]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/select/mod.rs
Auto merge of #93605 - notriddle:notriddle/rustdoc-html-tags-resolve, r=GuillaumeGomez
[rust.git] / compiler / rustc_trait_selection / src / traits / select / mod.rs
1 //! Candidate selection. See the [rustc dev guide] for more information on how this works.
2 //!
3 //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5 use self::EvaluationResult::*;
6 use self::SelectionCandidate::*;
7
8 use super::coherence::{self, Conflict};
9 use super::const_evaluatable;
10 use super::project;
11 use super::project::normalize_with_depth_to;
12 use super::project::ProjectionTyObligation;
13 use super::util;
14 use super::util::{closure_trait_ref_and_return_type, predicate_for_trait_def};
15 use super::wf;
16 use super::DerivedObligationCause;
17 use super::Normalized;
18 use super::Obligation;
19 use super::ObligationCauseCode;
20 use super::Selection;
21 use super::SelectionResult;
22 use super::TraitQueryMode;
23 use super::{ErrorReporting, Overflow, SelectionError};
24 use super::{ObligationCause, PredicateObligation, TraitObligation};
25
26 use crate::infer::{InferCtxt, InferOk, TypeFreshener};
27 use crate::traits::error_reporting::InferCtxtExt;
28 use crate::traits::project::ProjectionCacheKeyExt;
29 use crate::traits::ProjectionCacheKey;
30 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
31 use rustc_data_structures::stack::ensure_sufficient_stack;
32 use rustc_errors::ErrorReported;
33 use rustc_hir as hir;
34 use rustc_hir::def_id::DefId;
35 use rustc_infer::infer::LateBoundRegionConversionTime;
36 use rustc_middle::dep_graph::{DepKind, DepNodeIndex};
37 use rustc_middle::mir::interpret::ErrorHandled;
38 use rustc_middle::thir::abstract_const::NotConstEvaluatable;
39 use rustc_middle::ty::fast_reject::{self, SimplifyParams};
40 use rustc_middle::ty::print::with_no_trimmed_paths;
41 use rustc_middle::ty::relate::TypeRelation;
42 use rustc_middle::ty::subst::{GenericArgKind, Subst, SubstsRef};
43 use rustc_middle::ty::{self, PolyProjectionPredicate, ToPolyTraitRef, ToPredicate};
44 use rustc_middle::ty::{Ty, TyCtxt, TypeFoldable};
45 use rustc_span::symbol::sym;
46
47 use std::cell::{Cell, RefCell};
48 use std::cmp;
49 use std::fmt::{self, Display};
50 use std::iter;
51
52 pub use rustc_middle::traits::select::*;
53
54 mod candidate_assembly;
55 mod confirmation;
56
57 #[derive(Clone, Debug)]
58 pub enum IntercrateAmbiguityCause {
59     DownstreamCrate { trait_desc: String, self_desc: Option<String> },
60     UpstreamCrateUpdate { trait_desc: String, self_desc: Option<String> },
61     ReservationImpl { message: String },
62 }
63
64 impl IntercrateAmbiguityCause {
65     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
66     /// See #23980 for details.
67     pub fn add_intercrate_ambiguity_hint(&self, err: &mut rustc_errors::DiagnosticBuilder<'_>) {
68         err.note(&self.intercrate_ambiguity_hint());
69     }
70
71     pub fn intercrate_ambiguity_hint(&self) -> String {
72         match self {
73             IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc } => {
74                 let self_desc = if let Some(ty) = self_desc {
75                     format!(" for type `{}`", ty)
76                 } else {
77                     String::new()
78                 };
79                 format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
80             }
81             IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc } => {
82                 let self_desc = if let Some(ty) = self_desc {
83                     format!(" for type `{}`", ty)
84                 } else {
85                     String::new()
86                 };
87                 format!(
88                     "upstream crates may add a new impl of trait `{}`{} \
89                      in future versions",
90                     trait_desc, self_desc
91                 )
92             }
93             IntercrateAmbiguityCause::ReservationImpl { message } => message.clone(),
94         }
95     }
96 }
97
98 pub struct SelectionContext<'cx, 'tcx> {
99     infcx: &'cx InferCtxt<'cx, 'tcx>,
100
101     /// Freshener used specifically for entries on the obligation
102     /// stack. This ensures that all entries on the stack at one time
103     /// will have the same set of placeholder entries, which is
104     /// important for checking for trait bounds that recursively
105     /// require themselves.
