]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_ty_utils/src/layout.rs
Rollup merge of #106856 - vadorovsky:fix-atomic-annotations, r=joshtriplett
[rust.git] / compiler / rustc_ty_utils / src / layout.rs
1 use hir::def_id::DefId;
2 use rustc_hir as hir;
3 use rustc_index::bit_set::BitSet;
4 use rustc_index::vec::{Idx, IndexVec};
5 use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal};
6 use rustc_middle::ty::layout::{
7     IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES,
8 };
9 use rustc_middle::ty::{
10     self, subst::SubstsRef, AdtDef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitable,
11 };
12 use rustc_session::{DataTypeKind, FieldInfo, SizeKind, VariantInfo};
13 use rustc_span::symbol::Symbol;
14 use rustc_span::DUMMY_SP;
15 use rustc_target::abi::*;
16
17 use std::fmt::Debug;
18 use std::iter;
19
20 use crate::layout_sanity_check::sanity_check_layout;
21
22 pub fn provide(providers: &mut ty::query::Providers) {
23     *providers = ty::query::Providers { layout_of, ..*providers };
24 }
25
26 #[instrument(skip(tcx, query), level = "debug")]
27 fn layout_of<'tcx>(
28     tcx: TyCtxt<'tcx>,
29     query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
30 ) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> {
31     let (param_env, ty) = query.into_parts();
32     debug!(?ty);
33
34     let param_env = param_env.with_reveal_all_normalized(tcx);
35     let unnormalized_ty = ty;
36
37     // FIXME: We might want to have two different versions of `layout_of`:
38     // One that can be called after typecheck has completed and can use
39     // `normalize_erasing_regions` here and another one that can be called
40     // before typecheck has completed and uses `try_normalize_erasing_regions`.
41     let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
42         Ok(t) => t,
43         Err(normalization_error) => {
44             return Err(LayoutError::NormalizationFailure(ty, normalization_error));
45         }
46     };
47
48     if ty != unnormalized_ty {
49         // Ensure this layout is also cached for the normalized type.
50         return tcx.layout_of(param_env.and(ty));
51     }
52
53     let cx = LayoutCx { tcx, param_env };
54
55     let layout = layout_of_uncached(&cx, ty)?;
56     let layout = TyAndLayout { ty, layout };
57
58     record_layout_for_printing(&cx, layout);
59
60     sanity_check_layout(&cx, &layout);
61
62     Ok(layout)
63 }
64
65 // Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`.
66 // This is used to go between `memory_index` (source field order to memory order)
67 // and `inverse_memory_index` (memory order to source field order).
68 // See also `FieldsShape::Arbitrary::memory_index` for more details.
69 // FIXME(eddyb) build a better abstraction for permutations, if possible.
70 fn invert_mapping(map: &[u32]) -> Vec<u32> {
71     let mut inverse = vec![0; map.len()];
72     for i in 0..map.len() {
73         inverse[map[i] as usize] = i as u32;
74     }
75     inverse
76 }
77
78 fn univariant_uninterned<'tcx>(
79     cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
80     ty: Ty<'tcx>,
81     fields: &[TyAndLayout<'_>],
82     repr: &ReprOptions,
83     kind: StructKind,
84 ) -> Result<LayoutS<VariantIdx>, LayoutError<'tcx>> {
85     let dl = cx.data_layout();
86     let pack = repr.pack;
87     if pack.is_some() && repr.align.is_some() {
88         cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
89         return Err(LayoutError::Unknown(ty));
90     }
91
92     cx.univariant(dl, fields, repr, kind).ok_or(LayoutError::SizeOverflow(ty))
93 }
94
95 fn layout_of_uncached<'tcx>(
96     cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
97     ty: Ty<'tcx>,
98 ) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
99     let tcx = cx.tcx;
100     let param_env = cx.param_env;
101     let dl = cx.data_layout();
102     let scalar_unit = |value: Primitive| {
103         let size = value.size(dl);
104         assert!(size.bits() <= 128);
105         Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
106     };
107     let scalar = |value: Primitive| tcx.intern_layout(LayoutS::scalar(cx, scalar_unit(value)));
108
109     let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| {
110         Ok(tcx.intern_layout(univariant_uninterned(cx, ty, fields, repr, kind)?))
111     };
112     debug_assert!(!ty.has_non_region_infer());
113
114     Ok(match *ty.kind() {
115         // Basic scalars.
