]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_typeck/src/astconv/mod.rs
Actually infer args in visitors
[rust.git] / compiler / rustc_typeck / src / astconv / mod.rs
1 //! Conversion from AST representation of types to the `ty.rs` representation.
2 //! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
3 //! instance of `AstConv`.
4
5 mod errors;
6 mod generics;
7
8 use crate::bounds::Bounds;
9 use crate::collect::PlaceholderHirTyCollector;
10 use crate::errors::{
11     AmbiguousLifetimeBound, MultipleRelaxedDefaultBounds, TraitObjectDeclaredWithNoTraits,
12     TypeofReservedKeywordUsed, ValueOfAssociatedStructAlreadySpecified,
13 };
14 use crate::middle::resolve_lifetime as rl;
15 use crate::require_c_abi_if_c_variadic;
16 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
17 use rustc_errors::{struct_span_err, Applicability, ErrorReported, FatalError};
18 use rustc_hir as hir;
19 use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
20 use rustc_hir::def_id::{DefId, LocalDefId};
21 use rustc_hir::intravisit::{walk_generics, Visitor as _};
22 use rustc_hir::lang_items::LangItem;
23 use rustc_hir::{Constness, GenericArg, GenericArgs};
24 use rustc_middle::ty::subst::{self, InternalSubsts, Subst, SubstsRef};
25 use rustc_middle::ty::GenericParamDefKind;
26 use rustc_middle::ty::{self, Const, DefIdTree, Ty, TyCtxt, TypeFoldable};
27 use rustc_session::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
28 use rustc_span::lev_distance::find_best_match_for_name;
29 use rustc_span::symbol::{Ident, Symbol};
30 use rustc_span::{Span, DUMMY_SP};
31 use rustc_target::spec::abi;
32 use rustc_trait_selection::traits;
33 use rustc_trait_selection::traits::astconv_object_safety_violations;
34 use rustc_trait_selection::traits::error_reporting::report_object_safety_error;
35 use rustc_trait_selection::traits::wf::object_region_bounds;
36
37 use smallvec::SmallVec;
38 use std::array;
39 use std::collections::BTreeSet;
40 use std::slice;
41
42 #[derive(Debug)]
43 pub struct PathSeg(pub DefId, pub usize);
44
45 pub trait AstConv<'tcx> {
46     fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
47
48     fn item_def_id(&self) -> Option<DefId>;
49
50     fn default_constness_for_trait_bounds(&self) -> Constness;
51
52     /// Returns predicates in scope of the form `X: Foo<T>`, where `X`
53     /// is a type parameter `X` with the given id `def_id` and T
54     /// matches `assoc_name`. This is a subset of the full set of
55     /// predicates.
56     ///
57     /// This is used for one specific purpose: resolving "short-hand"
58     /// associated type references like `T::Item`. In principle, we
59     /// would do that by first getting the full set of predicates in
60     /// scope and then filtering down to find those that apply to `T`,
61     /// but this can lead to cycle errors. The problem is that we have
62     /// to do this resolution *in order to create the predicates in
63     /// the first place*. Hence, we have this "special pass".
64     fn get_type_parameter_bounds(
65         &self,
66         span: Span,
67         def_id: DefId,
68         assoc_name: Ident,
69     ) -> ty::GenericPredicates<'tcx>;
70
71     /// Returns the lifetime to use when a lifetime is omitted (and not elided).
72     fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
73     -> Option<ty::Region<'tcx>>;
74
75     /// Returns the type to use when a type is omitted.
76     fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
77
78     /// Returns `true` if `_` is allowed in type signatures in the current context.
79     fn allow_ty_infer(&self) -> bool;
80
81     /// Returns the const to use when a const is omitted.
82     fn ct_infer(
83         &self,
84         ty: Ty<'tcx>,
85         param: Option<&ty::GenericParamDef>,
86         span: Span,
87     ) -> &'tcx Const<'tcx>;
88
89     /// Projecting an associated type from a (potentially)
90     /// higher-ranked trait reference is more complicated, because of
91     /// the possibility of late-bound regions appearing in the
92     /// associated type binding. This is not legal in function
93     /// signatures for that reason. In a function body, we can always
94     /// handle it because we can use inference variables to remove the
95     /// late-bound regions.
96     fn projected_ty_from_poly_trait_ref(
97         &self,
98         span: Span,
99         item_def_id: DefId,
100         item_segment: &hir::PathSegment<'_>,
101         poly_trait_ref: ty::PolyTraitRef<'tcx>,
102     ) -> Ty<'tcx>;
103
104     /// Normalize an associated type coming from the user.
105     fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
106
107     /// Invoked when we encounter an error from some prior pass
108     /// (e.g., resolve) that is translated into a ty-error. This is
109     /// used to help suppress derived errors typeck might otherwise
110     /// report.
111     fn set_tainted_by_errors(&self);
112
113     fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
114 }
115
116 pub enum SizedByDefault {
117     Yes,
118     No,
119 }
120
121 #[derive(Debug)]
122 struct ConvertedBinding<'a, 'tcx> {
123     hir_id: hir::HirId,
124     item_name: Ident,
125     kind: ConvertedBindingKind<'a, 'tcx>,
126     gen_args: &'a GenericArgs<'a>,
127     span: Span,
128 }
129
130 #[derive(Debug)]
131 enum ConvertedBindingKind<'a, 'tcx> {
132     Equality(Ty<'tcx>),
133     Constraint(&'a [hir::GenericBound<'a>]),
134 }
135
136 /// New-typed boolean indicating whether explicit late-bound lifetimes
137 /// are present in a set of generic arguments.
138 ///
139 /// For example if we have some method `fn f<'a>(&'a self)` implemented
140 /// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
141 /// is late-bound so should not be provided explicitly. Thus, if `f` is
142 /// instantiated with some generic arguments providing `'a` explicitly,
143 /// we taint those arguments with `ExplicitLateBound::Yes` so that we
144 /// can provide an appropriate diagnostic later.
145 #[derive(Copy, Clone, PartialEq)]
146 pub enum ExplicitLateBound {
147     Yes,
148     No,
149 }
150
151 #[derive(Copy, Clone, PartialEq)]
152 pub enum IsMethodCall {
153     Yes,
154     No,
155 }
156
157 /// Denotes the "position" of a generic argument, indicating if it is a generic type,
158 /// generic function or generic method call.
159 #[derive(Copy, Clone, PartialEq)]
160 pub(crate) enum GenericArgPosition {
161     Type,
162     Value, // e.g., functions
163     MethodCall,
164 }
165
166 /// A marker denoting that the generic arguments that were
167 /// provided did not match the respective generic parameters.
168 #[derive(Clone, Default)]
169 pub struct GenericArgCountMismatch {
170     /// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
171     pub reported: Option<ErrorReported>,
172     /// A list of spans of arguments provided that were not valid.
173     pub invalid_args: Vec<Span>,
174 }
175
176 /// Decorates the result of a generic argument count mismatch
177 /// check with whether explicit late bounds were provided.
178 #[derive(Clone)]
179 pub struct GenericArgCountResult {
180     pub explicit_late_bound: ExplicitLateBound,
181     pub correct: Result<(), GenericArgCountMismatch>,
182 }
183
184 pub trait CreateSubstsForGenericArgsCtxt<'a, 'tcx> {
185     fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'a>>, bool);
186
187     fn provided_kind(
188         &mut self,
189         param: &ty::GenericParamDef,
190         arg: &GenericArg<'_>,
191     ) -> subst::GenericArg<'tcx>;
192
193     fn inferred_kind(
194         &mut self,
195         substs: Option<&[subst::GenericArg<'tcx>]>,
196         param: &ty::GenericParamDef,
197         infer_args: bool,
198     ) -> subst::GenericArg<'tcx>;
199 }
200
201 impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
202     #[tracing::instrument(level = "debug", skip(self))]
203     pub fn ast_region_to_region(
204         &self,
205         lifetime: &hir::Lifetime,
206         def: Option<&ty::GenericParamDef>,
207     ) -> ty::Region<'tcx> {
208         let tcx = self.tcx();
209         let lifetime_name = |def_id| tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id));
210
211         let r = match tcx.named_region(lifetime.hir_id) {
212             Some(rl::Region::Static) => tcx.lifetimes.re_static,
213
214             Some(rl::Region::LateBound(debruijn, index, def_id, _)) => {
215                 let name = lifetime_name(def_id.expect_local());
216                 let br = ty::BoundRegion {
217                     var: ty::BoundVar::from_u32(index),
218                     kind: ty::BrNamed(def_id, name),
219                 };
220                 tcx.mk_region(ty::ReLateBound(debruijn, br))
221             }
222
223             Some(rl::Region::LateBoundAnon(debruijn, index, anon_index)) => {
224                 let br = ty::BoundRegion {
225                     var: ty::BoundVar::from_u32(index),
226                     kind: ty::BrAnon(anon_index),
227                 };
228                 tcx.mk_region(ty::ReLateBound(debruijn, br))
229             }
230
231             Some(rl::Region::EarlyBound(index, id, _)) => {
232                 let name = lifetime_name(id.expect_local());
233                 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: id, index, name }))
234             }
235
236             Some(rl::Region::Free(scope, id)) => {
237                 let name = lifetime_name(id.expect_local());
238                 tcx.mk_region(ty::ReFree(ty::FreeRegion {
239                     scope,
240                     bound_region: ty::BrNamed(id, name),
241                 }))
242
243                 // (*) -- not late-bound, won't change
244             }
245
246             None => {
247                 self.re_infer(def, lifetime.span).unwrap_or_else(|| {
248                     debug!(?lifetime, "unelided lifetime in signature");
249
250                     // This indicates an illegal lifetime
251                     // elision. `resolve_lifetime` should have
252                     // reported an error in this case -- but if
253                     // not, let's error out.
254                     tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
255
256                     // Supply some dummy value. We don't have an
257                     // `re_error`, annoyingly, so use `'static`.
258                     tcx.lifetimes.re_static
259                 })
260             }
261         };
262
263         debug!("ast_region_to_region(lifetime={:?}) yields {:?}", lifetime, r);
264
265         r
266     }
267
268     /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
269     /// returns an appropriate set of substitutions for this particular reference to `I`.
270     pub fn ast_path_substs_for_ty(
271         &self,
272         span: Span,
273         def_id: DefId,
274         item_segment: &hir::PathSegment<'_>,
275     ) -> SubstsRef<'tcx> {
276         let (substs, _) = self.create_substs_for_ast_path(
277             span,
278             def_id,
279             &[],
280             item_segment,
281             item_segment.args(),
282             item_segment.infer_args,
283             None,
284         );
285         let assoc_bindings = self.create_assoc_bindings_for_generic_args(item_segment.args());
286
287         if let Some(b) = assoc_bindings.first() {
288             Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
289         }
290
291         substs
292     }
293
294     /// Given the type/lifetime/const arguments provided to some path (along with
295     /// an implicit `Self`, if this is a trait reference), returns the complete
296     /// set of substitutions. This may involve applying defaulted type parameters.