106     freshener: TypeFreshener<'cx, 'tcx>,
107
108     /// If `true`, indicates that the evaluation should be conservative
109     /// and consider the possibility of types outside this crate.
110     /// This comes up primarily when resolving ambiguity. Imagine
111     /// there is some trait reference `$0: Bar` where `$0` is an
112     /// inference variable. If `intercrate` is true, then we can never
113     /// say for sure that this reference is not implemented, even if
114     /// there are *no impls at all for `Bar`*, because `$0` could be
115     /// bound to some type that in a downstream crate that implements
116     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
117     /// though, we set this to false, because we are only interested
118     /// in types that the user could actually have written --- in
119     /// other words, we consider `$0: Bar` to be unimplemented if
120     /// there is no type that the user could *actually name* that
121     /// would satisfy it. This avoids crippling inference, basically.
122     intercrate: bool,
123
124     intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
125
126     /// Controls whether or not to filter out negative impls when selecting.
127     /// This is used in librustdoc to distinguish between the lack of an impl
128     /// and a negative impl
129     allow_negative_impls: bool,
130
131     /// The mode that trait queries run in, which informs our error handling
132     /// policy. In essence, canonicalized queries need their errors propagated
133     /// rather than immediately reported because we do not have accurate spans.
134     query_mode: TraitQueryMode,
135 }
136
137 // A stack that walks back up the stack frame.
138 struct TraitObligationStack<'prev, 'tcx> {
139     obligation: &'prev TraitObligation<'tcx>,
140
141     /// The trait predicate from `obligation` but "freshened" with the
142     /// selection-context's freshener. Used to check for recursion.
143     fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
144
145     /// Starts out equal to `depth` -- if, during evaluation, we
146     /// encounter a cycle, then we will set this flag to the minimum
147     /// depth of that cycle for all participants in the cycle. These
148     /// participants will then forego caching their results. This is
149     /// not the most efficient solution, but it addresses #60010. The
150     /// problem we are trying to prevent:
151     ///
152     /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
153     /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
154     /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
155     ///
156     /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
157     /// is `EvaluatedToOk`; this is because they were only considered
158     /// ok on the premise that if `A: AutoTrait` held, but we indeed
159     /// encountered a problem (later on) with `A: AutoTrait. So we
160     /// currently set a flag on the stack node for `B: AutoTrait` (as
161     /// well as the second instance of `A: AutoTrait`) to suppress
162     /// caching.
163     ///
164     /// This is a simple, targeted fix. A more-performant fix requires
165     /// deeper changes, but would permit more caching: we could
166     /// basically defer caching until we have fully evaluated the
167     /// tree, and then cache the entire tree at once. In any case, the
168     /// performance impact here shouldn't be so horrible: every time
169     /// this is hit, we do cache at least one trait, so we only
170     /// evaluate each member of a cycle up to N times, where N is the
171     /// length of the cycle. This means the performance impact is
172     /// bounded and we shouldn't have any terrible worst-cases.
173     reached_depth: Cell<usize>,
174
175     previous: TraitObligationStackList<'prev, 'tcx>,
176
177     /// The number of parent frames plus one (thus, the topmost frame has depth 1).
178     depth: usize,
179
180     /// The depth-first number of this node in the search graph -- a
181     /// pre-order index. Basically, a freshly incremented counter.
182     dfn: usize,
183 }
184
185 struct SelectionCandidateSet<'tcx> {
186     // A list of candidates that definitely apply to the current
187     // obligation (meaning: types unify).
