tcx> {
949         let mut result = Vec::new();
950
951         for ast_bound in ast_bounds {
952             if let Some(trait_ref) = ast_bound.trait_ref() {
953                 if let Some(trait_did) = trait_ref.trait_def_id() {
954                     if self.tcx().trait_may_define_assoc_type(trait_did, assoc_name) {
955                         result.push(ast_bound.clone());
956                     }
957                 }
958             }
959         }
960
961         self.compute_bounds_inner(param_ty, &result, sized_by_default, span)
962     }
963
964     fn compute_bounds_inner(
965         &self,
966         param_ty: Ty<'tcx>,
967         ast_bounds: &[hir::GenericBound<'_>],
968         sized_by_default: SizedByDefault,
969         span: Span,
970     ) -> Bounds<'tcx> {
971         let mut bounds = Bounds::default();
972
973         self.add_bounds(param_ty, ast_bounds, &mut bounds, ty::List::empty());
974
975         bounds.implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
976             if !self.is_unsized(ast_bounds, span) { Some(span) } else { None }
977         } else {
978             None
979         };
980
981         bounds
982     }
983
984     /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
985     /// onto `bounds`.
986     ///
987     /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
988     /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
989     /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
990     #[tracing::instrument(
991         level = "debug",
992         skip(self, bounds, speculative, dup_bindings, path_span)
993     )]
994     fn add_predicates_for_ast_type_binding(
995         &self,
996         hir_ref_id: hir::HirId,
997         trait_ref: ty::PolyTraitRef<'tcx>,
998         binding: &ConvertedBinding<'_, 'tcx>,
999         bounds: &mut Bounds<'tcx>,
1000         speculative: bool,
1001         dup_bindings: &mut FxHashMap<DefId, Span>,
1002         path_span: Span,
1003     ) -> Result<(), ErrorReported> {
1004         // Given something like `U: SomeTrait<T = X>`, we want to produce a
1005         // predicate like `<U as SomeTrait>::T = X`. This is somewhat
1006         // subtle in the event that `T` is defined in a supertrait of
1007         // `SomeTrait`, because in that case we need to upcast.
1008         //
1009         // That is, consider this case:
1010         //
1011         // ```
1012         // trait SubTrait: SuperTrait<i32> { }
1013         // trait SuperTrait<A> { type T; }
1014         //
1015         // ... B: SubTrait<T = foo> ...
1016         // ```
1017         //
1018         // We want to produce `<B as SuperTrait<i32>>::T == foo`.
1019
1020         let tcx = self.tcx();
1021
1022         let candidate =
1023             if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
1024                 // Simple case: X is defined in the current trait.
1025                 trait_ref
1026             } else {
1027                 // Otherwise, we have to walk through the supertraits to find
1028                 // those that do.
1029                 self.one_bound_for_assoc_type(
1030                     || traits::supertraits(tcx, trait_ref),
1031                     || trait_ref.print_only_trait_path().to_string(),
1032                     binding.item_name,
1033                     path_span,
1034                     || match binding.kind {
1035                         ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
1036                         _ => None,
1037                     },
1038                 )?
1039             };
1040
1041         let (assoc_ident, def_scope) =
1042             tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
1043
1044         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
1045         // of calling `filter_by_name_and_kind`.
1046         let assoc_ty = tcx
1047             .associated_items(candidate.def_id())
1048             .filter_by_name_unhygienic(assoc_ident.name)
1049             .find(|i| {
1050                 i.kind == ty::AssocKind::Type && i.ident.normalize_to_macros_2_0() == assoc_ident
1051             })
1052             .expect("missing associated type");
1053
1054         if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
1055             tcx.sess
1056                 .struct_span_err(
1057                     binding.span,
1058                     &format!("associated type `{}` is private", binding.item_name),
1059                 )
1060                 .span_label(binding.span, "private associated type")
1061                 .emit();
1062         }
1063         tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span, None);
1064
1065         if !speculative {
1066             dup_bindings
1067                 .entry(assoc_ty.def_id)
1068                 .and_modify(|prev_span| {
1069                     self.tcx().sess.emit_err(ValueOfAssociatedStructAlreadySpecified {
1070                         span: binding.span,
1071                         prev_span: *prev_span,
1072                         item_name: binding.item_name,
1073                         def_path: tcx.def_path_str(assoc_ty.container.id()),
1074                     });
1075                 })
1076                 .or_insert(binding.span);
1077         }
1078
1079         // Include substitutions for generic parameters of associated types
1080         let projection_ty = candidate.map_bound(|trait_ref| {
1081             let ident = Ident::new(assoc_ty.ident.name, binding.item_name.span);
1082             let item_segment = hir::PathSegment {
1083                 ident,
1084                 hir_id: Some(binding.hir_id),
1085                 res: None,
1086                 args: Some(binding.gen_args),
1087                 infer_args: false,
1088             };
1089
1090             let substs_trait_ref_and_assoc_item = self.create_substs_for_associated_item(
1091                 tcx,
1092                 path_span,
1093                 assoc_ty.def_id,
1094                 &item_segment,
1095                 trait_ref.substs,
1096             );
1097
1098             debug!(
1099                 "add_predicates_for_ast_type_binding: substs for trait-ref and assoc_item: {:?}",
1100                 substs_trait_ref_and_assoc_item
1101             );
1102
1103             ty::ProjectionTy {
1104                 item_def_id: assoc_ty.def_id,
1105                 substs: substs_trait_ref_and_assoc_item,
1106             }
1107         });
1108
1109         if !speculative {
1110             // Find any late-bound regions declared in `ty` that are not
1111             // declared in the trait-ref or assoc_ty. These are not well-formed.
1112             //
1113             // Example:
1114             //
1115             //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
1116             //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
1117             if let ConvertedBindingKind::Equality(ty) = binding.kind {
1118                 let late_bound_in_trait_ref =
1119                     tcx.collect_constrained_late_bound_regions(&projection_ty);
1120                 let late_bound_in_ty =
1121                     tcx.collect_referenced_late_bound_regions(&trait_ref.rebind(ty));
1122                 debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
1123                 debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
1124
1125                 // FIXME: point at the type params that don't have appropriate lifetimes:
1126                 // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
1127                 //                         ----  ----     ^^^^^^^
1128                 self.validate_late_bound_regions(
1129                     late_bound_in_trait_ref,
1130                     late_bound_in_ty,
1131                     |br_name| {
1132                         struct_span_err!(
1133                             tcx.sess,
1134                             binding.span,
1135                             E0582,
1136                             "binding for associated type `{}` references {}, \
1137                              which does not appear in the trait input types",
1138                             binding.item_name,
1139                             br_name
1140                         )
1141                     },
1142                 );
1143             }
1144         }
1145
1146         match binding.kind {
1147             ConvertedBindingKind::Equality(ref ty) => {
1148                 // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
1149                 // the "projection predicate" for:
1150                 //
1151                 // `<T as Iterator>::Item = u32`
1152                 bounds.projection_bounds.push((
1153                     projection_ty.map_bound(|projection_ty| {
1154                         debug!(
1155                             "add_predicates_for_ast_type_binding: projection_ty {:?}, substs: {:?}",
1156                             projection_ty, projection_ty.substs
1157                         );
1158                         ty::ProjectionPredicate { projection_ty, ty }
1159                     }),
1160                     binding.span,
1161                 ));
1162             }
1163             ConvertedBindingKind::Constraint(ast_bounds) => {
1164                 // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
1165                 //
1166                 // `<T as Iterator>::Item: Debug`
1167                 //
1168                 // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
1169                 // parameter to have a skipped binder.