116         ty::Bool => tcx.intern_layout(LayoutS::scalar(
117             cx,
118             Scalar::Initialized {
119                 value: Int(I8, false),
120                 valid_range: WrappingRange { start: 0, end: 1 },
121             },
122         )),
123         ty::Char => tcx.intern_layout(LayoutS::scalar(
124             cx,
125             Scalar::Initialized {
126                 value: Int(I32, false),
127                 valid_range: WrappingRange { start: 0, end: 0x10FFFF },
128             },
129         )),
130         ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
131         ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
132         ty::Float(fty) => scalar(match fty {
133             ty::FloatTy::F32 => F32,
134             ty::FloatTy::F64 => F64,
135         }),
136         ty::FnPtr(_) => {
137             let mut ptr = scalar_unit(Pointer(dl.instruction_address_space));
138             ptr.valid_range_mut().start = 1;
139             tcx.intern_layout(LayoutS::scalar(cx, ptr))
140         }
141
142         // The never type.
143         ty::Never => tcx.intern_layout(cx.layout_of_never_type()),
144
145         // Potentially-wide pointers.
146         ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
147             let mut data_ptr = scalar_unit(Pointer(AddressSpace::DATA));
148             if !ty.is_unsafe_ptr() {
149                 data_ptr.valid_range_mut().start = 1;
150             }
151
152             let pointee = tcx.normalize_erasing_regions(param_env, pointee);
153             if pointee.is_sized(tcx, param_env) {
154                 return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr)));
155             }
156
157             let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
158
159             let metadata = if let Some(metadata_def_id) = tcx.lang_items().metadata_type() {
160                 let metadata_ty = tcx.normalize_erasing_regions(
161                     param_env,
162                     tcx.mk_projection(metadata_def_id, [pointee]),
163                 );
164                 let metadata_layout = cx.layout_of(metadata_ty)?;
165                 // If the metadata is a 1-zst, then the pointer is thin.
166                 if metadata_layout.is_zst() && metadata_layout.align.abi.bytes() == 1 {
167                     return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr)));
168                 }
169
170                 let Abi::Scalar(metadata) = metadata_layout.abi else {
171                     return Err(LayoutError::Unknown(unsized_part));
172                 };
173                 metadata
174             } else {
175                 match unsized_part.kind() {
176                     ty::Foreign(..) => {
177                         return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr)));
178                     }
179                     ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
180                     ty::Dynamic(..) => {
181                         let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
182                         vtable.valid_range_mut().start = 1;
183                         vtable
184                     }
185                     _ => {
186                         return Err(LayoutError::Unknown(unsized_part));
187                     }
188                 }
189             };
190
191             // Effectively a (ptr, meta) tuple.
192             tcx.intern_layout(cx.scalar_pair(data_ptr, metadata))
193         }
194
195         ty::Dynamic(_, _, ty::DynStar) => {
196             let mut data = scalar_unit(Int(dl.ptr_sized_integer(), false));
197             data.valid_range_mut().start = 0;
198             let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
199             vtable.valid_range_mut().start = 1;
200             tcx.intern_layout(cx.scalar_pair(data, vtable))
201         }
202
203         // Arrays and slices.
204         ty::Array(element, mut count) => {
205             if count.has_projections() {
206                 count = tcx.normalize_erasing_regions(param_env, count);
207                 if count.has_projections() {
208                     return Err(LayoutError::Unknown(ty));
209                 }
210             }
211
212             let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?;
213             let element = cx.layout_of(element)?;
214             let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?;
215
216             let abi = if count != 0 && ty.is_privately_uninhabited(tcx, param_env) {
217                 Abi::Uninhabited
218             } else {
219                 Abi::Aggregate { sized: true }
220             };
221
222             let largest_niche = if count != 0 { element.largest_niche } else { None };
223
224             tcx.intern_layout(LayoutS {
225                 variants: Variants::Single { index: VariantIdx::new(0) },
226                 fields: FieldsShape::Array { stride: element.size, count },
227                 abi,
228                 largest_niche,
229                 align: element.align,
230                 size,
231             })
232         }
233         ty::Slice(element) => {
234             let element = cx.layout_of(element)?;
235             tcx.intern_layout(LayoutS {
236                 variants: Variants::Single { index: VariantIdx::new(0) },
237                 fields: FieldsShape::Array { stride: element.size, count: 0 },
238                 abi: Abi::Aggregate { sized: false },
239                 largest_niche: None,
240                 align: element.align,
241                 size: Size::ZERO,
242             })
243         }
244         ty::Str => tcx.intern_layout(LayoutS {
245             variants: Variants::Single { index: VariantIdx::new(0) },
246             fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
247             abi: Abi::Aggregate { sized: false },
248             largest_niche: None,
249             align: dl.i8_align,
250             size: Size::ZERO,
251         }),
252
253         // Odd unit types.
