]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/astconv/mod.rs
Auto merge of #87915 - estebank:fancy-spans, r=oli-obk
[rust.git] / compiler / rustc_typeck / src / astconv / mod.rs
1 //! Conversion from AST representation of types to the `ty.rs` representation.
2 //! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
3 //! instance of `AstConv`.
4
5 mod errors;
6 mod generics;
7
8 use crate::bounds::Bounds;
9 use crate::collect::PlaceholderHirTyCollector;
10 use crate::errors::{
11     AmbiguousLifetimeBound, MultipleRelaxedDefaultBounds, TraitObjectDeclaredWithNoTraits,
12     TypeofReservedKeywordUsed, ValueOfAssociatedStructAlreadySpecified,
13 };
14 use crate::middle::resolve_lifetime as rl;
15 use crate::require_c_abi_if_c_variadic;
16 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
17 use rustc_errors::{struct_span_err, Applicability, ErrorReported, FatalError};
18 use rustc_hir as hir;
19 use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
20 use rustc_hir::def_id::{DefId, LocalDefId};
21 use rustc_hir::intravisit::{walk_generics, Visitor as _};
22 use rustc_hir::lang_items::LangItem;
23 use rustc_hir::{GenericArg, GenericArgs};
24 use rustc_middle::ty::subst::{self, GenericArgKind, InternalSubsts, Subst, SubstsRef};
25 use rustc_middle::ty::GenericParamDefKind;
26 use rustc_middle::ty::{self, Const, DefIdTree, Ty, TyCtxt, TypeFoldable};
27 use rustc_session::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
28 use rustc_span::lev_distance::find_best_match_for_name;
29 use rustc_span::symbol::{Ident, Symbol};
30 use rustc_span::{Span, DUMMY_SP};
31 use rustc_target::spec::abi;
32 use rustc_trait_selection::traits;
33 use rustc_trait_selection::traits::astconv_object_safety_violations;
34 use rustc_trait_selection::traits::error_reporting::report_object_safety_error;
35 use rustc_trait_selection::traits::wf::object_region_bounds;
36
37 use smallvec::SmallVec;
38 use std::array;
39 use std::collections::BTreeSet;
40 use std::slice;
41
42 #[derive(Debug)]
43 pub struct PathSeg(pub DefId, pub usize);
44
45 pub trait AstConv<'tcx> {
46     fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
47
48     fn item_def_id(&self) -> Option<DefId>;
49
50     /// Returns predicates in scope of the form `X: Foo<T>`, where `X`
51     /// is a type parameter `X` with the given id `def_id` and T
52     /// matches `assoc_name`. This is a subset of the full set of
53     /// predicates.
54     ///
55     /// This is used for one specific purpose: resolving "short-hand"
56     /// associated type references like `T::Item`. In principle, we
57     /// would do that by first getting the full set of predicates in
58     /// scope and then filtering down to find those that apply to `T`,
59     /// but this can lead to cycle errors. The problem is that we have
60     /// to do this resolution *in order to create the predicates in
61     /// the first place*. Hence, we have this "special pass".
62     fn get_type_parameter_bounds(
63         &self,
64         span: Span,
65         def_id: DefId,
66         assoc_name: Ident,
67     ) -> ty::GenericPredicates<'tcx>;
68
69     /// Returns the lifetime to use when a lifetime is omitted (and not elided).
70     fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
71     -> Option<ty::Region<'tcx>>;
72
73     /// Returns the type to use when a type is omitted.
74     fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
75
76     /// Returns `true` if `_` is allowed in type signatures in the current context.
77     fn allow_ty_infer(&self) -> bool;
78
79     /// Returns the const to use when a const is omitted.
80     fn ct_infer(
81         &self,
82         ty: Ty<'tcx>,
83         param: Option<&ty::GenericParamDef>,
84         span: Span,
85     ) -> &'tcx Const<'tcx>;
86
87     /// Projecting an associated type from a (potentially)
88     /// higher-ranked trait reference is more complicated, because of
89     /// the possibility of late-bound regions appearing in the
90     /// associated type binding. This is not legal in function
91     /// signatures for that reason. In a function body, we can always
92     /// handle it because we can use inference variables to remove the
93     /// late-bound regions.
94     fn projected_ty_from_poly_trait_ref(
95         &self,
96         span: Span,
97         item_def_id: DefId,
98         item_segment: &hir::PathSegment<'_>,
99         poly_trait_ref: ty::PolyTraitRef<'tcx>,
100     ) -> Ty<'tcx>;
101
102     /// Normalize an associated type coming from the user.
103     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
104
105     /// Invoked when we encounter an error from some prior pass
106     /// (e.g., resolve) that is translated into a ty-error. This is
107     /// used to help suppress derived errors typeck might otherwise
108     /// report.
109     fn set_tainted_by_errors(&self);
110
111     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
112 }
113
114 #[derive(Debug)]
115 struct ConvertedBinding<'a, 'tcx> {
116     hir_id: hir::HirId,
117     item_name: Ident,
118     kind: ConvertedBindingKind<'a, 'tcx>,
119     gen_args: &'a GenericArgs<'a>,
120     span: Span,
121 }
122
123 #[derive(Debug)]
124 enum ConvertedBindingKind<'a, 'tcx> {
125     Equality(Ty<'tcx>),
126     Constraint(&'a [hir::GenericBound<'a>]),
127 }
128
129 /// New-typed boolean indicating whether explicit late-bound lifetimes
130 /// are present in a set of generic arguments.
131 ///
132 /// For example if we have some method `fn f<'a>(&'a self)` implemented
133 /// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
134 /// is late-bound so should not be provided explicitly. Thus, if `f` is
135 /// instantiated with some generic arguments providing `'a` explicitly,
136 /// we taint those arguments with `ExplicitLateBound::Yes` so that we
137 /// can provide an appropriate diagnostic later.
138 #[derive(Copy, Clone, PartialEq)]
139 pub enum ExplicitLateBound {
140     Yes,
141     No,
142 }
143
144 #[derive(Copy, Clone, PartialEq)]
145 pub enum IsMethodCall {
146     Yes,
147     No,
148 }
149
150 /// Denotes the "position" of a generic argument, indicating if it is a generic type,
151 /// generic function or generic method call.
152 #[derive(Copy, Clone, PartialEq)]
153 pub(crate) enum GenericArgPosition {
154     Type,
155     Value, // e.g., functions
156     MethodCall,
157 }
158
159 /// A marker denoting that the generic arguments that were
160 /// provided did not match the respective generic parameters.
161 #[derive(Clone, Default)]
162 pub struct GenericArgCountMismatch {
163     /// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
164     pub reported: Option<ErrorReported>,
165     /// A list of spans of arguments provided that were not valid.
166     pub invalid_args: Vec<Span>,
167 }
168
169 /// Decorates the result of a generic argument count mismatch
170 /// check with whether explicit late bounds were provided.
171 #[derive(Clone)]
172 pub struct GenericArgCountResult {
173     pub explicit_late_bound: ExplicitLateBound,
174     pub correct: Result<(), GenericArgCountMismatch>,
175 }
176
177 pub trait CreateSubstsForGenericArgsCtxt<'a, 'tcx> {
178     fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'a>>, bool);
179
180     fn provided_kind(
181         &mut self,
182         param: &ty::GenericParamDef,
183         arg: &GenericArg<'_>,
184     ) -> subst::GenericArg<'tcx>;
185
186     fn inferred_kind(
187         &mut self,
188         substs: Option<&[subst::GenericArg<'tcx>]>,
189         param: &ty::GenericParamDef,
190         infer_args: bool,
191     ) -> subst::GenericArg<'tcx>;
192 }
193
194 impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
195     #[tracing::instrument(level = "debug", skip(self))]
196     pub fn ast_region_to_region(
197         &self,
198         lifetime: &hir::Lifetime,
199         def: Option<&ty::GenericParamDef>,
200     ) -> ty::Region<'tcx> {
201         let tcx = self.tcx();
202         let lifetime_name = |def_id| tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id));
203
204         let r = match tcx.named_region(lifetime.hir_id) {
205             Some(rl::Region::Static) => tcx.lifetimes.re_static,
206
207             Some(rl::Region::LateBound(debruijn, index, def_id, _)) => {
208                 let name = lifetime_name(def_id.expect_local());
209                 let br = ty::BoundRegion {
210                     var: ty::BoundVar::from_u32(index),
211                     kind: ty::BrNamed(def_id, name),
212                 };
213                 tcx.mk_region(ty::ReLateBound(debruijn, br))
214             }
215
216             Some(rl::Region::LateBoundAnon(debruijn, index, anon_index)) => {
217                 let br = ty::BoundRegion {
218                     var: ty::BoundVar::from_u32(index),
219                     kind: ty::BrAnon(anon_index),
220                 };
221                 tcx.mk_region(ty::ReLateBound(debruijn, br))
222             }
223
224             Some(rl::Region::EarlyBound(index, id, _)) => {
225                 let name = lifetime_name(id.expect_local());
226                 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: id, index, name }))
227             }
228
229             Some(rl::Region::Free(scope, id)) => {
230                 let name = lifetime_name(id.expect_local());
231                 tcx.mk_region(ty::ReFree(ty::FreeRegion {
232                     scope,
233                     bound_region: ty::BrNamed(id, name),
234                 }))
235
236                 // (*) -- not late-bound, won't change
237             }
238
239             None => {
240                 self.re_infer(def, lifetime.span).unwrap_or_else(|| {
241                     debug!(?lifetime, "unelided lifetime in signature");
242
243                     // This indicates an illegal lifetime
244                     // elision. `resolve_lifetime` should have
245                     // reported an error in this case -- but if
246                     // not, let's error out.
247                     tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
248
249                     // Supply some dummy value. We don't have an
250                     // `re_error`, annoyingly, so use `'static`.
251                     tcx.lifetimes.re_static
252                 })
253             }
254         };
255
256         debug!("ast_region_to_region(lifetime={:?}) yields {:?}", lifetime, r);
257
258         r
259     }
260
261     /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
262     /// returns an appropriate set of substitutions for this particular reference to `I`.
263     pub fn ast_path_substs_for_ty(
264         &self,
265         span: Span,
266         def_id: DefId,
267         item_segment: &hir::PathSegment<'_>,
268     ) -> SubstsRef<'tcx> {
269         let (substs, _) = self.create_substs_for_ast_path(
270             span,
271             def_id,
272             &[],
273             item_segment,
274             item_segment.args(),
275             item_segment.infer_args,
276             None,
277         );
278         let assoc_bindings = self.create_assoc_bindings_for_generic_args(item_segment.args());
279
280         if let Some(b) = assoc_bindings.first() {
281             Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
282         }
283
284         substs
285     }
286
287     /// Given the type/lifetime/const arguments provided to some path (along with
288     /// an implicit `Self`, if this is a trait reference), returns the complete
289     /// set of substitutions. This may involve applying defaulted type parameters.
290     /// Also returns back constraints on associated types.
291     ///
292     /// Example:
293     ///
294     /// ```
295     /// T: std::ops::Index<usize, Output = u32>
296     /// ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
297     /// ```
298     ///
299     /// 1. The `self_ty` here would refer to the type `T`.