1170                 let param_ty = tcx.mk_ty(ty::Projection(projection_ty.skip_binder()));
1171                 self.add_bounds(param_ty, ast_bounds, bounds, candidate.bound_vars());
1172             }
1173         }
1174         Ok(())
1175     }
1176
1177     fn ast_path_to_ty(
1178         &self,
1179         span: Span,
1180         did: DefId,
1181         item_segment: &hir::PathSegment<'_>,
1182     ) -> Ty<'tcx> {
1183         let substs = self.ast_path_substs_for_ty(span, did, item_segment);
1184         self.normalize_ty(span, self.tcx().at(span).type_of(did).subst(self.tcx(), substs))
1185     }
1186
1187     fn conv_object_ty_poly_trait_ref(
1188         &self,
1189         span: Span,
1190         trait_bounds: &[hir::PolyTraitRef<'_>],
1191         lifetime: &hir::Lifetime,
1192         borrowed: bool,
1193     ) -> Ty<'tcx> {
1194         let tcx = self.tcx();
1195
1196         let mut bounds = Bounds::default();
1197         let mut potential_assoc_types = Vec::new();
1198         let dummy_self = self.tcx().types.trait_object_dummy_self;
1199         for trait_bound in trait_bounds.iter().rev() {
1200             if let GenericArgCountResult {
1201                 correct:
1202                     Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
1203                 ..
1204             } = self.instantiate_poly_trait_ref(
1205                 &trait_bound.trait_ref,
1206                 trait_bound.span,
1207                 Constness::NotConst,
1208                 dummy_self,
1209                 &mut bounds,
1210                 false,
1211             ) {
1212                 potential_assoc_types.extend(cur_potential_assoc_types);
1213             }
1214         }
1215
1216         // Expand trait aliases recursively and check that only one regular (non-auto) trait
1217         // is used and no 'maybe' bounds are used.
1218         let expanded_traits =
1219             traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
1220         let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
1221             expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
1222         if regular_traits.len() > 1 {
1223             let first_trait = &regular_traits[0];
1224             let additional_trait = &regular_traits[1];
1225             let mut err = struct_span_err!(
1226                 tcx.sess,
1227                 additional_trait.bottom().1,
1228                 E0225,
1229                 "only auto traits can be used as additional traits in a trait object"
1230             );
1231             additional_trait.label_with_exp_info(
1232                 &mut err,
1233                 "additional non-auto trait",
1234                 "additional use",
1235             );
1236             first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
1237             err.help(&format!(
1238                 "consider creating a new trait with all of these as super-traits and using that \
1239                  trait here instead: `trait NewTrait: {} {{}}`",
1240                 regular_traits
1241                     .iter()
1242                     .map(|t| t.trait_ref().print_only_trait_path().to_string())
1243                     .collect::<Vec<_>>()
1244                     .join(" + "),
1245             ));
1246             err.note(
1247                 "auto-traits like `Send` and `Sync` are traits that have special properties; \
1248                  for more information on them, visit \
1249                  <https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
1250             );
1251             err.emit();
1252         }
1253
1254         if regular_traits.is_empty() && auto_traits.is_empty() {
1255             tcx.sess.emit_err(TraitObjectDeclaredWithNoTraits { span });
1256             return tcx.ty_error();
1257         }
1258
1259         // Check that there are no gross object safety violations;
1260         // most importantly, that the supertraits don't contain `Self`,
1261         // to avoid ICEs.
1262         for item in &regular_traits {
1263             let object_safety_violations =
1264                 astconv_object_safety_violations(tcx, item.trait_ref().def_id());
1265             if !object_safety_violations.is_empty() {
1266                 report_object_safety_error(
1267                     tcx,
1268                     span,
1269                     item.trait_ref().def_id(),
1270                     &object_safety_violations[..],
1271                 )
1272                 .emit();
1273                 return tcx.ty_error();
1274             }
1275         }
1276
1277         // Use a `BTreeSet` to keep output in a more consistent order.
1278         let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
1279
1280         let regular_traits_refs_spans = bounds
1281             .trait_bounds
1282             .into_iter()
1283             .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
1284
1285         for (base_trait_ref, span, constness) in regular_traits_refs_spans {
1286             assert_eq!(constness, Constness::NotConst);
1287
1288             for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
1289                 debug!(
1290                     "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
1291                     obligation.predicate
1292                 );
1293
1294                 let bound_predicate = obligation.predicate.kind();
1295                 match bound_predicate.skip_binder() {
1296                     ty::PredicateKind::Trait(pred, _) => {
1297                         let pred = bound_predicate.rebind(pred);
1298                         associated_types.entry(span).or_default().extend(
1299                             tcx.associated_items(pred.def_id())
1300                                 .in_definition_order()
1301                                 .filter(|item| item.kind == ty::AssocKind::Type)
1302                                 .map(|item| item.def_id),
1303                         );
1304                     }
1305                     ty::PredicateKind::Projection(pred) => {
1306                         let pred = bound_predicate.rebind(pred);
1307                         // A `Self` within the original bound will be substituted with a
1308                         // `trait_object_dummy_self`, so check for that.
1309                         let references_self =
1310                             pred.skip_binder().ty.walk().any(|arg| arg == dummy_self.into());
1311
1312                         // If the projection output contains `Self`, force the user to
1313                         // elaborate it explicitly to avoid a lot of complexity.
1314                         //
1315                         // The "classicaly useful" case is the following:
1316                         // ```
1317                         //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1318                         //         type MyOutput;
1319                         //     }
1320                         // ```
1321                         //
1322                         // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
1323                         // but actually supporting that would "expand" to an infinitely-long type
1324                         // `fix $ Ï„ â†’ dyn MyTrait<MyOutput = X, Output = <Ï„ as MyTrait>::MyOutput`.
1325                         //
1326                         // Instead, we force the user to write
1327                         // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
1328                         // the discussion in #56288 for alternatives.
1329                         if !references_self {
1330                             // Include projections defined on supertraits.