188     vec: Vec<SelectionCandidate<'tcx>>,
189
190     // If `true`, then there were candidates that might or might
191     // not have applied, but we couldn't tell. This occurs when some
192     // of the input types are type variables, in which case there are
193     // various "builtin" rules that might or might not trigger.
194     ambiguous: bool,
195 }
196
197 #[derive(PartialEq, Eq, Debug, Clone)]
198 struct EvaluatedCandidate<'tcx> {
199     candidate: SelectionCandidate<'tcx>,
200     evaluation: EvaluationResult,
201 }
202
203 /// When does the builtin impl for `T: Trait` apply?
204 #[derive(Debug)]
205 enum BuiltinImplConditions<'tcx> {
206     /// The impl is conditional on `T1, T2, ...: Trait`.
207     Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
208     /// There is no built-in impl. There may be some other
209     /// candidate (a where-clause or user-defined impl).
210     None,
211     /// It is unknown whether there is an impl.
212     Ambiguous,
213 }
214
215 impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
216     pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
217         SelectionContext {
218             infcx,
219             freshener: infcx.freshener_keep_static(),
220             intercrate: false,
221             intercrate_ambiguity_causes: None,
222             allow_negative_impls: false,
223             query_mode: TraitQueryMode::Standard,
224         }
225     }
226
227     pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
228         SelectionContext {
229             infcx,
230             freshener: infcx.freshener_keep_static(),
231             intercrate: true,
232             intercrate_ambiguity_causes: None,
233             allow_negative_impls: false,
234             query_mode: TraitQueryMode::Standard,
235         }
236     }
237
238     pub fn with_negative(
239         infcx: &'cx InferCtxt<'cx, 'tcx>,
240         allow_negative_impls: bool,
241     ) -> SelectionContext<'cx, 'tcx> {
242         debug!(?allow_negative_impls, "with_negative");
243         SelectionContext {
244             infcx,
245             freshener: infcx.freshener_keep_static(),
246             intercrate: false,
247             intercrate_ambiguity_causes: None,
248             allow_negative_impls,
249             query_mode: TraitQueryMode::Standard,
250         }
251     }
252
253     pub fn with_query_mode(
254         infcx: &'cx InferCtxt<'cx, 'tcx>,
255         query_mode: TraitQueryMode,
256     ) -> SelectionContext<'cx, 'tcx> {
257         debug!(?query_mode, "with_query_mode");
258         SelectionContext {
259             infcx,
260             freshener: infcx.freshener_keep_static(),
261             intercrate: false,
262             intercrate_ambiguity_causes: None,
263             allow_negative_impls: false,
264             query_mode,
265         }
266     }
267
268     /// Enables tracking of intercrate ambiguity causes. These are
269     /// used in coherence to give improved diagnostics. We don't do
270     /// this until we detect a coherence error because it can lead to
271     /// false overflow results (#47139) and because it costs
272     /// computation time.
273     pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
274         assert!(self.intercrate);
275         assert!(self.intercrate_ambiguity_causes.is_none());
276         self.intercrate_ambiguity_causes = Some(vec![]);
277         debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
278     }
279
280     /// Gets the intercrate ambiguity causes collected since tracking
281     /// was enabled and disables tracking at the same time. If
282     /// tracking is not enabled, just returns an empty vector.
283     pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
284         assert!(self.intercrate);
285         self.intercrate_ambiguity_causes.take().unwrap_or_default()
286     }
287
288     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
289         self.infcx
290     }
291
292     pub fn tcx(&self) -> TyCtxt<'tcx> {
293         self.infcx.tcx
294     }
295
296     pub fn is_intercrate(&self) -> bool {
297         self.intercrate
298     }
299
300     ///////////////////////////////////////////////////////////////////////////
301     // Selection
302     //
303     // The selection phase tries to identify *how* an obligation will
304     // be resolved. For example, it will identify which impl or
305     // parameter bound is to be used. The process can be inconclusive
306     // if the self type in the obligation is not fully inferred. Selection
307     // can result in an error in one of two ways:
308     //
309     // 1. If no applicable impl or parameter bound can be found.