297     /// Also returns back constraints on associated types.
298     ///
299     /// Example:
300     ///
301     /// ```
302     /// T: std::ops::Index<usize, Output = u32>
303     /// ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
304     /// ```
305     ///
306     /// 1. The `self_ty` here would refer to the type `T`.
307     /// 2. The path in question is the path to the trait `std::ops::Index`,
308     ///    which will have been resolved to a `def_id`
309     /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
310     ///    parameters are returned in the `SubstsRef`, the associated type bindings like
311     ///    `Output = u32` are returned in the `Vec<ConvertedBinding...>` result.
312     ///
313     /// Note that the type listing given here is *exactly* what the user provided.
314     ///
315     /// For (generic) associated types
316     ///
317     /// ```
318     /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
319     /// ```
320     ///
321     /// We have the parent substs are the substs for the parent trait:
322     /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
323     /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
324     /// lists: `[Vec<u8>, u8, 'a]`.
325     #[tracing::instrument(level = "debug", skip(self, span))]
326     fn create_substs_for_ast_path<'a>(
327         &self,
328         span: Span,
329         def_id: DefId,
330         parent_substs: &[subst::GenericArg<'tcx>],
331         seg: &hir::PathSegment<'_>,
332         generic_args: &'a hir::GenericArgs<'_>,
333         infer_args: bool,
334         self_ty: Option<Ty<'tcx>>,
335     ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
336         // If the type is parameterized by this region, then replace this
337         // region with the current anon region binding (in other words,
338         // whatever & would get replaced with).
339
340         let tcx = self.tcx();
341         let generics = tcx.generics_of(def_id);
342         debug!("generics: {:?}", generics);
343
344         if generics.has_self {
345             if generics.parent.is_some() {
346                 // The parent is a trait so it should have at least one subst
347                 // for the `Self` type.
348                 assert!(!parent_substs.is_empty())
349             } else {
350                 // This item (presumably a trait) needs a self-type.
351                 assert!(self_ty.is_some());
352             }
353         } else {
354             assert!(self_ty.is_none() && parent_substs.is_empty());
355         }
356
357         let arg_count = Self::check_generic_arg_count(
358             tcx,
359             span,
360             def_id,
361             seg,
362             &generics,
363             &generic_args,
364             GenericArgPosition::Type,
365             self_ty.is_some(),
366             infer_args,
367         );
368
369         // Skip processing if type has no generic parameters.
370         // Traits always have `Self` as a generic parameter, which means they will not return early
371         // here and so associated type bindings will be handled regardless of whether there are any
372         // non-`Self` generic parameters.
373         if generics.params.len() == 0 {
374             return (tcx.intern_substs(&[]), arg_count);
375         }
376
377         let is_object = self_ty.map_or(false, |ty| ty == self.tcx().types.trait_object_dummy_self);
378
379         struct SubstsForAstPathCtxt<'a, 'tcx> {
380             astconv: &'a (dyn AstConv<'tcx> + 'a),
381             def_id: DefId,
382             generic_args: &'a GenericArgs<'a>,
383             span: Span,
384             missing_type_params: Vec<String>,
385             inferred_params: Vec<Span>,
386             infer_args: bool,
387             is_object: bool,
388         }
389
390         impl<'tcx, 'a> SubstsForAstPathCtxt<'tcx, 'a> {
391             fn default_needs_object_self(&mut self, param: &ty::GenericParamDef) -> bool {
392                 let tcx = self.astconv.tcx();
393                 if let GenericParamDefKind::Type { has_default, .. } = param.kind {
394                     if self.is_object && has_default {
395                         let default_ty = tcx.at(self.span).type_of(param.def_id);
396                         let self_param = tcx.types.self_param;
397                         if default_ty.walk().any(|arg| arg == self_param.into()) {
398                             // There is no suitable inference default for a type parameter
399                             // that references self, in an object type.
400                             return true;
401                         }
402                     }
403                 }
404
405                 false
406             }
407         }
408
409         impl<'a, 'tcx> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for SubstsForAstPathCtxt<'a, 'tcx> {
410             fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'a>>, bool) {
411                 if did == self.def_id {
412                     (Some(self.generic_args), self.infer_args)
413                 } else {
414                     // The last component of this tuple is unimportant.
415                     (None, false)
416                 }
417             }
418
419             fn provided_kind(
420                 &mut self,
421                 param: &ty::GenericParamDef,
422                 arg: &GenericArg<'_>,
423             ) -> subst::GenericArg<'tcx> {
424                 let tcx = self.astconv.tcx();
425                 match (&param.kind, arg) {
426                     (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
427                         self.astconv.ast_region_to_region(&lt, Some(param)).into()
428                     }
429                     (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
430                         if has_default {
431                             tcx.check_optional_stability(
432                                 param.def_id,
433                                 Some(arg.id()),
434                                 arg.span(),
435                                 None,
436                                 |_, _| {
437                                     // Default generic parameters may not be marked
438                                     // with stability attributes, i.e. when the
439                                     // default parameter was defined at the same time
440                                     // as the rest of the type. As such, we ignore missing
441                                     // stability attributes.
442                                 },
443                             )
444                         }
445                         if let (hir::TyKind::Infer, false) =
446                             (&ty.kind, self.astconv.allow_ty_infer())
447                         {
448                             self.inferred_params.push(ty.span);
449                             tcx.ty_error().into()
450                         } else {
451                             self.astconv.ast_ty_to_ty(&ty).into()
452                         }
453                     }
454                     (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
455                         ty::Const::from_opt_const_arg_anon_const(
456                             tcx,
457                             ty::WithOptConstParam {
458                                 did: tcx.hir().local_def_id(ct.value.hir_id),
459                                 const_param_did: Some(param.def_id),
460                             },
461                         )
462                         .into()
463                     }
464                     (&GenericParamDefKind::Const { has_default }, hir::GenericArg::Infer(inf)) => {
465                         if has_default {
466                             tcx.const_param_default(param.def_id).into()
467                         } else if self.astconv.allow_ty_infer() {
468                             // FIXME(const_generics): Actually infer parameter here?
469                             todo!()
470                         } else {
471                             self.inferred_params.push(inf.span);
472                             tcx.ty_error().into()
473                         }
474                     }
475                     (
476                         &GenericParamDefKind::Type { has_default, .. },
477                         hir::GenericArg::Infer(inf),
478                     ) => {
479                         if has_default {
480                             tcx.check_optional_stability(
481                                 param.def_id,
482                                 Some(arg.id()),
483                                 arg.span(),
484                                 None,
485                                 |_, _| {
486                                     // Default generic parameters may not be marked
487                                     // with stability attributes, i.e. when the
488                                     // default parameter was defined at the same time
489                                     // as the rest of the type. As such, we ignore missing
490                                     // stability attributes.
491                                 },
492                             );
493                         }
494                         if self.astconv.allow_ty_infer() {
495                             self.astconv.ast_ty_to_ty(&inf.to_ty()).into()
496                         } else {
497                             self.inferred_params.push(inf.span);
498                             tcx.ty_error().into()
499                         }
500                     }
501                     _ => unreachable!(),
502                 }
503             }
504
505             fn inferred_kind(
506                 &mut self,
507                 substs: Option<&[subst::GenericArg<'tcx>]>,
508                 param: &ty::GenericParamDef,
509                 infer_args: bool,
510             ) -> subst::GenericArg<'tcx> {
511                 let tcx = self.astconv.tcx();
512                 match param.kind {
513                     GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
514                     GenericParamDefKind::Type { has_default, .. } => {
515                         if !infer_args && has_default {
516                             // No type parameter provided, but a default exists.
517
518                             // If we are converting an object type, then the
519                             // `Self` parameter is unknown. However, some of the
520                             // other type parameters may reference `Self` in their
521                             // defaults. This will lead to an ICE if we are not
522                             // careful!
523                             if self.default_needs_object_self(param) {
524                                 self.missing_type_params.push(param.name.to_string());
525                                 tcx.ty_error().into()
526                             } else {
527                                 // This is a default type parameter.
528                                 self.astconv
529                                     .normalize_ty(
530                                         self.span,
531                                         tcx.at(self.span).type_of(param.def_id).subst_spanned(
532                                             tcx,
533                                             substs.unwrap(),
534                                             Some(self.span),
535                                         ),
536                                     )
537                                     .into()
538                             }
539                         } else if infer_args {
540                             // No type parameters were provided, we can infer all.
541                             let param = if !self.default_needs_object_self(param) {
542                                 Some(param)
543                             } else {
544                                 None
545                             };
546                             self.astconv.ty_infer(param, self.span).into()
547                         } else {
548                             // We've already errored above about the mismatch.
549                             tcx.ty_error().into()
550                         }
551                     }
552                     GenericParamDefKind::Const { has_default } => {
553                         let ty = tcx.at(self.span).type_of(param.def_id);
554                         if !infer_args && has_default {
555                             tcx.const_param_default(param.def_id)
556                                 .subst_spanned(tcx, substs.unwrap(), Some(self.span))
557                                 .into()
558                         } else {
559                             if infer_args {
560                                 self.astconv.ct_infer(ty, Some(param), self.span).into()
561                             } else {
562                                 // We've already errored above about the mismatch.
563                                 tcx.const_error(ty).into()
564                             }
565                         }
566                     }
567                 }
568             }
569         }
570
571         let mut substs_ctx = SubstsForAstPathCtxt {
572             astconv: self,
573             def_id,
574             span,
575             generic_args,
576             missing_type_params: vec![],
577             inferred_params: vec![],
578             infer_args,
579             is_object,
580         };
581         let substs = Self::create_substs_for_generic_args(
582             tcx,
583             def_id,
584             parent_substs,
585             self_ty.is_some(),
586             self_ty,
587             &arg_count,
588             &mut substs_ctx,
589         );
590
591         self.complain_about_missing_type_params(
592             substs_ctx.missing_type_params,
593             def_id,
594             span,
595             generic_args.args.is_empty(),
596         );
597
598         debug!(
599             "create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
600             generics, self_ty, substs
601         );
602
603         (substs, arg_count)
604     }
605
606     fn create_assoc_bindings_for_generic_args<'a>(
607         &self,
608         generic_args: &'a hir::GenericArgs<'_>,
609     ) -> Vec<ConvertedBinding<'a, 'tcx>> {
610         // Convert associated-type bindings or constraints into a separate vector.
611         // Example: Given this:
612         //
613         //     T: Iterator<Item = u32>
614         //
615         // The `T` is passed in as a self-type; the `Item = u32` is
616         // not a "type parameter" of the `Iterator` trait, but rather
617         // a restriction on `<T as Iterator>::Item`, so it is passed
618         // back separately.