300     /// 2. The path in question is the path to the trait `std::ops::Index`,
301     ///    which will have been resolved to a `def_id`
302     /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
303     ///    parameters are returned in the `SubstsRef`, the associated type bindings like
304     ///    `Output = u32` are returned in the `Vec<ConvertedBinding...>` result.
305     ///
306     /// Note that the type listing given here is *exactly* what the user provided.
307     ///
308     /// For (generic) associated types
309     ///
310     /// ```
311     /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
312     /// ```
313     ///
314     /// We have the parent substs are the substs for the parent trait:
315     /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
316     /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
317     /// lists: `[Vec<u8>, u8, 'a]`.
318     #[tracing::instrument(level = "debug", skip(self, span))]
319     fn create_substs_for_ast_path<'a>(
320         &self,
321         span: Span,
322         def_id: DefId,
323         parent_substs: &[subst::GenericArg<'tcx>],
324         seg: &hir::PathSegment<'_>,
325         generic_args: &'a hir::GenericArgs<'_>,
326         infer_args: bool,
327         self_ty: Option<Ty<'tcx>>,
328     ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
329         // If the type is parameterized by this region, then replace this
330         // region with the current anon region binding (in other words,
331         // whatever & would get replaced with).
332
333         let tcx = self.tcx();
334         let generics = tcx.generics_of(def_id);
335         debug!("generics: {:?}", generics);
336
337         if generics.has_self {
338             if generics.parent.is_some() {
339                 // The parent is a trait so it should have at least one subst
340                 // for the `Self` type.
341                 assert!(!parent_substs.is_empty())
342             } else {
343                 // This item (presumably a trait) needs a self-type.
344                 assert!(self_ty.is_some());
345             }
346         } else {
347             assert!(self_ty.is_none() && parent_substs.is_empty());
348         }
349
350         let arg_count = Self::check_generic_arg_count(
351             tcx,
352             span,
353             def_id,
354             seg,
355             &generics,
356             &generic_args,
357             GenericArgPosition::Type,
358             self_ty.is_some(),
359             infer_args,
360         );
361
362         // Skip processing if type has no generic parameters.
363         // Traits always have `Self` as a generic parameter, which means they will not return early
364         // here and so associated type bindings will be handled regardless of whether there are any
365         // non-`Self` generic parameters.
366         if generics.params.len() == 0 {
367             return (tcx.intern_substs(&[]), arg_count);
368         }
369
370         let is_object = self_ty.map_or(false, |ty| ty == self.tcx().types.trait_object_dummy_self);
371
372         struct SubstsForAstPathCtxt<'a, 'tcx> {
373             astconv: &'a (dyn AstConv<'tcx> + 'a),
374             def_id: DefId,
375             generic_args: &'a GenericArgs<'a>,
376             span: Span,
377             missing_type_params: Vec<String>,
378             inferred_params: Vec<Span>,
379             infer_args: bool,
380             is_object: bool,
381         }
382
383         impl<'tcx, 'a> SubstsForAstPathCtxt<'tcx, 'a> {
384             fn default_needs_object_self(&mut self, param: &ty::GenericParamDef) -> bool {
385                 let tcx = self.astconv.tcx();
386                 if let GenericParamDefKind::Type { has_default, .. } = param.kind {
387                     if self.is_object && has_default {
388                         let default_ty = tcx.at(self.span).type_of(param.def_id);
389                         let self_param = tcx.types.self_param;
390                         if default_ty.walk(tcx).any(|arg| arg == self_param.into()) {
391                             // There is no suitable inference default for a type parameter
392                             // that references self, in an object type.
393                             return true;
394                         }
395                     }
396                 }
397
398                 false
399             }
400         }
401
402         impl<'a, 'tcx> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for SubstsForAstPathCtxt<'a, 'tcx> {
403             fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'a>>, bool) {
404                 if did == self.def_id {
405                     (Some(self.generic_args), self.infer_args)
406                 } else {
407                     // The last component of this tuple is unimportant.
408                     (None, false)
409                 }
410             }
411
412             fn provided_kind(
413                 &mut self,
414                 param: &ty::GenericParamDef,
415                 arg: &GenericArg<'_>,
416             ) -> subst::GenericArg<'tcx> {
417                 let tcx = self.astconv.tcx();
418                 match (&param.kind, arg) {
419                     (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
420                         self.astconv.ast_region_to_region(&lt, Some(param)).into()
421                     }
422                     (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
423                         if has_default {
424                             tcx.check_optional_stability(
425                                 param.def_id,
426                                 Some(arg.id()),
427                                 arg.span(),
428                                 None,
429                                 |_, _| {
430                                     // Default generic parameters may not be marked
431                                     // with stability attributes, i.e. when the
432                                     // default parameter was defined at the same time
433                                     // as the rest of the type. As such, we ignore missing
434                                     // stability attributes.
435                                 },
436                             )
437                         }
438                         if let (hir::TyKind::Infer, false) =
439                             (&ty.kind, self.astconv.allow_ty_infer())
440                         {
441                             self.inferred_params.push(ty.span);
442                             tcx.ty_error().into()
443                         } else {
444                             self.astconv.ast_ty_to_ty(&ty).into()
445                         }
446                     }
447                     (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
448                         ty::Const::from_opt_const_arg_anon_const(
449                             tcx,
450                             ty::WithOptConstParam {
451                                 did: tcx.hir().local_def_id(ct.value.hir_id),
452                                 const_param_did: Some(param.def_id),
453                             },
454                         )
455                         .into()
456                     }
457                     (&GenericParamDefKind::Const { has_default }, hir::GenericArg::Infer(inf)) => {
458                         if has_default {
459                             tcx.const_param_default(param.def_id).into()
460                         } else if self.astconv.allow_ty_infer() {
461                             // FIXME(const_generics): Actually infer parameter here?
462                             todo!()
463                         } else {
464                             self.inferred_params.push(inf.span);
465                             tcx.ty_error().into()
466                         }
467                     }
468                     (
469                         &GenericParamDefKind::Type { has_default, .. },
470                         hir::GenericArg::Infer(inf),
471                     ) => {
472                         if has_default {
473                             tcx.check_optional_stability(
474                                 param.def_id,
475                                 Some(arg.id()),
476                                 arg.span(),
477                                 None,
478                                 |_, _| {
479                                     // Default generic parameters may not be marked
480                                     // with stability attributes, i.e. when the
481                                     // default parameter was defined at the same time
482                                     // as the rest of the type. As such, we ignore missing
483                                     // stability attributes.
484                                 },
485                             );
486                         }
487                         if self.astconv.allow_ty_infer() {
488                             self.astconv.ast_ty_to_ty(&inf.to_ty()).into()
489                         } else {
490                             self.inferred_params.push(inf.span);
491                             tcx.ty_error().into()
492                         }
493                     }
494                     _ => unreachable!(),
495                 }
496             }
497
498             fn inferred_kind(
499                 &mut self,
500                 substs: Option<&[subst::GenericArg<'tcx>]>,
501                 param: &ty::GenericParamDef,
502                 infer_args: bool,
503             ) -> subst::GenericArg<'tcx> {
504                 let tcx = self.astconv.tcx();
505                 match param.kind {
506                     GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
507                     GenericParamDefKind::Type { has_default, .. } => {
508                         if !infer_args && has_default {
509                             // No type parameter provided, but a default exists.
510
511                             // If we are converting an object type, then the
512                             // `Self` parameter is unknown. However, some of the
513                             // other type parameters may reference `Self` in their
514                             // defaults. This will lead to an ICE if we are not
515                             // careful!
516                             if self.default_needs_object_self(param) {
517                                 self.missing_type_params.push(param.name.to_string());
518                                 tcx.ty_error().into()
519                             } else {
520                                 // This is a default type parameter.
521                                 let substs = substs.unwrap();
522                                 if substs.iter().any(|arg| match arg.unpack() {
523                                     GenericArgKind::Type(ty) => ty.references_error(),
524                                     _ => false,
525                                 }) {
526                                     // Avoid ICE #86756 when type error recovery goes awry.
527                                     return tcx.ty_error().into();
528                                 }
529                                 self.astconv
530                                     .normalize_ty(
531                                         self.span,
532                                         tcx.at(self.span).type_of(param.def_id).subst_spanned(
533                                             tcx,
534                                             substs,
535                                             Some(self.span),
536                                         ),
537                                     )
538                                     .into()
539                             }
540                         } else if infer_args {
541                             // No type parameters were provided, we can infer all.
542                             let param = if !self.default_needs_object_self(param) {
543                                 Some(param)
544                             } else {
545                                 None
546                             };
547                             self.astconv.ty_infer(param, self.span).into()
548                         } else {
549                             // We've already errored above about the mismatch.
550                             tcx.ty_error().into()
551                         }
552                     }
553                     GenericParamDefKind::Const { has_default } => {
554                         let ty = tcx.at(self.span).type_of(param.def_id);
555                         if !infer_args && has_default {
556                             tcx.const_param_default(param.def_id)
557                                 .subst_spanned(tcx, substs.unwrap(), Some(self.span))
558                                 .into()
559                         } else {
560                             if infer_args {
561                                 self.astconv.ct_infer(ty, Some(param), self.span).into()
562                             } else {
563                                 // We've already errored above about the mismatch.
564                                 tcx.const_error(ty).into()
565                             }
566                         }
567                     }
568                 }
569             }
570         }
571
572         let mut substs_ctx = SubstsForAstPathCtxt {
573             astconv: self,
574             def_id,
575             span,
576             generic_args,
577             missing_type_params: vec![],
578             inferred_params: vec![],
579             infer_args,
580             is_object,
581         };
582         let substs = Self::create_substs_for_generic_args(
583             tcx,
584             def_id,
585             parent_substs,
586             self_ty.is_some(),
587             self_ty,
588             &arg_count,
589             &mut substs_ctx,
590         );
591
592         self.complain_about_missing_type_params(
593             substs_ctx.missing_type_params,
594             def_id,
595             span,
596             generic_args.args.is_empty(),
597         );
598
599         debug!(
600             "create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
601             generics, self_ty, substs
602         );
603
604         (substs, arg_count)
605     }
606
607     fn create_assoc_bindings_for_generic_args<'a>(
608         &self,
609         generic_args: &'a hir::GenericArgs<'_>,
610     ) -> Vec<ConvertedBinding<'a, 'tcx>> {
611         // Convert associated-type bindings or constraints into a separate vector.
612         // Example: Given this:
613         //
614         //     T: Iterator<Item = u32>
615         //
616         // The `T` is passed in as a self-type; the `Item = u32` is
617         // not a "type parameter" of the `Iterator` trait, but rather
618         // a restriction on `<T as Iterator>::Item`, so it is passed
619         // back separately.