1331                             bounds.projection_bounds.push((pred, span));
1332                         }
1333                     }
1334                     _ => (),
1335                 }
1336             }
1337         }
1338
1339         for (projection_bound, _) in &bounds.projection_bounds {
1340             for def_ids in associated_types.values_mut() {
1341                 def_ids.remove(&projection_bound.projection_def_id());
1342             }
1343         }
1344
1345         self.complain_about_missing_associated_types(
1346             associated_types,
1347             potential_assoc_types,
1348             trait_bounds,
1349         );
1350
1351         // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
1352         // `dyn Trait + Send`.
1353         // We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
1354         // the bounds
1355         let mut duplicates = FxHashSet::default();
1356         auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
1357         debug!("regular_traits: {:?}", regular_traits);
1358         debug!("auto_traits: {:?}", auto_traits);
1359
1360         // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
1361         let existential_trait_refs = regular_traits.iter().map(|i| {
1362             i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
1363                 if trait_ref.self_ty() != dummy_self {
1364                     // FIXME: There appears to be a missing filter on top of `expand_trait_aliases`,
1365                     // which picks up non-supertraits where clauses - but also, the object safety
1366                     // completely ignores trait aliases, which could be object safety hazards. We
1367                     // `delay_span_bug` here to avoid an ICE in stable even when the feature is
1368                     // disabled. (#66420)
1369                     tcx.sess.delay_span_bug(
1370                         DUMMY_SP,
1371                         &format!(
1372                             "trait_ref_to_existential called on {:?} with non-dummy Self",
1373                             trait_ref,
1374                         ),
1375                     );
1376                 }
1377                 ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
1378             })
1379         });
1380         let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
1381             bound.map_bound(|b| {
1382                 if b.projection_ty.self_ty() != dummy_self {
1383                     tcx.sess.delay_span_bug(
1384                         DUMMY_SP,
1385                         &format!("trait_ref_to_existential called on {:?} with non-dummy Self", b),
1386                     );
1387                 }
1388                 ty::ExistentialProjection::erase_self_ty(tcx, b)
1389             })
1390         });
1391
1392         let regular_trait_predicates = existential_trait_refs
1393             .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
1394         let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
1395             ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
1396         });
1397         let mut v = regular_trait_predicates
1398             .chain(auto_trait_predicates)
1399             .chain(
1400                 existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
1401             )
1402             .collect::<SmallVec<[_; 8]>>();
1403         v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
1404         v.dedup();
1405         let existential_predicates = tcx.mk_poly_existential_predicates(v.into_iter());
1406
1407         // Use explicitly-specified region bound.
1408         let region_bound = if !lifetime.is_elided() {
1409             self.ast_region_to_region(lifetime, None)
1410         } else {
1411             self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
1412                 if tcx.named_region(lifetime.hir_id).is_some() {
1413                     self.ast_region_to_region(lifetime, None)
1414                 } else {
1415                     self.re_infer(None, span).unwrap_or_else(|| {
1416                         let mut err = struct_span_err!(
1417                             tcx.sess,
1418                             span,
1419                             E0228,
1420                             "the lifetime bound for this object type cannot be deduced \
1421                              from context; please supply an explicit bound"
1422                         );
1423                         if borrowed {
1424                             // We will have already emitted an error E0106 complaining about a
1425                             // missing named lifetime in `&dyn Trait`, so we elide this one.
1426                             err.delay_as_bug();
1427                         } else {
1428                             err.emit();
1429                         }
1430                         tcx.lifetimes.re_static
1431                     })
1432                 }
1433             })
1434         };
1435         debug!("region_bound: {:?}", region_bound);
1436
1437         let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1438         debug!("trait_object_type: {:?}", ty);
1439         ty
1440     }
1441
1442     fn report_ambiguous_associated_type(
1443         &self,
1444         span: Span,
1445         type_str: &str,
1446         trait_str: &str,
1447         name: Symbol,
1448     ) {
1449         let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
1450         if let (true, Ok(snippet)) = (
1451             self.tcx()
1452                 .sess
1453                 .confused_type_with_std_module
1454                 .borrow()
1455                 .keys()
1456                 .any(|full_span| full_span.contains(span)),
1457             self.tcx().sess.source_map().span_to_snippet(span),
1458         ) {
1459             err.span_suggestion(
1460                 span,
1461                 "you are looking for the module in `std`, not the primitive type",
1462                 format!("std::{}", snippet),
1463                 Applicability::MachineApplicable,
1464             );
1465         } else {
1466             err.span_suggestion(
1467                 span,
1468                 "use fully-qualified syntax",
1469                 format!("<{} as {}>::{}", type_str, trait_str, name),
1470                 Applicability::HasPlaceholders,
1471             );
1472         }
1473         err.emit();
1474     }
1475
1476     // Search for a bound on a type parameter which includes the associated item
1477     // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
1478     // This function will fail if there are no suitable bounds or there is
1479     // any ambiguity.
1480     fn find_bound_for_assoc_item(
1481         &self,
1482         ty_param_def_id: LocalDefId,
1483         assoc_name: Ident,
1484         span: Span,
1485     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported> {
1486         let tcx = self.tcx();
1487
1488         debug!(
1489             "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
1490             ty_param_def_id, assoc_name, span,
1491         );
1492
1493         let predicates = &self
1494             .get_type_parameter_bounds(span, ty_param_def_id.to_def_id(), assoc_name)
1495             .predicates;
1496
1497         debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
1498
1499         let param_hir_id = tcx.hir().local_def_id_to_hir_id(ty_param_def_id);
1500         let param_name = tcx.hir().ty_param_name(param_hir_id);
1501         self.one_bound_for_assoc_type(
1502             || {
1503                 traits::transitive_bounds_that_define_assoc_type(
1504                     tcx,
1505                     predicates.iter().filter_map(|(p, _)| {
1506                         p.to_opt_poly_trait_ref().map(|trait_ref| trait_ref.value)
1507                     }),
1508                     assoc_name,
1509                 )
1510             },
1511             || param_name.to_string(),
1512             assoc_name,
1513             span,
1514             || None,
1515         )
1516     }
1517
1518     // Checks that `bounds` contains exactly one element and reports appropriate
1519     // errors otherwise.
1520     fn one_bound_for_assoc_type<I>(
1521         &self,
1522         all_candidates: impl Fn() -> I,
1523         ty_param_name: impl Fn() -> String,
1524         assoc_name: Ident,
1525         span: Span,
1526         is_equality: impl Fn() -> Option<String>,
1527     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1528     where
1529         I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
1530     {
1531         let mut matching_candidates = all_candidates()
1532             .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
1533
1534         let bound = match matching_candidates.next() {
1535             Some(bound) => bound,
1536             None => {
1537                 self.complain_about_assoc_type_not_found(
1538                     all_candidates,
1539                     &ty_param_name(),
1540                     assoc_name,
1541                     span,
1542                 );
1543                 return Err(ErrorReported);
1544             }
1545         };
1546
1547         debug!("one_bound_for_assoc_type: bound = {:?}", bound);
1548
1549         if let Some(bound2) = matching_candidates.next() {
1550             debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);
1551
1552             let is_equality = is_equality();
1553             let bounds = array::IntoIter::new([bound, bound2]).chain(matching_candidates);
1554             let mut err = if is_equality.is_some() {
1555                 // More specific Error Index entry.