254         ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?,
255         ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
256             let mut unit = univariant_uninterned(
257                 cx,
258                 ty,
259                 &[],
260                 &ReprOptions::default(),
261                 StructKind::AlwaysSized,
262             )?;
263             match unit.abi {
264                 Abi::Aggregate { ref mut sized } => *sized = false,
265                 _ => bug!(),
266             }
267             tcx.intern_layout(unit)
268         }
269
270         ty::Generator(def_id, substs, _) => generator_layout(cx, ty, def_id, substs)?,
271
272         ty::Closure(_, ref substs) => {
273             let tys = substs.as_closure().upvar_tys();
274             univariant(
275                 &tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
276                 &ReprOptions::default(),
277                 StructKind::AlwaysSized,
278             )?
279         }
280
281         ty::Tuple(tys) => {
282             let kind =
283                 if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
284
285             univariant(
286                 &tys.iter().map(|k| cx.layout_of(k)).collect::<Result<Vec<_>, _>>()?,
287                 &ReprOptions::default(),
288                 kind,
289             )?
290         }
291
292         // SIMD vector types.
293         ty::Adt(def, substs) if def.repr().simd() => {
294             if !def.is_struct() {
295                 // Should have yielded E0517 by now.
296                 tcx.sess.delay_span_bug(
297                     DUMMY_SP,
298                     "#[repr(simd)] was applied to an ADT that is not a struct",
299                 );
300                 return Err(LayoutError::Unknown(ty));
301             }
302
303             // Supported SIMD vectors are homogeneous ADTs with at least one field:
304             //
305             // * #[repr(simd)] struct S(T, T, T, T);
306             // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
307             // * #[repr(simd)] struct S([T; 4])
308             //
309             // where T is a primitive scalar (integer/float/pointer).
310
311             // SIMD vectors with zero fields are not supported.
312             // (should be caught by typeck)
313             if def.non_enum_variant().fields.is_empty() {
314                 tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
315             }
316
317             // Type of the first ADT field:
318             let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs);
319
320             // Heterogeneous SIMD vectors are not supported:
321             // (should be caught by typeck)
322             for fi in &def.non_enum_variant().fields {
323                 if fi.ty(tcx, substs) != f0_ty {
324                     tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty));
325                 }
326             }
327
328             // The element type and number of elements of the SIMD vector
329             // are obtained from:
330             //
331             // * the element type and length of the single array field, if
332             // the first field is of array type, or
333             //
334             // * the homogeneous field type and the number of fields.
335             let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
336                 // First ADT field is an array:
337
338                 // SIMD vectors with multiple array fields are not supported:
339                 // (should be caught by typeck)
340                 if def.non_enum_variant().fields.len() != 1 {
341                     tcx.sess.fatal(&format!(
342                         "monomorphising SIMD type `{}` with more than one array field",
343                         ty
344                     ));
345                 }
346
347                 // Extract the number of elements from the layout of the array field:
348                 let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else {
349                     return Err(LayoutError::Unknown(ty));
350                 };
351
352                 (*e_ty, *count, true)
353             } else {
354                 // First ADT field is not an array:
355                 (f0_ty, def.non_enum_variant().fields.len() as _, false)
356             };
357
358             // SIMD vectors of zero length are not supported.
359             // Additionally, lengths are capped at 2^16 as a fixed maximum backends must
360             // support.
361             //
362             // Can't be caught in typeck if the array length is generic.
363             if e_len == 0 {
364                 tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
365             } else if e_len > MAX_SIMD_LANES {
366                 tcx.sess.fatal(&format!(
367                     "monomorphising SIMD type `{}` of length greater than {}",
368                     ty, MAX_SIMD_LANES,
369                 ));
370             }
371
372             // Compute the ABI of the element type:
373             let e_ly = cx.layout_of(e_ty)?;
374             let Abi::Scalar(e_abi) = e_ly.abi else {
375                 // This error isn't caught in typeck, e.g., if
376                 // the element type of the vector is generic.
377                 tcx.sess.fatal(&format!(
378                     "monomorphising SIMD type `{}` with a non-primitive-scalar \
379                     (integer/float/pointer) element type `{}`",
380                     ty, e_ty
381                 ))
382             };
383
384             // Compute the size and alignment of the vector:
385             let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?;
386             let align = dl.vector_align(size);
387             let size = size.align_to(align.abi);
388
389             // Compute the placement of the vector fields:
390             let fields = if is_array {
391                 FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] }
392             } else {
393                 FieldsShape::Array { stride: e_ly.size, count: e_len }
394             };
395
396             tcx.intern_layout(LayoutS {
397                 variants: Variants::Single { index: VariantIdx::new(0) },
398                 fields,
399                 abi: Abi::Vector { element: e_abi, count: e_len },
400                 largest_niche: e_ly.largest_niche,
401                 size,
402                 align,
403             })
404         }
405
406         // ADTs.