619         let assoc_bindings = generic_args
620             .bindings
621             .iter()
622             .map(|binding| {
623                 let kind = match binding.kind {
624                     hir::TypeBindingKind::Equality { ref ty } => {
625                         ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty))
626                     }
627                     hir::TypeBindingKind::Constraint { ref bounds } => {
628                         ConvertedBindingKind::Constraint(bounds)
629                     }
630                 };
631                 ConvertedBinding {
632                     hir_id: binding.hir_id,
633                     item_name: binding.ident,
634                     kind,
635                     gen_args: binding.gen_args,
636                     span: binding.span,
637                 }
638             })
639             .collect();
640
641         assoc_bindings
642     }
643
644     crate fn create_substs_for_associated_item(
645         &self,
646         tcx: TyCtxt<'tcx>,
647         span: Span,
648         item_def_id: DefId,
649         item_segment: &hir::PathSegment<'_>,
650         parent_substs: SubstsRef<'tcx>,
651     ) -> SubstsRef<'tcx> {
652         debug!(
653             "create_substs_for_associated_item(span: {:?}, item_def_id: {:?}, item_segment: {:?}",
654             span, item_def_id, item_segment
655         );
656         if tcx.generics_of(item_def_id).params.is_empty() {
657             self.prohibit_generics(slice::from_ref(item_segment));
658
659             parent_substs
660         } else {
661             self.create_substs_for_ast_path(
662                 span,
663                 item_def_id,
664                 parent_substs,
665                 item_segment,
666                 item_segment.args(),
667                 item_segment.infer_args,
668                 None,
669             )
670             .0
671         }
672     }
673
674     /// Instantiates the path for the given trait reference, assuming that it's
675     /// bound to a valid trait type. Returns the `DefId` of the defining trait.
676     /// The type _cannot_ be a type other than a trait type.
677     ///
678     /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
679     /// are disallowed. Otherwise, they are pushed onto the vector given.
680     pub fn instantiate_mono_trait_ref(
681         &self,
682         trait_ref: &hir::TraitRef<'_>,
683         self_ty: Ty<'tcx>,
684     ) -> ty::TraitRef<'tcx> {
685         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
686
687         self.ast_path_to_mono_trait_ref(
688             trait_ref.path.span,
689             trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
690             self_ty,
691             trait_ref.path.segments.last().unwrap(),
692         )
693     }
694
695     /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
696     /// a full trait reference. The resulting trait reference is returned. This may also generate
697     /// auxiliary bounds, which are added to `bounds`.
698     ///
699     /// Example:
700     ///
701     /// ```
702     /// poly_trait_ref = Iterator<Item = u32>
703     /// self_ty = Foo
704     /// ```
705     ///
706     /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
707     ///
708     /// **A note on binders:** against our usual convention, there is an implied bounder around
709     /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
710     /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
711     /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
712     /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
713     /// however.
714     #[tracing::instrument(level = "debug", skip(self, span, constness, bounds, speculative))]
715     pub fn instantiate_poly_trait_ref(
716         &self,
717         trait_ref: &hir::TraitRef<'_>,
718         span: Span,
719         constness: Constness,
720         self_ty: Ty<'tcx>,
721         bounds: &mut Bounds<'tcx>,
722         speculative: bool,
723     ) -> GenericArgCountResult {
724         let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
725
726         self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
727
728         let tcx = self.tcx();
729         let bound_vars = tcx.late_bound_vars(trait_ref.hir_ref_id);
730         debug!(?bound_vars);
731
732         let (substs, arg_count) = self.create_substs_for_ast_trait_ref(
733             trait_ref.path.span,
734             trait_def_id,
735             self_ty,
736             trait_ref.path.segments.last().unwrap(),
737         );
738         let assoc_bindings = self
739             .create_assoc_bindings_for_generic_args(trait_ref.path.segments.last().unwrap().args());
740
741         let poly_trait_ref =
742             ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
743
744         debug!(?poly_trait_ref, ?assoc_bindings);
745         bounds.trait_bounds.push((poly_trait_ref, span, constness));
746
747         let mut dup_bindings = FxHashMap::default();
748         for binding in &assoc_bindings {
749             // Specify type to assert that error was already reported in `Err` case.
750             let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
751                 trait_ref.hir_ref_id,
752                 poly_trait_ref,
753                 binding,
754                 bounds,
755                 speculative,
756                 &mut dup_bindings,
757                 binding.span,
758             );
759             // Okay to ignore `Err` because of `ErrorReported` (see above).
760         }
761
762         arg_count
763     }
764
765     pub fn instantiate_lang_item_trait_ref(
766         &self,
767         lang_item: hir::LangItem,
768         span: Span,
769         hir_id: hir::HirId,
770         args: &GenericArgs<'_>,
771         self_ty: Ty<'tcx>,
772         bounds: &mut Bounds<'tcx>,
773     ) {
774         let trait_def_id = self.tcx().require_lang_item(lang_item, Some(span));
775
776         let (substs, _) = self.create_substs_for_ast_path(
777             span,
778             trait_def_id,
779             &[],
780             &hir::PathSegment::invalid(),
781             args,
782             false,
783             Some(self_ty),
784         );
785         let assoc_bindings = self.create_assoc_bindings_for_generic_args(args);
786         let tcx = self.tcx();
787         let bound_vars = tcx.late_bound_vars(hir_id);
788         let poly_trait_ref =
789             ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
790         bounds.trait_bounds.push((poly_trait_ref, span, Constness::NotConst));
791
792         let mut dup_bindings = FxHashMap::default();
793         for binding in assoc_bindings {
794             let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
795                 hir_id,
796                 poly_trait_ref,
797                 &binding,
798                 bounds,
799                 false,
800                 &mut dup_bindings,
801                 span,
802             );
803         }
804     }
805
806     fn ast_path_to_mono_trait_ref(
807         &self,
808         span: Span,
809         trait_def_id: DefId,
810         self_ty: Ty<'tcx>,
811         trait_segment: &hir::PathSegment<'_>,
812     ) -> ty::TraitRef<'tcx> {
813         let (substs, _) =
814             self.create_substs_for_ast_trait_ref(span, trait_def_id, self_ty, trait_segment);
815         let assoc_bindings = self.create_assoc_bindings_for_generic_args(trait_segment.args());
816         if let Some(b) = assoc_bindings.first() {
817             Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
818         }
819         ty::TraitRef::new(trait_def_id, substs)
820     }
821
822     #[tracing::instrument(level = "debug", skip(self, span))]
823     fn create_substs_for_ast_trait_ref<'a>(
824         &self,
825         span: Span,
826         trait_def_id: DefId,
827         self_ty: Ty<'tcx>,
828         trait_segment: &'a hir::PathSegment<'a>,
829     ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
830         self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);
831
832         self.create_substs_for_ast_path(
833             span,
834             trait_def_id,
835             &[],
836             trait_segment,
837             trait_segment.args(),
838             trait_segment.infer_args,
839             Some(self_ty),
840         )
841     }
842
843     fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
844         self.tcx()
845             .associated_items(trait_def_id)
846             .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
847             .is_some()
848     }
849
850     // Returns `true` if a bounds list includes `?Sized`.
851     pub fn is_unsized(&self, ast_bounds: &[hir::GenericBound<'_>], span: Span) -> bool {
852         let tcx = self.tcx();
853
854         // Try to find an unbound in bounds.
855         let mut unbound = None;
856         for ab in ast_bounds {
857             if let hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = ab {
858                 if unbound.is_none() {
859                     unbound = Some(&ptr.trait_ref);
860                 } else {
861                     tcx.sess.emit_err(MultipleRelaxedDefaultBounds { span });
862                 }
863             }
864         }
865
866         let kind_id = tcx.lang_items().require(LangItem::Sized);
867         match unbound {
868             Some(tpb) => {
869                 // FIXME(#8559) currently requires the unbound to be built-in.
870                 if let Ok(kind_id) = kind_id {
871                     if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
872                         tcx.sess.span_warn(
873                             span,
874                             "default bound relaxed for a type parameter, but \
875                              this does nothing because the given bound is not \
876                              a default; only `?Sized` is supported",
877                         );
878                         return false;
879                     }
880                 }
881             }
882             _ if kind_id.is_ok() => {
883                 return false;
884             }
885             // No lang item for `Sized`, so we can't add it as a bound.
886             None => {}
887         }
888
889         true
890     }
891
892     /// This helper takes a *converted* parameter type (`param_ty`)
893     /// and an *unconverted* list of bounds:
894     ///
895     /// ```text
896     /// fn foo<T: Debug>
897     ///        ^  ^^^^^ `ast_bounds` parameter, in HIR form
898     ///        |
899     ///        `param_ty`, in ty form
900     /// ```
901     ///
902     /// It adds these `ast_bounds` into the `bounds` structure.
903     ///
904     /// **A note on binders:** there is an implied binder around
905     /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
906     /// for more details.
907     #[tracing::instrument(level = "debug", skip(self, bounds))]
908     fn add_bounds(
909         &self,
910         param_ty: Ty<'tcx>,
911         ast_bounds: &[hir::GenericBound<'_>],
912         bounds: &mut Bounds<'tcx>,
913         bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
914     ) {
915         let constness = self.default_constness_for_trait_bounds();
916         for ast_bound in ast_bounds {
917             match *ast_bound {
918                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => {
919                     self.instantiate_poly_trait_ref(
920                         &b.trait_ref,
921                         b.span,
922                         constness,
923                         param_ty,
924                         bounds,
925                         false,
926                     );
927                 }
928                 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::MaybeConst) => {
929                     self.instantiate_poly_trait_ref(
930                         &b.trait_ref,
931                         b.span,
932                         Constness::NotConst,
933                         param_ty,
934                         bounds,
935                         false,
936                     );
937                 }
938                 hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
939                 hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => self
940                     .instantiate_lang_item_trait_ref(
941                         lang_item, span, hir_id, args, param_ty, bounds,
942                     ),
943                 hir::GenericBound::Outlives(ref l) => bounds.region_bounds.push((
944                     ty::Binder::bind_with_vars(self.ast_region_to_region(l, None), bound_vars),
945                     l.span,
946                 )),
947             }
948         }
949     }
950
951     /// Translates a list of bounds from the HIR into the `Bounds` data structure.
952     /// The self-type for the bounds is given by `param_ty`.
953     ///
954     /// Example:
955     ///
956     /// ```
957     /// fn foo<T: Bar + Baz>() { }
958     ///        ^  ^^^^^^^^^ ast_bounds
959     ///        param_ty
960     /// ```
961     ///
962     /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
963     /// considered `Sized` unless there is an explicit `?Sized` bound.  This would be true in the
964     /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
965     ///
966     /// `span` should be the declaration size of the parameter.
967     pub fn compute_bounds(
968         &self,
969         param_ty: Ty<'tcx>,
970         ast_bounds: &[hir::GenericBound<'_>],
971         sized_by_default: SizedByDefault,
972         span: Span,
973     ) -> Bounds<'tcx> {
974         self.compute_bounds_inner(param_ty, &ast_bounds, sized_by_default, span)
975     }
976
977     /// Convert the bounds in `ast_bounds` that refer to traits which define an associated type
978     /// named `assoc_name` into ty::Bounds. Ignore the rest.