1556                 struct_span_err!(
1557                     self.tcx().sess,
1558                     span,
1559                     E0222,
1560                     "ambiguous associated type `{}` in bounds of `{}`",
1561                     assoc_name,
1562                     ty_param_name()
1563                 )
1564             } else {
1565                 struct_span_err!(
1566                     self.tcx().sess,
1567                     span,
1568                     E0221,
1569                     "ambiguous associated type `{}` in bounds of `{}`",
1570                     assoc_name,
1571                     ty_param_name()
1572                 )
1573             };
1574             err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
1575
1576             let mut where_bounds = vec![];
1577             for bound in bounds {
1578                 let bound_id = bound.def_id();
1579                 let bound_span = self
1580                     .tcx()
1581                     .associated_items(bound_id)
1582                     .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
1583                     .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
1584
1585                 if let Some(bound_span) = bound_span {
1586                     err.span_label(
1587                         bound_span,
1588                         format!(
1589                             "ambiguous `{}` from `{}`",
1590                             assoc_name,
1591                             bound.print_only_trait_path(),
1592                         ),
1593                     );
1594                     if let Some(constraint) = &is_equality {
1595                         where_bounds.push(format!(
1596                             "        T: {trait}::{assoc} = {constraint}",
1597                             trait=bound.print_only_trait_path(),
1598                             assoc=assoc_name,
1599                             constraint=constraint,
1600                         ));
1601                     } else {
1602                         err.span_suggestion(
1603                             span,
1604                             "use fully qualified syntax to disambiguate",
1605                             format!(
1606                                 "<{} as {}>::{}",
1607                                 ty_param_name(),
1608                                 bound.print_only_trait_path(),
1609                                 assoc_name,
1610                             ),
1611                             Applicability::MaybeIncorrect,
1612                         );
1613                     }
1614                 } else {
1615                     err.note(&format!(
1616                         "associated type `{}` could derive from `{}`",
1617                         ty_param_name(),
1618                         bound.print_only_trait_path(),
1619                     ));
1620                 }
1621             }
1622             if !where_bounds.is_empty() {
1623                 err.help(&format!(
1624                     "consider introducing a new type parameter `T` and adding `where` constraints:\
1625                      \n    where\n        T: {},\n{}",
1626                     ty_param_name(),
1627                     where_bounds.join(",\n"),
1628                 ));
1629             }
1630             err.emit();
1631             if !where_bounds.is_empty() {
1632                 return Err(ErrorReported);
1633             }
1634         }
1635         Ok(bound)
1636     }
1637
1638     // Create a type from a path to an associated type.
1639     // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
1640     // and item_segment is the path segment for `D`. We return a type and a def for
1641     // the whole path.
1642     // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
1643     // parameter or `Self`.
1644     // NOTE: When this function starts resolving `Trait::AssocTy` successfully
1645     // it should also start reportint the `BARE_TRAIT_OBJECTS` lint.
1646     pub fn associated_path_to_ty(
1647         &self,
1648         hir_ref_id: hir::HirId,
1649         span: Span,
1650         qself_ty: Ty<'tcx>,
1651         qself_res: Res,
1652         assoc_segment: &hir::PathSegment<'_>,
1653         permit_variants: bool,
1654     ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
1655         let tcx = self.tcx();
1656         let assoc_ident = assoc_segment.ident;
1657
1658         debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
1659
1660         // Check if we have an enum variant.
1661         let mut variant_resolution = None;
1662         if let ty::Adt(adt_def, _) = qself_ty.kind() {
1663             if adt_def.is_enum() {
1664                 let variant_def = adt_def
1665                     .variants
1666                     .iter()
1667                     .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did));
1668                 if let Some(variant_def) = variant_def {
1669                     if permit_variants {
1670                         tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
1671                         self.prohibit_generics(slice::from_ref(assoc_segment));
1672                         return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
1673                     } else {
1674                         variant_resolution = Some(variant_def.def_id);
1675                     }
1676                 }
1677             }
1678         }
1679
1680         // Find the type of the associated item, and the trait where the associated
1681         // item is declared.
1682         let bound = match (&qself_ty.kind(), qself_res) {
1683             (_, Res::SelfTy(Some(_), Some((impl_def_id, _)))) => {
1684                 // `Self` in an impl of a trait -- we have a concrete self type and a
1685                 // trait reference.
1686                 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
1687                     Some(trait_ref) => trait_ref,
1688                     None => {
1689                         // A cycle error occurred, most likely.
1690                         return Err(ErrorReported);
1691                     }
1692                 };
1693
1694                 self.one_bound_for_assoc_type(
1695                     || traits::supertraits(tcx, ty::Binder::bind(trait_ref, tcx)),
1696                     || "Self".to_string(),
1697                     assoc_ident,
1698                     span,
1699                     || None,
1700                 )?
1701             }
1702             (
1703                 &ty::Param(_),
1704                 Res::SelfTy(Some(param_did), None) | Res::Def(DefKind::TyParam, param_did),
1705             ) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
1706             _ => {
1707                 if variant_resolution.is_some() {
1708                     // Variant in type position
1709                     let msg = format!("expected type, found variant `{}`", assoc_ident);
1710                     tcx.sess.span_err(span, &msg);
1711                 } else if qself_ty.is_enum() {
1712                     let mut err = struct_span_err!(
1713                         tcx.sess,
1714                         assoc_ident.span,
1715                         E0599,
1716                         "no variant named `{}` found for enum `{}`",
1717                         assoc_ident,
1718                         qself_ty,
1719                     );
1720
1721                     let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
1722                     if let Some(suggested_name) = find_best_match_for_name(
1723                         &adt_def
1724                             .variants
1725                             .iter()
1726                             .map(|variant| variant.ident.name)
1727                             .collect::<Vec<Symbol>>(),
1728                         assoc_ident.name,
1729                         None,
1730                     ) {
1731                         err.span_suggestion(
1732                             assoc_ident.span,
1733                             "there is a variant with a similar name",
1734                             suggested_name.to_string(),
1735                             Applicability::MaybeIncorrect,
1736                         );
1737                     } else {
1738                         err.span_label(
1739                             assoc_ident.span,
1740                             format!("variant not found in `{}`", qself_ty),
1741                         );
1742                     }
1743
1744                     if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
1745                         let sp = tcx.sess.source_map().guess_head_span(sp);
1746                         err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
1747                     }
1748
1749                     err.emit();
1750                 } else if !qself_ty.references_error() {
1751                     // Don't print `TyErr` to the user.