620         let assoc_bindings = generic_args
621             .bindings
622             .iter()
623             .map(|binding| {
624                 let kind = match binding.kind {
625                     hir::TypeBindingKind::Equality { ref ty } => {
626                         ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty))
627                     }
628                     hir::TypeBindingKind::Constraint { ref bounds } => {
629                         ConvertedBindingKind::Constraint(bounds)
630                     }
631                 };
632                 ConvertedBinding {
633                     hir_id: binding.hir_id,
634                     item_name: binding.ident,
635                     kind,
636                     gen_args: binding.gen_args,
637                     span: binding.span,
638                 }
639             })
640             .collect();
641
642         assoc_bindings
643     }
644
645     crate fn create_substs_for_associated_item(
646         &self,
647         tcx: TyCtxt<'tcx>,
648         span: Span,
649         item_def_id: DefId,
650         item_segment: &hir::PathSegment<'_>,
651         parent_substs: SubstsRef<'tcx>,
652     ) -> SubstsRef<'tcx> {
653         debug!(
654             "create_substs_for_associated_item(span: {:?}, item_def_id: {:?}, item_segment: {:?}",
655             span, item_def_id, item_segment
656         );
657         if tcx.generics_of(item_def_id).params.is_empty() {
658             self.prohibit_generics(slice::from_ref(item_segment));
659
660             parent_substs
661         } else {
662             self.create_substs_for_ast_path(
663                 span,
664                 item_def_id,
665                 parent_substs,
666                 item_segment,
667                 item_segment.args(),
668                 item_segment.infer_args,
669                 None,
670             )
671             .0
672         }
673     }
674
675     /// Instantiates the path for the given trait reference, assuming that it's
676     /// bound to a valid trait type. Returns the `DefId` of the defining trait.
677     /// The type _cannot_ be a type other than a trait type.
678     ///
679     /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
680     /// are disallowed. Otherwise, they are pushed onto the vector given.
681     pub fn instantiate_mono_trait_ref(
682         &self,
683         trait_ref: &hir::TraitRef<'_>,
684         self_ty: Ty<'tcx>,
685     ) -> ty::TraitRef<'tcx> {
686         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
687
688         self.ast_path_to_mono_trait_ref(
689             trait_ref.path.span,
690             trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
691             self_ty,
692             trait_ref.path.segments.last().unwrap(),
693         )
694     }
695
696     fn instantiate_poly_trait_ref_inner(
697         &self,
698         hir_id: hir::HirId,
699         span: Span,
700         binding_span: Option<Span>,
701         constness: ty::BoundConstness,
702         bounds: &mut Bounds<'tcx>,
703         speculative: bool,
704         trait_ref_span: Span,
705         trait_def_id: DefId,
706         trait_segment: &hir::PathSegment<'_>,
707         args: &GenericArgs<'_>,
708         infer_args: bool,
709         self_ty: Ty<'tcx>,
710     ) -> GenericArgCountResult {
711         let (substs, arg_count) = self.create_substs_for_ast_path(
712             trait_ref_span,
713             trait_def_id,
714             &[],
715             trait_segment,
716             args,
717             infer_args,
718             Some(self_ty),
719         );
720
721         let tcx = self.tcx();
722         let bound_vars = tcx.late_bound_vars(hir_id);
723         debug!(?bound_vars);
724
725         let assoc_bindings = self.create_assoc_bindings_for_generic_args(args);
726
727         let poly_trait_ref =
728             ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
729
730         debug!(?poly_trait_ref, ?assoc_bindings);
731         bounds.trait_bounds.push((poly_trait_ref, span, constness));
732
733         let mut dup_bindings = FxHashMap::default();
734         for binding in &assoc_bindings {
735             // Specify type to assert that error was already reported in `Err` case.
736             let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
737                 hir_id,
738                 poly_trait_ref,
739                 binding,
740                 bounds,
741                 speculative,
742                 &mut dup_bindings,
743                 binding_span.unwrap_or(binding.span),
744             );
745             // Okay to ignore `Err` because of `ErrorReported` (see above).
746         }
747
748         arg_count
749     }
750
751     /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
752     /// a full trait reference. The resulting trait reference is returned. This may also generate
753     /// auxiliary bounds, which are added to `bounds`.
754     ///
755     /// Example:
756     ///
757     /// ```
758     /// poly_trait_ref = Iterator<Item = u32>
759     /// self_ty = Foo
760     /// ```
761     ///
762     /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
763     ///
764     /// **A note on binders:** against our usual convention, there is an implied bounder around
765     /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
766     /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
767     /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
768     /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
769     /// however.
770     #[tracing::instrument(level = "debug", skip(self, span, constness, bounds, speculative))]
771     pub(crate) fn instantiate_poly_trait_ref(
772         &self,
773         trait_ref: &hir::TraitRef<'_>,
774         span: Span,
775         constness: ty::BoundConstness,
776         self_ty: Ty<'tcx>,
777         bounds: &mut Bounds<'tcx>,
778         speculative: bool,
779     ) -> GenericArgCountResult {
780         let hir_id = trait_ref.hir_ref_id;
781         let binding_span = None;
782         let trait_ref_span = trait_ref.path.span;
783         let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
784         let trait_segment = trait_ref.path.segments.last().unwrap();
785         let args = trait_segment.args();
786         let infer_args = trait_segment.infer_args;
787
788         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
789         self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);
790
791         self.instantiate_poly_trait_ref_inner(
792             hir_id,
793             span,
794             binding_span,
795             constness,
796             bounds,
797             speculative,
798             trait_ref_span,
799             trait_def_id,
800             trait_segment,
801             args,
802             infer_args,
803             self_ty,
804         )
805     }
806
807     pub(crate) fn instantiate_lang_item_trait_ref(
808         &self,
809         lang_item: hir::LangItem,
810         span: Span,
811         hir_id: hir::HirId,
812         args: &GenericArgs<'_>,
813         self_ty: Ty<'tcx>,
814         bounds: &mut Bounds<'tcx>,
815     ) {
816         let binding_span = Some(span);
817         let constness = ty::BoundConstness::NotConst;
818         let speculative = false;
819         let trait_ref_span = span;
820         let trait_def_id = self.tcx().require_lang_item(lang_item, Some(span));
821         let trait_segment = &hir::PathSegment::invalid();
822         let infer_args = false;
823
824         self.instantiate_poly_trait_ref_inner(
825             hir_id,
826             span,
827             binding_span,
828             constness,
829             bounds,
830             speculative,
831             trait_ref_span,
832             trait_def_id,
833             trait_segment,
834             args,
835             infer_args,
836             self_ty,
837         );
838     }
839
840     fn ast_path_to_mono_trait_ref(
841         &self,
842         span: Span,
843         trait_def_id: DefId,
844         self_ty: Ty<'tcx>,
845         trait_segment: &hir::PathSegment<'_>,
846     ) -> ty::TraitRef<'tcx> {
847         let (substs, _) =
848             self.create_substs_for_ast_trait_ref(span, trait_def_id, self_ty, trait_segment);
849         let assoc_bindings = self.create_assoc_bindings_for_generic_args(trait_segment.args());
850         if let Some(b) = assoc_bindings.first() {
851             Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
852         }
853         ty::TraitRef::new(trait_def_id, substs)
854     }
855
856     #[tracing::instrument(level = "debug", skip(self, span))]
857     fn create_substs_for_ast_trait_ref<'a>(
858         &self,
859         span: Span,
860         trait_def_id: DefId,
861         self_ty: Ty<'tcx>,
862         trait_segment: &'a hir::PathSegment<'a>,
863     ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
864         self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);
865
866         self.create_substs_for_ast_path(
867             span,
868             trait_def_id,
869             &[],
870             trait_segment,
871             trait_segment.args(),
872             trait_segment.infer_args,
873             Some(self_ty),
874         )
875     }
876
877     fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
878         self.tcx()
879             .associated_items(trait_def_id)
880             .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
881             .is_some()
882     }
883
884     // Sets `implicitly_sized` to true on `Bounds` if necessary
885     pub(crate) fn add_implicitly_sized<'hir>(
886         &self,
887         bounds: &mut Bounds<'hir>,
888         ast_bounds: &'hir [hir::GenericBound<'hir>],
889         self_ty_where_predicates: Option<(hir::HirId, &'hir [hir::WherePredicate<'hir>])>,
890         span: Span,
891     ) {
892         let tcx = self.tcx();
893
894         // Try to find an unbound in bounds.
895         let mut unbound = None;
896         let mut search_bounds = |ast_bounds: &'hir [hir::GenericBound<'hir>]| {
897             for ab in ast_bounds {
898                 if let hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = ab {
899                     if unbound.is_none() {
900                         unbound = Some(&ptr.trait_ref);
901                     } else {
902                         tcx.sess.emit_err(MultipleRelaxedDefaultBounds { span });
903                     }
904                 }
905             }
906         };
907         search_bounds(ast_bounds);
908         if let Some((self_ty, where_clause)) = self_ty_where_predicates {
909             let self_ty_def_id = tcx.hir().local_def_id(self_ty).to_def_id();
910             for clause in where_clause {
911                 match clause {
912                     hir::WherePredicate::BoundPredicate(pred) => {
913                         match pred.bounded_ty.kind {
914                             hir::TyKind::Path(hir::QPath::Resolved(_, path)) => match path.res {
915                                 Res::Def(DefKind::TyParam, def_id) if def_id == self_ty_def_id => {}
916                                 _ => continue,
917                             },
918                             _ => continue,
919                         }
920                         search_bounds(pred.bounds);
921                     }
922                     _ => {}
923                 }
924             }
925         }
926
927         let sized_def_id = tcx.lang_items().require(LangItem::Sized);
928         match (&sized_def_id, unbound) {
929             (Ok(sized_def_id), Some(tpb))
930                 if tpb.path.res == Res::Def(DefKind::Trait, *sized_def_id) =>
931             {
932                 // There was in fact a `?Sized` bound, return without doing anything
933                 return;
934             }
935             (_, Some(_)) => {
936                 // There was a `?Trait` bound, but it was not `?Sized`; warn.
937                 tcx.sess.span_warn(
938                     span,
939                     "default bound relaxed for a type parameter, but \
940                         this does nothing because the given bound is not \
941                         a default; only `?Sized` is supported",
942                 );
943                 // Otherwise, add implicitly sized if `Sized` is available.
944             }
945             _ => {
946                 // There was no `?Sized` bound; add implicitly sized if `Sized` is available.
947             }
948         }
949         if sized_def_id.is_err() {
950             // No lang item for `Sized`, so we can't add it as a bound.
951             return;
952         }
953         bounds.implicitly_sized = Some(span);
954     }
955
956     /// This helper takes a *converted* parameter type (`param_ty`)
957     /// and an *unconverted* list of bounds:
958     ///
959     /// ```text
960     /// fn foo<T: Debug>
961     ///        ^  ^^^^^ `ast_bounds` parameter, in HIR form
962     ///        |
963     ///        `param_ty`, in ty form
964     /// ```
965     ///
966     /// It adds these `ast_bounds` into the `bounds` structure.
967     ///
968     /// **A note on binders:** there is an implied binder around
969     /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
970     /// for more details.
971     #[tracing::instrument(level = "debug", skip(self, ast_bounds, bounds))]
972     pub(crate) fn add_bounds<'hir, I: Iterator<Item = &'hir hir::GenericBound<'hir>>>(
973         &self,
974         param_ty: Ty<'tcx>,
975         ast_bounds: I,
976         bounds: &mut Bounds<'tcx>,
977         bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
978     ) {
979         for ast_bound in ast_bounds {
980             match ast_bound {
981                 hir::GenericBound::Trait(poly_trait_ref, modifier) => {
982                     let constness = match modifier {
983                         hir::TraitBoundModifier::MaybeConst => ty::BoundConstness::ConstIfConst,
984                         hir::TraitBoundModifier::None => ty::BoundConstness::NotConst,
985                         hir::TraitBoundModifier::Maybe => continue,
986                     };
987
988                     let _ = self.instantiate_poly_trait_ref(
989                         &poly_trait_ref.trait_ref,
990                         poly_trait_ref.span,
991                         constness,
992                         param_ty,
993                         bounds,
994                         false,
995                     );
996                 }
997                 &hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
998                     self.instantiate_lang_item_trait_ref(
999                         lang_item, span, hir_id, args, param_ty, bounds,
1000                     );
1001                 }
1002                 hir::GenericBound::Outlives(lifetime) => {
1003                     let region = self.ast_region_to_region(lifetime, None);
1004                     bounds
1005                         .region_bounds
1006                         .push((ty::Binder::bind_with_vars(region, bound_vars), lifetime.span));
1007                 }
1008             }
1009         }
1010     }
1011
1012     /// Translates a list of bounds from the HIR into the `Bounds` data structure.