979     pub fn compute_bounds_that_match_assoc_type(
980         &self,
981         param_ty: Ty<'tcx>,
982         ast_bounds: &[hir::GenericBound<'_>],
983         sized_by_default: SizedByDefault,
984         span: Span,
985         assoc_name: Ident,
986     ) -> Bounds<'tcx> {
987         let mut result = Vec::new();
988
989         for ast_bound in ast_bounds {
990             if let Some(trait_ref) = ast_bound.trait_ref() {
991                 if let Some(trait_did) = trait_ref.trait_def_id() {
992                     if self.tcx().trait_may_define_assoc_type(trait_did, assoc_name) {
993                         result.push(ast_bound.clone());
994                     }
995                 }
996             }
997         }
998
999         self.compute_bounds_inner(param_ty, &result, sized_by_default, span)
1000     }
1001
1002     fn compute_bounds_inner(
1003         &self,
1004         param_ty: Ty<'tcx>,
1005         ast_bounds: &[hir::GenericBound<'_>],
1006         sized_by_default: SizedByDefault,
1007         span: Span,
1008     ) -> Bounds<'tcx> {
1009         let mut bounds = Bounds::default();
1010
1011         self.add_bounds(param_ty, ast_bounds, &mut bounds, ty::List::empty());
1012
1013         bounds.implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
1014             if !self.is_unsized(ast_bounds, span) { Some(span) } else { None }
1015         } else {
1016             None
1017         };
1018
1019         bounds
1020     }
1021
1022     /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
1023     /// onto `bounds`.
1024     ///
1025     /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
1026     /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
1027     /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
1028     #[tracing::instrument(
1029         level = "debug",
1030         skip(self, bounds, speculative, dup_bindings, path_span)
1031     )]
1032     fn add_predicates_for_ast_type_binding(
1033         &self,
1034         hir_ref_id: hir::HirId,
1035         trait_ref: ty::PolyTraitRef<'tcx>,
1036         binding: &ConvertedBinding<'_, 'tcx>,
1037         bounds: &mut Bounds<'tcx>,
1038         speculative: bool,
1039         dup_bindings: &mut FxHashMap<DefId, Span>,
1040         path_span: Span,
1041     ) -> Result<(), ErrorReported> {
1042         // Given something like `U: SomeTrait<T = X>`, we want to produce a
1043         // predicate like `<U as SomeTrait>::T = X`. This is somewhat
1044         // subtle in the event that `T` is defined in a supertrait of
1045         // `SomeTrait`, because in that case we need to upcast.
1046         //
1047         // That is, consider this case:
1048         //
1049         // ```
1050         // trait SubTrait: SuperTrait<i32> { }
1051         // trait SuperTrait<A> { type T; }
1052         //
1053         // ... B: SubTrait<T = foo> ...
1054         // ```
1055         //
1056         // We want to produce `<B as SuperTrait<i32>>::T == foo`.
1057
1058         let tcx = self.tcx();
1059
1060         let candidate =
1061             if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
1062                 // Simple case: X is defined in the current trait.
1063                 trait_ref
1064             } else {
1065                 // Otherwise, we have to walk through the supertraits to find
1066                 // those that do.
1067                 self.one_bound_for_assoc_type(
1068                     || traits::supertraits(tcx, trait_ref),
1069                     || trait_ref.print_only_trait_path().to_string(),
1070                     binding.item_name,
1071                     path_span,
1072                     || match binding.kind {
1073                         ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
1074                         _ => None,
1075                     },
1076                 )?
1077             };
1078
1079         let (assoc_ident, def_scope) =
1080             tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
1081
1082         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
1083         // of calling `filter_by_name_and_kind`.
1084         let assoc_ty = tcx
1085             .associated_items(candidate.def_id())
1086             .filter_by_name_unhygienic(assoc_ident.name)
1087             .find(|i| {
1088                 i.kind == ty::AssocKind::Type && i.ident.normalize_to_macros_2_0() == assoc_ident
1089             })
1090             .expect("missing associated type");
1091
1092         if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
1093             tcx.sess
1094                 .struct_span_err(
1095                     binding.span,
1096                     &format!("associated type `{}` is private", binding.item_name),
1097                 )
1098                 .span_label(binding.span, "private associated type")
1099                 .emit();
1100         }
1101         tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span, None);
1102
1103         if !speculative {
1104             dup_bindings
1105                 .entry(assoc_ty.def_id)
1106                 .and_modify(|prev_span| {
1107                     self.tcx().sess.emit_err(ValueOfAssociatedStructAlreadySpecified {
1108                         span: binding.span,
1109                         prev_span: *prev_span,
1110                         item_name: binding.item_name,
1111                         def_path: tcx.def_path_str(assoc_ty.container.id()),
1112                     });
1113                 })
1114                 .or_insert(binding.span);
1115         }
1116
1117         // Include substitutions for generic parameters of associated types
1118         let projection_ty = candidate.map_bound(|trait_ref| {
1119             let ident = Ident::new(assoc_ty.ident.name, binding.item_name.span);
1120             let item_segment = hir::PathSegment {
1121                 ident,
1122                 hir_id: Some(binding.hir_id),
1123                 res: None,
1124                 args: Some(binding.gen_args),
1125                 infer_args: false,
1126             };
1127
1128             let substs_trait_ref_and_assoc_item = self.create_substs_for_associated_item(
1129                 tcx,
1130                 path_span,
1131                 assoc_ty.def_id,
1132                 &item_segment,
1133                 trait_ref.substs,
1134             );
1135
1136             debug!(
1137                 "add_predicates_for_ast_type_binding: substs for trait-ref and assoc_item: {:?}",
1138                 substs_trait_ref_and_assoc_item
1139             );
1140
1141             ty::ProjectionTy {
1142                 item_def_id: assoc_ty.def_id,
1143                 substs: substs_trait_ref_and_assoc_item,
1144             }
1145         });
1146
1147         if !speculative {
1148             // Find any late-bound regions declared in `ty` that are not
1149             // declared in the trait-ref or assoc_ty. These are not well-formed.
1150             //
1151             // Example:
1152             //
1153             //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
1154             //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
1155             if let ConvertedBindingKind::Equality(ty) = binding.kind {
1156                 let late_bound_in_trait_ref =
1157                     tcx.collect_constrained_late_bound_regions(&projection_ty);
1158                 let late_bound_in_ty =
1159                     tcx.collect_referenced_late_bound_regions(&trait_ref.rebind(ty));
1160                 debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
1161                 debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
1162
1163                 // FIXME: point at the type params that don't have appropriate lifetimes:
1164                 // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
1165                 //                         ----  ----     ^^^^^^^
1166                 self.validate_late_bound_regions(
1167                     late_bound_in_trait_ref,
1168                     late_bound_in_ty,
1169                     |br_name| {
1170                         struct_span_err!(
1171                             tcx.sess,
1172                             binding.span,
1173                             E0582,
1174                             "binding for associated type `{}` references {}, \
1175                              which does not appear in the trait input types",
1176                             binding.item_name,
1177                             br_name
1178                         )
1179                     },
1180                 );
1181             }
1182         }
1183
1184         match binding.kind {
1185             ConvertedBindingKind::Equality(ref ty) => {
1186                 // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
1187                 // the "projection predicate" for:
1188                 //
1189                 // `<T as Iterator>::Item = u32`
1190                 bounds.projection_bounds.push((
1191                     projection_ty.map_bound(|projection_ty| {
1192                         debug!(
1193                             "add_predicates_for_ast_type_binding: projection_ty {:?}, substs: {:?}",
1194                             projection_ty, projection_ty.substs
1195                         );
1196                         ty::ProjectionPredicate { projection_ty, ty }
1197                     }),
1198                     binding.span,
1199                 ));
1200             }
1201             ConvertedBindingKind::Constraint(ast_bounds) => {
1202                 // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
1203                 //
1204                 // `<T as Iterator>::Item: Debug`
1205                 //
1206                 // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
1207                 // parameter to have a skipped binder.
1208                 let param_ty = tcx.mk_ty(ty::Projection(projection_ty.skip_binder()));
1209                 self.add_bounds(param_ty, ast_bounds, bounds, candidate.bound_vars());
1210             }
1211         }
1212         Ok(())
1213     }
1214
1215     fn ast_path_to_ty(
1216         &self,
1217         span: Span,
1218         did: DefId,
1219         item_segment: &hir::PathSegment<'_>,
1220     ) -> Ty<'tcx> {
1221         let substs = self.ast_path_substs_for_ty(span, did, item_segment);
1222         self.normalize_ty(span, self.tcx().at(span).type_of(did).subst(self.tcx(), substs))
1223     }
1224
1225     fn conv_object_ty_poly_trait_ref(
1226         &self,
1227         span: Span,
1228         trait_bounds: &[hir::PolyTraitRef<'_>],
1229         lifetime: &hir::Lifetime,
1230         borrowed: bool,
1231     ) -> Ty<'tcx> {
1232         let tcx = self.tcx();
1233
1234         let mut bounds = Bounds::default();
1235         let mut potential_assoc_types = Vec::new();
1236         let dummy_self = self.tcx().types.trait_object_dummy_self;
1237         for trait_bound in trait_bounds.iter().rev() {
1238             if let GenericArgCountResult {
1239                 correct:
1240                     Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
1241                 ..
1242             } = self.instantiate_poly_trait_ref(
1243                 &trait_bound.trait_ref,
1244                 trait_bound.span,
1245                 Constness::NotConst,
1246                 dummy_self,
1247                 &mut bounds,
1248                 false,
1249             ) {
1250                 potential_assoc_types.extend(cur_potential_assoc_types);
1251             }
1252         }
1253
1254         // Expand trait aliases recursively and check that only one regular (non-auto) trait
1255         // is used and no 'maybe' bounds are used.
1256         let expanded_traits =
1257             traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
1258         let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
1259             expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
1260         if regular_traits.len() > 1 {
1261             let first_trait = &regular_traits[0];
1262             let additional_trait = &regular_traits[1];
1263             let mut err = struct_span_err!(
1264                 tcx.sess,
1265                 additional_trait.bottom().1,
1266                 E0225,
1267                 "only auto traits can be used as additional traits in a trait object"
1268             );
1269             additional_trait.label_with_exp_info(
1270                 &mut err,
1271                 "additional non-auto trait",
1272                 "additional use",
1273             );
1274             first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
1275             err.help(&format!(
1276                 "consider creating a new trait with all of these as super-traits and using that \
1277                  trait here instead: `trait NewTrait: {} {{}}`",
1278                 regular_traits
1279                     .iter()
1280                     .map(|t| t.trait_ref().print_only_trait_path().to_string())
1281                     .collect::<Vec<_>>()
1282                     .join(" + "),
1283             ));
1284             err.note(
1285                 "auto-traits like `Send` and `Sync` are traits that have special properties; \
1286                  for more information on them, visit \
1287                  <https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
1288             );
1289             err.emit();
1290         }
1291
1292         if regular_traits.is_empty() && auto_traits.is_empty() {
1293             tcx.sess.emit_err(TraitObjectDeclaredWithNoTraits { span });
1294             return tcx.ty_error();
1295         }
1296
1297         // Check that there are no gross object safety violations;
1298         // most importantly, that the supertraits don't contain `Self`,
1299         // to avoid ICEs.