1752                     self.report_ambiguous_associated_type(
1753                         span,
1754                         &qself_ty.to_string(),
1755                         "Trait",
1756                         assoc_ident.name,
1757                     );
1758                 }
1759                 return Err(ErrorReported);
1760             }
1761         };
1762
1763         let trait_did = bound.def_id();
1764         let (assoc_ident, def_scope) =
1765             tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
1766
1767         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
1768         // of calling `filter_by_name_and_kind`.
1769         let item = tcx
1770             .associated_items(trait_did)
1771             .in_definition_order()
1772             .find(|i| {
1773                 i.kind.namespace() == Namespace::TypeNS
1774                     && i.ident.normalize_to_macros_2_0() == assoc_ident
1775             })
1776             .expect("missing associated type");
1777
1778         let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
1779         let ty = self.normalize_ty(span, ty);
1780
1781         let kind = DefKind::AssocTy;
1782         if !item.vis.is_accessible_from(def_scope, tcx) {
1783             let kind = kind.descr(item.def_id);
1784             let msg = format!("{} `{}` is private", kind, assoc_ident);
1785             tcx.sess
1786                 .struct_span_err(span, &msg)
1787                 .span_label(span, &format!("private {}", kind))
1788                 .emit();
1789         }
1790         tcx.check_stability(item.def_id, Some(hir_ref_id), span, None);
1791
1792         if let Some(variant_def_id) = variant_resolution {
1793             tcx.struct_span_lint_hir(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
1794                 let mut err = lint.build("ambiguous associated item");
1795                 let mut could_refer_to = |kind: DefKind, def_id, also| {
1796                     let note_msg = format!(
1797                         "`{}` could{} refer to the {} defined here",
1798                         assoc_ident,
1799                         also,
1800                         kind.descr(def_id)
1801                     );
1802                     err.span_note(tcx.def_span(def_id), &note_msg);
1803                 };
1804
1805                 could_refer_to(DefKind::Variant, variant_def_id, "");
1806                 could_refer_to(kind, item.def_id, " also");
1807
1808                 err.span_suggestion(
1809                     span,
1810                     "use fully-qualified syntax",
1811                     format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
1812                     Applicability::MachineApplicable,
1813                 );
1814
1815                 err.emit();
1816             });
1817         }
1818         Ok((ty, kind, item.def_id))
1819     }
1820
1821     fn qpath_to_ty(
1822         &self,
1823         span: Span,
1824         opt_self_ty: Option<Ty<'tcx>>,
1825         item_def_id: DefId,
1826         trait_segment: &hir::PathSegment<'_>,
1827         item_segment: &hir::PathSegment<'_>,
1828     ) -> Ty<'tcx> {
1829         let tcx = self.tcx();
1830
1831         let trait_def_id = tcx.parent(item_def_id).unwrap();
1832
1833         debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
1834
1835         let self_ty = if let Some(ty) = opt_self_ty {
1836             ty
1837         } else {
1838             let path_str = tcx.def_path_str(trait_def_id);
1839
1840             let def_id = self.item_def_id();
1841
1842             debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
1843
1844             let parent_def_id = def_id
1845                 .and_then(|def_id| {
1846                     def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id))
1847                 })
1848                 .map(|hir_id| tcx.hir().get_parent_did(hir_id).to_def_id());
1849
1850             debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
1851
1852             // If the trait in segment is the same as the trait defining the item,
1853             // use the `<Self as ..>` syntax in the error.
1854             let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
1855             let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
1856
1857             let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
1858                 "Self"
1859             } else {
1860                 "Type"
1861             };
1862
1863             self.report_ambiguous_associated_type(
1864                 span,
1865                 type_name,
1866                 &path_str,
1867                 item_segment.ident.name,
1868             );
1869             return tcx.ty_error();
1870         };
1871
1872         debug!("qpath_to_ty: self_type={:?}", self_ty);
1873
1874         let trait_ref = self.ast_path_to_mono_trait_ref(span, trait_def_id, self_ty, trait_segment);
1875
1876         let item_substs = self.create_substs_for_associated_item(
1877             tcx,
1878             span,
1879             item_def_id,
1880             item_segment,
1881             trait_ref.substs,
1882         );
1883
1884         debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1885
1886         self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
1887     }
1888
1889     pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment<'a>>>(
1890         &self,
1891         segments: T,
1892     ) -> bool {
1893         let mut has_err = false;
1894         for segment in segments {
1895             let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
1896             for arg in segment.args().args {
1897                 let (span, kind) = match arg {
1898                     hir::GenericArg::Lifetime(lt) => {
1899                         if err_for_lt {
1900                             continue;
1901                         }
1902                         err_for_lt = true;
1903                         has_err = true;
1904                         (lt.span, "lifetime")
1905                     }
1906                     hir::GenericArg::Type(ty) => {
1907                         if err_for_ty {
1908                             continue;
1909                         }
1910                         err_for_ty = true;
1911                         has_err = true;
1912                         (ty.span, "type")
1913                     }
1914                     hir::GenericArg::Const(ct) => {
1915                         if err_for_ct {
1916                             continue;
1917                         }
1918                         err_for_ct = true;
1919                         has_err = true;
1920                         (ct.span, "const")
1921                     }
1922                 };
1923                 let mut err = struct_span_err!(
1924                     self.tcx().sess,
1925                     span,
1926                     E0109,
1927                     "{} arguments are not allowed for this type",
1928                     kind,
1929                 );
1930                 err.span_label(span, format!("{} argument not allowed", kind));
1931                 err.emit();
1932                 if err_for_lt && err_for_ty && err_for_ct {
1933                     break;
1934                 }
1935             }
1936
1937             // Only emit the first error to avoid overloading the user with error messages.
1938             if let [binding, ..] = segment.args().bindings {
1939                 has_err = true;
1940                 Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
1941             }
1942         }
1943         has_err
1944     }
1945
1946     // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
1947     pub fn def_ids_for_value_path_segments(
1948         &self,
1949         segments: &[hir::PathSegment<'_>],
1950         self_ty: Option<Ty<'tcx>>,
1951         kind: DefKind,
1952         def_id: DefId,
1953     ) -> Vec<PathSeg> {
1954         // We need to extract the type parameters supplied by the user in
1955         // the path `path`. Due to the current setup, this is a bit of a
1956         // tricky-process; the problem is that resolve only tells us the
1957         // end-point of the path resolution, and not the intermediate steps.
1958         // Luckily, we can (at least for now) deduce the intermediate steps
1959         // just from the end-point.
1960         //
1961         // There are basically five cases to consider:
1962         //
1963         // 1. Reference to a constructor of a struct:
1964         //
1965         //        struct Foo<T>(...)
1966         //
1967         //    In this case, the parameters are declared in the type space.