407         ty::Adt(def, substs) => {
408             // Cache the field layouts.
409             let variants = def
410                 .variants()
411                 .iter()
412                 .map(|v| {
413                     v.fields
414                         .iter()
415                         .map(|field| cx.layout_of(field.ty(tcx, substs)))
416                         .collect::<Result<Vec<_>, _>>()
417                 })
418                 .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
419
420             if def.is_union() {
421                 if def.repr().pack.is_some() && def.repr().align.is_some() {
422                     cx.tcx.sess.delay_span_bug(
423                         tcx.def_span(def.did()),
424                         "union cannot be packed and aligned",
425                     );
426                     return Err(LayoutError::Unknown(ty));
427                 }
428
429                 return Ok(tcx.intern_layout(
430                     cx.layout_of_union(&def.repr(), &variants).ok_or(LayoutError::Unknown(ty))?,
431                 ));
432             }
433
434             tcx.intern_layout(
435                 cx.layout_of_struct_or_enum(
436                     &def.repr(),
437                     &variants,
438                     def.is_enum(),
439                     def.is_unsafe_cell(),
440                     tcx.layout_scalar_valid_range(def.did()),
441                     |min, max| Integer::repr_discr(tcx, ty, &def.repr(), min, max),
442                     def.is_enum()
443                         .then(|| def.discriminants(tcx).map(|(v, d)| (v, d.val as i128)))
444                         .into_iter()
445                         .flatten(),
446                     def.repr().inhibit_enum_layout_opt()
447                         || def
448                             .variants()
449                             .iter_enumerated()
450                             .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32())),
451                     {
452                         let param_env = tcx.param_env(def.did());
453                         def.is_struct()
454                             && match def.variants().iter().next().and_then(|x| x.fields.last()) {
455                                 Some(last_field) => {
456                                     tcx.type_of(last_field.did).is_sized(tcx, param_env)
457                                 }
458                                 None => false,
459                             }
460                     },
461                 )
462                 .ok_or(LayoutError::SizeOverflow(ty))?,
463             )
464         }
465
466         // Types with no meaningful known layout.
467         ty::Alias(..) => {
468             // NOTE(eddyb) `layout_of` query should've normalized these away,
469             // if that was possible, so there's no reason to try again here.
470             return Err(LayoutError::Unknown(ty));
471         }
472
473         ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => {
474             bug!("Layout::compute: unexpected type `{}`", ty)
475         }
476
477         ty::Bound(..) | ty::Param(_) | ty::Error(_) => {
478             return Err(LayoutError::Unknown(ty));
479         }
480     })
481 }
482
483 /// Overlap eligibility and variant assignment for each GeneratorSavedLocal.
484 #[derive(Clone, Debug, PartialEq)]
485 enum SavedLocalEligibility {
486     Unassigned,
487     Assigned(VariantIdx),
488     // FIXME: Use newtype_index so we aren't wasting bytes
489     Ineligible(Option<u32>),
490 }
491
492 // When laying out generators, we divide our saved local fields into two
493 // categories: overlap-eligible and overlap-ineligible.
494 //
495 // Those fields which are ineligible for overlap go in a "prefix" at the
496 // beginning of the layout, and always have space reserved for them.
497 //
498 // Overlap-eligible fields are only assigned to one variant, so we lay
499 // those fields out for each variant and put them right after the
500 // prefix.
501 //
502 // Finally, in the layout details, we point to the fields from the
503 // variants they are assigned to. It is possible for some fields to be
504 // included in multiple variants. No field ever "moves around" in the
505 // layout; its offset is always the same.
506 //
507 // Also included in the layout are the upvars and the discriminant.
508 // These are included as fields on the "outer" layout; they are not part
509 // of any variant.
510
511 /// Compute the eligibility and assignment of each local.
512 fn generator_saved_local_eligibility(
513     info: &GeneratorLayout<'_>,
514 ) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) {
515     use SavedLocalEligibility::*;
516
517     let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> =
518         IndexVec::from_elem_n(Unassigned, info.field_tys.len());
519
520     // The saved locals not eligible for overlap. These will get
521     // "promoted" to the prefix of our generator.
522     let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());
523
524     // Figure out which of our saved locals are fields in only
525     // one variant. The rest are deemed ineligible for overlap.