1300         for item in &regular_traits {
1301             let object_safety_violations =
1302                 astconv_object_safety_violations(tcx, item.trait_ref().def_id());
1303             if !object_safety_violations.is_empty() {
1304                 report_object_safety_error(
1305                     tcx,
1306                     span,
1307                     item.trait_ref().def_id(),
1308                     &object_safety_violations[..],
1309                 )
1310                 .emit();
1311                 return tcx.ty_error();
1312             }
1313         }
1314
1315         // Use a `BTreeSet` to keep output in a more consistent order.
1316         let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
1317
1318         let regular_traits_refs_spans = bounds
1319             .trait_bounds
1320             .into_iter()
1321             .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
1322
1323         for (base_trait_ref, span, constness) in regular_traits_refs_spans {
1324             assert_eq!(constness, Constness::NotConst);
1325
1326             for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
1327                 debug!(
1328                     "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
1329                     obligation.predicate
1330                 );
1331
1332                 let bound_predicate = obligation.predicate.kind();
1333                 match bound_predicate.skip_binder() {
1334                     ty::PredicateKind::Trait(pred, _) => {
1335                         let pred = bound_predicate.rebind(pred);
1336                         associated_types.entry(span).or_default().extend(
1337                             tcx.associated_items(pred.def_id())
1338                                 .in_definition_order()
1339                                 .filter(|item| item.kind == ty::AssocKind::Type)
1340                                 .map(|item| item.def_id),
1341                         );
1342                     }
1343                     ty::PredicateKind::Projection(pred) => {
1344                         let pred = bound_predicate.rebind(pred);
1345                         // A `Self` within the original bound will be substituted with a
1346                         // `trait_object_dummy_self`, so check for that.
1347                         let references_self =
1348                             pred.skip_binder().ty.walk().any(|arg| arg == dummy_self.into());
1349
1350                         // If the projection output contains `Self`, force the user to
1351                         // elaborate it explicitly to avoid a lot of complexity.
1352                         //
1353                         // The "classicaly useful" case is the following:
1354                         // ```
1355                         //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1356                         //         type MyOutput;
1357                         //     }
1358                         // ```
1359                         //
1360                         // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
1361                         // but actually supporting that would "expand" to an infinitely-long type
1362                         // `fix $ Ï„ â†’ dyn MyTrait<MyOutput = X, Output = <Ï„ as MyTrait>::MyOutput`.
1363                         //
1364                         // Instead, we force the user to write
1365                         // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
1366                         // the discussion in #56288 for alternatives.
1367                         if !references_self {
1368                             // Include projections defined on supertraits.
1369                             bounds.projection_bounds.push((pred, span));
1370                         }
1371                     }
1372                     _ => (),
1373                 }
1374             }
1375         }
1376
1377         for (projection_bound, _) in &bounds.projection_bounds {
1378             for def_ids in associated_types.values_mut() {
1379                 def_ids.remove(&projection_bound.projection_def_id());
1380             }
1381         }
1382
1383         self.complain_about_missing_associated_types(
1384             associated_types,
1385             potential_assoc_types,
1386             trait_bounds,
1387         );
1388
1389         // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
1390         // `dyn Trait + Send`.
1391         // We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
1392         // the bounds
1393         let mut duplicates = FxHashSet::default();
1394         auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
1395         debug!("regular_traits: {:?}", regular_traits);
1396         debug!("auto_traits: {:?}", auto_traits);
1397
1398         // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
1399         let existential_trait_refs = regular_traits.iter().map(|i| {
1400             i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
1401                 if trait_ref.self_ty() != dummy_self {
1402                     // FIXME: There appears to be a missing filter on top of `expand_trait_aliases`,
1403                     // which picks up non-supertraits where clauses - but also, the object safety
1404                     // completely ignores trait aliases, which could be object safety hazards. We
1405                     // `delay_span_bug` here to avoid an ICE in stable even when the feature is
1406                     // disabled. (#66420)
1407                     tcx.sess.delay_span_bug(
1408                         DUMMY_SP,
1409                         &format!(
1410                             "trait_ref_to_existential called on {:?} with non-dummy Self",
1411                             trait_ref,
1412                         ),
1413                     );
1414                 }
1415                 ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
1416             })
1417         });
1418         let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
1419             bound.map_bound(|b| {
1420                 if b.projection_ty.self_ty() != dummy_self {
1421                     tcx.sess.delay_span_bug(
1422                         DUMMY_SP,
1423                         &format!("trait_ref_to_existential called on {:?} with non-dummy Self", b),
1424                     );
1425                 }
1426                 ty::ExistentialProjection::erase_self_ty(tcx, b)
1427             })
1428         });
1429
1430         let regular_trait_predicates = existential_trait_refs
1431             .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
1432         let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
1433             ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
1434         });
1435         // N.b. principal, projections, auto traits
1436         // FIXME: This is actually wrong with multiple principals in regards to symbol mangling
1437         let mut v = regular_trait_predicates
1438             .chain(
1439                 existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
1440             )
1441             .chain(auto_trait_predicates)
1442             .collect::<SmallVec<[_; 8]>>();
1443         v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
1444         v.dedup();
1445         let existential_predicates = tcx.mk_poly_existential_predicates(v.into_iter());
1446
1447         // Use explicitly-specified region bound.
1448         let region_bound = if !lifetime.is_elided() {
1449             self.ast_region_to_region(lifetime, None)
1450         } else {
1451             self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
1452                 if tcx.named_region(lifetime.hir_id).is_some() {
1453                     self.ast_region_to_region(lifetime, None)
1454                 } else {
1455                     self.re_infer(None, span).unwrap_or_else(|| {
1456                         let mut err = struct_span_err!(
1457                             tcx.sess,
1458                             span,
1459                             E0228,
1460                             "the lifetime bound for this object type cannot be deduced \
1461                              from context; please supply an explicit bound"
1462                         );
1463                         if borrowed {
1464                             // We will have already emitted an error E0106 complaining about a
1465                             // missing named lifetime in `&dyn Trait`, so we elide this one.
1466                             err.delay_as_bug();
1467                         } else {
1468                             err.emit();
1469                         }
1470                         tcx.lifetimes.re_static
1471                     })
1472                 }
1473             })
1474         };
1475         debug!("region_bound: {:?}", region_bound);
1476
1477         let ty = tcx.mk_dynamic(existential_predicates, region_bound);
1478         debug!("trait_object_type: {:?}", ty);
1479         ty
1480     }
1481
1482     fn report_ambiguous_associated_type(
1483         &self,
1484         span: Span,
1485         type_str: &str,
1486         trait_str: &str,
1487         name: Symbol,
1488     ) {
1489         let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
1490         if let (true, Ok(snippet)) = (
1491             self.tcx()
1492                 .sess
1493                 .confused_type_with_std_module
1494                 .borrow()
1495                 .keys()
1496                 .any(|full_span| full_span.contains(span)),
1497             self.tcx().sess.source_map().span_to_snippet(span),
1498         ) {
1499             err.span_suggestion(
1500                 span,
1501                 "you are looking for the module in `std`, not the primitive type",
1502                 format!("std::{}", snippet),
1503                 Applicability::MachineApplicable,
1504             );
1505         } else {
1506             err.span_suggestion(
1507                 span,
1508                 "use fully-qualified syntax",
1509                 format!("<{} as {}>::{}", type_str, trait_str, name),
1510                 Applicability::HasPlaceholders,
1511             );
1512         }
1513         err.emit();
1514     }
1515
1516     // Search for a bound on a type parameter which includes the associated item
1517     // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
1518     // This function will fail if there are no suitable bounds or there is
1519     // any ambiguity.
1520     fn find_bound_for_assoc_item(
1521         &self,
1522         ty_param_def_id: LocalDefId,
1523         assoc_name: Ident,
1524         span: Span,
1525     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported> {
1526         let tcx = self.tcx();
1527
1528         debug!(
1529             "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
1530             ty_param_def_id, assoc_name, span,
1531         );
1532
1533         let predicates = &self
1534             .get_type_parameter_bounds(span, ty_param_def_id.to_def_id(), assoc_name)
1535             .predicates;
1536
1537         debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
1538
1539         let param_hir_id = tcx.hir().local_def_id_to_hir_id(ty_param_def_id);
1540         let param_name = tcx.hir().ty_param_name(param_hir_id);
1541         self.one_bound_for_assoc_type(
1542             || {
1543                 traits::transitive_bounds_that_define_assoc_type(
1544                     tcx,
1545                     predicates.iter().filter_map(|(p, _)| {
1546                         p.to_opt_poly_trait_ref().map(|trait_ref| trait_ref.value)
1547                     }),
1548                     assoc_name,
1549                 )
1550             },
1551             || param_name.to_string(),
1552             assoc_name,
1553             span,
1554             || None,
1555         )
1556     }
1557
1558     // Checks that `bounds` contains exactly one element and reports appropriate
1559     // errors otherwise.
1560     fn one_bound_for_assoc_type<I>(
1561         &self,
1562         all_candidates: impl Fn() -> I,
1563         ty_param_name: impl Fn() -> String,
1564         assoc_name: Ident,
1565         span: Span,
1566         is_equality: impl Fn() -> Option<String>,
1567     ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1568     where
1569         I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
1570     {
1571         let mut matching_candidates = all_candidates()
1572             .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
1573
1574         let bound = match matching_candidates.next() {
1575             Some(bound) => bound,
1576             None => {
1577                 self.complain_about_assoc_type_not_found(
1578                     all_candidates,
1579                     &ty_param_name(),
1580                     assoc_name,
1581                     span,
1582                 );
1583                 return Err(ErrorReported);
1584             }
1585         };
1586
1587         debug!("one_bound_for_assoc_type: bound = {:?}", bound);
1588
1589         if let Some(bound2) = matching_candidates.next() {
1590             debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);
1591
1592             let is_equality = is_equality();
1593             let bounds = array::IntoIter::new([bound, bound2]).chain(matching_candidates);
1594             let mut err = if is_equality.is_some() {
1595                 // More specific Error Index entry.
