]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/select/mod.rs
Fix rebase
[rust.git] / compiler / rustc_trait_selection / src / traits / select / mod.rs
1 //! Candidate selection. See the [rustc dev guide] for more information on how this works.
2 //!
3 //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5 use self::EvaluationResult::*;
6 use self::SelectionCandidate::*;
7
8 use super::coherence::{self, Conflict};
9 use super::const_evaluatable;
10 use super::project;
11 use super::project::normalize_with_depth_to;
12 use super::project::ProjectionTyObligation;
13 use super::util;
14 use super::util::{closure_trait_ref_and_return_type, predicate_for_trait_def};
15 use super::wf;
16 use super::DerivedObligationCause;
17 use super::Obligation;
18 use super::ObligationCauseCode;
19 use super::Selection;
20 use super::SelectionResult;
21 use super::TraitQueryMode;
22 use super::{Normalized, ProjectionCacheKey};
23 use super::{ObligationCause, PredicateObligation, TraitObligation};
24 use super::{Overflow, SelectionError, Unimplemented};
25
26 use crate::infer::{InferCtxt, InferOk, TypeFreshener};
27 use crate::traits::error_reporting::InferCtxtExt;
28 use crate::traits::project::ProjectionCacheKeyExt;
29 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
30 use rustc_data_structures::stack::ensure_sufficient_stack;
31 use rustc_errors::ErrorReported;
32 use rustc_hir as hir;
33 use rustc_hir::def_id::DefId;
34 use rustc_middle::dep_graph::{DepKind, DepNodeIndex};
35 use rustc_middle::mir::interpret::ErrorHandled;
36 use rustc_middle::ty::fast_reject;
37 use rustc_middle::ty::print::with_no_trimmed_paths;
38 use rustc_middle::ty::relate::TypeRelation;
39 use rustc_middle::ty::subst::{GenericArgKind, Subst, SubstsRef};
40 use rustc_middle::ty::{self, PolyProjectionPredicate, ToPolyTraitRef, ToPredicate};
41 use rustc_middle::ty::{Ty, TyCtxt, TypeFoldable, WithConstness};
42 use rustc_span::symbol::sym;
43
44 use std::cell::{Cell, RefCell};
45 use std::cmp;
46 use std::fmt::{self, Display};
47 use std::iter;
48 use std::rc::Rc;
49
50 pub use rustc_middle::traits::select::*;
51
52 mod candidate_assembly;
53 mod confirmation;
54
55 #[derive(Clone, Debug)]
56 pub enum IntercrateAmbiguityCause {
57     DownstreamCrate { trait_desc: String, self_desc: Option<String> },
58     UpstreamCrateUpdate { trait_desc: String, self_desc: Option<String> },
59     ReservationImpl { message: String },
60 }
61
62 impl IntercrateAmbiguityCause {
63     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
64     /// See #23980 for details.
65     pub fn add_intercrate_ambiguity_hint(&self, err: &mut rustc_errors::DiagnosticBuilder<'_>) {
66         err.note(&self.intercrate_ambiguity_hint());
67     }
68
69     pub fn intercrate_ambiguity_hint(&self) -> String {
70         match self {
71             &IntercrateAmbiguityCause::DownstreamCrate { ref trait_desc, ref self_desc } => {
72                 let self_desc = if let &Some(ref ty) = self_desc {
73                     format!(" for type `{}`", ty)
74                 } else {
75                     String::new()
76                 };
77                 format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
78             }
79             &IntercrateAmbiguityCause::UpstreamCrateUpdate { ref trait_desc, ref self_desc } => {
80                 let self_desc = if let &Some(ref ty) = self_desc {
81                     format!(" for type `{}`", ty)
82                 } else {
83                     String::new()
84                 };
85                 format!(
86                     "upstream crates may add a new impl of trait `{}`{} \
87                      in future versions",
88                     trait_desc, self_desc
89                 )
90             }
91             &IntercrateAmbiguityCause::ReservationImpl { ref message } => message.clone(),
92         }
93     }
94 }
95
96 pub struct SelectionContext<'cx, 'tcx> {
97     infcx: &'cx InferCtxt<'cx, 'tcx>,
98
99     /// Freshener used specifically for entries on the obligation
100     /// stack. This ensures that all entries on the stack at one time
101     /// will have the same set of placeholder entries, which is
102     /// important for checking for trait bounds that recursively
103     /// require themselves.
104     freshener: TypeFreshener<'cx, 'tcx>,
105
106     /// If `true`, indicates that the evaluation should be conservative
107     /// and consider the possibility of types outside this crate.
108     /// This comes up primarily when resolving ambiguity. Imagine
109     /// there is some trait reference `$0: Bar` where `$0` is an
110     /// inference variable. If `intercrate` is true, then we can never
111     /// say for sure that this reference is not implemented, even if
112     /// there are *no impls at all for `Bar`*, because `$0` could be
113     /// bound to some type that in a downstream crate that implements
114     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
115     /// though, we set this to false, because we are only interested
116     /// in types that the user could actually have written --- in
117     /// other words, we consider `$0: Bar` to be unimplemented if
118     /// there is no type that the user could *actually name* that
119     /// would satisfy it. This avoids crippling inference, basically.
120     intercrate: bool,
121
122     intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
123
124     /// Controls whether or not to filter out negative impls when selecting.
125     /// This is used in librustdoc to distinguish between the lack of an impl
126     /// and a negative impl
127     allow_negative_impls: bool,
128
129     /// The mode that trait queries run in, which informs our error handling
130     /// policy. In essence, canonicalized queries need their errors propagated
131     /// rather than immediately reported because we do not have accurate spans.
132     query_mode: TraitQueryMode,
133 }
134
135 // A stack that walks back up the stack frame.
136 struct TraitObligationStack<'prev, 'tcx> {
137     obligation: &'prev TraitObligation<'tcx>,
138
139     /// The trait ref from `obligation` but "freshened" with the
140     /// selection-context's freshener. Used to check for recursion.
141     fresh_trait_ref: ty::PolyTraitRef<'tcx>,
142
143     /// Starts out equal to `depth` -- if, during evaluation, we
144     /// encounter a cycle, then we will set this flag to the minimum
145     /// depth of that cycle for all participants in the cycle. These
146     /// participants will then forego caching their results. This is
147     /// not the most efficient solution, but it addresses #60010. The
148     /// problem we are trying to prevent:
149     ///
150     /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
151     /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
152     /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
153     ///
154     /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
155     /// is `EvaluatedToOk`; this is because they were only considered
156     /// ok on the premise that if `A: AutoTrait` held, but we indeed
157     /// encountered a problem (later on) with `A: AutoTrait. So we
158     /// currently set a flag on the stack node for `B: AutoTrait` (as
159     /// well as the second instance of `A: AutoTrait`) to suppress
160     /// caching.
161     ///
162     /// This is a simple, targeted fix. A more-performant fix requires
163     /// deeper changes, but would permit more caching: we could
164     /// basically defer caching until we have fully evaluated the
165     /// tree, and then cache the entire tree at once. In any case, the
166     /// performance impact here shouldn't be so horrible: every time
167     /// this is hit, we do cache at least one trait, so we only
168     /// evaluate each member of a cycle up to N times, where N is the
169     /// length of the cycle. This means the performance impact is
170     /// bounded and we shouldn't have any terrible worst-cases.
171     reached_depth: Cell<usize>,
172
173     previous: TraitObligationStackList<'prev, 'tcx>,
174
175     /// The number of parent frames plus one (thus, the topmost frame has depth 1).
176     depth: usize,
177
178     /// The depth-first number of this node in the search graph -- a
179     /// pre-order index. Basically, a freshly incremented counter.
180     dfn: usize,
181 }
182
183 struct SelectionCandidateSet<'tcx> {
184     // A list of candidates that definitely apply to the current
185     // obligation (meaning: types unify).
186     vec: Vec<SelectionCandidate<'tcx>>,
187
188     // If `true`, then there were candidates that might or might
189     // not have applied, but we couldn't tell. This occurs when some
190     // of the input types are type variables, in which case there are
191     // various "builtin" rules that might or might not trigger.
192     ambiguous: bool,
193 }
194
195 #[derive(PartialEq, Eq, Debug, Clone)]
196 struct EvaluatedCandidate<'tcx> {
197     candidate: SelectionCandidate<'tcx>,
198     evaluation: EvaluationResult,
199 }
200
201 /// When does the builtin impl for `T: Trait` apply?
202 enum BuiltinImplConditions<'tcx> {
203     /// The impl is conditional on `T1, T2, ...: Trait`.
204     Where(ty::Binder<Vec<Ty<'tcx>>>),
205     /// There is no built-in impl. There may be some other
206     /// candidate (a where-clause or user-defined impl).
207     None,
208     /// It is unknown whether there is an impl.
209     Ambiguous,
210 }
211
212 impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
213     pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
214         SelectionContext {
215             infcx,
216             freshener: infcx.freshener(),
217             intercrate: false,
218             intercrate_ambiguity_causes: None,
219             allow_negative_impls: false,
220             query_mode: TraitQueryMode::Standard,
221         }
222     }
223
224     pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
225         SelectionContext {
226             infcx,
227             freshener: infcx.freshener(),
228             intercrate: true,
229             intercrate_ambiguity_causes: None,
230             allow_negative_impls: false,
231             query_mode: TraitQueryMode::Standard,
232         }
233     }
234
235     pub fn with_negative(
236         infcx: &'cx InferCtxt<'cx, 'tcx>,
237         allow_negative_impls: bool,
238     ) -> SelectionContext<'cx, 'tcx> {
239         debug!("with_negative({:?})", allow_negative_impls);
240         SelectionContext {
241             infcx,
242             freshener: infcx.freshener(),
243             intercrate: false,
244             intercrate_ambiguity_causes: None,
245             allow_negative_impls,
246             query_mode: TraitQueryMode::Standard,
247         }
248     }
249
250     pub fn with_query_mode(
251         infcx: &'cx InferCtxt<'cx, 'tcx>,
252         query_mode: TraitQueryMode,
253     ) -> SelectionContext<'cx, 'tcx> {
254         debug!("with_query_mode({:?})", query_mode);
255         SelectionContext {
256             infcx,
257             freshener: infcx.freshener(),
258             intercrate: false,
259             intercrate_ambiguity_causes: None,
260             allow_negative_impls: false,
261             query_mode,
262         }
263     }
264
265     /// Enables tracking of intercrate ambiguity causes. These are
266     /// used in coherence to give improved diagnostics. We don't do
267     /// this until we detect a coherence error because it can lead to
268     /// false overflow results (#47139) and because it costs
269     /// computation time.
270     pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
271         assert!(self.intercrate);
272         assert!(self.intercrate_ambiguity_causes.is_none());
273         self.intercrate_ambiguity_causes = Some(vec![]);
274         debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
275     }
276
277     /// Gets the intercrate ambiguity causes collected since tracking
278     /// was enabled and disables tracking at the same time. If
279     /// tracking is not enabled, just returns an empty vector.