1968         //
1969         // 2. Reference to a constructor of an enum variant:
1970         //
1971         //        enum E<T> { Foo(...) }
1972         //
1973         //    In this case, the parameters are defined in the type space,
1974         //    but may be specified either on the type or the variant.
1975         //
1976         // 3. Reference to a fn item or a free constant:
1977         //
1978         //        fn foo<T>() { }
1979         //
1980         //    In this case, the path will again always have the form
1981         //    `a::b::foo::<T>` where only the final segment should have
1982         //    type parameters. However, in this case, those parameters are
1983         //    declared on a value, and hence are in the `FnSpace`.
1984         //
1985         // 4. Reference to a method or an associated constant:
1986         //
1987         //        impl<A> SomeStruct<A> {
1988         //            fn foo<B>(...)
1989         //        }
1990         //
1991         //    Here we can have a path like
1992         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
1993         //    may appear in two places. The penultimate segment,
1994         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
1995         //    final segment, `foo::<B>` contains parameters in fn space.
1996         //
1997         // The first step then is to categorize the segments appropriately.
1998
1999         let tcx = self.tcx();
2000
2001         assert!(!segments.is_empty());
2002         let last = segments.len() - 1;
2003
2004         let mut path_segs = vec![];
2005
2006         match kind {
2007             // Case 1. Reference to a struct constructor.
2008             DefKind::Ctor(CtorOf::Struct, ..) => {
2009                 // Everything but the final segment should have no
2010                 // parameters at all.
2011                 let generics = tcx.generics_of(def_id);
2012                 // Variant and struct constructors use the
2013                 // generics of their parent type definition.
2014                 let generics_def_id = generics.parent.unwrap_or(def_id);
2015                 path_segs.push(PathSeg(generics_def_id, last));
2016             }
2017
2018             // Case 2. Reference to a variant constructor.
2019             DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
2020                 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
2021                 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
2022                     debug_assert!(adt_def.is_enum());
2023                     (adt_def.did, last)
2024                 } else if last >= 1 && segments[last - 1].args.is_some() {
2025                     // Everything but the penultimate segment should have no
2026                     // parameters at all.
2027                     let mut def_id = def_id;
2028
2029                     // `DefKind::Ctor` -> `DefKind::Variant`
2030                     if let DefKind::Ctor(..) = kind {
2031                         def_id = tcx.parent(def_id).unwrap()
2032                     }
2033
2034                     // `DefKind::Variant` -> `DefKind::Enum`
2035                     let enum_def_id = tcx.parent(def_id).unwrap();
2036                     (enum_def_id, last - 1)
2037                 } else {
2038                     // FIXME: lint here recommending `Enum::<...>::Variant` form
2039                     // instead of `Enum::Variant::<...>` form.
2040
2041                     // Everything but the final segment should have no
2042                     // parameters at all.
2043                     let generics = tcx.generics_of(def_id);
2044                     // Variant and struct constructors use the
2045                     // generics of their parent type definition.
2046                     (generics.parent.unwrap_or(def_id), last)
2047                 };
2048                 path_segs.push(PathSeg(generics_def_id, index));
2049             }
2050
2051             // Case 3. Reference to a top-level value.
2052             DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static => {
2053                 path_segs.push(PathSeg(def_id, last));
2054             }
2055
2056             // Case 4. Reference to a method or associated const.
2057             DefKind::AssocFn | DefKind::AssocConst => {
2058                 if segments.len() >= 2 {
2059                     let generics = tcx.generics_of(def_id);
2060                     path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
2061                 }
2062                 path_segs.push(PathSeg(def_id, last));
2063             }
2064
2065             kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
2066         }
2067
2068         debug!("path_segs = {:?}", path_segs);
2069
2070         path_segs
2071     }
2072
2073     // Check a type `Path` and convert it to a `Ty`.
2074     pub fn res_to_ty(
2075         &self,
2076         opt_self_ty: Option<Ty<'tcx>>,
2077         path: &hir::Path<'_>,
2078         permit_variants: bool,
2079     ) -> Ty<'tcx> {
2080         let tcx = self.tcx();
2081
2082         debug!(
2083             "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
2084             path.res, opt_self_ty, path.segments
2085         );
2086
2087         let span = path.span;
2088         match path.res {
2089             Res::Def(DefKind::OpaqueTy, did) => {
2090                 // Check for desugared `impl Trait`.
2091                 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
2092                 let item_segment = path.segments.split_last().unwrap();
2093                 self.prohibit_generics(item_segment.1);
2094                 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
2095                 self.normalize_ty(span, tcx.mk_opaque(did, substs))
2096             }
2097             Res::Def(
2098                 DefKind::Enum
2099                 | DefKind::TyAlias
2100                 | DefKind::Struct
2101                 | DefKind::Union
2102                 | DefKind::ForeignTy,
2103                 did,
2104             ) => {
2105                 assert_eq!(opt_self_ty, None);
2106                 self.prohibit_generics(path.segments.split_last().unwrap().1);
2107                 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
2108             }
2109             Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
2110                 // Convert "variant type" as if it were a real type.
2111                 // The resulting `Ty` is type of the variant's enum for now.
2112                 assert_eq!(opt_self_ty, None);
2113
2114                 let path_segs =
2115                     self.def_ids_for_value_path_segments(&path.segments, None, kind, def_id);
2116                 let generic_segs: FxHashSet<_> =
2117                     path_segs.iter().map(|PathSeg(_, index)| index).collect();
2118                 self.prohibit_generics(path.segments.iter().enumerate().filter_map(
2119                     |(index, seg)| {
2120                         if !generic_segs.contains(&index) { Some(seg) } else { None }
2121                     },
2122                 ));
2123
2124                 let PathSeg(def_id, index) = path_segs.last().unwrap();
2125                 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
2126             }
2127             Res::Def(DefKind::TyParam, def_id) => {
2128                 assert_eq!(opt_self_ty, None);
2129                 self.prohibit_generics(path.segments);
2130
2131                 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2132                 let item_id = tcx.hir().get_parent_node(hir_id);
2133                 let item_def_id = tcx.hir().local_def_id(item_id);
2134                 let generics = tcx.generics_of(item_def_id);
2135                 let index = generics.param_def_id_to_index[&def_id];
2136                 tcx.mk_ty_param(index, tcx.hir().name(hir_id))
2137             }
2138             Res::SelfTy(Some(_), None) => {
2139                 // `Self` in trait or type alias.
2140                 assert_eq!(opt_self_ty, None);
2141                 self.prohibit_generics(path.segments);
2142                 tcx.types.self_param
2143             }
2144             Res::SelfTy(_, Some((def_id, forbid_generic))) => {
2145                 // `Self` in impl (we know the concrete type).
2146                 assert_eq!(opt_self_ty, None);
2147                 self.prohibit_generics(path.segments);
2148                 // Try to evaluate any array length constants.