526     for (variant_index, fields) in info.variant_fields.iter_enumerated() {
527         for local in fields {
528             match assignments[*local] {
529                 Unassigned => {
530                     assignments[*local] = Assigned(variant_index);
531                 }
532                 Assigned(idx) => {
533                     // We've already seen this local at another suspension
534                     // point, so it is no longer a candidate.
535                     trace!(
536                         "removing local {:?} in >1 variant ({:?}, {:?})",
537                         local,
538                         variant_index,
539                         idx
540                     );
541                     ineligible_locals.insert(*local);
542                     assignments[*local] = Ineligible(None);
543                 }
544                 Ineligible(_) => {}
545             }
546         }
547     }
548
549     // Next, check every pair of eligible locals to see if they
550     // conflict.
551     for local_a in info.storage_conflicts.rows() {
552         let conflicts_a = info.storage_conflicts.count(local_a);
553         if ineligible_locals.contains(local_a) {
554             continue;
555         }
556
557         for local_b in info.storage_conflicts.iter(local_a) {
558             // local_a and local_b are storage live at the same time, therefore they
559             // cannot overlap in the generator layout. The only way to guarantee
560             // this is if they are in the same variant, or one is ineligible
561             // (which means it is stored in every variant).
562             if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
563                 continue;
564             }
565
566             // If they conflict, we will choose one to make ineligible.
567             // This is not always optimal; it's just a greedy heuristic that
568             // seems to produce good results most of the time.
569             let conflicts_b = info.storage_conflicts.count(local_b);
570             let (remove, other) =
571                 if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
572             ineligible_locals.insert(remove);
573             assignments[remove] = Ineligible(None);
574             trace!("removing local {:?} due to conflict with {:?}", remove, other);
575         }
576     }
577
578     // Count the number of variants in use. If only one of them, then it is
579     // impossible to overlap any locals in our layout. In this case it's
580     // always better to make the remaining locals ineligible, so we can
581     // lay them out with the other locals in the prefix and eliminate
582     // unnecessary padding bytes.
583     {
584         let mut used_variants = BitSet::new_empty(info.variant_fields.len());
585         for assignment in &assignments {
586             if let Assigned(idx) = assignment {
587                 used_variants.insert(*idx);
588             }
589         }
590         if used_variants.count() < 2 {
591             for assignment in assignments.iter_mut() {
592                 *assignment = Ineligible(None);
593             }
594             ineligible_locals.insert_all();
595         }
596     }
597
598     // Write down the order of our locals that will be promoted to the prefix.
599     {
600         for (idx, local) in ineligible_locals.iter().enumerate() {
601             assignments[local] = Ineligible(Some(idx as u32));
602         }
603     }
604     debug!("generator saved local assignments: {:?}", assignments);
605
606     (ineligible_locals, assignments)
607 }
608
609 /// Compute the full generator layout.
610 fn generator_layout<'tcx>(
611     cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
612     ty: Ty<'tcx>,
613     def_id: hir::def_id::DefId,
614     substs: SubstsRef<'tcx>,
615 ) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
616     use SavedLocalEligibility::*;
617     let tcx = cx.tcx;
618     let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs);
619
620     let Some(info) = tcx.generator_layout(def_id) else {
621         return Err(LayoutError::Unknown(ty));
622     };
623     let (ineligible_locals, assignments) = generator_saved_local_eligibility(&info);
624
625     // Build a prefix layout, including "promoting" all ineligible
626     // locals as part of the prefix. We compute the layout of all of
627     // these fields at once to get optimal packing.
628     let tag_index = substs.as_generator().prefix_tys().count();
629
630     // `info.variant_fields` already accounts for the reserved variants, so no need to add them.
631     let max_discr = (info.variant_fields.len() - 1) as u128;
632     let discr_int = Integer::fit_unsigned(max_discr);
633     let discr_int_ty = discr_int.to_ty(tcx, false);
634     let tag = Scalar::Initialized {
635         value: Primitive::Int(discr_int, false),
636         valid_range: WrappingRange { start: 0, end: max_discr },
637     };
638     let tag_layout = cx.tcx.intern_layout(LayoutS::scalar(cx, tag));
639     let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout };
640
641     let promoted_layouts = ineligible_locals
642         .iter()
643         .map(|local| subst_field(info.field_tys[local]))
644         .map(|ty| tcx.mk_maybe_uninit(ty))
645         .map(|ty| cx.layout_of(ty));
646     let prefix_layouts = substs
647         .as_generator()
648         .prefix_tys()
649         .map(|ty| cx.layout_of(ty))
650         .chain(iter::once(Ok(tag_layout)))
651         .chain(promoted_layouts)
652         .collect::<Result<Vec<_>, _>>()?;
653     let prefix = univariant_uninterned(
654         cx,
655         ty,
656         &prefix_layouts,
657         &ReprOptions::default(),
658         StructKind::AlwaysSized,
659     )?;
660
661     let (prefix_size, prefix_align) = (prefix.size, prefix.align);
662
663     // Split the prefix layout into the "outer" fields (upvars and
664     // discriminant) and the "promoted" fields. Promoted fields will
665     // get included in each variant that requested them in
666     // GeneratorLayout.