280     pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
281         assert!(self.intercrate);
282         self.intercrate_ambiguity_causes.take().unwrap_or(vec![])
283     }
284
285     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
286         self.infcx
287     }
288
289     pub fn tcx(&self) -> TyCtxt<'tcx> {
290         self.infcx.tcx
291     }
292
293     pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'tcx> {
294         self.infcx
295     }
296
297     ///////////////////////////////////////////////////////////////////////////
298     // Selection
299     //
300     // The selection phase tries to identify *how* an obligation will
301     // be resolved. For example, it will identify which impl or
302     // parameter bound is to be used. The process can be inconclusive
303     // if the self type in the obligation is not fully inferred. Selection
304     // can result in an error in one of two ways:
305     //
306     // 1. If no applicable impl or parameter bound can be found.
307     // 2. If the output type parameters in the obligation do not match
308     //    those specified by the impl/bound. For example, if the obligation
309     //    is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
310     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
311
312     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
313     /// type environment by performing unification.
314     pub fn select(
315         &mut self,
316         obligation: &TraitObligation<'tcx>,
317     ) -> SelectionResult<'tcx, Selection<'tcx>> {
318         debug!("select({:?})", obligation);
319         debug_assert!(!obligation.predicate.has_escaping_bound_vars());
320
321         let pec = &ProvisionalEvaluationCache::default();
322         let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
323
324         let candidate = match self.candidate_from_obligation(&stack) {
325             Err(SelectionError::Overflow) => {
326                 // In standard mode, overflow must have been caught and reported
327                 // earlier.
328                 assert!(self.query_mode == TraitQueryMode::Canonical);
329                 return Err(SelectionError::Overflow);
330             }
331             Err(e) => {
332                 return Err(e);
333             }
334             Ok(None) => {
335                 return Ok(None);
336             }
337             Ok(Some(candidate)) => candidate,
338         };
339
340         match self.confirm_candidate(obligation, candidate) {
341             Err(SelectionError::Overflow) => {
342                 assert!(self.query_mode == TraitQueryMode::Canonical);
343                 Err(SelectionError::Overflow)
344             }
345             Err(e) => Err(e),
346             Ok(candidate) => {
347                 debug!("select: candidate = {:?}", candidate);
348                 Ok(Some(candidate))
349             }
350         }
351     }
352
353     ///////////////////////////////////////////////////////////////////////////
354     // EVALUATION
355     //
356     // Tests whether an obligation can be selected or whether an impl
357     // can be applied to particular types. It skips the "confirmation"
358     // step and hence completely ignores output type parameters.
359     //
360     // The result is "true" if the obligation *may* hold and "false" if
361     // we can be sure it does not.
362
363     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
364     pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
365         debug!("predicate_may_hold_fatal({:?})", obligation);
366
367         // This fatal query is a stopgap that should only be used in standard mode,
368         // where we do not expect overflow to be propagated.
369         assert!(self.query_mode == TraitQueryMode::Standard);
370
371         self.evaluate_root_obligation(obligation)
372             .expect("Overflow should be caught earlier in standard query mode")
373             .may_apply()
374     }
375
376     /// Evaluates whether the obligation `obligation` can be satisfied
377     /// and returns an `EvaluationResult`. This is meant for the
378     /// *initial* call.
379     pub fn evaluate_root_obligation(
380         &mut self,
381         obligation: &PredicateObligation<'tcx>,
382     ) -> Result<EvaluationResult, OverflowError> {
383         self.evaluation_probe(|this| {
384             this.evaluate_predicate_recursively(
385                 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
386                 obligation.clone(),
387             )
388         })
389     }
390
391     fn evaluation_probe(
392         &mut self,
393         op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
394     ) -> Result<EvaluationResult, OverflowError> {
395         self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
396             let result = op(self)?;
397
398             match self.infcx.leak_check(true, snapshot) {
399                 Ok(()) => {}
400                 Err(_) => return Ok(EvaluatedToErr),
401             }
402
403             match self.infcx.region_constraints_added_in_snapshot(snapshot) {
404                 None => Ok(result),
405                 Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
406             }
407         })
408     }
409
410     /// Evaluates the predicates in `predicates` recursively. Note that
411     /// this applies projections in the predicates, and therefore
412     /// is run within an inference probe.
413     fn evaluate_predicates_recursively<'o, I>(
414         &mut self,
415         stack: TraitObligationStackList<'o, 'tcx>,
416         predicates: I,
417     ) -> Result<EvaluationResult, OverflowError>
418     where
419         I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
420     {
421         let mut result = EvaluatedToOk;
422         debug!("evaluate_predicates_recursively({:?})", predicates);
423         for obligation in predicates {
424             let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
425             debug!("evaluate_predicate_recursively({:?}) = {:?}", obligation, eval);
426             if let EvaluatedToErr = eval {
427                 // fast-path - EvaluatedToErr is the top of the lattice,
428                 // so we don't need to look on the other predicates.
429                 return Ok(EvaluatedToErr);
430             } else {
431                 result = cmp::max(result, eval);
432             }
433         }
434         Ok(result)
435     }
436
437     fn evaluate_predicate_recursively<'o>(
438         &mut self,
439         previous_stack: TraitObligationStackList<'o, 'tcx>,
440         obligation: PredicateObligation<'tcx>,
441     ) -> Result<EvaluationResult, OverflowError> {
442         debug!(
443             "evaluate_predicate_recursively(obligation={:?}, previous_stack={:?})",
444             obligation,
445             previous_stack.head()
446         );
447
448         // `previous_stack` stores a `TraitObligation`, while `obligation` is
449         // a `PredicateObligation`. These are distinct types, so we can't
450         // use any `Option` combinator method that would force them to be
451         // the same.
452         match previous_stack.head() {
453             Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
454             None => self.check_recursion_limit(&obligation, &obligation)?,
455         }
456
457         ensure_sufficient_stack(|| {
458             match obligation.predicate.skip_binders() {
459                 ty::PredicateAtom::Trait(t, _) => {
460                     let t = ty::Binder::bind(t);
461                     debug_assert!(!t.has_escaping_bound_vars());
462                     let obligation = obligation.with(t);
463                     self.evaluate_trait_predicate_recursively(previous_stack, obligation)
464                 }
465
466                 ty::PredicateAtom::Subtype(p) => {
467                     let p = ty::Binder::bind(p);
468                     // Does this code ever run?
469                     match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
470                         Some(Ok(InferOk { mut obligations, .. })) => {
471                             self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
472                             self.evaluate_predicates_recursively(
473                                 previous_stack,
474                                 obligations.into_iter(),
475                             )
476                         }
477                         Some(Err(_)) => Ok(EvaluatedToErr),
478                         None => Ok(EvaluatedToAmbig),
479                     }
480                 }
481
482                 ty::PredicateAtom::WellFormed(arg) => match wf::obligations(
483                     self.infcx,
484                     obligation.param_env,
485                     obligation.cause.body_id,
486                     obligation.recursion_depth + 1,
487                     arg,
488                     obligation.cause.span,
489                 ) {
490                     Some(mut obligations) => {
491                         self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
492                         self.evaluate_predicates_recursively(previous_stack, obligations)
493                     }
494                     None => Ok(EvaluatedToAmbig),
495                 },
496
497                 ty::PredicateAtom::TypeOutlives(..) | ty::PredicateAtom::RegionOutlives(..) => {
498                     // We do not consider region relationships when evaluating trait matches.
499                     Ok(EvaluatedToOkModuloRegions)
500                 }
501
502                 ty::PredicateAtom::ObjectSafe(trait_def_id) => {
503                     if self.tcx().is_object_safe(trait_def_id) {
504                         Ok(EvaluatedToOk)
505                     } else {
506                         Ok(EvaluatedToErr)
507                     }
508                 }
509
510                 ty::PredicateAtom::Projection(data) => {
511                     let data = ty::Binder::bind(data);
512                     let project_obligation = obligation.with(data);
513                     match project::poly_project_and_unify_type(self, &project_obligation) {
514                         Ok(Ok(Some(mut subobligations))) => {
515                             self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
516                             let result = self
517                                 .evaluate_predicates_recursively(previous_stack, subobligations);
518                             if let Some(key) =
519                                 ProjectionCacheKey::from_poly_projection_predicate(self, data)
520                             {
521                                 self.infcx.inner.borrow_mut().projection_cache().complete(key);
522                             }
523                             result
524                         }
525                         Ok(Ok(None)) => Ok(EvaluatedToAmbig),
526                         // EvaluatedToRecur might also be acceptable here, but use
527                         // Unknown for now because it means that we won't dismiss a
528                         // selection candidate solely because it has a projection
529                         // cycle. This is closest to the previous behavior of
530                         // immediately erroring.
531                         Ok(Err(project::InProgress)) => Ok(EvaluatedToUnknown),
532                         Err(_) => Ok(EvaluatedToErr),
533                     }
534                 }
535
536                 ty::PredicateAtom::ClosureKind(_, closure_substs, kind) => {
537                     match self.infcx.closure_kind(closure_substs) {
538                         Some(closure_kind) => {
539                             if closure_kind.extends(kind) {
540                                 Ok(EvaluatedToOk)
541                             } else {
542                                 Ok(EvaluatedToErr)
543                             }
544                         }
545                         None => Ok(EvaluatedToAmbig),
546                     }
547                 }
548
549                 ty::PredicateAtom::ConstEvaluatable(def_id, substs) => {
550                     match const_evaluatable::is_const_evaluatable(
551                         self.infcx,
552                         def_id,
553                         substs,
554                         obligation.param_env,
555                         obligation.cause.span,
556                     ) {
557                         Ok(()) => Ok(EvaluatedToOk),
558                         Err(ErrorHandled::TooGeneric) => Ok(EvaluatedToAmbig),
559                         Err(_) => Ok(EvaluatedToErr),
560                     }
561                 }
562
563                 ty::PredicateAtom::ConstEquate(c1, c2) => {
564                     debug!(
565                         "evaluate_predicate_recursively: equating consts c1={:?} c2={:?}",
566                         c1, c2
567                     );
568
569                     let evaluate = |c: &'tcx ty::Const<'tcx>| {
570                         if let ty::ConstKind::Unevaluated(def, substs, promoted) = c.val {
571                             self.infcx
572                                 .const_eval_resolve(
573                                     obligation.param_env,
574                                     def,
575                                     substs,
576                                     promoted,
577                                     Some(obligation.cause.span),
578                                 )
579                                 .map(|val| ty::Const::from_value(self.tcx(), val, c.ty))
580                         } else {
581                             Ok(c)
582                         }
583                     };
584
585                     match (evaluate(c1), evaluate(c2)) {
586                         (Ok(c1), Ok(c2)) => {
587                             match self
588                                 .infcx()
589                                 .at(&obligation.cause, obligation.param_env)
590                                 .eq(c1, c2)
591                             {
592                                 Ok(_) => Ok(EvaluatedToOk),
593                                 Err(_) => Ok(EvaluatedToErr),
594                             }
595                         }
596                         (Err(ErrorHandled::Reported(ErrorReported)), _)
597                         | (_, Err(ErrorHandled::Reported(ErrorReported))) => Ok(EvaluatedToErr),
598                         (Err(ErrorHandled::Linted), _) | (_, Err(ErrorHandled::Linted)) => {
599                             span_bug!(
600                                 obligation.cause.span(self.tcx()),
601                                 "ConstEquate: const_eval_resolve returned an unexpected error"
602                             )
603                         }
604                         (Err(ErrorHandled::TooGeneric), _) | (_, Err(ErrorHandled::TooGeneric)) => {
605                             Ok(EvaluatedToAmbig)
606                         }
607                     }
608                 }
609                 ty::PredicateAtom::TypeWellFormedFromEnv(..) => {
610                     bug!("TypeWellFormedFromEnv is only used for chalk")
611                 }
612             }
613         })
614     }
615
616     fn evaluate_trait_predicate_recursively<'o>(
617         &mut self,
618         previous_stack: TraitObligationStackList<'o, 'tcx>,
619         mut obligation: TraitObligation<'tcx>,
620     ) -> Result<EvaluationResult, OverflowError> {
621         debug!("evaluate_trait_predicate_recursively({:?})", obligation);
622
623         if !self.intercrate
624             && obligation.is_global()
625             && obligation.param_env.caller_bounds().iter().all(|bound| bound.needs_subst())
626         {
627             // If a param env has no global bounds, global obligations do not
628             // depend on its particular value in order to work, so we can clear
629             // out the param env and get better caching.