2149                 let normalized_ty = self.normalize_ty(span, tcx.at(span).type_of(def_id));
2150                 if forbid_generic && normalized_ty.needs_subst() {
2151                     let mut err = tcx.sess.struct_span_err(
2152                         path.span,
2153                         "generic `Self` types are currently not permitted in anonymous constants",
2154                     );
2155                     if let Some(hir::Node::Item(&hir::Item {
2156                         kind: hir::ItemKind::Impl(ref impl_),
2157                         ..
2158                     })) = tcx.hir().get_if_local(def_id)
2159                     {
2160                         err.span_note(impl_.self_ty.span, "not a concrete type");
2161                     }
2162                     err.emit();
2163                     tcx.ty_error()
2164                 } else {
2165                     normalized_ty
2166                 }
2167             }
2168             Res::Def(DefKind::AssocTy, def_id) => {
2169                 debug_assert!(path.segments.len() >= 2);
2170                 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
2171                 self.qpath_to_ty(
2172                     span,
2173                     opt_self_ty,
2174                     def_id,
2175                     &path.segments[path.segments.len() - 2],
2176                     path.segments.last().unwrap(),
2177                 )
2178             }
2179             Res::PrimTy(prim_ty) => {
2180                 assert_eq!(opt_self_ty, None);
2181                 self.prohibit_generics(path.segments);
2182                 match prim_ty {
2183                     hir::PrimTy::Bool => tcx.types.bool,
2184                     hir::PrimTy::Char => tcx.types.char,
2185                     hir::PrimTy::Int(it) => tcx.mk_mach_int(ty::int_ty(it)),
2186                     hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(ty::uint_ty(uit)),
2187                     hir::PrimTy::Float(ft) => tcx.mk_mach_float(ty::float_ty(ft)),
2188                     hir::PrimTy::Str => tcx.types.str_,
2189                 }
2190             }
2191             Res::Err => {
2192                 self.set_tainted_by_errors();
2193                 self.tcx().ty_error()
2194             }
2195             _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
2196         }
2197     }
2198
2199     /// Parses the programmer's textual representation of a type into our
2200     /// internal notion of a type.
2201     pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
2202         self.ast_ty_to_ty_inner(ast_ty, false)
2203     }
2204
2205     /// Turns a `hir::Ty` into a `Ty`. For diagnostics' purposes we keep track of whether trait
2206     /// objects are borrowed like `&dyn Trait` to avoid emitting redundant errors.
2207     #[tracing::instrument(level = "debug", skip(self))]
2208     fn ast_ty_to_ty_inner(&self, ast_ty: &hir::Ty<'_>, borrowed: bool) -> Ty<'tcx> {
2209         let tcx = self.tcx();
2210
2211         let result_ty = match ast_ty.kind {
2212             hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(&ty)),
2213             hir::TyKind::Ptr(ref mt) => {
2214                 tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(&mt.ty), mutbl: mt.mutbl })
2215             }
2216             hir::TyKind::Rptr(ref region, ref mt) => {
2217                 let r = self.ast_region_to_region(region, None);
2218                 debug!(?r);
2219                 let t = self.ast_ty_to_ty_inner(&mt.ty, true);
2220                 tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
2221             }
2222             hir::TyKind::Never => tcx.types.never,
2223             hir::TyKind::Tup(ref fields) => {
2224                 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
2225             }
2226             hir::TyKind::BareFn(ref bf) => {
2227                 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
2228
2229                 tcx.mk_fn_ptr(self.ty_of_fn(
2230                     ast_ty.hir_id,
2231                     bf.unsafety,
2232                     bf.abi,
2233                     &bf.decl,
2234                     &hir::Generics::empty(),
2235                     None,
2236                     Some(ast_ty),
2237                 ))
2238             }
2239             hir::TyKind::TraitObject(ref bounds, ref lifetime, _) => {
2240                 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime, borrowed)
2241             }
2242             hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
2243                 debug!(?maybe_qself, ?path);
2244                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
2245                 self.res_to_ty(opt_self_ty, path, false)
2246             }
2247             hir::TyKind::OpaqueDef(item_id, ref lifetimes) => {
2248                 let opaque_ty = tcx.hir().item(item_id);
2249                 let def_id = item_id.def_id.to_def_id();
2250
2251                 match opaque_ty.kind {
2252                     hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
2253                         self.impl_trait_ty_to_ty(def_id, lifetimes, impl_trait_fn.is_some())
2254                     }
2255                     ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
2256                 }
2257             }
2258             hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
2259                 debug!(?qself, ?segment);
2260                 let ty = self.ast_ty_to_ty(qself);
2261
2262                 let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
2263                     path.res
2264                 } else {
2265                     Res::Err
2266                 };
2267                 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
2268                     .map(|(ty, _, _)| ty)
2269                     .unwrap_or_else(|_| tcx.ty_error())
2270             }
2271             hir::TyKind::Path(hir::QPath::LangItem(lang_item, span)) => {
2272                 let def_id = tcx.require_lang_item(lang_item, Some(span));
2273                 let (substs, _) = self.create_substs_for_ast_path(
2274                     span,
2275                     def_id,
2276                     &[],
2277                     &hir::PathSegment::invalid(),
2278                     &GenericArgs::none(),
2279                     true,
2280                     None,
2281                 );
2282                 self.normalize_ty(span, tcx.at(span).type_of(def_id).subst(tcx, substs))
2283             }
2284             hir::TyKind::Array(ref ty, ref length) => {
2285                 let length_def_id = tcx.hir().local_def_id(length.hir_id);
2286                 let length = ty::Const::from_anon_const(tcx, length_def_id);
2287                 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
2288                 self.normalize_ty(ast_ty.span, array_ty)
2289             }
2290             hir::TyKind::Typeof(ref e) => {
2291                 tcx.sess.emit_err(TypeofReservedKeywordUsed { span: ast_ty.span });
2292                 tcx.type_of(tcx.hir().local_def_id(e.hir_id))
2293             }
2294             hir::TyKind::Infer => {
2295                 // Infer also appears as the type of arguments or return
2296                 // values in a ExprKind::Closure, or as
2297                 // the type of local variables. Both of these cases are
2298                 // handled specially and will not descend into this routine.
2299                 self.ty_infer(None, ast_ty.span)
2300             }
2301             hir::TyKind::Err => tcx.ty_error(),
2302         };
2303
2304         debug!(?result_ty);
2305
2306         self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
2307         result_ty
2308     }
2309
2310     fn impl_trait_ty_to_ty(
2311         &self,
2312         def_id: DefId,
2313         lifetimes: &[hir::GenericArg<'_>],
2314         replace_parent_lifetimes: bool,
2315     ) -> Ty<'tcx> {
2316         debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
2317         let tcx = self.tcx();
2318
2319         let generics = tcx.generics_of(def_id);
2320
2321         debug!("impl_trait_ty_to_ty: generics={:?}", generics);
2322         let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
2323             if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
2324                 // Our own parameters are the resolved lifetimes.