1596                 struct_span_err!(
1597                     self.tcx().sess,
1598                     span,
1599                     E0222,
1600                     "ambiguous associated type `{}` in bounds of `{}`",
1601                     assoc_name,
1602                     ty_param_name()
1603                 )
1604             } else {
1605                 struct_span_err!(
1606                     self.tcx().sess,
1607                     span,
1608                     E0221,
1609                     "ambiguous associated type `{}` in bounds of `{}`",
1610                     assoc_name,
1611                     ty_param_name()
1612                 )
1613             };
1614             err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
1615
1616             let mut where_bounds = vec![];
1617             for bound in bounds {
1618                 let bound_id = bound.def_id();
1619                 let bound_span = self
1620                     .tcx()
1621                     .associated_items(bound_id)
1622                     .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
1623                     .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
1624
1625                 if let Some(bound_span) = bound_span {
1626                     err.span_label(
1627                         bound_span,
1628                         format!(
1629                             "ambiguous `{}` from `{}`",
1630                             assoc_name,
1631                             bound.print_only_trait_path(),
1632                         ),
1633                     );
1634                     if let Some(constraint) = &is_equality {
1635                         where_bounds.push(format!(
1636                             "        T: {trait}::{assoc} = {constraint}",
1637                             trait=bound.print_only_trait_path(),
1638                             assoc=assoc_name,
1639                             constraint=constraint,
1640                         ));
1641                     } else {
1642                         err.span_suggestion(
1643                             span,
1644                             "use fully qualified syntax to disambiguate",
1645                             format!(
1646                                 "<{} as {}>::{}",
1647                                 ty_param_name(),
1648                                 bound.print_only_trait_path(),
1649                                 assoc_name,
1650                             ),
1651                             Applicability::MaybeIncorrect,
1652                         );
1653                     }
1654                 } else {
1655                     err.note(&format!(
1656                         "associated type `{}` could derive from `{}`",
1657                         ty_param_name(),
1658                         bound.print_only_trait_path(),
1659                     ));
1660                 }
1661             }
1662             if !where_bounds.is_empty() {
1663                 err.help(&format!(
1664                     "consider introducing a new type parameter `T` and adding `where` constraints:\
1665                      \n    where\n        T: {},\n{}",
1666                     ty_param_name(),
1667                     where_bounds.join(",\n"),
1668                 ));
1669             }
1670             err.emit();
1671             if !where_bounds.is_empty() {
1672                 return Err(ErrorReported);
1673             }
1674         }
1675         Ok(bound)
1676     }
1677
1678     // Create a type from a path to an associated type.
1679     // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
1680     // and item_segment is the path segment for `D`. We return a type and a def for
1681     // the whole path.
1682     // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
1683     // parameter or `Self`.
1684     // NOTE: When this function starts resolving `Trait::AssocTy` successfully
1685     // it should also start reportint the `BARE_TRAIT_OBJECTS` lint.
1686     pub fn associated_path_to_ty(
1687         &self,
1688         hir_ref_id: hir::HirId,
1689         span: Span,
1690         qself_ty: Ty<'tcx>,
1691         qself_res: Res,
1692         assoc_segment: &hir::PathSegment<'_>,
1693         permit_variants: bool,
1694     ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
1695         let tcx = self.tcx();
1696         let assoc_ident = assoc_segment.ident;
1697
1698         debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
1699
1700         // Check if we have an enum variant.
1701         let mut variant_resolution = None;
1702         if let ty::Adt(adt_def, _) = qself_ty.kind() {
1703             if adt_def.is_enum() {
1704                 let variant_def = adt_def
1705                     .variants
1706                     .iter()
1707                     .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did));
1708                 if let Some(variant_def) = variant_def {
1709                     if permit_variants {
1710                         tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
1711                         self.prohibit_generics(slice::from_ref(assoc_segment));
1712                         return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
1713                     } else {
1714                         variant_resolution = Some(variant_def.def_id);
1715                     }
1716                 }
1717             }
1718         }
1719
1720         // Find the type of the associated item, and the trait where the associated
1721         // item is declared.
1722         let bound = match (&qself_ty.kind(), qself_res) {
1723             (_, Res::SelfTy(Some(_), Some((impl_def_id, _)))) => {
1724                 // `Self` in an impl of a trait -- we have a concrete self type and a
1725                 // trait reference.
1726                 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
1727                     Some(trait_ref) => trait_ref,
1728                     None => {
1729                         // A cycle error occurred, most likely.
1730                         return Err(ErrorReported);
1731                     }
1732                 };
1733
1734                 self.one_bound_for_assoc_type(
1735                     || traits::supertraits(tcx, ty::Binder::dummy(trait_ref)),
1736                     || "Self".to_string(),
1737                     assoc_ident,
1738                     span,
1739                     || None,
1740                 )?
1741             }
1742             (
1743                 &ty::Param(_),
1744                 Res::SelfTy(Some(param_did), None) | Res::Def(DefKind::TyParam, param_did),
1745             ) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
1746             _ => {
1747                 if variant_resolution.is_some() {
1748                     // Variant in type position
1749                     let msg = format!("expected type, found variant `{}`", assoc_ident);
1750                     tcx.sess.span_err(span, &msg);
1751                 } else if qself_ty.is_enum() {
1752                     let mut err = struct_span_err!(
1753                         tcx.sess,
1754                         assoc_ident.span,
1755                         E0599,
1756                         "no variant named `{}` found for enum `{}`",
1757                         assoc_ident,
1758                         qself_ty,
1759                     );
1760
1761                     let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
1762                     if let Some(suggested_name) = find_best_match_for_name(
1763                         &adt_def
1764                             .variants
1765                             .iter()
1766                             .map(|variant| variant.ident.name)
1767                             .collect::<Vec<Symbol>>(),
1768                         assoc_ident.name,
1769                         None,
1770                     ) {
1771                         err.span_suggestion(
1772                             assoc_ident.span,
1773                             "there is a variant with a similar name",
1774                             suggested_name.to_string(),
1775                             Applicability::MaybeIncorrect,
1776                         );
1777                     } else {
1778                         err.span_label(
1779                             assoc_ident.span,
1780                             format!("variant not found in `{}`", qself_ty),
1781                         );
1782                     }
1783
1784                     if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
1785                         let sp = tcx.sess.source_map().guess_head_span(sp);
1786                         err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
1787                     }
1788
1789                     err.emit();
1790                 } else if !qself_ty.references_error() {
1791                     // Don't print `TyErr` to the user.
1792                     self.report_ambiguous_associated_type(
1793                         span,
1794                         &qself_ty.to_string(),
1795                         "Trait",
1796                         assoc_ident.name,
1797                     );
1798                 }
1799                 return Err(ErrorReported);
1800             }
1801         };
1802
1803         let trait_did = bound.def_id();
1804         let (assoc_ident, def_scope) =
1805             tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
1806
1807         // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
1808         // of calling `filter_by_name_and_kind`.
1809         let item = tcx
1810             .associated_items(trait_did)
1811             .in_definition_order()
1812             .find(|i| {
1813                 i.kind.namespace() == Namespace::TypeNS
1814                     && i.ident.normalize_to_macros_2_0() == assoc_ident
1815             })
1816             .expect("missing associated type");
1817
1818         let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
1819         let ty = self.normalize_ty(span, ty);
1820
1821         let kind = DefKind::AssocTy;
1822         if !item.vis.is_accessible_from(def_scope, tcx) {
1823             let kind = kind.descr(item.def_id);
1824             let msg = format!("{} `{}` is private", kind, assoc_ident);
1825             tcx.sess
1826                 .struct_span_err(span, &msg)
1827                 .span_label(span, &format!("private {}", kind))
1828                 .emit();
1829         }
1830         tcx.check_stability(item.def_id, Some(hir_ref_id), span, None);
1831
1832         if let Some(variant_def_id) = variant_resolution {
1833             tcx.struct_span_lint_hir(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
1834                 let mut err = lint.build("ambiguous associated item");
1835                 let mut could_refer_to = |kind: DefKind, def_id, also| {
1836                     let note_msg = format!(
1837                         "`{}` could{} refer to the {} defined here",
1838                         assoc_ident,
1839                         also,
1840                         kind.descr(def_id)
1841                     );
1842                     err.span_note(tcx.def_span(def_id), &note_msg);
1843                 };
1844
1845                 could_refer_to(DefKind::Variant, variant_def_id, "");
1846                 could_refer_to(kind, item.def_id, " also");
1847
1848                 err.span_suggestion(
1849                     span,
1850                     "use fully-qualified syntax",
1851                     format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
1852                     Applicability::MachineApplicable,
1853                 );
1854
1855                 err.emit();
1856             });
1857         }
1858         Ok((ty, kind, item.def_id))
1859     }
1860
1861     fn qpath_to_ty(
1862         &self,
1863         span: Span,
1864         opt_self_ty: Option<Ty<'tcx>>,
1865         item_def_id: DefId,
1866         trait_segment: &hir::PathSegment<'_>,
1867         item_segment: &hir::PathSegment<'_>,
1868     ) -> Ty<'tcx> {
1869         let tcx = self.tcx();
1870
1871         let trait_def_id = tcx.parent(item_def_id).unwrap();
1872
1873         debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
1874
1875         let self_ty = if let Some(ty) = opt_self_ty {
1876             ty
1877         } else {
1878             let path_str = tcx.def_path_str(trait_def_id);
1879
1880             let def_id = self.item_def_id();
1881
1882             debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
1883
1884             let parent_def_id = def_id
1885                 .and_then(|def_id| {
1886                     def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id))
1887                 })
1888                 .map(|hir_id| tcx.hir().get_parent_did(hir_id).to_def_id());
1889
1890             debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
1891
1892             // If the trait in segment is the same as the trait defining the item,
1893             // use the `<Self as ..>` syntax in the error.
1894             let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
1895             let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
1896
1897             let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
1898                 "Self"
1899             } else {
1900                 "Type"
1901             };
1902
1903             self.report_ambiguous_associated_type(
1904                 span,
1905                 type_name,
1906                 &path_str,
1907                 item_segment.ident.name,
1908             );
1909             return tcx.ty_error();
1910         };
1911
1912         debug!("qpath_to_ty: self_type={:?}", self_ty);
1913
1914         let trait_ref = self.ast_path_to_mono_trait_ref(span, trait_def_id, self_ty, trait_segment);
1915
1916         let item_substs = self.create_substs_for_associated_item(
1917             tcx,
1918             span,
1919             item_def_id,
1920             item_segment,
1921             trait_ref.substs,
1922         );
1923
1924         debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
1925
1926         self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
1927     }
1928
1929     pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment<'a>>>(
1930         &self,
1931         segments: T,
1932     ) -> bool {
1933         let mut has_err = false;
1934         for segment in segments {
1935             let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
1936             for arg in segment.args().args {
1937                 let (span, kind) = match arg {
1938                     hir::GenericArg::Lifetime(lt) => {
1939                         if err_for_lt {
1940                             continue;
1941                         }
1942                         err_for_lt = true;
1943                         has_err = true;
1944                         (lt.span, "lifetime")
1945                     }
1946                     hir::GenericArg::Type(ty) => {
1947                         if err_for_ty {
1948                             continue;
1949                         }
1950                         err_for_ty = true;
1951                         has_err = true;
1952                         (ty.span, "type")
1953                     }
1954                     hir::GenericArg::Const(ct) => {
1955                         if err_for_ct {
1956                             continue;
1957                         }
1958                         err_for_ct = true;
1959                         has_err = true;
1960                         (ct.span, "const")
1961                     }
1962                     hir::GenericArg::Infer(inf) => {
1963                         if err_for_ty {
1964                             continue;
1965                         }
1966                         has_err = true;
1967                         err_for_ty = true;
1968                         (inf.span, "generic")
1969                     }
1970                 };
1971                 let mut err = struct_span_err!(
1972                     self.tcx().sess,
1973                     span,
1974                     E0109,
1975                     "{} arguments are not allowed for this type",
1976                     kind,
1977                 );
1978                 err.span_label(span, format!("{} argument not allowed", kind));
1979                 err.emit();
1980                 if err_for_lt && err_for_ty && err_for_ct {
1981                     break;
1982                 }
1983             }
1984
1985             // Only emit the first error to avoid overloading the user with error messages.