630             debug!("evaluate_trait_predicate_recursively({:?}) - in global", obligation);
631             obligation.param_env = obligation.param_env.without_caller_bounds();
632         }
633
634         let stack = self.push_stack(previous_stack, &obligation);
635         let fresh_trait_ref = stack.fresh_trait_ref;
636         if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
637             debug!("CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
638             return Ok(result);
639         }
640
641         if let Some(result) = stack.cache().get_provisional(fresh_trait_ref) {
642             debug!("PROVISIONAL CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
643             stack.update_reached_depth(stack.cache().current_reached_depth());
644             return Ok(result);
645         }
646
647         // Check if this is a match for something already on the
648         // stack. If so, we don't want to insert the result into the
649         // main cache (it is cycle dependent) nor the provisional
650         // cache (which is meant for things that have completed but
651         // for a "backedge" -- this result *is* the backedge).
652         if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
653             return Ok(cycle_result);
654         }
655
656         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
657         let result = result?;
658
659         if !result.must_apply_modulo_regions() {
660             stack.cache().on_failure(stack.dfn);
661         }
662
663         let reached_depth = stack.reached_depth.get();
664         if reached_depth >= stack.depth {
665             debug!("CACHE MISS: EVAL({:?})={:?}", fresh_trait_ref, result);
666             self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
667
668             stack.cache().on_completion(stack.depth, |fresh_trait_ref, provisional_result| {
669                 self.insert_evaluation_cache(
670                     obligation.param_env,
671                     fresh_trait_ref,
672                     dep_node,
673                     provisional_result.max(result),
674                 );
675             });
676         } else {
677             debug!("PROVISIONAL: {:?}={:?}", fresh_trait_ref, result);
678             debug!(
679                 "evaluate_trait_predicate_recursively: caching provisionally because {:?} \
680                  is a cycle participant (at depth {}, reached depth {})",
681                 fresh_trait_ref, stack.depth, reached_depth,
682             );
683
684             stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_ref, result);
685         }
686
687         Ok(result)
688     }
689
690     /// If there is any previous entry on the stack that precisely
691     /// matches this obligation, then we can assume that the
692     /// obligation is satisfied for now (still all other conditions
693     /// must be met of course). One obvious case this comes up is
694     /// marker traits like `Send`. Think of a linked list:
695     ///
696     ///    struct List<T> { data: T, next: Option<Box<List<T>>> }
697     ///
698     /// `Box<List<T>>` will be `Send` if `T` is `Send` and
699     /// `Option<Box<List<T>>>` is `Send`, and in turn
700     /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
701     /// `Send`.
702     ///
703     /// Note that we do this comparison using the `fresh_trait_ref`
704     /// fields. Because these have all been freshened using
705     /// `self.freshener`, we can be sure that (a) this will not
706     /// affect the inferencer state and (b) that if we see two
707     /// fresh regions with the same index, they refer to the same
708     /// unbound type variable.
709     fn check_evaluation_cycle(
710         &mut self,
711         stack: &TraitObligationStack<'_, 'tcx>,
712     ) -> Option<EvaluationResult> {
713         if let Some(cycle_depth) = stack
714             .iter()
715             .skip(1) // Skip top-most frame.
716             .find(|prev| {
717                 stack.obligation.param_env == prev.obligation.param_env
718                     && stack.fresh_trait_ref == prev.fresh_trait_ref
719             })
720             .map(|stack| stack.depth)
721         {
722             debug!(
723                 "evaluate_stack({:?}) --> recursive at depth {}",
724                 stack.fresh_trait_ref, cycle_depth,
725             );
726
727             // If we have a stack like `A B C D E A`, where the top of
728             // the stack is the final `A`, then this will iterate over
729             // `A, E, D, C, B` -- i.e., all the participants apart
730             // from the cycle head. We mark them as participating in a
731             // cycle. This suppresses caching for those nodes. See
732             // `in_cycle` field for more details.
733             stack.update_reached_depth(cycle_depth);
734
735             // Subtle: when checking for a coinductive cycle, we do
736             // not compare using the "freshened trait refs" (which
737             // have erased regions) but rather the fully explicit
738             // trait refs. This is important because it's only a cycle
739             // if the regions match exactly.
740             let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
741             let tcx = self.tcx();
742             let cycle =
743                 cycle.map(|stack| stack.obligation.predicate.without_const().to_predicate(tcx));
744             if self.coinductive_match(cycle) {
745                 debug!("evaluate_stack({:?}) --> recursive, coinductive", stack.fresh_trait_ref);
746                 Some(EvaluatedToOk)
747             } else {
748                 debug!("evaluate_stack({:?}) --> recursive, inductive", stack.fresh_trait_ref);
749                 Some(EvaluatedToRecur)
750             }
751         } else {
752             None
753         }
754     }
755
756     fn evaluate_stack<'o>(
757         &mut self,
758         stack: &TraitObligationStack<'o, 'tcx>,
759     ) -> Result<EvaluationResult, OverflowError> {
760         // In intercrate mode, whenever any of the generics are unbound,
761         // there can always be an impl. Even if there are no impls in
762         // this crate, perhaps the type would be unified with
763         // something from another crate that does provide an impl.
764         //
765         // In intra mode, we must still be conservative. The reason is
766         // that we want to avoid cycles. Imagine an impl like:
767         //
768         //     impl<T:Eq> Eq for Vec<T>
769         //
770         // and a trait reference like `$0 : Eq` where `$0` is an
771         // unbound variable. When we evaluate this trait-reference, we
772         // will unify `$0` with `Vec<$1>` (for some fresh variable
773         // `$1`), on the condition that `$1 : Eq`. We will then wind
774         // up with many candidates (since that are other `Eq` impls
775         // that apply) and try to winnow things down. This results in
776         // a recursive evaluation that `$1 : Eq` -- as you can
777         // imagine, this is just where we started. To avoid that, we
778         // check for unbound variables and return an ambiguous (hence possible)
779         // match if we've seen this trait before.
780         //
781         // This suffices to allow chains like `FnMut` implemented in
782         // terms of `Fn` etc, but we could probably make this more
783         // precise still.
784         let unbound_input_types =
785             stack.fresh_trait_ref.skip_binder().substs.types().any(|ty| ty.is_fresh());
786         // This check was an imperfect workaround for a bug in the old
787         // intercrate mode; it should be removed when that goes away.
788         if unbound_input_types && self.intercrate {
789             debug!(
790                 "evaluate_stack({:?}) --> unbound argument, intercrate -->  ambiguous",
791                 stack.fresh_trait_ref
792             );
793             // Heuristics: show the diagnostics when there are no candidates in crate.
794             if self.intercrate_ambiguity_causes.is_some() {
795                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
796                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
797                     if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
798                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
799                         let self_ty = trait_ref.self_ty();
800                         let cause =
801                             with_no_trimmed_paths(|| IntercrateAmbiguityCause::DownstreamCrate {
802                                 trait_desc: trait_ref.print_only_trait_path().to_string(),
803                                 self_desc: if self_ty.has_concrete_skeleton() {
804                                     Some(self_ty.to_string())
805                                 } else {
806                                     None
807                                 },
808                             });
809
810                         debug!("evaluate_stack: pushing cause = {:?}", cause);
811                         self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
812                     }
813                 }
814             }
815             return Ok(EvaluatedToAmbig);
816         }
817         if unbound_input_types
818             && stack.iter().skip(1).any(|prev| {
819                 stack.obligation.param_env == prev.obligation.param_env
820                     && self.match_fresh_trait_refs(
821                         stack.fresh_trait_ref,
822                         prev.fresh_trait_ref,
823                         prev.obligation.param_env,
824                     )
825             })
826         {
827             debug!(
828                 "evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
829                 stack.fresh_trait_ref
830             );
831             return Ok(EvaluatedToUnknown);
832         }
833
834         match self.candidate_from_obligation(stack) {
835             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
836             Ok(None) => Ok(EvaluatedToAmbig),
837             Err(Overflow) => Err(OverflowError),
838             Err(..) => Ok(EvaluatedToErr),
839         }
840     }
841
842     /// For defaulted traits, we use a co-inductive strategy to solve, so
843     /// that recursion is ok. This routine returns `true` if the top of the
844     /// stack (`cycle[0]`):
845     ///
846     /// - is a defaulted trait,
847     /// - it also appears in the backtrace at some position `X`,
848     /// - all the predicates at positions `X..` between `X` and the top are
849     ///   also defaulted traits.
850     pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
851     where
852         I: Iterator<Item = ty::Predicate<'tcx>>,
853     {
854         let mut cycle = cycle;
855         cycle.all(|predicate| self.coinductive_predicate(predicate))
856     }
857
858     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
859         let result = match predicate.skip_binders() {
860             ty::PredicateAtom::Trait(ref data, _) => self.tcx().trait_is_auto(data.def_id()),
861             _ => false,
862         };
863         debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
864         result
865     }
866
867     /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
868     /// obligations are met. Returns whether `candidate` remains viable after this further
869     /// scrutiny.
870     fn evaluate_candidate<'o>(
871         &mut self,
872         stack: &TraitObligationStack<'o, 'tcx>,
873         candidate: &SelectionCandidate<'tcx>,
874     ) -> Result<EvaluationResult, OverflowError> {
875         debug!(
876             "evaluate_candidate: depth={} candidate={:?}",
877             stack.obligation.recursion_depth, candidate
878         );
879         let result = self.evaluation_probe(|this| {
880             let candidate = (*candidate).clone();
881             match this.confirm_candidate(stack.obligation, candidate) {
882                 Ok(selection) => {
883                     debug!("evaluate_candidate: selection = {:?}", selection);
884                     this.evaluate_predicates_recursively(
885                         stack.list(),
886                         selection.nested_obligations().into_iter(),
887                     )
888                 }
889                 Err(..) => Ok(EvaluatedToErr),
890             }
891         })?;
892         debug!(
893             "evaluate_candidate: depth={} result={:?}",
894             stack.obligation.recursion_depth, result
895         );
896         Ok(result)
897     }
898
899     fn check_evaluation_cache(
900         &self,
901         param_env: ty::ParamEnv<'tcx>,
902         trait_ref: ty::PolyTraitRef<'tcx>,
903     ) -> Option<EvaluationResult> {
904         let tcx = self.tcx();
905         if self.can_use_global_caches(param_env) {
906             if let Some(res) = tcx.evaluation_cache.get(&param_env.and(trait_ref), tcx) {
907                 return Some(res);
908             }
909         }
910         self.infcx.evaluation_cache.get(&param_env.and(trait_ref), tcx)
911     }
912
913     fn insert_evaluation_cache(
914         &mut self,
915         param_env: ty::ParamEnv<'tcx>,
916         trait_ref: ty::PolyTraitRef<'tcx>,
917         dep_node: DepNodeIndex,
918         result: EvaluationResult,
919     ) {
920         // Avoid caching results that depend on more than just the trait-ref
921         // - the stack can create recursion.