1013     /// The self-type for the bounds is given by `param_ty`.
1014     ///
1015     /// Example:
1016     ///
1017     /// ```
1018     /// fn foo<T: Bar + Baz>() { }
1019     ///        ^  ^^^^^^^^^ ast_bounds
1020     ///        param_ty
1021     /// ```
1022     ///
1023     /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
1024     /// considered `Sized` unless there is an explicit `?Sized` bound.  This would be true in the
1025     /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
1026     ///
1027     /// `span` should be the declaration size of the parameter.
1028     pub(crate) fn compute_bounds(
1029         &self,
1030         param_ty: Ty<'tcx>,
1031         ast_bounds: &[hir::GenericBound<'_>],
1032     ) -> Bounds<'tcx> {
1033         self.compute_bounds_inner(param_ty, &ast_bounds)
1034     }
1035
1036     /// Convert the bounds in `ast_bounds` that refer to traits which define an associated type
1037     /// named `assoc_name` into ty::Bounds. Ignore the rest.
1038     pub(crate) fn compute_bounds_that_match_assoc_type(
1039         &self,
1040         param_ty: Ty<'tcx>,
1041         ast_bounds: &[hir::GenericBound<'_>],
1042         assoc_name: Ident,
1043     ) -> Bounds<'tcx> {
1044         let mut result = Vec::new();
1045
1046         for ast_bound in ast_bounds {
1047             if let Some(trait_ref) = ast_bound.trait_ref() {
1048                 if let Some(trait_did) = trait_ref.trait_def_id() {
1049                     if self.tcx().trait_may_define_assoc_type(trait_did, assoc_name) {
1050                         result.push(ast_bound.clone());
1051                     }
1052                 }
1053             }
1054         }
1055
1056         self.compute_bounds_inner(param_ty, &result)
1057     }
1058
1059     fn compute_bounds_inner(
1060         &self,
1061         param_ty: Ty<'tcx>,
1062         ast_bounds: &[hir::GenericBound<'_>],
1063     ) -> Bounds<'tcx> {
1064         let mut bounds = Bounds::default();
1065
1066         self.add_bounds(param_ty, ast_bounds.iter(), &mut bounds, ty::List::empty());
1067
1068         bounds
1069     }
1070
1071     /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
1072     /// onto `bounds`.
1073     ///
1074     /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
1075     /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
1076     /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
1077     #[tracing::instrument(
1078         level = "debug",
1079         skip(self, bounds, speculative, dup_bindings, path_span)
1080     )]
1081     fn add_predicates_for_ast_type_binding(
1082         &self,
1083         hir_ref_id: hir::HirId,
1084         trait_ref: ty::PolyTraitRef<'tcx>,
1085         binding: &ConvertedBinding<'_, 'tcx>,
1086         bounds: &mut Bounds<'tcx>,
1087         speculative: bool,
1088         dup_bindings: &mut FxHashMap<DefId, Span>,
1089         path_span: Span,
1090     ) -> Result<(), ErrorReported> {
1091         // Given something like `U: SomeTrait<T = X>`, we want to produce a
1092         // predicate like `<U as SomeTrait>::T = X`. This is somewhat
1093         // subtle in the event that `T` is defined in a supertrait of
1094         // `SomeTrait`, because in that case we need to upcast.
1095         //
1096         // That is, consider this case:
1097         //
1098         // ```
1099         // trait SubTrait: SuperTrait<i32> { }
1100         // trait SuperTrait<A> { type T; }
1101         //
1102         // ... B: SubTrait<T = foo> ...
1103         // ```
1104         //
1105         // We want to produce `<B as SuperTrait<i32>>::T == foo`.
1106
1107         let tcx = self.tcx();
1108
1109         let candidate =
1110             if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
1111                 // Simple case: X is defined in the current trait.
1112                 trait_ref
1113             } else {
1114                 // Otherwise, we have to walk through the supertraits to find
1115                 // those that do.
1116                 self.one_bound_for_assoc_type(
1117                     || traits::supertraits(tcx, trait_ref),
1118                     || trait_ref.print_only_trait_path().to_string(),
1119                     binding.item_name,
1120                     path_span,
1121                     || match binding.kind {
1122                         ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
1123                         _ => None,
1124                     },
1125                 )?
1126             };
1127
1128         let (assoc_ident, def_scope) =
1129             tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
1130
1131         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
1132         // of calling `filter_by_name_and_kind`.
1133         let assoc_ty = tcx
1134             .associated_items(candidate.def_id())
1135             .filter_by_name_unhygienic(assoc_ident.name)
1136             .find(|i| {
1137                 i.kind == ty::AssocKind::Type && i.ident.normalize_to_macros_2_0() == assoc_ident
1138             })
1139             .expect("missing associated type");
1140
1141         if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
1142             tcx.sess
1143                 .struct_span_err(
1144                     binding.span,
1145                     &format!("associated type `{}` is private", binding.item_name),
1146                 )
1147                 .span_label(binding.span, "private associated type")
1148                 .emit();
1149         }
1150         tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span, None);
1151
1152         if !speculative {
1153             dup_bindings
1154                 .entry(assoc_ty.def_id)
1155                 .and_modify(|prev_span| {
1156                     self.tcx().sess.emit_err(ValueOfAssociatedStructAlreadySpecified {
1157                         span: binding.span,
1158                         prev_span: *prev_span,
1159                         item_name: binding.item_name,
1160                         def_path: tcx.def_path_str(assoc_ty.container.id()),
1161                     });
1162                 })
1163                 .or_insert(binding.span);
1164         }
1165
1166         // Include substitutions for generic parameters of associated types
1167         let projection_ty = candidate.map_bound(|trait_ref| {
1168             let ident = Ident::new(assoc_ty.ident.name, binding.item_name.span);
1169             let item_segment = hir::PathSegment {
1170                 ident,
1171                 hir_id: Some(binding.hir_id),
1172                 res: None,
1173                 args: Some(binding.gen_args),
1174                 infer_args: false,
1175             };
1176
1177             let substs_trait_ref_and_assoc_item = self.create_substs_for_associated_item(
1178                 tcx,
1179                 path_span,
1180                 assoc_ty.def_id,
1181                 &item_segment,
1182                 trait_ref.substs,
1183             );
1184
1185             debug!(
1186                 "add_predicates_for_ast_type_binding: substs for trait-ref and assoc_item: {:?}",
1187                 substs_trait_ref_and_assoc_item
1188             );
1189
1190             ty::ProjectionTy {
1191                 item_def_id: assoc_ty.def_id,
1192                 substs: substs_trait_ref_and_assoc_item,
1193             }
1194         });
1195
1196         if !speculative {
1197             // Find any late-bound regions declared in `ty` that are not
1198             // declared in the trait-ref or assoc_ty. These are not well-formed.
1199             //
1200             // Example:
1201             //
1202             //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
1203             //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
1204             if let ConvertedBindingKind::Equality(ty) = binding.kind {
1205                 let late_bound_in_trait_ref =
1206                     tcx.collect_constrained_late_bound_regions(&projection_ty);
1207                 let late_bound_in_ty =
1208                     tcx.collect_referenced_late_bound_regions(&trait_ref.rebind(ty));
1209                 debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
1210                 debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
1211
1212                 // FIXME: point at the type params that don't have appropriate lifetimes:
1213                 // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
1214                 //                         ----  ----     ^^^^^^^
1215                 self.validate_late_bound_regions(
1216                     late_bound_in_trait_ref,
1217                     late_bound_in_ty,
1218                     |br_name| {
1219                         struct_span_err!(
1220                             tcx.sess,
1221                             binding.span,
1222                             E0582,
1223                             "binding for associated type `{}` references {}, \
1224                              which does not appear in the trait input types",
1225                             binding.item_name,
1226                             br_name
1227                         )
1228                     },
1229                 );
1230             }
1231         }
1232
1233         match binding.kind {
1234             ConvertedBindingKind::Equality(ref ty) => {
1235                 // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
1236                 // the "projection predicate" for:
1237                 //
1238                 // `<T as Iterator>::Item = u32`
1239                 bounds.projection_bounds.push((
1240                     projection_ty.map_bound(|projection_ty| {
1241                         debug!(
1242                             "add_predicates_for_ast_type_binding: projection_ty {:?}, substs: {:?}",
1243                             projection_ty, projection_ty.substs
1244                         );
1245                         ty::ProjectionPredicate { projection_ty, ty }
1246                     }),
1247                     binding.span,
1248                 ));
1249             }
1250             ConvertedBindingKind::Constraint(ast_bounds) => {
1251                 // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
1252                 //
1253                 // `<T as Iterator>::Item: Debug`
1254                 //
1255                 // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
1256                 // parameter to have a skipped binder.
1257                 let param_ty = tcx.mk_ty(ty::Projection(projection_ty.skip_binder()));
1258                 self.add_bounds(param_ty, ast_bounds.iter(), bounds, candidate.bound_vars());
1259             }
1260         }
1261         Ok(())
1262     }
1263
1264     fn ast_path_to_ty(
1265         &self,
1266         span: Span,
1267         did: DefId,
1268         item_segment: &hir::PathSegment<'_>,
1269     ) -> Ty<'tcx> {
1270         let substs = self.ast_path_substs_for_ty(span, did, item_segment);
1271         self.normalize_ty(span, self.tcx().at(span).type_of(did).subst(self.tcx(), substs))
1272     }
1273
1274     fn conv_object_ty_poly_trait_ref(
1275         &self,
1276         span: Span,
1277         trait_bounds: &[hir::PolyTraitRef<'_>],
1278         lifetime: &hir::Lifetime,
1279         borrowed: bool,
1280     ) -> Ty<'tcx> {
1281         let tcx = self.tcx();
1282
1283         let mut bounds = Bounds::default();
1284         let mut potential_assoc_types = Vec::new();
1285         let dummy_self = self.tcx().types.trait_object_dummy_self;
1286         for trait_bound in trait_bounds.iter().rev() {
1287             if let GenericArgCountResult {
1288                 correct:
1289                     Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
1290                 ..
1291             } = self.instantiate_poly_trait_ref(
1292                 &trait_bound.trait_ref,
1293                 trait_bound.span,
1294                 ty::BoundConstness::NotConst,
1295                 dummy_self,
1296                 &mut bounds,
1297                 false,
1298             ) {
1299                 potential_assoc_types.extend(cur_potential_assoc_types);
1300             }
1301         }
1302
1303         // Expand trait aliases recursively and check that only one regular (non-auto) trait
1304         // is used and no 'maybe' bounds are used.