667     debug!("prefix = {:#?}", prefix);
668     let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
669         FieldsShape::Arbitrary { mut offsets, memory_index } => {
670             let mut inverse_memory_index = invert_mapping(&memory_index);
671
672             // "a" (`0..b_start`) and "b" (`b_start..`) correspond to
673             // "outer" and "promoted" fields respectively.
674             let b_start = (tag_index + 1) as u32;
675             let offsets_b = offsets.split_off(b_start as usize);
676             let offsets_a = offsets;
677
678             // Disentangle the "a" and "b" components of `inverse_memory_index`
679             // by preserving the order but keeping only one disjoint "half" each.
680             // FIXME(eddyb) build a better abstraction for permutations, if possible.
681             let inverse_memory_index_b: Vec<_> =
682                 inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect();
683             inverse_memory_index.retain(|&i| i < b_start);
684             let inverse_memory_index_a = inverse_memory_index;
685
686             // Since `inverse_memory_index_{a,b}` each only refer to their
687             // respective fields, they can be safely inverted
688             let memory_index_a = invert_mapping(&inverse_memory_index_a);
689             let memory_index_b = invert_mapping(&inverse_memory_index_b);
690
691             let outer_fields =
692                 FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
693             (outer_fields, offsets_b, memory_index_b)
694         }
695         _ => bug!(),
696     };
697
698     let mut size = prefix.size;
699     let mut align = prefix.align;
700     let variants = info
701         .variant_fields
702         .iter_enumerated()
703         .map(|(index, variant_fields)| {
704             // Only include overlap-eligible fields when we compute our variant layout.
705             let variant_only_tys = variant_fields
706                 .iter()
707                 .filter(|local| match assignments[**local] {
708                     Unassigned => bug!(),
709                     Assigned(v) if v == index => true,
710                     Assigned(_) => bug!("assignment does not match variant"),
711                     Ineligible(_) => false,
712                 })
713                 .map(|local| subst_field(info.field_tys[*local]));
714
715             let mut variant = univariant_uninterned(
716                 cx,
717                 ty,
718                 &variant_only_tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
719                 &ReprOptions::default(),
720                 StructKind::Prefixed(prefix_size, prefix_align.abi),
721             )?;
722             variant.variants = Variants::Single { index };
723
724             let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
725                 bug!();
726             };
727
728             // Now, stitch the promoted and variant-only fields back together in
729             // the order they are mentioned by our GeneratorLayout.
730             // Because we only use some subset (that can differ between variants)
731             // of the promoted fields, we can't just pick those elements of the
732             // `promoted_memory_index` (as we'd end up with gaps).
733             // So instead, we build an "inverse memory_index", as if all of the
734             // promoted fields were being used, but leave the elements not in the
735             // subset as `INVALID_FIELD_IDX`, which we can filter out later to
736             // obtain a valid (bijective) mapping.
737             const INVALID_FIELD_IDX: u32 = !0;
738             let mut combined_inverse_memory_index =
739                 vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()];
740             let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
741             let combined_offsets = variant_fields
742                 .iter()
743                 .enumerate()
744                 .map(|(i, local)| {
745                     let (offset, memory_index) = match assignments[*local] {
746                         Unassigned => bug!(),
747                         Assigned(_) => {
748                             let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
749                             (offset, promoted_memory_index.len() as u32 + memory_index)
750                         }
751                         Ineligible(field_idx) => {
752                             let field_idx = field_idx.unwrap() as usize;
753                             (promoted_offsets[field_idx], promoted_memory_index[field_idx])
754                         }
755                     };
756                     combined_inverse_memory_index[memory_index as usize] = i as u32;
757                     offset
758                 })
759                 .collect();
760
761             // Remove the unused slots and invert the mapping to obtain the
762             // combined `memory_index` (also see previous comment).