2325                 match param.kind {
2326                     GenericParamDefKind::Lifetime => {
2327                         if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
2328                             self.ast_region_to_region(lifetime, None).into()
2329                         } else {
2330                             bug!()
2331                         }
2332                     }
2333                     _ => bug!(),
2334                 }
2335             } else {
2336                 match param.kind {
2337                     // For RPIT (return position impl trait), only lifetimes
2338                     // mentioned in the impl Trait predicate are captured by
2339                     // the opaque type, so the lifetime parameters from the
2340                     // parent item need to be replaced with `'static`.
2341                     //
2342                     // For `impl Trait` in the types of statics, constants,
2343                     // locals and type aliases. These capture all parent
2344                     // lifetimes, so they can use their identity subst.
2345                     GenericParamDefKind::Lifetime if replace_parent_lifetimes => {
2346                         tcx.lifetimes.re_static.into()
2347                     }
2348                     _ => tcx.mk_param_from_def(param),
2349                 }
2350             }
2351         });
2352         debug!("impl_trait_ty_to_ty: substs={:?}", substs);
2353
2354         let ty = tcx.mk_opaque(def_id, substs);
2355         debug!("impl_trait_ty_to_ty: {}", ty);
2356         ty
2357     }
2358
2359     pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
2360         match ty.kind {
2361             hir::TyKind::Infer if expected_ty.is_some() => {
2362                 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
2363                 expected_ty.unwrap()
2364             }
2365             _ => self.ast_ty_to_ty(ty),
2366         }
2367     }
2368
2369     pub fn ty_of_fn(
2370         &self,
2371         hir_id: hir::HirId,
2372         unsafety: hir::Unsafety,
2373         abi: abi::Abi,
2374         decl: &hir::FnDecl<'_>,
2375         generics: &hir::Generics<'_>,
2376         ident_span: Option<Span>,
2377         hir_ty: Option<&hir::Ty<'_>>,
2378     ) -> ty::PolyFnSig<'tcx> {
2379         debug!("ty_of_fn");
2380
2381         let tcx = self.tcx();
2382         let bound_vars = tcx.late_bound_vars(hir_id);
2383         debug!(?bound_vars);
2384
2385         // We proactively collect all the inferred type params to emit a single error per fn def.
2386         let mut visitor = PlaceholderHirTyCollector::default();
2387         for ty in decl.inputs {
2388             visitor.visit_ty(ty);
2389         }
2390         walk_generics(&mut visitor, generics);
2391
2392         let input_tys = decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
2393         let output_ty = match decl.output {
2394             hir::FnRetTy::Return(ref output) => {
2395                 visitor.visit_ty(output);
2396                 self.ast_ty_to_ty(output)
2397             }
2398             hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
2399         };
2400
2401         debug!("ty_of_fn: output_ty={:?}", output_ty);
2402
2403         let fn_ty = tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, unsafety, abi);
2404         let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);
2405
2406         if !self.allow_ty_infer() {
2407             // We always collect the spans for placeholder types when evaluating `fn`s, but we
2408             // only want to emit an error complaining about them if infer types (`_`) are not
2409             // allowed. `allow_ty_infer` gates this behavior. We check for the presence of
2410             // `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.
2411
2412             crate::collect::placeholder_type_error(
2413                 tcx,
2414                 ident_span.map(|sp| sp.shrink_to_hi()),
2415                 generics.params,
2416                 visitor.0,
2417                 true,
2418                 hir_ty,
2419             );
2420         }
2421
2422         // Find any late-bound regions declared in return type that do
2423         // not appear in the arguments. These are not well-formed.
2424         //
2425         // Example:
2426         //     for<'a> fn() -> &'a str <-- 'a is bad
2427         //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
2428         let inputs = bare_fn_ty.inputs();
2429         let late_bound_in_args =
2430             tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
2431         let output = bare_fn_ty.output();
2432         let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
2433
2434         self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
2435             struct_span_err!(
2436                 tcx.sess,
2437                 decl.output.span(),
2438                 E0581,
2439                 "return type references {}, which is not constrained by the fn input types",
2440                 br_name
2441             )
2442         });
2443
2444         bare_fn_ty
2445     }
2446
2447     fn validate_late_bound_regions(
2448         &self,
2449         constrained_regions: FxHashSet<ty::BoundRegionKind>,
2450         referenced_regions: FxHashSet<ty::BoundRegionKind>,
2451         generate_err: impl Fn(&str) -> rustc_errors::DiagnosticBuilder<'tcx>,
2452     ) {
2453         for br in referenced_regions.difference(&constrained_regions) {
2454             let br_name = match *br {
2455                 ty::BrNamed(_, name) => format!("lifetime `{}`", name),
2456                 ty::BrAnon(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
2457             };
2458
2459             let mut err = generate_err(&br_name);
2460
2461             if let ty::BrAnon(_) = *br {
2462                 // The only way for an anonymous lifetime to wind up
2463                 // in the return type but **also** be unconstrained is
2464                 // if it only appears in "associated types" in the
2465                 // input. See #47511 and #62200 for examples. In this case,
2466                 // though we can easily give a hint that ought to be
2467                 // relevant.
2468                 err.note(
2469                     "lifetimes appearing in an associated type are not considered constrained",
2470                 );
2471             }
2472
2473             err.emit();
2474         }
2475     }
2476
2477     /// Given the bounds on an object, determines what single region bound (if any) we can
2478     /// use to summarize this type. The basic idea is that we will use the bound the user
2479     /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2480     /// for region bounds. It may be that we can derive no bound at all, in which case
2481     /// we return `None`.
2482     fn compute_object_lifetime_bound(
2483         &self,
2484         span: Span,
2485         existential_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
2486     ) -> Option<ty::Region<'tcx>> // if None, use the default
2487     {
2488         let tcx = self.tcx();
2489
2490         debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
2491
2492         // No explicit region bound specified. Therefore, examine trait
2493         // bounds and see if we can derive region bounds from those.
2494         let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
2495
2496         // If there are no derived region bounds, then report back that we
2497         // can find no region bound. The caller will use the default.
2498         if derived_region_bounds.is_empty() {
2499             return None;
2500         }
2501
2502         // If any of the derived region bounds are 'static, that is always
2503         // the best choice.
2504         if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
2505             return Some(tcx.lifetimes.re_static);
2506         }
2507
2508         // Determine whether there is exactly one unique region in the set
2509         // of derived region bounds. If so, use that. Otherwise, report an
2510         // error.
2511         let r = derived_region_bounds[0];
2512         if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
2513             tcx.sess.emit_err(AmbiguousLifetimeBound { span });
2514         }
2515         Some(r)
2516     }
2517 }