922         if result.is_stack_dependent() {
923             return;
924         }
925
926         if self.can_use_global_caches(param_env) {
927             if !trait_ref.needs_infer() {
928                 debug!(
929                     "insert_evaluation_cache(trait_ref={:?}, candidate={:?}) global",
930                     trait_ref, result,
931                 );
932                 // This may overwrite the cache with the same value
933                 // FIXME: Due to #50507 this overwrites the different values
934                 // This should be changed to use HashMapExt::insert_same
935                 // when that is fixed
936                 self.tcx().evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
937                 return;
938             }
939         }
940
941         debug!("insert_evaluation_cache(trait_ref={:?}, candidate={:?})", trait_ref, result,);
942         self.infcx.evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
943     }
944
945     /// For various reasons, it's possible for a subobligation
946     /// to have a *lower* recursion_depth than the obligation used to create it.
947     /// Projection sub-obligations may be returned from the projection cache,
948     /// which results in obligations with an 'old' `recursion_depth`.
949     /// Additionally, methods like `InferCtxt.subtype_predicate` produce
950     /// subobligations without taking in a 'parent' depth, causing the
951     /// generated subobligations to have a `recursion_depth` of `0`.
952     ///
953     /// To ensure that obligation_depth never decreasees, we force all subobligations
954     /// to have at least the depth of the original obligation.
955     fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(
956         &self,
957         it: I,
958         min_depth: usize,
959     ) {
960         it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
961     }
962
963     /// Checks that the recursion limit has not been exceeded.
964     ///
965     /// The weird return type of this function allows it to be used with the `try` (`?`)
966     /// operator within certain functions.
967     fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
968         &self,
969         obligation: &Obligation<'tcx, T>,
970         error_obligation: &Obligation<'tcx, V>,
971     ) -> Result<(), OverflowError> {
972         if !self.infcx.tcx.sess.recursion_limit().value_within_limit(obligation.recursion_depth) {
973             match self.query_mode {
974                 TraitQueryMode::Standard => {
975                     self.infcx().report_overflow_error(error_obligation, true);
976                 }
977                 TraitQueryMode::Canonical => {
978                     return Err(OverflowError);
979                 }
980             }
981         }
982         Ok(())
983     }
984
985     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
986     where
987         OP: FnOnce(&mut Self) -> R,
988     {
989         let (result, dep_node) =
990             self.tcx().dep_graph.with_anon_task(DepKind::TraitSelect, || op(self));
991         self.tcx().dep_graph.read_index(dep_node);
992         (result, dep_node)
993     }
994
995     // Treat negative impls as unimplemented, and reservation impls as ambiguity.
996     fn filter_negative_and_reservation_impls(
997         &mut self,
998         candidate: SelectionCandidate<'tcx>,
999     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1000         if let ImplCandidate(def_id) = candidate {
1001             let tcx = self.tcx();
1002             match tcx.impl_polarity(def_id) {
1003                 ty::ImplPolarity::Negative if !self.allow_negative_impls => {
1004                     return Err(Unimplemented);
1005                 }
1006                 ty::ImplPolarity::Reservation => {
1007                     if let Some(intercrate_ambiguity_clauses) =
1008                         &mut self.intercrate_ambiguity_causes
1009                     {
1010                         let attrs = tcx.get_attrs(def_id);
1011                         let attr = tcx.sess.find_by_name(&attrs, sym::rustc_reservation_impl);
1012                         let value = attr.and_then(|a| a.value_str());
1013                         if let Some(value) = value {
1014                             debug!(
1015                                 "filter_negative_and_reservation_impls: \
1016                                  reservation impl ambiguity on {:?}",
1017                                 def_id
1018                             );
1019                             intercrate_ambiguity_clauses.push(
1020                                 IntercrateAmbiguityCause::ReservationImpl {
1021                                     message: value.to_string(),
1022                                 },
1023                             );
1024                         }
1025                     }
1026                     return Ok(None);
1027                 }
1028                 _ => {}
1029             };
1030         }
1031         Ok(Some(candidate))
1032     }
1033
1034     fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
1035         debug!("is_knowable(intercrate={:?})", self.intercrate);
1036
1037         if !self.intercrate {
1038             return None;
1039         }
1040
1041         let obligation = &stack.obligation;
1042         let predicate = self.infcx().resolve_vars_if_possible(&obligation.predicate);
1043
1044         // Okay to skip binder because of the nature of the
1045         // trait-ref-is-knowable check, which does not care about
1046         // bound regions.
1047         let trait_ref = predicate.skip_binder().trait_ref;
1048
1049         coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
1050     }
1051
1052     /// Returns `true` if the global caches can be used.
1053     /// Do note that if the type itself is not in the
1054     /// global tcx, the local caches will be used.
1055     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1056         // If there are any inference variables in the `ParamEnv`, then we
1057         // always use a cache local to this particular scope. Otherwise, we
1058         // switch to a global cache.
1059         if param_env.needs_infer() {
1060             return false;
1061         }
1062
1063         // Avoid using the master cache during coherence and just rely
1064         // on the local cache. This effectively disables caching
1065         // during coherence. It is really just a simplification to
1066         // avoid us having to fear that coherence results "pollute"
1067         // the master cache. Since coherence executes pretty quickly,
1068         // it's not worth going to more trouble to increase the
1069         // hit-rate, I don't think.
1070         if self.intercrate {
1071             return false;
1072         }
1073
1074         // Otherwise, we can use the global cache.
1075         true
1076     }
1077
1078     fn check_candidate_cache(
1079         &mut self,
1080         param_env: ty::ParamEnv<'tcx>,
1081         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1082     ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1083         let tcx = self.tcx();
1084         let trait_ref = &cache_fresh_trait_pred.skip_binder().trait_ref;
1085         if self.can_use_global_caches(param_env) {
1086             if let Some(res) = tcx.selection_cache.get(&param_env.and(*trait_ref), tcx) {
1087                 return Some(res);
1088             }
1089         }
1090         self.infcx.selection_cache.get(&param_env.and(*trait_ref), tcx)
1091     }
1092
1093     /// Determines whether can we safely cache the result
1094     /// of selecting an obligation. This is almost always `true`,
1095     /// except when dealing with certain `ParamCandidate`s.
1096     ///
1097     /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1098     /// since it was usually produced directly from a `DefId`. However,
1099     /// certain cases (currently only librustdoc's blanket impl finder),
1100     /// a `ParamEnv` may be explicitly constructed with inference types.
1101     /// When this is the case, we do *not* want to cache the resulting selection
1102     /// candidate. This is due to the fact that it might not always be possible
1103     /// to equate the obligation's trait ref and the candidate's trait ref,
1104     /// if more constraints end up getting added to an inference variable.
1105     ///
1106     /// Because of this, we always want to re-run the full selection
1107     /// process for our obligation the next time we see it, since
1108     /// we might end up picking a different `SelectionCandidate` (or none at all).
1109     fn can_cache_candidate(
1110         &self,
1111         result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1112     ) -> bool {
1113         match result {
1114             Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.needs_infer(),
1115             _ => true,
1116         }
1117     }
1118
1119     fn insert_candidate_cache(
1120         &mut self,
1121         param_env: ty::ParamEnv<'tcx>,
1122         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1123         dep_node: DepNodeIndex,
1124         candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1125     ) {
1126         let tcx = self.tcx();
1127         let trait_ref = cache_fresh_trait_pred.skip_binder().trait_ref;
1128
1129         if !self.can_cache_candidate(&candidate) {
1130             debug!(
1131                 "insert_candidate_cache(trait_ref={:?}, candidate={:?} -\
1132                  candidate is not cacheable",
1133                 trait_ref, candidate
1134             );
1135             return;
1136         }
1137
1138         if self.can_use_global_caches(param_env) {
1139             if let Err(Overflow) = candidate {
1140                 // Don't cache overflow globally; we only produce this in certain modes.
1141             } else if !trait_ref.needs_infer() {
1142                 if !candidate.needs_infer() {
1143                     debug!(
1144                         "insert_candidate_cache(trait_ref={:?}, candidate={:?}) global",
1145                         trait_ref, candidate,
1146                     );
1147                     // This may overwrite the cache with the same value.
1148                     tcx.selection_cache.insert(param_env.and(trait_ref), dep_node, candidate);
1149                     return;
1150                 }
1151             }
1152         }
1153
1154         debug!(
1155             "insert_candidate_cache(trait_ref={:?}, candidate={:?}) local",
1156             trait_ref, candidate,
1157         );
1158         self.infcx.selection_cache.insert(param_env.and(trait_ref), dep_node, candidate);
1159     }
1160
1161     /// Matches a predicate against the bounds of its self type.
1162     ///
1163     /// Given an obligation like `<T as Foo>::Bar: Baz` where the self type is
1164     /// a projection, look at the bounds of `T::Bar`, see if we can find a
1165     /// `Baz` bound. We return indexes into the list returned by
1166     /// `tcx.item_bounds` for any applicable bounds.