1986             if let [binding, ..] = segment.args().bindings {
1987                 has_err = true;
1988                 Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
1989             }
1990         }
1991         has_err
1992     }
1993
1994     // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
1995     pub fn def_ids_for_value_path_segments(
1996         &self,
1997         segments: &[hir::PathSegment<'_>],
1998         self_ty: Option<Ty<'tcx>>,
1999         kind: DefKind,
2000         def_id: DefId,
2001     ) -> Vec<PathSeg> {
2002         // We need to extract the type parameters supplied by the user in
2003         // the path `path`. Due to the current setup, this is a bit of a
2004         // tricky-process; the problem is that resolve only tells us the
2005         // end-point of the path resolution, and not the intermediate steps.
2006         // Luckily, we can (at least for now) deduce the intermediate steps
2007         // just from the end-point.
2008         //
2009         // There are basically five cases to consider:
2010         //
2011         // 1. Reference to a constructor of a struct:
2012         //
2013         //        struct Foo<T>(...)
2014         //
2015         //    In this case, the parameters are declared in the type space.
2016         //
2017         // 2. Reference to a constructor of an enum variant:
2018         //
2019         //        enum E<T> { Foo(...) }
2020         //
2021         //    In this case, the parameters are defined in the type space,
2022         //    but may be specified either on the type or the variant.
2023         //
2024         // 3. Reference to a fn item or a free constant:
2025         //
2026         //        fn foo<T>() { }
2027         //
2028         //    In this case, the path will again always have the form
2029         //    `a::b::foo::<T>` where only the final segment should have
2030         //    type parameters. However, in this case, those parameters are
2031         //    declared on a value, and hence are in the `FnSpace`.
2032         //
2033         // 4. Reference to a method or an associated constant:
2034         //
2035         //        impl<A> SomeStruct<A> {
2036         //            fn foo<B>(...)
2037         //        }
2038         //
2039         //    Here we can have a path like
2040         //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
2041         //    may appear in two places. The penultimate segment,
2042         //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
2043         //    final segment, `foo::<B>` contains parameters in fn space.
2044         //
2045         // The first step then is to categorize the segments appropriately.
2046
2047         let tcx = self.tcx();
2048
2049         assert!(!segments.is_empty());
2050         let last = segments.len() - 1;
2051
2052         let mut path_segs = vec![];
2053
2054         match kind {
2055             // Case 1. Reference to a struct constructor.
2056             DefKind::Ctor(CtorOf::Struct, ..) => {
2057                 // Everything but the final segment should have no
2058                 // parameters at all.
2059                 let generics = tcx.generics_of(def_id);
2060                 // Variant and struct constructors use the
2061                 // generics of their parent type definition.
2062                 let generics_def_id = generics.parent.unwrap_or(def_id);
2063                 path_segs.push(PathSeg(generics_def_id, last));
2064             }
2065
2066             // Case 2. Reference to a variant constructor.
2067             DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
2068                 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
2069                 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
2070                     debug_assert!(adt_def.is_enum());
2071                     (adt_def.did, last)
2072                 } else if last >= 1 && segments[last - 1].args.is_some() {
2073                     // Everything but the penultimate segment should have no
2074                     // parameters at all.
2075                     let mut def_id = def_id;
2076
2077                     // `DefKind::Ctor` -> `DefKind::Variant`
2078                     if let DefKind::Ctor(..) = kind {
2079                         def_id = tcx.parent(def_id).unwrap()
2080                     }
2081
2082                     // `DefKind::Variant` -> `DefKind::Enum`
2083                     let enum_def_id = tcx.parent(def_id).unwrap();
2084                     (enum_def_id, last - 1)
2085                 } else {
2086                     // FIXME: lint here recommending `Enum::<...>::Variant` form
2087                     // instead of `Enum::Variant::<...>` form.
2088
2089                     // Everything but the final segment should have no
2090                     // parameters at all.
2091                     let generics = tcx.generics_of(def_id);
2092                     // Variant and struct constructors use the
2093                     // generics of their parent type definition.
2094                     (generics.parent.unwrap_or(def_id), last)
2095                 };
2096                 path_segs.push(PathSeg(generics_def_id, index));
2097             }
2098
2099             // Case 3. Reference to a top-level value.
2100             DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static => {
2101                 path_segs.push(PathSeg(def_id, last));
2102             }
2103
2104             // Case 4. Reference to a method or associated const.
2105             DefKind::AssocFn | DefKind::AssocConst => {
2106                 if segments.len() >= 2 {
2107                     let generics = tcx.generics_of(def_id);
2108                     path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
2109                 }
2110                 path_segs.push(PathSeg(def_id, last));
2111             }
2112
2113             kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
2114         }
2115
2116         debug!("path_segs = {:?}", path_segs);
2117
2118         path_segs
2119     }
2120
2121     // Check a type `Path` and convert it to a `Ty`.
2122     pub fn res_to_ty(
2123         &self,
2124         opt_self_ty: Option<Ty<'tcx>>,
2125         path: &hir::Path<'_>,
2126         permit_variants: bool,
2127     ) -> Ty<'tcx> {
2128         let tcx = self.tcx();
2129
2130         debug!(
2131             "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
2132             path.res, opt_self_ty, path.segments
2133         );
2134
2135         let span = path.span;
2136         match path.res {
2137             Res::Def(DefKind::OpaqueTy, did) => {
2138                 // Check for desugared `impl Trait`.
2139                 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
2140                 let item_segment = path.segments.split_last().unwrap();
2141                 self.prohibit_generics(item_segment.1);
2142                 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
2143                 self.normalize_ty(span, tcx.mk_opaque(did, substs))
2144             }
2145             Res::Def(
2146                 DefKind::Enum
2147                 | DefKind::TyAlias
2148                 | DefKind::Struct
2149                 | DefKind::Union
2150                 | DefKind::ForeignTy,
2151                 did,
2152             ) => {
2153                 assert_eq!(opt_self_ty, None);
2154                 self.prohibit_generics(path.segments.split_last().unwrap().1);
2155                 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
2156             }
2157             Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
2158                 // Convert "variant type" as if it were a real type.
2159                 // The resulting `Ty` is type of the variant's enum for now.
2160                 assert_eq!(opt_self_ty, None);
2161
2162                 let path_segs =
2163                     self.def_ids_for_value_path_segments(&path.segments, None, kind, def_id);
2164                 let generic_segs: FxHashSet<_> =
2165                     path_segs.iter().map(|PathSeg(_, index)| index).collect();
2166                 self.prohibit_generics(path.segments.iter().enumerate().filter_map(
2167                     |(index, seg)| {
2168                         if !generic_segs.contains(&index) { Some(seg) } else { None }
2169                     },
2170                 ));
2171
2172                 let PathSeg(def_id, index) = path_segs.last().unwrap();
2173                 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
2174             }
2175             Res::Def(DefKind::TyParam, def_id) => {
2176                 assert_eq!(opt_self_ty, None);
2177                 self.prohibit_generics(path.segments);
2178
2179                 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
2180                 let item_id = tcx.hir().get_parent_node(hir_id);
2181                 let item_def_id = tcx.hir().local_def_id(item_id);
2182                 let generics = tcx.generics_of(item_def_id);
2183                 let index = generics.param_def_id_to_index[&def_id];
2184                 tcx.mk_ty_param(index, tcx.hir().name(hir_id))
2185             }
2186             Res::SelfTy(Some(_), None) => {
2187                 // `Self` in trait or type alias.
2188                 assert_eq!(opt_self_ty, None);
2189                 self.prohibit_generics(path.segments);
2190                 tcx.types.self_param
2191             }
2192             Res::SelfTy(_, Some((def_id, forbid_generic))) => {
2193                 // `Self` in impl (we know the concrete type).
2194                 assert_eq!(opt_self_ty, None);
2195                 self.prohibit_generics(path.segments);
2196                 // Try to evaluate any array length constants.
2197                 let normalized_ty = self.normalize_ty(span, tcx.at(span).type_of(def_id));
2198                 if forbid_generic && normalized_ty.needs_subst() {
2199                     let mut err = tcx.sess.struct_span_err(
2200                         path.span,
2201                         "generic `Self` types are currently not permitted in anonymous constants",
2202                     );
2203                     if let Some(hir::Node::Item(&hir::Item {
2204                         kind: hir::ItemKind::Impl(ref impl_),
2205                         ..
2206                     })) = tcx.hir().get_if_local(def_id)
2207                     {
2208                         err.span_note(impl_.self_ty.span, "not a concrete type");
2209                     }
2210                     err.emit();
2211                     tcx.ty_error()
2212                 } else {
2213                     normalized_ty
2214                 }
2215             }
2216             Res::Def(DefKind::AssocTy, def_id) => {
2217                 debug_assert!(path.segments.len() >= 2);
2218                 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
2219                 self.qpath_to_ty(
2220                     span,
2221                     opt_self_ty,
2222                     def_id,
2223                     &path.segments[path.segments.len() - 2],
2224                     path.segments.last().unwrap(),
2225                 )
2226             }
2227             Res::PrimTy(prim_ty) => {
2228                 assert_eq!(opt_self_ty, None);
2229                 self.prohibit_generics(path.segments);
2230                 match prim_ty {
2231                     hir::PrimTy::Bool => tcx.types.bool,
2232                     hir::PrimTy::Char => tcx.types.char,
2233                     hir::PrimTy::Int(it) => tcx.mk_mach_int(ty::int_ty(it)),
2234                     hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(ty::uint_ty(uit)),
2235                     hir::PrimTy::Float(ft) => tcx.mk_mach_float(ty::float_ty(ft)),
2236                     hir::PrimTy::Str => tcx.types.str_,
2237                 }
2238             }
2239             Res::Err => {
2240                 self.set_tainted_by_errors();
2241                 self.tcx().ty_error()
2242             }
2243             _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
2244         }
2245     }
2246
2247     /// Parses the programmer's textual representation of a type into our
2248     /// internal notion of a type.
2249     pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
2250         self.ast_ty_to_ty_inner(ast_ty, false)
2251     }
2252
2253     /// Turns a `hir::Ty` into a `Ty`. For diagnostics' purposes we keep track of whether trait
2254     /// objects are borrowed like `&dyn Trait` to avoid emitting redundant errors.