763             combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX);
764             let combined_memory_index = invert_mapping(&combined_inverse_memory_index);
765
766             variant.fields = FieldsShape::Arbitrary {
767                 offsets: combined_offsets,
768                 memory_index: combined_memory_index,
769             };
770
771             size = size.max(variant.size);
772             align = align.max(variant.align);
773             Ok(variant)
774         })
775         .collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
776
777     size = size.align_to(align.abi);
778
779     let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi.is_uninhabited()) {
780         Abi::Uninhabited
781     } else {
782         Abi::Aggregate { sized: true }
783     };
784
785     let layout = tcx.intern_layout(LayoutS {
786         variants: Variants::Multiple {
787             tag,
788             tag_encoding: TagEncoding::Direct,
789             tag_field: tag_index,
790             variants,
791         },
792         fields: outer_fields,
793         abi,
794         largest_niche: prefix.largest_niche,
795         size,
796         align,
797     });
798     debug!("generator layout ({:?}): {:#?}", ty, layout);
799     Ok(layout)
800 }
801
802 /// This is invoked by the `layout_of` query to record the final
803 /// layout of each type.
804 #[inline(always)]
805 fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>) {
806     // If we are running with `-Zprint-type-sizes`, maybe record layouts
807     // for dumping later.
808     if cx.tcx.sess.opts.unstable_opts.print_type_sizes {
809         record_layout_for_printing_outlined(cx, layout)
810     }
811 }
812
813 fn record_layout_for_printing_outlined<'tcx>(
814     cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
815     layout: TyAndLayout<'tcx>,
816 ) {
817     // Ignore layouts that are done with non-empty environments or
818     // non-monomorphic layouts, as the user only wants to see the stuff
819     // resulting from the final codegen session.
820     if layout.ty.has_non_region_param() || !cx.param_env.caller_bounds().is_empty() {
821         return;
822     }
823
824     // (delay format until we actually need it)
825     let record = |kind, packed, opt_discr_size, variants| {
826         let type_desc = format!("{:?}", layout.ty);
827         cx.tcx.sess.code_stats.record_type_size(
828             kind,
829             type_desc,
830             layout.align.abi,
831             layout.size,
832             packed,
833             opt_discr_size,
834             variants,
835         );
836     };
837
838     match *layout.ty.kind() {
839         ty::Adt(adt_def, _) => {
840             debug!("print-type-size t: `{:?}` process adt", layout.ty);
841             let adt_kind = adt_def.adt_kind();
842             let adt_packed = adt_def.repr().pack.is_some();
843             let (variant_infos, opt_discr_size) = variant_info_for_adt(cx, layout, adt_def);
844             record(adt_kind.into(), adt_packed, opt_discr_size, variant_infos);
845         }
846
847         ty::Generator(def_id, substs, _) => {
848             debug!("print-type-size t: `{:?}` record generator", layout.ty);
849             // Generators always have a begin/poisoned/end state with additional suspend points
850             let (variant_infos, opt_discr_size) =
851                 variant_info_for_generator(cx, layout, def_id, substs);
852             record(DataTypeKind::Generator, false, opt_discr_size, variant_infos);
853         }
854
855         ty::Closure(..) => {
856             debug!("print-type-size t: `{:?}` record closure", layout.ty);
857             record(DataTypeKind::Closure, false, None, vec![]);
858         }
859
860         _ => {
861             debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
862         }
863     };
864 }
865
866 fn variant_info_for_adt<'tcx>(
867     cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
868     layout: TyAndLayout<'tcx>,
869     adt_def: AdtDef<'tcx>,
870 ) -> (Vec<VariantInfo>, Option<Size>) {
871     let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
872         let mut min_size = Size::ZERO;
873         let field_info: Vec<_> = flds
874             .iter()
875             .enumerate()
876             .map(|(i, &name)| {
877                 let field_layout = layout.field(cx, i);
878                 let offset = layout.fields.offset(i);
879                 min_size = min_size.max(offset + field_layout.size);
880                 FieldInfo {
881                     name,
882                     offset: offset.bytes(),
883                     size: field_layout.size.bytes(),
884                     align: field_layout.align.abi.bytes(),
885                 }
886             })
887             .collect();
888
889         VariantInfo {
890             name: n,
891             kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
892             align: layout.align.abi.bytes(),
893             size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
894             fields: field_info,
895         }
896     };
897
898     match layout.variants {
899         Variants::Single { index } => {
900             if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive {
901                 debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name);
902                 let variant_def = &adt_def.variant(index);
903                 let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
904                 (vec![build_variant_info(Some(variant_def.name), &fields, layout)], None)
905             } else {
906                 (vec![], None)
907             }
908         }
909
910         Variants::Multiple { tag, ref tag_encoding, .. } => {