1167     fn match_projection_obligation_against_definition_bounds(
1168         &mut self,
1169         obligation: &TraitObligation<'tcx>,
1170     ) -> smallvec::SmallVec<[usize; 2]> {
1171         let poly_trait_predicate = self.infcx().resolve_vars_if_possible(&obligation.predicate);
1172         let placeholder_trait_predicate =
1173             self.infcx().replace_bound_vars_with_placeholders(&poly_trait_predicate);
1174         debug!(
1175             "match_projection_obligation_against_definition_bounds: \
1176              placeholder_trait_predicate={:?}",
1177             placeholder_trait_predicate,
1178         );
1179
1180         let tcx = self.infcx.tcx;
1181         let (def_id, substs) = match *placeholder_trait_predicate.trait_ref.self_ty().kind() {
1182             ty::Projection(ref data) => (data.item_def_id, data.substs),
1183             ty::Opaque(def_id, substs) => (def_id, substs),
1184             _ => {
1185                 span_bug!(
1186                     obligation.cause.span,
1187                     "match_projection_obligation_against_definition_bounds() called \
1188                      but self-ty is not a projection: {:?}",
1189                     placeholder_trait_predicate.trait_ref.self_ty()
1190                 );
1191             }
1192         };
1193         let bounds = tcx.item_bounds(def_id).subst(tcx, substs);
1194
1195         let matching_bounds = bounds
1196             .iter()
1197             .enumerate()
1198             .filter_map(|(idx, bound)| {
1199                 if let ty::PredicateAtom::Trait(pred, _) = bound.skip_binders() {
1200                     let bound = ty::Binder::bind(pred.trait_ref);
1201                     if self.infcx.probe(|_| {
1202                         self.match_projection(
1203                             obligation,
1204                             bound,
1205                             placeholder_trait_predicate.trait_ref,
1206                         )
1207                         .is_ok()
1208                     }) {
1209                         return Some(idx);
1210                     }
1211                 }
1212                 None
1213             })
1214             .collect();
1215
1216         debug!(
1217             "match_projection_obligation_against_definition_bounds: \
1218              matching_bounds={:?}",
1219             matching_bounds
1220         );
1221         matching_bounds
1222     }
1223
1224     fn match_projection(
1225         &mut self,
1226         obligation: &TraitObligation<'tcx>,
1227         trait_bound: ty::PolyTraitRef<'tcx>,
1228         placeholder_trait_ref: ty::TraitRef<'tcx>,
1229     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
1230         debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1231         if placeholder_trait_ref.def_id != trait_bound.def_id() {
1232             // Avoid unnecessary normalization
1233             return Err(());
1234         }
1235
1236         let Normalized { value: trait_bound, obligations: mut nested_obligations } =
1237             ensure_sufficient_stack(|| {
1238                 project::normalize_with_depth(
1239                     self,
1240                     obligation.param_env,
1241                     obligation.cause.clone(),
1242                     obligation.recursion_depth + 1,
1243                     &trait_bound,
1244                 )
1245             });
1246         self.infcx
1247             .at(&obligation.cause, obligation.param_env)
1248             .sup(ty::Binder::dummy(placeholder_trait_ref), trait_bound)
1249             .map(|InferOk { obligations, .. }| {
1250                 nested_obligations.extend(obligations);
1251                 nested_obligations
1252             })
1253             .map_err(|_| ())
1254     }
1255
1256     fn evaluate_where_clause<'o>(
1257         &mut self,
1258         stack: &TraitObligationStack<'o, 'tcx>,
1259         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1260     ) -> Result<EvaluationResult, OverflowError> {
1261         self.evaluation_probe(|this| {
1262             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1263                 Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1264                 Err(()) => Ok(EvaluatedToErr),
1265             }
1266         })
1267     }
1268
1269     pub(super) fn match_projection_projections(
1270         &mut self,
1271         obligation: &ProjectionTyObligation<'tcx>,
1272         obligation_trait_ref: &ty::TraitRef<'tcx>,
1273         data: &PolyProjectionPredicate<'tcx>,
1274         potentially_unnormalized_candidates: bool,
1275     ) -> bool {
1276         let mut nested_obligations = Vec::new();
1277         let projection_ty = if potentially_unnormalized_candidates {
1278             ensure_sufficient_stack(|| {
1279                 project::normalize_with_depth_to(
1280                     self,
1281                     obligation.param_env,
1282                     obligation.cause.clone(),
1283                     obligation.recursion_depth + 1,
1284                     &data.map_bound_ref(|data| data.projection_ty),
1285                     &mut nested_obligations,
1286                 )
1287             })
1288         } else {
1289             data.map_bound_ref(|data| data.projection_ty)
1290         };
1291
1292         // FIXME(generic_associated_types): Compare the whole projections
1293         let data_poly_trait_ref = projection_ty.map_bound(|proj| proj.trait_ref(self.tcx()));
1294         let obligation_poly_trait_ref = obligation_trait_ref.to_poly_trait_ref();
1295         self.infcx
1296             .at(&obligation.cause, obligation.param_env)
1297             .sup(obligation_poly_trait_ref, data_poly_trait_ref)
1298             .map_or(false, |InferOk { obligations, value: () }| {
1299                 self.evaluate_predicates_recursively(
1300                     TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1301                     nested_obligations.into_iter().chain(obligations),
1302                 )
1303                 .map_or(false, |res| res.may_apply())
1304             })
1305     }
1306
1307     ///////////////////////////////////////////////////////////////////////////
1308     // WINNOW
1309     //
1310     // Winnowing is the process of attempting to resolve ambiguity by
1311     // probing further. During the winnowing process, we unify all
1312     // type variables and then we also attempt to evaluate recursive
1313     // bounds to see if they are satisfied.
1314
1315     /// Returns `true` if `victim` should be dropped in favor of
1316     /// `other`. Generally speaking we will drop duplicate
1317     /// candidates and prefer where-clause candidates.
1318     ///
1319     /// See the comment for "SelectionCandidate" for more details.
1320     fn candidate_should_be_dropped_in_favor_of(
1321         &mut self,
1322         victim: &EvaluatedCandidate<'tcx>,
1323         other: &EvaluatedCandidate<'tcx>,
1324         needs_infer: bool,
1325     ) -> bool {
1326         if victim.candidate == other.candidate {
1327             return true;
1328         }
1329
1330         // Check if a bound would previously have been removed when normalizing
1331         // the param_env so that it can be given the lowest priority. See
1332         // #50825 for the motivation for this.
1333         let is_global =
1334             |cand: &ty::PolyTraitRef<'_>| cand.is_global() && !cand.has_late_bound_regions();
1335
1336         // (*) Prefer `BuiltinCandidate { has_nested: false }` and `DiscriminantKindCandidate`
1337         // to anything else.
1338         //
1339         // This is a fix for #53123 and prevents winnowing from accidentally extending the
1340         // lifetime of a variable.
1341         match (&other.candidate, &victim.candidate) {
1342             (_, AutoImplCandidate(..)) | (AutoImplCandidate(..), _) => {
1343                 bug!(
1344                     "default implementations shouldn't be recorded \
1345                     when there are other valid candidates"
1346                 );
1347             }
1348
1349             // (*)
1350             (BuiltinCandidate { has_nested: false } | DiscriminantKindCandidate, _) => true,
1351             (_, BuiltinCandidate { has_nested: false } | DiscriminantKindCandidate) => false,
1352
1353             (ParamCandidate(..), ParamCandidate(..)) => false,
1354
1355             // Global bounds from the where clause should be ignored
1356             // here (see issue #50825). Otherwise, we have a where
1357             // clause so don't go around looking for impls.
1358             // Arbitrarily give param candidates priority
1359             // over projection and object candidates.
1360             (
1361                 ParamCandidate(ref cand),
1362                 ImplCandidate(..)
1363                 | ClosureCandidate
1364                 | GeneratorCandidate
1365                 | FnPointerCandidate
1366                 | BuiltinObjectCandidate
1367                 | BuiltinUnsizeCandidate
1368                 | BuiltinCandidate { .. }
1369                 | TraitAliasCandidate(..)
1370                 | ObjectCandidate
1371                 | ProjectionCandidate(_),
1372             ) => !is_global(cand),
1373             (ObjectCandidate | ProjectionCandidate(_), ParamCandidate(ref cand)) => {
1374                 // Prefer these to a global where-clause bound
1375                 // (see issue #50825).
1376                 is_global(cand)
1377             }
1378             (
1379                 ImplCandidate(_)
1380                 | ClosureCandidate
1381                 | GeneratorCandidate
1382                 | FnPointerCandidate
1383                 | BuiltinObjectCandidate
1384                 | BuiltinUnsizeCandidate
1385                 | BuiltinCandidate { has_nested: true }
1386                 | TraitAliasCandidate(..),
1387                 ParamCandidate(ref cand),
1388             ) => {
1389                 // Prefer these to a global where-clause bound
1390                 // (see issue #50825).
1391                 is_global(cand) && other.evaluation.must_apply_modulo_regions()
1392             }
1393
1394             (ProjectionCandidate(i), ProjectionCandidate(j)) => {
1395                 // Arbitrarily pick the first candidate for backwards
1396                 // compatibility reasons. Don't let this affect inference.
1397                 i > j && !needs_infer
1398             }
1399             (ObjectCandidate, ObjectCandidate) => bug!("Duplicate object candidate"),
1400             (ObjectCandidate, ProjectionCandidate(_))
1401             | (ProjectionCandidate(_), ObjectCandidate) => {
1402                 bug!("Have both object and projection candidate")
1403             }
1404
1405             // Arbitrarily give projection and object candidates priority.
1406             (
1407                 ObjectCandidate | ProjectionCandidate(_),
1408                 ImplCandidate(..)
1409                 | ClosureCandidate
1410                 | GeneratorCandidate
1411                 | FnPointerCandidate
1412                 | BuiltinObjectCandidate
1413                 | BuiltinUnsizeCandidate
1414                 | BuiltinCandidate { .. }
1415                 | TraitAliasCandidate(..),
1416             ) => true,
1417
1418             (
1419                 ImplCandidate(..)
1420                 | ClosureCandidate
1421                 | GeneratorCandidate
1422                 | FnPointerCandidate
1423                 | BuiltinObjectCandidate
1424                 | BuiltinUnsizeCandidate
1425                 | BuiltinCandidate { .. }
1426                 | TraitAliasCandidate(..),
1427                 ObjectCandidate | ProjectionCandidate(_),
1428             ) => false,
1429
1430             (&ImplCandidate(other_def), &ImplCandidate(victim_def)) => {
1431                 // See if we can toss out `victim` based on specialization.
1432                 // This requires us to know *for sure* that the `other` impl applies
1433                 // i.e., `EvaluatedToOk`.
1434                 if other.evaluation.must_apply_modulo_regions() {
1435                     let tcx = self.tcx();
1436                     if tcx.specializes((other_def, victim_def)) {
1437                         return true;
1438                     }
1439                     return match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
1440                         Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
1441                             // Subtle: If the predicate we are evaluating has inference
1442                             // variables, do *not* allow discarding candidates due to
1443                             // marker trait impls.
1444                             //
1445                             // Without this restriction, we could end up accidentally
1446                             // constrainting inference variables based on an arbitrarily
1447                             // chosen trait impl.
1448                             //
1449                             // Imagine we have the following code:
1450                             //
1451                             // ```rust
1452                             // #[marker] trait MyTrait {}
1453                             // impl MyTrait for u8 {}
1454                             // impl MyTrait for bool {}
1455                             // ```
1456                             //
1457                             // And we are evaluating the predicate `<_#0t as MyTrait>`.
1458                             //
1459                             // During selection, we will end up with one candidate for each
1460                             // impl of `MyTrait`. If we were to discard one impl in favor
1461                             // of the other, we would be left with one candidate, causing
1462                             // us to "successfully" select the predicate, unifying
1463                             // _#0t with (for example) `u8`.
1464                             //
1465                             // However, we have no reason to believe that this unification
1466                             // is correct - we've essentially just picked an arbitrary
1467                             // *possibility* for _#0t, and required that this be the *only*
1468                             // possibility.
1469                             //
1470                             // Eventually, we will either:
1471                             // 1) Unify all inference variables in the predicate through
1472                             // some other means (e.g. type-checking of a function). We will
1473                             // then be in a position to drop marker trait candidates
1474                             // without constraining inference variables (since there are
1475                             // none left to constrin)
1476                             // 2) Be left with some unconstrained inference variables. We
1477                             // will then correctly report an inference error, since the
1478                             // existence of multiple marker trait impls tells us nothing
1479                             // about which one should actually apply.