1305         let expanded_traits =
1306             traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
1307         let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
1308             expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
1309         if regular_traits.len() > 1 {
1310             let first_trait = &regular_traits[0];
1311             let additional_trait = &regular_traits[1];
1312             let mut err = struct_span_err!(
1313                 tcx.sess,
1314                 additional_trait.bottom().1,
1315                 E0225,
1316                 "only auto traits can be used as additional traits in a trait object"
1317             );
1318             additional_trait.label_with_exp_info(
1319                 &mut err,
1320                 "additional non-auto trait",
1321                 "additional use",
1322             );
1323             first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
1324             err.help(&format!(
1325                 "consider creating a new trait with all of these as super-traits and using that \
1326                  trait here instead: `trait NewTrait: {} {{}}`",
1327                 regular_traits
1328                     .iter()
1329                     .map(|t| t.trait_ref().print_only_trait_path().to_string())
1330                     .collect::<Vec<_>>()
1331                     .join(" + "),
1332             ));
1333             err.note(
1334                 "auto-traits like `Send` and `Sync` are traits that have special properties; \
1335                  for more information on them, visit \
1336                  <https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
1337             );
1338             err.emit();
1339         }
1340
1341         if regular_traits.is_empty() && auto_traits.is_empty() {
1342             tcx.sess.emit_err(TraitObjectDeclaredWithNoTraits { span });
1343             return tcx.ty_error();
1344         }
1345
1346         // Check that there are no gross object safety violations;
1347         // most importantly, that the supertraits don't contain `Self`,
1348         // to avoid ICEs.
1349         for item in &regular_traits {
1350             let object_safety_violations =
1351                 astconv_object_safety_violations(tcx, item.trait_ref().def_id());
1352             if !object_safety_violations.is_empty() {
1353                 report_object_safety_error(
1354                     tcx,
1355                     span,
1356                     item.trait_ref().def_id(),
1357                     &object_safety_violations[..],
1358                 )
1359                 .emit();
1360                 return tcx.ty_error();
1361             }
1362         }
1363
1364         // Use a `BTreeSet` to keep output in a more consistent order.
1365         let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
1366
1367         let regular_traits_refs_spans = bounds
1368             .trait_bounds
1369             .into_iter()
1370             .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
1371
1372         for (base_trait_ref, span, constness) in regular_traits_refs_spans {
1373             assert_eq!(constness, ty::BoundConstness::NotConst);
1374
1375             for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
1376                 debug!(
1377                     "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
1378                     obligation.predicate
1379                 );
1380
1381                 let bound_predicate = obligation.predicate.kind();
1382                 match bound_predicate.skip_binder() {
1383                     ty::PredicateKind::Trait(pred) => {
1384                         let pred = bound_predicate.rebind(pred);
1385                         associated_types.entry(span).or_default().extend(
1386                             tcx.associated_items(pred.def_id())
1387                                 .in_definition_order()
1388                                 .filter(|item| item.kind == ty::AssocKind::Type)
1389                                 .map(|item| item.def_id),
1390                         );
1391                     }
1392                     ty::PredicateKind::Projection(pred) => {
1393                         let pred = bound_predicate.rebind(pred);
1394                         // A `Self` within the original bound will be substituted with a
1395                         // `trait_object_dummy_self`, so check for that.
1396                         let references_self =
1397                             pred.skip_binder().ty.walk(tcx).any(|arg| arg == dummy_self.into());
1398
1399                         // If the projection output contains `Self`, force the user to
1400                         // elaborate it explicitly to avoid a lot of complexity.
1401                         //
1402                         // The "classicaly useful" case is the following:
1403                         // ```
1404                         //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1405                         //         type MyOutput;
1406                         //     }
1407                         // ```
1408                         //
1409                         // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
1410                         // but actually supporting that would "expand" to an infinitely-long type
1411                         // `fix $ Ï„ â†’ dyn MyTrait<MyOutput = X, Output = <Ï„ as MyTrait>::MyOutput`.
1412                         //
1413                         // Instead, we force the user to write
1414                         // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
1415                         // the discussion in #56288 for alternatives.
1416                         if !references_self {
1417                             // Include projections defined on supertraits.
1418                             bounds.projection_bounds.push((pred, span));
1419                         }
1420                     }
1421                     _ => (),
1422                 }
1423             }
1424         }
1425
1426         for (projection_bound, _) in &bounds.projection_bounds {
1427             for def_ids in associated_types.values_mut() {
1428                 def_ids.remove(&projection_bound.projection_def_id());
1429             }
1430         }
1431
1432         self.complain_about_missing_associated_types(
1433             associated_types,
1434             potential_assoc_types,
1435             trait_bounds,
1436         );
1437
1438         // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
1439         // `dyn Trait + Send`.
1440         // We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
1441         // the bounds
1442         let mut duplicates = FxHashSet::default();
1443         auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
1444         debug!("regular_traits: {:?}", regular_traits);
1445         debug!("auto_traits: {:?}", auto_traits);
1446
1447         // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
1448         let existential_trait_refs = regular_traits.iter().map(|i| {
1449             i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
1450                 if trait_ref.self_ty() != dummy_self {
1451                     // FIXME: There appears to be a missing filter on top of `expand_trait_aliases`,
1452                     // which picks up non-supertraits where clauses - but also, the object safety
1453                     // completely ignores trait aliases, which could be object safety hazards. We
1454                     // `delay_span_bug` here to avoid an ICE in stable even when the feature is
1455                     // disabled. (#66420)
1456                     tcx.sess.delay_span_bug(
1457                         DUMMY_SP,
1458                         &format!(
1459                             "trait_ref_to_existential called on {:?} with non-dummy Self",
1460                             trait_ref,
1461                         ),
1462                     );
1463                 }
1464                 ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
1465             })
1466         });
1467         let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
1468             bound.map_bound(|b| {
1469                 if b.projection_ty.self_ty() != dummy_self {
1470                     tcx.sess.delay_span_bug(
1471                         DUMMY_SP,
1472                         &format!("trait_ref_to_existential called on {:?} with non-dummy Self", b),
1473                     );
1474                 }
1475                 ty::ExistentialProjection::erase_self_ty(tcx, b)
1476             })
1477         });
1478
1479         let regular_trait_predicates = existential_trait_refs
1480             .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
1481         let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
1482             ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
1483         });
1484         // N.b. principal, projections, auto traits
1485         // FIXME: This is actually wrong with multiple principals in regards to symbol mangling
1486         let mut v = regular_trait_predicates
1487             .chain(
1488                 existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
1489             )
1490             .chain(auto_trait_predicates)
1491             .collect::<SmallVec<[_; 8]>>();
1492         v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
1493         v.dedup();
1494         let existential_predicates = tcx.mk_poly_existential_predicates(v.into_iter());
1495
1496         // Use explicitly-specified region bound.
1497         let region_bound = if !lifetime.is_elided() {
1498             self.ast_region_to_region(lifetime, None)
1499         } else {
1500             self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
1501                 if tcx.named_region(lifetime.hir_id).is_some() {
1502                     self.ast_region_to_region(lifetime, None)
1503                 } else {
1504                     self.re_infer(None, span).unwrap_or_else(|| {
1505                         let mut err = struct_span_err!(
1506                             tcx.sess,
1507                             span,
1508                             E0228,
1509                             "the lifetime bound for this object type cannot be deduced \
1510                              from context; please supply an explicit bound"
1511                         );
1512                         if borrowed {
1513                             // We will have already emitted an error E0106 complaining about a
1514                             // missing named lifetime in `&dyn Trait`, so we elide this one.
1515                             err.delay_as_bug();
1516                         } else {
1517                             err.emit();
1518                         }
1519                         tcx.lifetimes.re_static
1520                     })
1521                 }
1522             })
1523         };
1524         debug!("region_bound: {:?}", region_bound);
1525
1526         let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1527         debug!("trait_object_type: {:?}", ty);
1528         ty
1529     }
1530
1531     fn report_ambiguous_associated_type(
1532         &self,
1533         span: Span,
1534         type_str: &str,
1535         trait_str: &str,
1536         name: Symbol,
1537     ) {
1538         let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
1539         if let (true, Ok(snippet)) = (
1540             self.tcx()
1541                 .resolutions(())
1542                 .confused_type_with_std_module
1543                 .keys()
1544                 .any(|full_span| full_span.contains(span)),
1545             self.tcx().sess.source_map().span_to_snippet(span),
1546         ) {
1547             err.span_suggestion(
1548                 span,
1549                 "you are looking for the module in `std`, not the primitive type",
1550                 format!("std::{}", snippet),
1551                 Applicability::MachineApplicable,
1552             );
1553         } else {
1554             err.span_suggestion(
1555                 span,
1556                 "use fully-qualified syntax",
1557                 format!("<{} as {}>::{}", type_str, trait_str, name),
1558                 Applicability::HasPlaceholders,
1559             );
1560         }
1561         err.emit();
1562     }
1563
1564     // Search for a bound on a type parameter which includes the associated item
1565     // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
1566     // This function will fail if there are no suitable bounds or there is
1567     // any ambiguity.
1568     fn find_bound_for_assoc_item(
1569         &self,
1570         ty_param_def_id: LocalDefId,
1571         assoc_name: Ident,
1572         span: Span,
1573     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported> {
1574         let tcx = self.tcx();
1575
1576         debug!(
1577             "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
1578             ty_param_def_id, assoc_name, span,
1579         );
1580
1581         let predicates = &self
1582             .get_type_parameter_bounds(span, ty_param_def_id.to_def_id(), assoc_name)
1583             .predicates;
1584
1585         debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
1586
1587         let param_hir_id = tcx.hir().local_def_id_to_hir_id(ty_param_def_id);
1588         let param_name = tcx.hir().ty_param_name(param_hir_id);
1589         self.one_bound_for_assoc_type(
1590             || {
1591                 traits::transitive_bounds_that_define_assoc_type(
1592                     tcx,
1593                     predicates.iter().filter_map(|(p, _)| {
1594                         p.to_opt_poly_trait_ref().map(|trait_ref| trait_ref.value)
1595                     }),
1596                     assoc_name,
1597                 )
1598             },
1599             || param_name.to_string(),
1600             assoc_name,
1601             span,
1602             || None,
1603         )
1604     }
1605
1606     // Checks that `bounds` contains exactly one element and reports appropriate
1607     // errors otherwise.
1608     fn one_bound_for_assoc_type<I>(
1609         &self,
1610         all_candidates: impl Fn() -> I,
1611         ty_param_name: impl Fn() -> String,
1612         assoc_name: Ident,
1613         span: Span,
1614         is_equality: impl Fn() -> Option<String>,
1615     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1616     where
1617         I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
1618     {
1619         let mut matching_candidates = all_candidates()
1620             .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
1621
1622         let bound = match matching_candidates.next() {
1623             Some(bound) => bound,
1624             None => {
1625                 self.complain_about_assoc_type_not_found(
1626                     all_candidates,
1627                     &ty_param_name(),
1628                     assoc_name,
1629                     span,
1630                 );
1631                 return Err(ErrorReported);
1632             }
1633         };
1634
1635         debug!("one_bound_for_assoc_type: bound = {:?}", bound);
1636
1637         if let Some(bound2) = matching_candidates.next() {
1638             debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);
1639
1640             let is_equality = is_equality();
1641             let bounds = array::IntoIter::new([bound, bound2]).chain(matching_candidates);
1642             let mut err = if is_equality.is_some() {
1643                 // More specific Error Index entry.