911             debug!(
912                 "print-type-size `{:#?}` adt general variants def {}",
913                 layout.ty,
914                 adt_def.variants().len()
915             );
916             let variant_infos: Vec<_> = adt_def
917                 .variants()
918                 .iter_enumerated()
919                 .map(|(i, variant_def)| {
920                     let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
921                     build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i))
922                 })
923                 .collect();
924
925             (
926                 variant_infos,
927                 match tag_encoding {
928                     TagEncoding::Direct => Some(tag.size(cx)),
929                     _ => None,
930                 },
931             )
932         }
933     }
934 }
935
936 fn variant_info_for_generator<'tcx>(
937     cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
938     layout: TyAndLayout<'tcx>,
939     def_id: DefId,
940     substs: ty::SubstsRef<'tcx>,
941 ) -> (Vec<VariantInfo>, Option<Size>) {
942     let Variants::Multiple { tag, ref tag_encoding, tag_field, .. } = layout.variants else {
943         return (vec![], None);
944     };
945
946     let (generator, state_specific_names) = cx.tcx.generator_layout_and_saved_local_names(def_id);
947     let upvar_names = cx.tcx.closure_saved_names_of_captured_variables(def_id);
948
949     let mut upvars_size = Size::ZERO;
950     let upvar_fields: Vec<_> = substs
951         .as_generator()
952         .upvar_tys()
953         .zip(upvar_names)
954         .enumerate()
955         .map(|(field_idx, (_, name))| {
956             let field_layout = layout.field(cx, field_idx);
957             let offset = layout.fields.offset(field_idx);
958             upvars_size = upvars_size.max(offset + field_layout.size);
959             FieldInfo {
960                 name: Symbol::intern(&name),
961                 offset: offset.bytes(),
962                 size: field_layout.size.bytes(),
963                 align: field_layout.align.abi.bytes(),
964             }
965         })
966         .collect();
967
968     let variant_infos: Vec<_> = generator
969         .variant_fields
970         .iter_enumerated()
971         .map(|(variant_idx, variant_def)| {
972             let variant_layout = layout.for_variant(cx, variant_idx);
973             let mut variant_size = Size::ZERO;
974             let fields = variant_def
975                 .iter()
976                 .enumerate()
977                 .map(|(field_idx, local)| {
978                     let field_layout = variant_layout.field(cx, field_idx);
979                     let offset = variant_layout.fields.offset(field_idx);
980                     // The struct is as large as the last field's end
981                     variant_size = variant_size.max(offset + field_layout.size);
982                     FieldInfo {
983                         name: state_specific_names.get(*local).copied().flatten().unwrap_or(
984                             Symbol::intern(&format!(".generator_field{}", local.as_usize())),
985                         ),
986                         offset: offset.bytes(),
987                         size: field_layout.size.bytes(),
988                         align: field_layout.align.abi.bytes(),
989                     }
990                 })
991                 .chain(upvar_fields.iter().copied())
992                 .collect();
993
994             // If the variant has no state-specific fields, then it's the size of the upvars.
995             if variant_size == Size::ZERO {
996                 variant_size = upvars_size;
997             }
998
999             // This `if` deserves some explanation.
1000             //
1001             // The layout code has a choice of where to place the discriminant of this generator.
1002             // If the discriminant of the generator is placed early in the layout (before the
1003             // variant's own fields), then it'll implicitly be counted towards the size of the
1004             // variant, since we use the maximum offset to calculate size.
1005             //    (side-note: I know this is a bit problematic given upvars placement, etc).
1006             //
1007             // This is important, since the layout printing code always subtracts this discriminant
1008             // size from the variant size if the struct is "enum"-like, so failing to account for it
1009             // will either lead to numerical underflow, or an underreported variant size...
1010             //
1011             // However, if the discriminant is placed past the end of the variant, then we need
1012             // to factor in the size of the discriminant manually. This really should be refactored
1013             // better, but this "works" for now.
1014             if layout.fields.offset(tag_field) >= variant_size {
1015                 variant_size += match tag_encoding {
1016                     TagEncoding::Direct => tag.size(cx),
1017                     _ => Size::ZERO,
1018                 };
1019             }
1020
1021             VariantInfo {
1022                 name: Some(Symbol::intern(&ty::GeneratorSubsts::variant_name(variant_idx))),
1023                 kind: SizeKind::Exact,
1024                 size: variant_size.bytes(),
1025                 align: variant_layout.align.abi.bytes(),
1026                 fields,
1027             }
1028         })
1029         .collect();
1030     (
1031         variant_infos,
1032         match tag_encoding {
1033             TagEncoding::Direct => Some(tag.size(cx)),
1034             _ => None,
1035         },
1036     )
1037 }