1480                             !needs_infer
1481                         }
1482                         Some(_) => true,
1483                         None => false,
1484                     };
1485                 } else {
1486                     false
1487                 }
1488             }
1489
1490             // Everything else is ambiguous
1491             (
1492                 ImplCandidate(_)
1493                 | ClosureCandidate
1494                 | GeneratorCandidate
1495                 | FnPointerCandidate
1496                 | BuiltinObjectCandidate
1497                 | BuiltinUnsizeCandidate
1498                 | BuiltinCandidate { has_nested: true }
1499                 | TraitAliasCandidate(..),
1500                 ImplCandidate(_)
1501                 | ClosureCandidate
1502                 | GeneratorCandidate
1503                 | FnPointerCandidate
1504                 | BuiltinObjectCandidate
1505                 | BuiltinUnsizeCandidate
1506                 | BuiltinCandidate { has_nested: true }
1507                 | TraitAliasCandidate(..),
1508             ) => false,
1509         }
1510     }
1511
1512     fn sized_conditions(
1513         &mut self,
1514         obligation: &TraitObligation<'tcx>,
1515     ) -> BuiltinImplConditions<'tcx> {
1516         use self::BuiltinImplConditions::{Ambiguous, None, Where};
1517
1518         // NOTE: binder moved to (*)
1519         let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1520
1521         match self_ty.kind() {
1522             ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1523             | ty::Uint(_)
1524             | ty::Int(_)
1525             | ty::Bool
1526             | ty::Float(_)
1527             | ty::FnDef(..)
1528             | ty::FnPtr(_)
1529             | ty::RawPtr(..)
1530             | ty::Char
1531             | ty::Ref(..)
1532             | ty::Generator(..)
1533             | ty::GeneratorWitness(..)
1534             | ty::Array(..)
1535             | ty::Closure(..)
1536             | ty::Never
1537             | ty::Error(_) => {
1538                 // safe for everything
1539                 Where(ty::Binder::dummy(Vec::new()))
1540             }
1541
1542             ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
1543
1544             ty::Tuple(tys) => {
1545                 Where(ty::Binder::bind(tys.last().into_iter().map(|k| k.expect_ty()).collect()))
1546             }
1547
1548             ty::Adt(def, substs) => {
1549                 let sized_crit = def.sized_constraint(self.tcx());
1550                 // (*) binder moved here
1551                 Where(ty::Binder::bind(
1552                     sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect(),
1553                 ))
1554             }
1555
1556             ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
1557             ty::Infer(ty::TyVar(_)) => Ambiguous,
1558
1559             ty::Placeholder(..)
1560             | ty::Bound(..)
1561             | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1562                 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1563             }
1564         }
1565     }
1566
1567     fn copy_clone_conditions(
1568         &mut self,
1569         obligation: &TraitObligation<'tcx>,
1570     ) -> BuiltinImplConditions<'tcx> {
1571         // NOTE: binder moved to (*)
1572         let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1573
1574         use self::BuiltinImplConditions::{Ambiguous, None, Where};
1575
1576         match self_ty.kind() {
1577             ty::Infer(ty::IntVar(_))
1578             | ty::Infer(ty::FloatVar(_))
1579             | ty::FnDef(..)
1580             | ty::FnPtr(_)
1581             | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
1582
1583             ty::Uint(_)
1584             | ty::Int(_)
1585             | ty::Bool
1586             | ty::Float(_)
1587             | ty::Char
1588             | ty::RawPtr(..)
1589             | ty::Never
1590             | ty::Ref(_, _, hir::Mutability::Not) => {
1591                 // Implementations provided in libcore
1592                 None
1593             }
1594
1595             ty::Dynamic(..)
1596             | ty::Str
1597             | ty::Slice(..)
1598             | ty::Generator(..)
1599             | ty::GeneratorWitness(..)
1600             | ty::Foreign(..)
1601             | ty::Ref(_, _, hir::Mutability::Mut) => None,
1602
1603             ty::Array(element_ty, _) => {
1604                 // (*) binder moved here
1605                 Where(ty::Binder::bind(vec![element_ty]))
1606             }
1607
1608             ty::Tuple(tys) => {
1609                 // (*) binder moved here
1610                 Where(ty::Binder::bind(tys.iter().map(|k| k.expect_ty()).collect()))
1611             }
1612
1613             ty::Closure(_, substs) => {
1614                 // (*) binder moved here
1615                 Where(ty::Binder::bind(substs.as_closure().upvar_tys().collect()))
1616             }
1617
1618             ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
1619                 // Fallback to whatever user-defined impls exist in this case.
1620                 None
1621             }
1622
1623             ty::Infer(ty::TyVar(_)) => {
1624                 // Unbound type variable. Might or might not have
1625                 // applicable impls and so forth, depending on what
1626                 // those type variables wind up being bound to.
1627                 Ambiguous
1628             }
1629
1630             ty::Placeholder(..)
1631             | ty::Bound(..)
1632             | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1633                 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1634             }
1635         }
1636     }
1637
1638     /// For default impls, we need to break apart a type into its
1639     /// "constituent types" -- meaning, the types that it contains.
1640     ///
1641     /// Here are some (simple) examples:
1642     ///
1643     /// ```
1644     /// (i32, u32) -> [i32, u32]
1645     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
1646     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
1647     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
1648     /// ```
1649     fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
1650         match *t.kind() {
1651             ty::Uint(_)
1652             | ty::Int(_)
1653             | ty::Bool
1654             | ty::Float(_)
1655             | ty::FnDef(..)
1656             | ty::FnPtr(_)
1657             | ty::Str
1658             | ty::Error(_)
1659             | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1660             | ty::Never
1661             | ty::Char => Vec::new(),
1662
1663             ty::Placeholder(..)
1664             | ty::Dynamic(..)
1665             | ty::Param(..)
1666             | ty::Foreign(..)
1667             | ty::Projection(..)
1668             | ty::Bound(..)
1669             | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1670                 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
1671             }
1672
1673             ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
1674                 vec![element_ty]
1675             }
1676
1677             ty::Array(element_ty, _) | ty::Slice(element_ty) => vec![element_ty],
1678
1679             ty::Tuple(ref tys) => {
1680                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
1681                 tys.iter().map(|k| k.expect_ty()).collect()
1682             }
1683
1684             ty::Closure(_, ref substs) => substs.as_closure().upvar_tys().collect(),
1685
1686             ty::Generator(_, ref substs, _) => {
1687                 let witness = substs.as_generator().witness();
1688                 substs.as_generator().upvar_tys().chain(iter::once(witness)).collect()
1689             }
1690
1691             ty::GeneratorWitness(types) => {
1692                 // This is sound because no regions in the witness can refer to
1693                 // the binder outside the witness. So we'll effectivly reuse
1694                 // the implicit binder around the witness.
1695                 types.skip_binder().to_vec()
1696             }
1697
1698             // For `PhantomData<T>`, we pass `T`.
1699             ty::Adt(def, substs) if def.is_phantom_data() => substs.types().collect(),
1700
1701             ty::Adt(def, substs) => def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect(),
1702
1703             ty::Opaque(def_id, substs) => {
1704                 // We can resolve the `impl Trait` to its concrete type,
1705                 // which enforces a DAG between the functions requiring
1706                 // the auto trait bounds in question.
1707                 vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
1708             }
1709         }
1710     }
1711
1712     fn collect_predicates_for_types(
1713         &mut self,
1714         param_env: ty::ParamEnv<'tcx>,
1715         cause: ObligationCause<'tcx>,
1716         recursion_depth: usize,
1717         trait_def_id: DefId,
1718         types: ty::Binder<Vec<Ty<'tcx>>>,
1719     ) -> Vec<PredicateObligation<'tcx>> {
1720         // Because the types were potentially derived from
1721         // higher-ranked obligations they may reference late-bound
1722         // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
1723         // yield a type like `for<'a> &'a i32`. In general, we
1724         // maintain the invariant that we never manipulate bound
1725         // regions, so we have to process these bound regions somehow.
1726         //
1727         // The strategy is to:
1728         //
1729         // 1. Instantiate those regions to placeholder regions (e.g.,
1730         //    `for<'a> &'a i32` becomes `&0 i32`.
1731         // 2. Produce something like `&'0 i32 : Copy`
1732         // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
1733
1734         types
1735             .skip_binder() // binder moved -\
1736             .iter()
1737             .flat_map(|ty| {
1738                 let ty: ty::Binder<Ty<'tcx>> = ty::Binder::bind(ty); // <----/
1739
1740                 self.infcx.commit_unconditionally(|_| {
1741                     let placeholder_ty = self.infcx.replace_bound_vars_with_placeholders(&ty);
1742                     let Normalized { value: normalized_ty, mut obligations } =
1743                         ensure_sufficient_stack(|| {
1744                             project::normalize_with_depth(
1745                                 self,
1746                                 param_env,
1747                                 cause.clone(),
1748                                 recursion_depth,
1749                                 &placeholder_ty,
1750                             )
1751                         });
1752                     let placeholder_obligation = predicate_for_trait_def(
1753                         self.tcx(),
1754                         param_env,
1755                         cause.clone(),
1756                         trait_def_id,
1757                         recursion_depth,
1758                         normalized_ty,
1759                         &[],
1760                     );
1761                     obligations.push(placeholder_obligation);
1762                     obligations
1763                 })
1764             })
1765             .collect()
1766     }
1767
1768     ///////////////////////////////////////////////////////////////////////////
1769     // Matching
1770     //
1771     // Matching is a common path used for both evaluation and
1772     // confirmation.  It basically unifies types that appear in impls
1773     // and traits. This does affect the surrounding environment;
1774     // therefore, when used during evaluation, match routines must be
1775     // run inside of a `probe()` so that their side-effects are
1776     // contained.
1777
1778     fn rematch_impl(
1779         &mut self,
1780         impl_def_id: DefId,
1781         obligation: &TraitObligation<'tcx>,
1782     ) -> Normalized<'tcx, SubstsRef<'tcx>> {
1783         match self.match_impl(impl_def_id, obligation) {
1784             Ok(substs) => substs,
1785             Err(()) => {
1786                 bug!(
1787                     "Impl {:?} was matchable against {:?} but now is not",
1788                     impl_def_id,
1789                     obligation
1790                 );
1791             }
1792         }
1793     }
1794
1795     fn match_impl(
1796         &mut self,
1797         impl_def_id: DefId,
1798         obligation: &TraitObligation<'tcx>,
1799     ) -> Result<Normalized<'tcx, SubstsRef<'tcx>>, ()> {
1800         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
1801
1802         // Before we create the substitutions and everything, first
1803         // consider a "quick reject". This avoids creating more types
1804         // and so forth that we need to.