1644                 struct_span_err!(
1645                     self.tcx().sess,
1646                     span,
1647                     E0222,
1648                     "ambiguous associated type `{}` in bounds of `{}`",
1649                     assoc_name,
1650                     ty_param_name()
1651                 )
1652             } else {
1653                 struct_span_err!(
1654                     self.tcx().sess,
1655                     span,
1656                     E0221,
1657                     "ambiguous associated type `{}` in bounds of `{}`",
1658                     assoc_name,
1659                     ty_param_name()
1660                 )
1661             };
1662             err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
1663
1664             let mut where_bounds = vec![];
1665             for bound in bounds {
1666                 let bound_id = bound.def_id();
1667                 let bound_span = self
1668                     .tcx()
1669                     .associated_items(bound_id)
1670                     .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
1671                     .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
1672
1673                 if let Some(bound_span) = bound_span {
1674                     err.span_label(
1675                         bound_span,
1676                         format!(
1677                             "ambiguous `{}` from `{}`",
1678                             assoc_name,
1679                             bound.print_only_trait_path(),
1680                         ),
1681                     );
1682                     if let Some(constraint) = &is_equality {
1683                         where_bounds.push(format!(
1684                             "        T: {trait}::{assoc} = {constraint}",
1685                             trait=bound.print_only_trait_path(),
1686                             assoc=assoc_name,
1687                             constraint=constraint,
1688                         ));
1689                     } else {
1690                         err.span_suggestion_verbose(
1691                             span.with_hi(assoc_name.span.lo()),
1692                             "use fully qualified syntax to disambiguate",
1693                             format!(
1694                                 "<{} as {}>::",
1695                                 ty_param_name(),
1696                                 bound.print_only_trait_path(),
1697                             ),
1698                             Applicability::MaybeIncorrect,
1699                         );
1700                     }
1701                 } else {
1702                     err.note(&format!(
1703                         "associated type `{}` could derive from `{}`",
1704                         ty_param_name(),
1705                         bound.print_only_trait_path(),
1706                     ));
1707                 }
1708             }
1709             if !where_bounds.is_empty() {
1710                 err.help(&format!(
1711                     "consider introducing a new type parameter `T` and adding `where` constraints:\
1712                      \n    where\n        T: {},\n{}",
1713                     ty_param_name(),
1714                     where_bounds.join(",\n"),
1715                 ));
1716             }
1717             err.emit();
1718             if !where_bounds.is_empty() {
1719                 return Err(ErrorReported);
1720             }
1721         }
1722         Ok(bound)
1723     }
1724
1725     // Create a type from a path to an associated type.
1726     // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
1727     // and item_segment is the path segment for `D`. We return a type and a def for
1728     // the whole path.
1729     // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
1730     // parameter or `Self`.
1731     // NOTE: When this function starts resolving `Trait::AssocTy` successfully
1732     // it should also start reportint the `BARE_TRAIT_OBJECTS` lint.
1733     pub fn associated_path_to_ty(
1734         &self,
1735         hir_ref_id: hir::HirId,
1736         span: Span,
1737         qself_ty: Ty<'tcx>,
1738         qself_res: Res,
1739         assoc_segment: &hir::PathSegment<'_>,
1740         permit_variants: bool,
1741     ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
1742         let tcx = self.tcx();
1743         let assoc_ident = assoc_segment.ident;
1744
1745         debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
1746
1747         // Check if we have an enum variant.
1748         let mut variant_resolution = None;
1749         if let ty::Adt(adt_def, _) = qself_ty.kind() {
1750             if adt_def.is_enum() {
1751                 let variant_def = adt_def
1752                     .variants
1753                     .iter()
1754                     .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did));
1755                 if let Some(variant_def) = variant_def {
1756                     if permit_variants {
1757                         tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
1758                         self.prohibit_generics(slice::from_ref(assoc_segment));
1759                         return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
1760                     } else {
1761                         variant_resolution = Some(variant_def.def_id);
1762                     }
1763                 }
1764             }
1765         }
1766
1767         // Find the type of the associated item, and the trait where the associated
1768         // item is declared.
1769         let bound = match (&qself_ty.kind(), qself_res) {
1770             (_, Res::SelfTy(Some(_), Some((impl_def_id, _)))) => {
1771                 // `Self` in an impl of a trait -- we have a concrete self type and a
1772                 // trait reference.
1773                 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
1774                     Some(trait_ref) => trait_ref,
1775                     None => {
1776                         // A cycle error occurred, most likely.
1777                         return Err(ErrorReported);
1778                     }
1779                 };
1780
1781                 self.one_bound_for_assoc_type(
1782                     || traits::supertraits(tcx, ty::Binder::dummy(trait_ref)),
1783                     || "Self".to_string(),
1784                     assoc_ident,
1785                     span,
1786                     || None,
1787                 )?
1788             }
1789             (
1790                 &ty::Param(_),
1791                 Res::SelfTy(Some(param_did), None) | Res::Def(DefKind::TyParam, param_did),
1792             ) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
1793             _ => {
1794                 if variant_resolution.is_some() {
1795                     // Variant in type position
1796                     let msg = format!("expected type, found variant `{}`", assoc_ident);
1797                     tcx.sess.span_err(span, &msg);
1798                 } else if qself_ty.is_enum() {
1799                     let mut err = struct_span_err!(
1800                         tcx.sess,
1801                         assoc_ident.span,
1802                         E0599,
1803                         "no variant named `{}` found for enum `{}`",
1804                         assoc_ident,
1805                         qself_ty,
1806                     );
1807
1808                     let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
1809                     if let Some(suggested_name) = find_best_match_for_name(
1810                         &adt_def
1811                             .variants
1812                             .iter()
1813                             .map(|variant| variant.ident.name)
1814                             .collect::<Vec<Symbol>>(),
1815                         assoc_ident.name,
1816                         None,
1817                     ) {
1818                         err.span_suggestion(
1819                             assoc_ident.span,
1820                             "there is a variant with a similar name",
1821                             suggested_name.to_string(),
1822                             Applicability::MaybeIncorrect,
1823                         );
1824                     } else {
1825                         err.span_label(
1826                             assoc_ident.span,
1827                             format!("variant not found in `{}`", qself_ty),
1828                         );
1829                     }
1830
1831                     if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
1832                         let sp = tcx.sess.source_map().guess_head_span(sp);
1833                         err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
1834                     }
1835
1836                     err.emit();
1837                 } else if !qself_ty.references_error() {
1838                     // Don't print `TyErr` to the user.
1839                     self.report_ambiguous_associated_type(
1840                         span,
1841                         &qself_ty.to_string(),
1842                         "Trait",
1843                         assoc_ident.name,
1844                     );
1845                 }
1846                 return Err(ErrorReported);
1847             }
1848         };
1849
1850         let trait_did = bound.def_id();
1851         let (assoc_ident, def_scope) =
1852             tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
1853
1854         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
1855         // of calling `filter_by_name_and_kind`.
1856         let item = tcx
1857             .associated_items(trait_did)
1858             .in_definition_order()
1859             .find(|i| {
1860                 i.kind.namespace() == Namespace::TypeNS
1861                     && i.ident.normalize_to_macros_2_0() == assoc_ident
1862             })
1863             .expect("missing associated type");
1864
1865         let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
1866         let ty = self.normalize_ty(span, ty);
1867
1868         let kind = DefKind::AssocTy;
1869         if !item.vis.is_accessible_from(def_scope, tcx) {
1870             let kind = kind.descr(item.def_id);
1871             let msg = format!("{} `{}` is private", kind, assoc_ident);
1872             tcx.sess
1873                 .struct_span_err(span, &msg)
1874                 .span_label(span, &format!("private {}", kind))
1875                 .emit();
1876         }
1877         tcx.check_stability(item.def_id, Some(hir_ref_id), span, None);
1878
1879         if let Some(variant_def_id) = variant_resolution {
1880             tcx.struct_span_lint_hir(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
1881                 let mut err = lint.build("ambiguous associated item");
1882                 let mut could_refer_to = |kind: DefKind, def_id, also| {
1883                     let note_msg = format!(
1884                         "`{}` could{} refer to the {} defined here",
1885                         assoc_ident,
1886                         also,
1887                         kind.descr(def_id)
1888                     );
1889                     err.span_note(tcx.def_span(def_id), &note_msg);
1890                 };
1891
1892                 could_refer_to(DefKind::Variant, variant_def_id, "");
1893                 could_refer_to(kind, item.def_id, " also");
1894
1895                 err.span_suggestion(
1896                     span,
1897                     "use fully-qualified syntax",
1898                     format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
1899                     Applicability::MachineApplicable,
1900                 );
1901
1902                 err.emit();
1903             });
1904         }
1905         Ok((ty, kind, item.def_id))
1906     }
1907
1908     fn qpath_to_ty(
1909         &self,
1910         span: Span,
1911         opt_self_ty: Option<Ty<'tcx>>,
1912         item_def_id: DefId,
1913         trait_segment: &hir::PathSegment<'_>,
1914         item_segment: &hir::PathSegment<'_>,
1915     ) -> Ty<'tcx> {
1916         let tcx = self.tcx();
1917
1918         let trait_def_id = tcx.parent(item_def_id).unwrap();
1919
1920         debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
1921
1922         let self_ty = if let Some(ty) = opt_self_ty {
1923             ty
1924         } else {
1925             let path_str = tcx.def_path_str(trait_def_id);
1926
1927             let def_id = self.item_def_id();
1928
1929             debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
1930
1931             let parent_def_id = def_id
1932                 .and_then(|def_id| {
1933                     def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id))
1934                 })
1935                 .map(|hir_id| tcx.hir().get_parent_did(hir_id).to_def_id());
1936
1937             debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
1938
1939             // If the trait in segment is the same as the trait defining the item,
1940             // use the `<Self as ..>` syntax in the error.