2255     #[tracing::instrument(level = "debug", skip(self))]
2256     fn ast_ty_to_ty_inner(&self, ast_ty: &hir::Ty<'_>, borrowed: bool) -> Ty<'tcx> {
2257         let tcx = self.tcx();
2258
2259         let result_ty = match ast_ty.kind {
2260             hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(&ty)),
2261             hir::TyKind::Ptr(ref mt) => {
2262                 tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(&mt.ty), mutbl: mt.mutbl })
2263             }
2264             hir::TyKind::Rptr(ref region, ref mt) => {
2265                 let r = self.ast_region_to_region(region, None);
2266                 debug!(?r);
2267                 let t = self.ast_ty_to_ty_inner(&mt.ty, true);
2268                 tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
2269             }
2270             hir::TyKind::Never => tcx.types.never,
2271             hir::TyKind::Tup(ref fields) => {
2272                 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
2273             }
2274             hir::TyKind::BareFn(ref bf) => {
2275                 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
2276
2277                 tcx.mk_fn_ptr(self.ty_of_fn(
2278                     ast_ty.hir_id,
2279                     bf.unsafety,
2280                     bf.abi,
2281                     &bf.decl,
2282                     &hir::Generics::empty(),
2283                     None,
2284                     Some(ast_ty),
2285                 ))
2286             }
2287             hir::TyKind::TraitObject(ref bounds, ref lifetime, _) => {
2288                 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime, borrowed)
2289             }
2290             hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
2291                 debug!(?maybe_qself, ?path);
2292                 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
2293                 self.res_to_ty(opt_self_ty, path, false)
2294             }
2295             hir::TyKind::OpaqueDef(item_id, ref lifetimes) => {
2296                 let opaque_ty = tcx.hir().item(item_id);
2297                 let def_id = item_id.def_id.to_def_id();
2298
2299                 match opaque_ty.kind {
2300                     hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
2301                         self.impl_trait_ty_to_ty(def_id, lifetimes, impl_trait_fn.is_some())
2302                     }
2303                     ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
2304                 }
2305             }
2306             hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
2307                 debug!(?qself, ?segment);
2308                 let ty = self.ast_ty_to_ty(qself);
2309
2310                 let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
2311                     path.res
2312                 } else {
2313                     Res::Err
2314                 };
2315                 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
2316                     .map(|(ty, _, _)| ty)
2317                     .unwrap_or_else(|_| tcx.ty_error())
2318             }
2319             hir::TyKind::Path(hir::QPath::LangItem(lang_item, span)) => {
2320                 let def_id = tcx.require_lang_item(lang_item, Some(span));
2321                 let (substs, _) = self.create_substs_for_ast_path(
2322                     span,
2323                     def_id,
2324                     &[],
2325                     &hir::PathSegment::invalid(),
2326                     &GenericArgs::none(),
2327                     true,
2328                     None,
2329                 );
2330                 self.normalize_ty(span, tcx.at(span).type_of(def_id).subst(tcx, substs))
2331             }
2332             hir::TyKind::Array(ref ty, ref length) => {
2333                 let length_def_id = tcx.hir().local_def_id(length.hir_id);
2334                 let length = ty::Const::from_anon_const(tcx, length_def_id);
2335                 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
2336                 self.normalize_ty(ast_ty.span, array_ty)
2337             }
2338             hir::TyKind::Typeof(ref e) => {
2339                 tcx.sess.emit_err(TypeofReservedKeywordUsed { span: ast_ty.span });
2340                 tcx.type_of(tcx.hir().local_def_id(e.hir_id))
2341             }
2342             hir::TyKind::Infer => {
2343                 // Infer also appears as the type of arguments or return
2344                 // values in a ExprKind::Closure, or as
2345                 // the type of local variables. Both of these cases are
2346                 // handled specially and will not descend into this routine.
2347                 self.ty_infer(None, ast_ty.span)
2348             }
2349             hir::TyKind::Err => tcx.ty_error(),
2350         };
2351
2352         debug!(?result_ty);
2353
2354         self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
2355         result_ty
2356     }
2357
2358     fn impl_trait_ty_to_ty(
2359         &self,
2360         def_id: DefId,
2361         lifetimes: &[hir::GenericArg<'_>],
2362         replace_parent_lifetimes: bool,
2363     ) -> Ty<'tcx> {
2364         debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
2365         let tcx = self.tcx();
2366
2367         let generics = tcx.generics_of(def_id);
2368
2369         debug!("impl_trait_ty_to_ty: generics={:?}", generics);
2370         let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
2371             if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
2372                 // Our own parameters are the resolved lifetimes.
2373                 match param.kind {
2374                     GenericParamDefKind::Lifetime => {
2375                         if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
2376                             self.ast_region_to_region(lifetime, None).into()
2377                         } else {
2378                             bug!()
2379                         }
2380                     }
2381                     _ => bug!(),
2382                 }
2383             } else {
2384                 match param.kind {
2385                     // For RPIT (return position impl trait), only lifetimes
2386                     // mentioned in the impl Trait predicate are captured by
2387                     // the opaque type, so the lifetime parameters from the
2388                     // parent item need to be replaced with `'static`.
2389                     //
2390                     // For `impl Trait` in the types of statics, constants,
2391                     // locals and type aliases. These capture all parent
2392                     // lifetimes, so they can use their identity subst.
2393                     GenericParamDefKind::Lifetime if replace_parent_lifetimes => {
2394                         tcx.lifetimes.re_static.into()
2395                     }
2396                     _ => tcx.mk_param_from_def(param),
2397                 }
2398             }
2399         });
2400         debug!("impl_trait_ty_to_ty: substs={:?}", substs);
2401
2402         let ty = tcx.mk_opaque(def_id, substs);
2403         debug!("impl_trait_ty_to_ty: {}", ty);
2404         ty
2405     }
2406
2407     pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
2408         match ty.kind {
2409             hir::TyKind::Infer if expected_ty.is_some() => {
2410                 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
2411                 expected_ty.unwrap()
2412             }
2413             _ => self.ast_ty_to_ty(ty),
2414         }
2415     }
2416
2417     pub fn ty_of_fn(
2418         &self,
2419         hir_id: hir::HirId,
2420         unsafety: hir::Unsafety,
2421         abi: abi::Abi,
2422         decl: &hir::FnDecl<'_>,
2423         generics: &hir::Generics<'_>,
2424         ident_span: Option<Span>,
2425         hir_ty: Option<&hir::Ty<'_>>,
2426     ) -> ty::PolyFnSig<'tcx> {
2427         debug!("ty_of_fn");
2428
2429         let tcx = self.tcx();
2430         let bound_vars = tcx.late_bound_vars(hir_id);
2431         debug!(?bound_vars);
2432
2433         // We proactively collect all the inferred type params to emit a single error per fn def.
2434         let mut visitor = PlaceholderHirTyCollector::default();
2435         for ty in decl.inputs {
2436             visitor.visit_ty(ty);
2437         }
2438         walk_generics(&mut visitor, generics);
2439
2440         let input_tys = decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
2441         let output_ty = match decl.output {
2442             hir::FnRetTy::Return(ref output) => {
2443                 visitor.visit_ty(output);
2444                 self.ast_ty_to_ty(output)
2445             }
2446             hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
2447         };
2448
2449         debug!("ty_of_fn: output_ty={:?}", output_ty);
2450
2451         let fn_ty = tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, unsafety, abi);
2452         let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);
2453
2454         if !self.allow_ty_infer() {
2455             // We always collect the spans for placeholder types when evaluating `fn`s, but we
2456             // only want to emit an error complaining about them if infer types (`_`) are not
2457             // allowed. `allow_ty_infer` gates this behavior. We check for the presence of
2458             // `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.
2459
2460             crate::collect::placeholder_type_error(
2461                 tcx,
2462                 ident_span.map(|sp| sp.shrink_to_hi()),
2463                 generics.params,
2464                 visitor.0,
2465                 true,
2466                 hir_ty,
2467                 "function",
2468             );
2469         }
2470
2471         // Find any late-bound regions declared in return type that do
2472         // not appear in the arguments. These are not well-formed.
2473         //
2474         // Example:
2475         //     for<'a> fn() -> &'a str <-- 'a is bad
2476         //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
2477         let inputs = bare_fn_ty.inputs();
2478         let late_bound_in_args =
2479             tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
2480         let output = bare_fn_ty.output();
2481         let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
2482
2483         self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
2484             struct_span_err!(
2485                 tcx.sess,
2486                 decl.output.span(),
2487                 E0581,
2488                 "return type references {}, which is not constrained by the fn input types",
2489                 br_name
2490             )
2491         });
2492
2493         bare_fn_ty
2494     }
2495
2496     fn validate_late_bound_regions(
2497         &self,
2498         constrained_regions: FxHashSet<ty::BoundRegionKind>,
2499         referenced_regions: FxHashSet<ty::BoundRegionKind>,
2500         generate_err: impl Fn(&str) -> rustc_errors::DiagnosticBuilder<'tcx>,
2501     ) {
2502         for br in referenced_regions.difference(&constrained_regions) {
2503             let br_name = match *br {
2504                 ty::BrNamed(_, name) => format!("lifetime `{}`", name),
2505                 ty::BrAnon(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
2506             };
2507
2508             let mut err = generate_err(&br_name);
2509
2510             if let ty::BrAnon(_) = *br {
2511                 // The only way for an anonymous lifetime to wind up
2512                 // in the return type but **also** be unconstrained is
2513                 // if it only appears in "associated types" in the
2514                 // input. See #47511 and #62200 for examples. In this case,
2515                 // though we can easily give a hint that ought to be
2516                 // relevant.
2517                 err.note(
2518                     "lifetimes appearing in an associated type are not considered constrained",
2519                 );
2520             }
2521
2522             err.emit();
2523         }
2524     }
2525
2526     /// Given the bounds on an object, determines what single region bound (if any) we can
2527     /// use to summarize this type. The basic idea is that we will use the bound the user
2528     /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2529     /// for region bounds. It may be that we can derive no bound at all, in which case
2530     /// we return `None`.
2531     fn compute_object_lifetime_bound(
2532         &self,
2533         span: Span,
2534         existential_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
2535     ) -> Option<ty::Region<'tcx>> // if None, use the default
2536     {
2537         let tcx = self.tcx();
2538
2539         debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
2540
2541         // No explicit region bound specified. Therefore, examine trait
2542         // bounds and see if we can derive region bounds from those.
2543         let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
2544
2545         // If there are no derived region bounds, then report back that we
2546         // can find no region bound. The caller will use the default.
2547         if derived_region_bounds.is_empty() {
2548             return None;
2549         }
2550
2551         // If any of the derived region bounds are 'static, that is always
2552         // the best choice.
2553         if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
2554             return Some(tcx.lifetimes.re_static);
2555         }
2556
2557         // Determine whether there is exactly one unique region in the set
2558         // of derived region bounds. If so, use that. Otherwise, report an
2559         // error.
2560         let r = derived_region_bounds[0];
2561         if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
2562             tcx.sess.emit_err(AmbiguousLifetimeBound { span });
2563         }
2564         Some(r)
2565     }
2566 }