1805         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
1806             return Err(());
1807         }
1808
1809         let placeholder_obligation =
1810             self.infcx().replace_bound_vars_with_placeholders(&obligation.predicate);
1811         let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
1812
1813         let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span, impl_def_id);
1814
1815         let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
1816
1817         let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
1818             ensure_sufficient_stack(|| {
1819                 project::normalize_with_depth(
1820                     self,
1821                     obligation.param_env,
1822                     obligation.cause.clone(),
1823                     obligation.recursion_depth + 1,
1824                     &impl_trait_ref,
1825                 )
1826             });
1827
1828         debug!(
1829             "match_impl(impl_def_id={:?}, obligation={:?}, \
1830              impl_trait_ref={:?}, placeholder_obligation_trait_ref={:?})",
1831             impl_def_id, obligation, impl_trait_ref, placeholder_obligation_trait_ref
1832         );
1833
1834         let InferOk { obligations, .. } = self
1835             .infcx
1836             .at(&obligation.cause, obligation.param_env)
1837             .eq(placeholder_obligation_trait_ref, impl_trait_ref)
1838             .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
1839         nested_obligations.extend(obligations);
1840
1841         if !self.intercrate
1842             && self.tcx().impl_polarity(impl_def_id) == ty::ImplPolarity::Reservation
1843         {
1844             debug!("match_impl: reservation impls only apply in intercrate mode");
1845             return Err(());
1846         }
1847
1848         debug!("match_impl: success impl_substs={:?}", impl_substs);
1849         Ok(Normalized { value: impl_substs, obligations: nested_obligations })
1850     }
1851
1852     fn fast_reject_trait_refs(
1853         &mut self,
1854         obligation: &TraitObligation<'_>,
1855         impl_trait_ref: &ty::TraitRef<'_>,
1856     ) -> bool {
1857         // We can avoid creating type variables and doing the full
1858         // substitution if we find that any of the input types, when
1859         // simplified, do not match.
1860
1861         obligation.predicate.skip_binder().trait_ref.substs.iter().zip(impl_trait_ref.substs).any(
1862             |(obligation_arg, impl_arg)| {
1863                 match (obligation_arg.unpack(), impl_arg.unpack()) {
1864                     (GenericArgKind::Type(obligation_ty), GenericArgKind::Type(impl_ty)) => {
1865                         let simplified_obligation_ty =
1866                             fast_reject::simplify_type(self.tcx(), obligation_ty, true);
1867                         let simplified_impl_ty =
1868                             fast_reject::simplify_type(self.tcx(), impl_ty, false);
1869
1870                         simplified_obligation_ty.is_some()
1871                             && simplified_impl_ty.is_some()
1872                             && simplified_obligation_ty != simplified_impl_ty
1873                     }
1874                     (GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => {
1875                         // Lifetimes can never cause a rejection.
1876                         false
1877                     }
1878                     (GenericArgKind::Const(_), GenericArgKind::Const(_)) => {
1879                         // Conservatively ignore consts (i.e. assume they might
1880                         // unify later) until we have `fast_reject` support for
1881                         // them (if we'll ever need it, even).
1882                         false
1883                     }
1884                     _ => unreachable!(),
1885                 }
1886             },
1887         )
1888     }
1889
1890     /// Normalize `where_clause_trait_ref` and try to match it against
1891     /// `obligation`. If successful, return any predicates that
1892     /// result from the normalization. Normalization is necessary
1893     /// because where-clauses are stored in the parameter environment
1894     /// unnormalized.
1895     fn match_where_clause_trait_ref(
1896         &mut self,
1897         obligation: &TraitObligation<'tcx>,
1898         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1899     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
1900         self.match_poly_trait_ref(obligation, where_clause_trait_ref)
1901     }
1902
1903     /// Returns `Ok` if `poly_trait_ref` being true implies that the
1904     /// obligation is satisfied.
1905     fn match_poly_trait_ref(
1906         &mut self,
1907         obligation: &TraitObligation<'tcx>,
1908         poly_trait_ref: ty::PolyTraitRef<'tcx>,
1909     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
1910         debug!(
1911             "match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
1912             obligation, poly_trait_ref
1913         );
1914
1915         self.infcx
1916             .at(&obligation.cause, obligation.param_env)
1917             .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
1918             .map(|InferOk { obligations, .. }| obligations)
1919             .map_err(|_| ())
1920     }
1921
1922     ///////////////////////////////////////////////////////////////////////////
1923     // Miscellany
1924
1925     fn match_fresh_trait_refs(
1926         &self,
1927         previous: ty::PolyTraitRef<'tcx>,
1928         current: ty::PolyTraitRef<'tcx>,
1929         param_env: ty::ParamEnv<'tcx>,
1930     ) -> bool {
1931         let mut matcher = ty::_match::Match::new(self.tcx(), param_env);
1932         matcher.relate(previous, current).is_ok()
1933     }
1934
1935     fn push_stack<'o>(
1936         &mut self,
1937         previous_stack: TraitObligationStackList<'o, 'tcx>,
1938         obligation: &'o TraitObligation<'tcx>,
1939     ) -> TraitObligationStack<'o, 'tcx> {
1940         let fresh_trait_ref =
1941             obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
1942
1943         let dfn = previous_stack.cache.next_dfn();
1944         let depth = previous_stack.depth() + 1;
1945         TraitObligationStack {
1946             obligation,
1947             fresh_trait_ref,
1948             reached_depth: Cell::new(depth),
1949             previous: previous_stack,
1950             dfn,
1951             depth,
1952         }
1953     }
1954
1955     fn closure_trait_ref_unnormalized(
1956         &mut self,
1957         obligation: &TraitObligation<'tcx>,
1958         substs: SubstsRef<'tcx>,
1959     ) -> ty::PolyTraitRef<'tcx> {
1960         debug!("closure_trait_ref_unnormalized(obligation={:?}, substs={:?})", obligation, substs);
1961         let closure_sig = substs.as_closure().sig();
1962
1963         debug!("closure_trait_ref_unnormalized: closure_sig = {:?}", closure_sig);
1964
1965         // (1) Feels icky to skip the binder here, but OTOH we know
1966         // that the self-type is an unboxed closure type and hence is
1967         // in fact unparameterized (or at least does not reference any
1968         // regions bound in the obligation). Still probably some
1969         // refactoring could make this nicer.
1970         closure_trait_ref_and_return_type(
1971             self.tcx(),
1972             obligation.predicate.def_id(),
1973             obligation.predicate.skip_binder().self_ty(), // (1)
1974             closure_sig,
1975             util::TupleArgumentsFlag::No,
1976         )
1977         .map_bound(|(trait_ref, _)| trait_ref)
1978     }
1979
1980     fn generator_trait_ref_unnormalized(
1981         &mut self,
1982         obligation: &TraitObligation<'tcx>,
1983         substs: SubstsRef<'tcx>,
1984     ) -> ty::PolyTraitRef<'tcx> {
1985         let gen_sig = substs.as_generator().poly_sig();
1986
1987         // (1) Feels icky to skip the binder here, but OTOH we know
1988         // that the self-type is an generator type and hence is
1989         // in fact unparameterized (or at least does not reference any
1990         // regions bound in the obligation). Still probably some
1991         // refactoring could make this nicer.
1992
1993         super::util::generator_trait_ref_and_outputs(
1994             self.tcx(),
1995             obligation.predicate.def_id(),
1996             obligation.predicate.skip_binder().self_ty(), // (1)
1997             gen_sig,
1998         )
1999         .map_bound(|(trait_ref, ..)| trait_ref)
2000     }
2001
2002     /// Returns the obligations that are implied by instantiating an
2003     /// impl or trait. The obligations are substituted and fully
2004     /// normalized. This is used when confirming an impl or default
2005     /// impl.
2006     fn impl_or_trait_obligations(
2007         &mut self,
2008         cause: ObligationCause<'tcx>,
2009         recursion_depth: usize,
2010         param_env: ty::ParamEnv<'tcx>,
2011         def_id: DefId,           // of impl or trait
2012         substs: SubstsRef<'tcx>, // for impl or trait
2013     ) -> Vec<PredicateObligation<'tcx>> {
2014         debug!("impl_or_trait_obligations(def_id={:?})", def_id);
2015         let tcx = self.tcx();
2016
2017         // To allow for one-pass evaluation of the nested obligation,
2018         // each predicate must be preceded by the obligations required
2019         // to normalize it.
2020         // for example, if we have:
2021         //    impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2022         // the impl will have the following predicates:
2023         //    <V as Iterator>::Item = U,
2024         //    U: Iterator, U: Sized,
2025         //    V: Iterator, V: Sized,
2026         //    <U as Iterator>::Item: Copy
2027         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
2028         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2029         // `$1: Copy`, so we must ensure the obligations are emitted in
2030         // that order.
2031         let predicates = tcx.predicates_of(def_id);
2032         assert_eq!(predicates.parent, None);
2033         let mut obligations = Vec::with_capacity(predicates.predicates.len());
2034         for (predicate, _) in predicates.predicates {
2035             let predicate = normalize_with_depth_to(
2036                 self,
2037                 param_env,
2038                 cause.clone(),
2039                 recursion_depth,
2040                 &predicate.subst(tcx, substs),
2041                 &mut obligations,
2042             );
2043             obligations.push(Obligation {
2044                 cause: cause.clone(),
2045                 recursion_depth,
2046                 param_env,
2047                 predicate,
2048             });
2049         }
2050
2051         // We are performing deduplication here to avoid exponential blowups
2052         // (#38528) from happening, but the real cause of the duplication is
2053         // unknown. What we know is that the deduplication avoids exponential
2054         // amount of predicates being propagated when processing deeply nested
2055         // types.
2056         //
2057         // This code is hot enough that it's worth avoiding the allocation
2058         // required for the FxHashSet when possible. Special-casing lengths 0,
2059         // 1 and 2 covers roughly 75-80% of the cases.
2060         if obligations.len() <= 1 {
2061             // No possibility of duplicates.
2062         } else if obligations.len() == 2 {
2063             // Only two elements. Drop the second if they are equal.
2064             if obligations[0] == obligations[1] {
2065                 obligations.truncate(1);
2066             }
2067         } else {
2068             // Three or more elements. Use a general deduplication process.
2069             let mut seen = FxHashSet::default();
2070             obligations.retain(|i| seen.insert(i.clone()));
2071         }
2072
2073         obligations
2074     }
2075 }
2076
2077 trait TraitObligationExt<'tcx> {
2078     fn derived_cause(
2079         &self,
2080         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2081     ) -> ObligationCause<'tcx>;
2082 }
2083
2084 impl<'tcx> TraitObligationExt<'tcx> for TraitObligation<'tcx> {
2085     fn derived_cause(
2086         &self,
2087         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2088     ) -> ObligationCause<'tcx> {
2089         /*!
2090          * Creates a cause for obligations that are derived from
2091          * `obligation` by a recursive search (e.g., for a builtin
2092          * bound, or eventually a `auto trait Foo`). If `obligation`
2093          * is itself a derived obligation, this is just a clone, but
2094          * otherwise we create a "derived obligation" cause so as to
2095          * keep track of the original root obligation for error
2096          * reporting.
2097          */
2098
2099         let obligation = self;
2100
2101         // NOTE(flaper87): As of now, it keeps track of the whole error
2102         // chain. Ideally, we should have a way to configure this either
2103         // by using -Z verbose or just a CLI argument.
2104         let derived_cause = DerivedObligationCause {
2105             parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
2106             parent_code: Rc::new(obligation.cause.code.clone()),
2107         };
2108         let derived_code = variant(derived_cause);
2109         ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
2110     }
2111 }
2112
2113 impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2114     fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2115         TraitObligationStackList::with(self)
2116     }
2117
2118     fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2119         self.previous.cache
2120     }
2121
2122     fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2123         self.list()
2124     }
2125
2126     /// Indicates that attempting to evaluate this stack entry
2127     /// required accessing something from the stack at depth `reached_depth`.