1941             let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
1942             let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
1943
1944             let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
1945                 "Self"
1946             } else {
1947                 "Type"
1948             };
1949
1950             self.report_ambiguous_associated_type(
1951                 span,
1952                 type_name,
1953                 &path_str,
1954                 item_segment.ident.name,
1955             );
1956             return tcx.ty_error();
1957         };
1958
1959         debug!("qpath_to_ty: self_type={:?}", self_ty);
1960
1961         let trait_ref = self.ast_path_to_mono_trait_ref(span, trait_def_id, self_ty, trait_segment);
1962
1963         let item_substs = self.create_substs_for_associated_item(
1964             tcx,
1965             span,
1966             item_def_id,
1967             item_segment,
1968             trait_ref.substs,
1969         );
1970
1971         debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1972
1973         self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
1974     }
1975
1976     pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment<'a>>>(
1977         &self,
1978         segments: T,
1979     ) -> bool {
1980         let mut has_err = false;
1981         for segment in segments {
1982             let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
1983             for arg in segment.args().args {
1984                 let (span, kind) = match arg {
1985                     hir::GenericArg::Lifetime(lt) => {
1986                         if err_for_lt {
1987                             continue;
1988                         }
1989                         err_for_lt = true;
1990                         has_err = true;
1991                         (lt.span, "lifetime")
1992                     }
1993                     hir::GenericArg::Type(ty) => {
1994                         if err_for_ty {
1995                             continue;
1996                         }
1997                         err_for_ty = true;
1998                         has_err = true;
1999                         (ty.span, "type")
2000                     }
2001                     hir::GenericArg::Const(ct) => {
2002                         if err_for_ct {
2003                             continue;
2004                         }
2005                         err_for_ct = true;
2006                         has_err = true;
2007                         (ct.span, "const")
2008                     }
2009                     hir::GenericArg::Infer(inf) => {
2010                         if err_for_ty {
2011                             continue;
2012                         }
2013                         has_err = true;
2014                         err_for_ty = true;
2015                         (inf.span, "generic")
2016                     }
2017                 };
2018                 let mut err = struct_span_err!(
2019                     self.tcx().sess,
2020                     span,
2021                     E0109,
2022                     "{} arguments are not allowed for this type",
2023                     kind,
2024                 );
2025                 err.span_label(span, format!("{} argument not allowed", kind));
2026                 err.emit();
2027                 if err_for_lt && err_for_ty && err_for_ct {
2028                     break;
2029                 }
2030             }
2031
2032             // Only emit the first error to avoid overloading the user with error messages.
2033             if let [binding, ..] = segment.args().bindings {
2034                 has_err = true;
2035                 Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
2036             }
2037         }
2038         has_err
2039     }
2040
2041     // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
2042     pub fn def_ids_for_value_path_segments(
2043         &self,
2044         segments: &[hir::PathSegment<'_>],
2045         self_ty: Option<Ty<'tcx>>,
2046         kind: DefKind,
2047         def_id: DefId,
2048     ) -> Vec<PathSeg> {
2049         // We need to extract the type parameters supplied by the user in
2050         // the path `path`. Due to the current setup, this is a bit of a
2051         // tricky-process; the problem is that resolve only tells us the
2052         // end-point of the path resolution, and not the intermediate steps.
2053         // Luckily, we can (at least for now) deduce the intermediate steps
2054         // just from the end-point.
2055         //
2056         // There are basically five cases to consider:
2057         //
2058         // 1. Reference to a constructor of a struct:
2059         //
2060         //        struct Foo<T>(...)
2061         //
2062         //    In this case, the parameters are declared in the type space.
2063         //
2064         // 2. Reference to a constructor of an enum variant:
2065         //
2066         //        enum E<T> { Foo(...) }
2067         //
2068         //    In this case, the parameters are defined in the type space,
2069         //    but may be specified either on the type or the variant.
2070         //
2071         // 3. Reference to a fn item or a free constant:
2072         //
2073         //        fn foo<T>() { }
2074         //
2075         //    In this case, the path will again always have the form
2076         //    `a::b::foo::<T>` where only the final segment should have
2077         //    type parameters. However, in this case, those parameters are
2078         //    declared on a value, and hence are in the `FnSpace`.
2079         //
2080         // 4. Reference to a method or an associated constant:
2081         //
2082         //        impl<A> SomeStruct<A> {
2083         //            fn foo<B>(...)
2084         //        }
2085         //
2086         //    Here we can have a path like
2087         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
2088         //    may appear in two places. The penultimate segment,
2089         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
2090         //    final segment, `foo::<B>` contains parameters in fn space.
2091         //
2092         // The first step then is to categorize the segments appropriately.
2093
2094         let tcx = self.tcx();
2095
2096         assert!(!segments.is_empty());
2097         let last = segments.len() - 1;
2098
2099         let mut path_segs = vec![];
2100
2101         match kind {
2102             // Case 1. Reference to a struct constructor.
2103             DefKind::Ctor(CtorOf::Struct, ..) => {
2104                 // Everything but the final segment should have no
2105                 // parameters at all.
2106                 let generics = tcx.generics_of(def_id);
2107                 // Variant and struct constructors use the
2108                 // generics of their parent type definition.
2109                 let generics_def_id = generics.parent.unwrap_or(def_id);
2110                 path_segs.push(PathSeg(generics_def_id, last));
2111             }
2112
2113             // Case 2. Reference to a variant constructor.
2114             DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
2115                 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
2116                 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
2117                     debug_assert!(adt_def.is_enum());
2118                     (adt_def.did, last)
2119                 } else if last >= 1 && segments[last - 1].args.is_some() {
2120                     // Everything but the penultimate segment should have no
2121                     // parameters at all.
2122                     let mut def_id = def_id;
2123
2124                     // `DefKind::Ctor` -> `DefKind::Variant`
2125                     if let DefKind::Ctor(..) = kind {
2126                         def_id = tcx.parent(def_id).unwrap()
2127                     }
2128
2129                     // `DefKind::Variant` -> `DefKind::Enum`
2130                     let enum_def_id = tcx.parent(def_id).unwrap();
2131                     (enum_def_id, last - 1)
2132                 } else {
2133                     // FIXME: lint here recommending `Enum::<...>::Variant` form
2134                     // instead of `Enum::Variant::<...>` form.
2135
2136                     // Everything but the final segment should have no
2137                     // parameters at all.
2138                     let generics = tcx.generics_of(def_id);
2139                     // Variant and struct constructors use the
2140                     // generics of their parent type definition.
2141                     (generics.parent.unwrap_or(def_id), last)
2142                 };
2143                 path_segs.push(PathSeg(generics_def_id, index));
2144             }
2145
2146             // Case 3. Reference to a top-level value.
2147             DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static => {
2148                 path_segs.push(PathSeg(def_id, last));
2149             }
2150
2151             // Case 4. Reference to a method or associated const.
2152             DefKind::AssocFn | DefKind::AssocConst => {
2153                 if segments.len() >= 2 {
2154                     let generics = tcx.generics_of(def_id);
2155                     path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
2156                 }
2157                 path_segs.push(PathSeg(def_id, last));
2158             }
2159
2160             kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
2161         }
2162
2163         debug!("path_segs = {:?}", path_segs);
2164
2165         path_segs
2166     }
2167
2168     // Check a type `Path` and convert it to a `Ty`.
2169     pub fn res_to_ty(
2170         &self,
2171         opt_self_ty: Option<Ty<'tcx>>,
2172         path: &hir::Path<'_>,
2173         permit_variants: bool,
2174     ) -> Ty<'tcx> {
2175         let tcx = self.tcx();
2176
2177         debug!(
2178             "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
2179             path.res, opt_self_ty, path.segments
2180         );
2181
2182         let span = path.span;
2183         match path.res {
2184             Res::Def(DefKind::OpaqueTy, did) => {
2185                 // Check for desugared `impl Trait`.
2186                 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
2187                 let item_segment = path.segments.split_last().unwrap();
2188                 self.prohibit_generics(item_segment.1);
2189                 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
2190                 self.normalize_ty(span, tcx.mk_opaque(did, substs))
2191             }
2192             Res::Def(
2193                 DefKind::Enum
2194                 | DefKind::TyAlias
2195                 | DefKind::Struct
2196                 | DefKind::Union
2197                 | DefKind::ForeignTy,
2198                 did,
2199             ) => {
2200                 assert_eq!(opt_self_ty, None);
2201                 self.prohibit_generics(path.segments.split_last().unwrap().1);
2202                 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
2203             }
2204             Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
2205                 // Convert "variant type" as if it were a real type.
2206                 // The resulting `Ty` is type of the variant's enum for now.
2207                 assert_eq!(opt_self_ty, None);
2208
2209                 let path_segs =
2210                     self.def_ids_for_value_path_segments(&path.segments, None, kind, def_id);
2211                 let generic_segs: FxHashSet<_> =
2212                     path_segs.iter().map(|PathSeg(_, index)| index).collect();
2213                 self.prohibit_generics(path.segments.iter().enumerate().filter_map(
2214                     |(index, seg)| {
2215                         if !generic_segs.contains(&index) { Some(seg) } else { None }
2216                     },
2217                 ));
2218
2219                 let PathSeg(def_id, index) = path_segs.last().unwrap();
2220                 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
2221             }
2222             Res::Def(DefKind::TyParam, def_id) => {
2223                 assert_eq!(opt_self_ty, None);
2224                 self.prohibit_generics(path.segments);
2225
2226                 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2227                 let item_id = tcx.hir().get_parent_node(hir_id);
2228                 let item_def_id = tcx.hir().local_def_id(item_id);
2229                 let generics = tcx.generics_of(item_def_id);
2230                 let index = generics.param_def_id_to_index[&def_id];
2231                 tcx.mk_ty_param(index, tcx.hir().name(hir_id))
2232             }
2233             Res::SelfTy(Some(_), None) => {
2234                 // `Self` in trait or type alias.
2235                 assert_eq!(opt_self_ty, None);
2236                 self.prohibit_generics(path.segments);
2237                 tcx.types.self_param
2238             }
2239             Res::SelfTy(_, Some((def_id, forbid_generic))) => {
2240                 // `Self` in impl (we know the concrete type).
2241                 assert_eq!(opt_self_ty, None);
2242                 self.prohibit_generics(path.segments);
2243                 // Try to evaluate any array length constants.
2244                 let normalized_ty = self.normalize_ty(span, tcx.at(span).type_of(def_id));
2245                 if forbid_generic && normalized_ty.definitely_needs_subst(tcx) {
2246                     let mut err = tcx.sess.struct_span_err(
2247                         path.span,
2248                         "generic `Self` types are currently not permitted in anonymous constants",
2249                     );
2250                     if let Some(hir::Node::Item(&hir::Item {
2251                         kind: hir::ItemKind::Impl(ref impl_),
2252                         ..
2253                     })) = tcx.hir().get_if_local(def_id)
2254                     {
2255                         err.span_note(impl_.self_ty.span, "not a concrete type");
2256                     }
2257                     err.emit();
2258                     tcx.ty_error()
2259                 } else {
2260                     normalized_ty
2261                 }
2262             }
2263             Res::Def(DefKind::AssocTy, def_id) => {
2264                 debug_assert!(path.segments.len() >= 2);
2265                 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
2266                 self.qpath_to_ty(
2267                     span,
2268                     opt_self_ty,
2269                     def_id,
2270                     &path.segments[path.segments.len() - 2],
2271                     path.segments.last().unwrap(),
2272                 )
2273             }
2274             Res::PrimTy(prim_ty) => {
2275                 assert_eq!(opt_self_ty, None);
2276                 self.prohibit_generics(path.segments);
2277                 match prim_ty {
2278                     hir::PrimTy::Bool => tcx.types.bool,
2279                     hir::PrimTy::Char => tcx.types.char,
2280                     hir::PrimTy::Int(it) => tcx.mk_mach_int(ty::int_ty(it)),
2281                     hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(ty::uint_ty(uit)),
2282                     hir::PrimTy::Float(ft) => tcx.mk_mach_float(ty::float_ty(ft)),
2283                     hir::PrimTy::Str => tcx.types.str_,
2284                 }
2285             }
2286             Res::Err => {
2287                 self.set_tainted_by_errors();
2288                 self.tcx().ty_error()
2289             }
2290             _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
2291         }
2292     }
2293
2294     /// Parses the programmer's textual representation of a type into our
2295     /// internal notion of a type.
2296     pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
2297         self.ast_ty_to_ty_inner(ast_ty, false)
2298     }
2299
2300     /// Turns a `hir::Ty` into a `Ty`. For diagnostics' purposes we keep track of whether trait
2301     /// objects are borrowed like `&dyn Trait` to avoid emitting redundant errors.
2302     #[tracing::instrument(level = "debug", skip(self))]
2303     fn ast_ty_to_ty_inner(&self, ast_ty: &hir::Ty<'_>, borrowed: bool) -> Ty<'tcx> {
2304         let tcx = self.tcx();
2305
2306         let result_ty = match ast_ty.kind {
2307             hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(&ty)),
2308             hir::TyKind::Ptr(ref mt) => {
2309                 tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(&mt.ty), mutbl: mt.mutbl })
2310             }
2311             hir::TyKind::Rptr(ref region, ref mt) => {
2312                 let r = self.ast_region_to_region(region, None);
2313                 debug!(?r);
2314                 let t = self.ast_ty_to_ty_inner(&mt.ty, true);
2315                 tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
2316             }
2317             hir::TyKind::Never => tcx.types.never,
2318             hir::TyKind::Tup(ref fields) => {
2319                 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
2320             }
2321             hir::TyKind::BareFn(ref bf) => {
2322                 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
2323
2324                 tcx.mk_fn_ptr(self.ty_of_fn(
2325                     ast_ty.hir_id,
2326                     bf.unsafety,
2327                     bf.abi,
2328                     &bf.decl,
2329                     &hir::Generics::empty(),
2330                     None,
2331                     Some(ast_ty),
2332                 ))
2333             }
2334             hir::TyKind::TraitObject(ref bounds, ref lifetime, _) => {
2335                 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime, borrowed)
2336             }
2337             hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
2338                 debug!(?maybe_qself, ?path);
2339                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
2340                 self.res_to_ty(opt_self_ty, path, false)
2341             }
2342             hir::TyKind::OpaqueDef(item_id, ref lifetimes) => {
2343                 let opaque_ty = tcx.hir().item(item_id);
2344                 let def_id = item_id.def_id.to_def_id();
2345
2346                 match opaque_ty.kind {
2347                     hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
2348                         self.impl_trait_ty_to_ty(def_id, lifetimes, impl_trait_fn.is_some())
2349                     }
2350                     ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
2351                 }
2352             }
2353             hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
2354                 debug!(?qself, ?segment);
2355                 let ty = self.ast_ty_to_ty(qself);
2356
2357                 let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
2358                     path.res
2359                 } else {
2360                     Res::Err
2361                 };
2362                 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
2363                     .map(|(ty, _, _)| ty)
2364                     .unwrap_or_else(|_| tcx.ty_error())
2365             }
2366             hir::TyKind::Path(hir::QPath::LangItem(lang_item, span)) => {
2367                 let def_id = tcx.require_lang_item(lang_item, Some(span));
2368                 let (substs, _) = self.create_substs_for_ast_path(
2369                     span,
2370                     def_id,
2371                     &[],
2372                     &hir::PathSegment::invalid(),
2373                     &GenericArgs::none(),
2374                     true,
2375                     None,
2376                 );
2377                 self.normalize_ty(span, tcx.at(span).type_of(def_id).subst(tcx, substs))
2378             }
2379             hir::TyKind::Array(ref ty, ref length) => {
2380                 let length_def_id = tcx.hir().local_def_id(length.hir_id);
2381                 let length = ty::Const::from_anon_const(tcx, length_def_id);
2382                 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
2383                 self.normalize_ty(ast_ty.span, array_ty)
2384             }
2385             hir::TyKind::Typeof(ref e) => {
2386                 tcx.sess.emit_err(TypeofReservedKeywordUsed { span: ast_ty.span });
2387                 tcx.type_of(tcx.hir().local_def_id(e.hir_id))
2388             }
2389             hir::TyKind::Infer => {
2390                 // Infer also appears as the type of arguments or return
2391                 // values in an ExprKind::Closure, or as
2392                 // the type of local variables. Both of these cases are
2393                 // handled specially and will not descend into this routine.
2394                 self.ty_infer(None, ast_ty.span)
2395             }
2396             hir::TyKind::Err => tcx.ty_error(),
2397         };
2398
2399         debug!(?result_ty);
2400
2401         self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
2402         result_ty
2403     }
2404
2405     fn impl_trait_ty_to_ty(
2406         &self,
2407         def_id: DefId,
2408         lifetimes: &[hir::GenericArg<'_>],
2409         replace_parent_lifetimes: bool,
2410     ) -> Ty<'tcx> {
2411         debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
2412         let tcx = self.tcx();
2413
2414         let generics = tcx.generics_of(def_id);
2415
2416         debug!("impl_trait_ty_to_ty: generics={:?}", generics);
2417         let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
2418             if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
2419                 // Our own parameters are the resolved lifetimes.
2420                 match param.kind {
2421                     GenericParamDefKind::Lifetime
2422                         if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] =>
2423                     {
2424                         self.ast_region_to_region(lifetime, None).into()
2425                     }
2426                     _ => bug!(),
2427                 }
2428             } else {
2429                 match param.kind {
2430                     // For RPIT (return position impl trait), only lifetimes
2431                     // mentioned in the impl Trait predicate are captured by
2432                     // the opaque type, so the lifetime parameters from the
2433                     // parent item need to be replaced with `'static`.
2434                     //
2435                     // For `impl Trait` in the types of statics, constants,
2436                     // locals and type aliases. These capture all parent
2437                     // lifetimes, so they can use their identity subst.
2438                     GenericParamDefKind::Lifetime if replace_parent_lifetimes => {
2439                         tcx.lifetimes.re_static.into()
2440                     }
2441                     _ => tcx.mk_param_from_def(param),
2442                 }
2443             }
2444         });
2445         debug!("impl_trait_ty_to_ty: substs={:?}", substs);
2446
2447         let ty = tcx.mk_opaque(def_id, substs);
2448         debug!("impl_trait_ty_to_ty: {}", ty);
2449         ty
2450     }
2451
2452     pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
2453         match ty.kind {
2454             hir::TyKind::Infer if expected_ty.is_some() => {
2455                 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
2456                 expected_ty.unwrap()
2457             }
2458             _ => self.ast_ty_to_ty(ty),
2459         }
2460     }
2461
2462     pub fn ty_of_fn(
2463         &self,
2464         hir_id: hir::HirId,
2465         unsafety: hir::Unsafety,
2466         abi: abi::Abi,
2467         decl: &hir::FnDecl<'_>,
2468         generics: &hir::Generics<'_>,
2469         ident_span: Option<Span>,
2470         hir_ty: Option<&hir::Ty<'_>>,
2471     ) -> ty::PolyFnSig<'tcx> {
2472         debug!("ty_of_fn");
2473
2474         let tcx = self.tcx();
2475         let bound_vars = tcx.late_bound_vars(hir_id);
2476         debug!(?bound_vars);
2477
2478         // We proactively collect all the inferred type params to emit a single error per fn def.
2479         let mut visitor = PlaceholderHirTyCollector::default();
2480         for ty in decl.inputs {
2481             visitor.visit_ty(ty);
2482         }
2483         walk_generics(&mut visitor, generics);
2484
2485         let input_tys = decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
2486         let output_ty = match decl.output {
2487             hir::FnRetTy::Return(ref output) => {
2488                 visitor.visit_ty(output);
2489                 self.ast_ty_to_ty(output)
2490             }
2491             hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
2492         };
2493
2494         debug!("ty_of_fn: output_ty={:?}", output_ty);
2495
2496         let fn_ty = tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, unsafety, abi);
2497         let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);
2498
2499         if !self.allow_ty_infer() {
2500             // We always collect the spans for placeholder types when evaluating `fn`s, but we
2501             // only want to emit an error complaining about them if infer types (`_`) are not
2502             // allowed. `allow_ty_infer` gates this behavior. We check for the presence of
2503             // `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.
2504
2505             crate::collect::placeholder_type_error(
2506                 tcx,
2507                 ident_span.map(|sp| sp.shrink_to_hi()),
2508                 generics.params,
2509                 visitor.0,
2510                 true,
2511                 hir_ty,
2512                 "function",
2513             );
2514         }
2515
2516         // Find any late-bound regions declared in return type that do
2517         // not appear in the arguments. These are not well-formed.
2518         //
2519         // Example:
2520         //     for<'a> fn() -> &'a str <-- 'a is bad
2521         //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
2522         let inputs = bare_fn_ty.inputs();
2523         let late_bound_in_args =
2524             tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
2525         let output = bare_fn_ty.output();
2526         let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
2527
2528         self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
2529             struct_span_err!(
2530                 tcx.sess,
2531                 decl.output.span(),
2532                 E0581,
2533                 "return type references {}, which is not constrained by the fn input types",
2534                 br_name
2535             )
2536         });
2537
2538         bare_fn_ty
2539     }
2540
2541     fn validate_late_bound_regions(
2542         &self,
2543         constrained_regions: FxHashSet<ty::BoundRegionKind>,
2544         referenced_regions: FxHashSet<ty::BoundRegionKind>,
2545         generate_err: impl Fn(&str) -> rustc_errors::DiagnosticBuilder<'tcx>,
2546     ) {
2547         for br in referenced_regions.difference(&constrained_regions) {
2548             let br_name = match *br {
2549                 ty::BrNamed(_, name) => format!("lifetime `{}`", name),
2550                 ty::BrAnon(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
2551             };
2552
2553             let mut err = generate_err(&br_name);
2554
2555             if let ty::BrAnon(_) = *br {
2556                 // The only way for an anonymous lifetime to wind up
2557                 // in the return type but **also** be unconstrained is
2558                 // if it only appears in "associated types" in the
2559                 // input. See #47511 and #62200 for examples. In this case,
2560                 // though we can easily give a hint that ought to be
2561                 // relevant.
2562                 err.note(
2563                     "lifetimes appearing in an associated type are not considered constrained",
2564                 );
2565             }
2566
2567             err.emit();
2568         }
2569     }
2570
2571     /// Given the bounds on an object, determines what single region bound (if any) we can
2572     /// use to summarize this type. The basic idea is that we will use the bound the user
2573     /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2574     /// for region bounds. It may be that we can derive no bound at all, in which case
2575     /// we return `None`.
2576     fn compute_object_lifetime_bound(
2577         &self,
2578         span: Span,
2579         existential_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
2580     ) -> Option<ty::Region<'tcx>> // if None, use the default
2581     {
2582         let tcx = self.tcx();
2583
2584         debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
2585
2586         // No explicit region bound specified. Therefore, examine trait
2587         // bounds and see if we can derive region bounds from those.
2588         let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
2589
2590         // If there are no derived region bounds, then report back that we
2591         // can find no region bound. The caller will use the default.
2592         if derived_region_bounds.is_empty() {
2593             return None;
2594         }
2595
2596         // If any of the derived region bounds are 'static, that is always
2597         // the best choice.
2598         if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
2599             return Some(tcx.lifetimes.re_static);
2600         }
2601
2602         // Determine whether there is exactly one unique region in the set
2603         // of derived region bounds. If so, use that. Otherwise, report an
2604         // error.
2605         let r = derived_region_bounds[0];
2606         if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
2607             tcx.sess.emit_err(AmbiguousLifetimeBound { span });
2608         }
2609         Some(r)
2610     }
2611 }