2128     fn update_reached_depth(&self, reached_depth: usize) {
2129         assert!(
2130             self.depth > reached_depth,
2131             "invoked `update_reached_depth` with something under this stack: \
2132              self.depth={} reached_depth={}",
2133             self.depth,
2134             reached_depth,
2135         );
2136         debug!("update_reached_depth(reached_depth={})", reached_depth);
2137         let mut p = self;
2138         while reached_depth < p.depth {
2139             debug!("update_reached_depth: marking {:?} as cycle participant", p.fresh_trait_ref);
2140             p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2141             p = p.previous.head.unwrap();
2142         }
2143     }
2144 }
2145
2146 /// The "provisional evaluation cache" is used to store intermediate cache results
2147 /// when solving auto traits. Auto traits are unusual in that they can support
2148 /// cycles. So, for example, a "proof tree" like this would be ok:
2149 ///
2150 /// - `Foo<T>: Send` :-
2151 ///   - `Bar<T>: Send` :-
2152 ///     - `Foo<T>: Send` -- cycle, but ok
2153 ///   - `Baz<T>: Send`
2154 ///
2155 /// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2156 /// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2157 /// For non-auto traits, this cycle would be an error, but for auto traits (because
2158 /// they are coinductive) it is considered ok.
2159 ///
2160 /// However, there is a complication: at the point where we have
2161 /// "proven" `Bar<T>: Send`, we have in fact only proven it
2162 /// *provisionally*. In particular, we proved that `Bar<T>: Send`
2163 /// *under the assumption* that `Foo<T>: Send`. But what if we later
2164 /// find out this assumption is wrong?  Specifically, we could
2165 /// encounter some kind of error proving `Baz<T>: Send`. In that case,
2166 /// `Bar<T>: Send` didn't turn out to be true.
2167 ///
2168 /// In Issue #60010, we found a bug in rustc where it would cache
2169 /// these intermediate results. This was fixed in #60444 by disabling
2170 /// *all* caching for things involved in a cycle -- in our example,
2171 /// that would mean we don't cache that `Bar<T>: Send`.  But this led
2172 /// to large slowdowns.
2173 ///
2174 /// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2175 /// first requires proving `Bar<T>: Send` (which is true:
2176 ///
2177 /// - `Foo<T>: Send` :-
2178 ///   - `Bar<T>: Send` :-
2179 ///     - `Foo<T>: Send` -- cycle, but ok
2180 ///   - `Baz<T>: Send`
2181 ///     - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2182 ///     - `*const T: Send` -- but what if we later encounter an error?
2183 ///
2184 /// The *provisional evaluation cache* resolves this issue. It stores
2185 /// cache results that we've proven but which were involved in a cycle
2186 /// in some way. We track the minimal stack depth (i.e., the
2187 /// farthest from the top of the stack) that we are dependent on.
2188 /// The idea is that the cache results within are all valid -- so long as
2189 /// none of the nodes in between the current node and the node at that minimum
2190 /// depth result in an error (in which case the cached results are just thrown away).
2191 ///
2192 /// During evaluation, we consult this provisional cache and rely on
2193 /// it. Accessing a cached value is considered equivalent to accessing
2194 /// a result at `reached_depth`, so it marks the *current* solution as
2195 /// provisional as well. If an error is encountered, we toss out any
2196 /// provisional results added from the subtree that encountered the
2197 /// error.  When we pop the node at `reached_depth` from the stack, we
2198 /// can commit all the things that remain in the provisional cache.
2199 struct ProvisionalEvaluationCache<'tcx> {
2200     /// next "depth first number" to issue -- just a counter
2201     dfn: Cell<usize>,
2202
2203     /// Stores the "coldest" depth (bottom of stack) reached by any of
2204     /// the evaluation entries. The idea here is that all things in the provisional
2205     /// cache are always dependent on *something* that is colder in the stack:
2206     /// therefore, if we add a new entry that is dependent on something *colder still*,
2207     /// we have to modify the depth for all entries at once.
2208     ///
2209     /// Example:
2210     ///
2211     /// Imagine we have a stack `A B C D E` (with `E` being the top of
2212     /// the stack).  We cache something with depth 2, which means that
2213     /// it was dependent on C.  Then we pop E but go on and process a
2214     /// new node F: A B C D F.  Now F adds something to the cache with
2215     /// depth 1, meaning it is dependent on B.  Our original cache
2216     /// entry is also dependent on B, because there is a path from E
2217     /// to C and then from C to F and from F to B.
2218     reached_depth: Cell<usize>,
2219
2220     /// Map from cache key to the provisionally evaluated thing.
2221     /// The cache entries contain the result but also the DFN in which they
2222     /// were added. The DFN is used to clear out values on failure.
2223     ///
2224     /// Imagine we have a stack like:
2225     ///
2226     /// - `A B C` and we add a cache for the result of C (DFN 2)
2227     /// - Then we have a stack `A B D` where `D` has DFN 3
2228     /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2229     /// - `E` generates various cache entries which have cyclic dependices on `B`
2230     ///   - `A B D E F` and so forth
2231     ///   - the DFN of `F` for example would be 5
2232     /// - then we determine that `E` is in error -- we will then clear
2233     ///   all cache values whose DFN is >= 4 -- in this case, that
2234     ///   means the cached value for `F`.
2235     map: RefCell<FxHashMap<ty::PolyTraitRef<'tcx>, ProvisionalEvaluation>>,
2236 }
2237
2238 /// A cache value for the provisional cache: contains the depth-first
2239 /// number (DFN) and result.
2240 #[derive(Copy, Clone, Debug)]
2241 struct ProvisionalEvaluation {
2242     from_dfn: usize,
2243     result: EvaluationResult,
2244 }
2245
2246 impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2247     fn default() -> Self {
2248         Self { dfn: Cell::new(0), reached_depth: Cell::new(usize::MAX), map: Default::default() }
2249     }
2250 }
2251
2252 impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2253     /// Get the next DFN in sequence (basically a counter).
2254     fn next_dfn(&self) -> usize {
2255         let result = self.dfn.get();
2256         self.dfn.set(result + 1);
2257         result
2258     }
2259
2260     /// Check the provisional cache for any result for
2261     /// `fresh_trait_ref`. If there is a hit, then you must consider
2262     /// it an access to the stack slots at depth
2263     /// `self.current_reached_depth()` and above.
2264     fn get_provisional(&self, fresh_trait_ref: ty::PolyTraitRef<'tcx>) -> Option<EvaluationResult> {
2265         debug!(
2266             "get_provisional(fresh_trait_ref={:?}) = {:#?} with reached-depth {}",
2267             fresh_trait_ref,
2268             self.map.borrow().get(&fresh_trait_ref),
2269             self.reached_depth.get(),
2270         );
2271         Some(self.map.borrow().get(&fresh_trait_ref)?.result)
2272     }
2273
2274     /// Current value of the `reached_depth` counter -- all the
2275     /// provisional cache entries are dependent on the item at this
2276     /// depth.
2277     fn current_reached_depth(&self) -> usize {
2278         self.reached_depth.get()
2279     }
2280
2281     /// Insert a provisional result into the cache. The result came
2282     /// from the node with the given DFN. It accessed a minimum depth
2283     /// of `reached_depth` to compute. It evaluated `fresh_trait_ref`
2284     /// and resulted in `result`.
2285     fn insert_provisional(
2286         &self,
2287         from_dfn: usize,
2288         reached_depth: usize,
2289         fresh_trait_ref: ty::PolyTraitRef<'tcx>,
2290         result: EvaluationResult,
2291     ) {
2292         debug!(
2293             "insert_provisional(from_dfn={}, reached_depth={}, fresh_trait_ref={:?}, result={:?})",
2294             from_dfn, reached_depth, fresh_trait_ref, result,
2295         );
2296         let r_d = self.reached_depth.get();
2297         self.reached_depth.set(r_d.min(reached_depth));
2298
2299         debug!("insert_provisional: reached_depth={:?}", self.reached_depth.get());
2300
2301         self.map.borrow_mut().insert(fresh_trait_ref, ProvisionalEvaluation { from_dfn, result });
2302     }
2303
2304     /// Invoked when the node with dfn `dfn` does not get a successful
2305     /// result.  This will clear out any provisional cache entries
2306     /// that were added since `dfn` was created. This is because the
2307     /// provisional entries are things which must assume that the
2308     /// things on the stack at the time of their creation succeeded --
2309     /// since the failing node is presently at the top of the stack,
2310     /// these provisional entries must either depend on it or some
2311     /// ancestor of it.
2312     fn on_failure(&self, dfn: usize) {
2313         debug!("on_failure(dfn={:?})", dfn,);
2314         self.map.borrow_mut().retain(|key, eval| {
2315             if !eval.from_dfn >= dfn {
2316                 debug!("on_failure: removing {:?}", key);
2317                 false
2318             } else {
2319                 true
2320             }
2321         });
2322     }
2323
2324     /// Invoked when the node at depth `depth` completed without
2325     /// depending on anything higher in the stack (if that completion
2326     /// was a failure, then `on_failure` should have been invoked
2327     /// already). The callback `op` will be invoked for each
2328     /// provisional entry that we can now confirm.
2329     fn on_completion(
2330         &self,
2331         depth: usize,
2332         mut op: impl FnMut(ty::PolyTraitRef<'tcx>, EvaluationResult),
2333     ) {
2334         debug!("on_completion(depth={}, reached_depth={})", depth, self.reached_depth.get(),);
2335
2336         if self.reached_depth.get() < depth {
2337             debug!("on_completion: did not yet reach depth to complete");
2338             return;
2339         }
2340
2341         for (fresh_trait_ref, eval) in self.map.borrow_mut().drain() {
2342             debug!("on_completion: fresh_trait_ref={:?} eval={:?}", fresh_trait_ref, eval,);
2343
2344             op(fresh_trait_ref, eval.result);
2345         }
2346
2347         self.reached_depth.set(usize::MAX);
2348     }
2349 }
2350
2351 #[derive(Copy, Clone)]
2352 struct TraitObligationStackList<'o, 'tcx> {
2353     cache: &'o ProvisionalEvaluationCache<'tcx>,
2354     head: Option<&'o TraitObligationStack<'o, 'tcx>>,
2355 }
2356
2357 impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
2358     fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2359         TraitObligationStackList { cache, head: None }
2360     }
2361
2362     fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2363         TraitObligationStackList { cache: r.cache(), head: Some(r) }
2364     }
2365
2366     fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2367         self.head
2368     }
2369
2370     fn depth(&self) -> usize {
2371         if let Some(head) = self.head { head.depth } else { 0 }
2372     }
2373 }
2374
2375 impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
2376     type Item = &'o TraitObligationStack<'o, 'tcx>;
2377
2378     fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2379         match self.head {
2380             Some(o) => {
2381                 *self = o.previous;
2382                 Some(o)
2383             }
2384             None => None,
2385         }
2386     }
2387 }
2388
2389 impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
2390     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2391         write!(f, "TraitObligationStack({:?})", self.obligation)
2392     }
2393 }