310     // 2. If the output type parameters in the obligation do not match
311     //    those specified by the impl/bound. For example, if the obligation
312     //    is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
313     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
314
315     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
316     /// type environment by performing unification.
317     #[instrument(level = "debug", skip(self))]
318     pub fn select(
319         &mut self,
320         obligation: &TraitObligation<'tcx>,
321     ) -> SelectionResult<'tcx, Selection<'tcx>> {
322         let candidate = match self.select_from_obligation(obligation) {
323             Err(SelectionError::Overflow) => {
324                 // In standard mode, overflow must have been caught and reported
325                 // earlier.
326                 assert!(self.query_mode == TraitQueryMode::Canonical);
327                 return Err(SelectionError::Overflow);
328             }
329             Err(SelectionError::Ambiguous(_)) => {
330                 return Ok(None);
331             }
332             Err(e) => {
333                 return Err(e);
334             }
335             Ok(None) => {
336                 return Ok(None);
337             }
338             Ok(Some(candidate)) => candidate,
339         };
340
341         match self.confirm_candidate(obligation, candidate) {
342             Err(SelectionError::Overflow) => {
343                 assert!(self.query_mode == TraitQueryMode::Canonical);
344                 Err(SelectionError::Overflow)
345             }
346             Err(e) => Err(e),
347             Ok(candidate) => {
348                 debug!(?candidate, "confirmed");
349                 Ok(Some(candidate))
350             }
351         }
352     }
353
354     crate fn select_from_obligation(
355         &mut self,
356         obligation: &TraitObligation<'tcx>,
357     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
358         debug_assert!(!obligation.predicate.has_escaping_bound_vars());
359
360         let pec = &ProvisionalEvaluationCache::default();
361         let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
362
363         self.candidate_from_obligation(&stack)
364     }
365
366     ///////////////////////////////////////////////////////////////////////////
367     // EVALUATION
368     //
369     // Tests whether an obligation can be selected or whether an impl
370     // can be applied to particular types. It skips the "confirmation"
371     // step and hence completely ignores output type parameters.
372     //
373     // The result is "true" if the obligation *may* hold and "false" if
374     // we can be sure it does not.
375
376     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
377     pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
378         debug!(?obligation, "predicate_may_hold_fatal");
379
380         // This fatal query is a stopgap that should only be used in standard mode,
381         // where we do not expect overflow to be propagated.
382         assert!(self.query_mode == TraitQueryMode::Standard);
383
384         self.evaluate_root_obligation(obligation)
385             .expect("Overflow should be caught earlier in standard query mode")
386             .may_apply()
387     }
388
389     /// Evaluates whether the obligation `obligation` can be satisfied
390     /// and returns an `EvaluationResult`. This is meant for the
391     /// *initial* call.
392     pub fn evaluate_root_obligation(
393         &mut self,
394         obligation: &PredicateObligation<'tcx>,
395     ) -> Result<EvaluationResult, OverflowError> {
396         self.evaluation_probe(|this| {
397             this.evaluate_predicate_recursively(
398                 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
399                 obligation.clone(),
400             )
401         })
402     }
403
404     fn evaluation_probe(
405         &mut self,
406         op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
407     ) -> Result<EvaluationResult, OverflowError> {
408         self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
409             let result = op(self)?;
410
411             match self.infcx.leak_check(true, snapshot) {
412                 Ok(()) => {}
413                 Err(_) => return Ok(EvaluatedToErr),
414             }
415
416             match self.infcx.region_constraints_added_in_snapshot(snapshot) {
417                 None => Ok(result),
418                 Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
419             }
420         })
421     }
422
423     /// Evaluates the predicates in `predicates` recursively. Note that
424     /// this applies projections in the predicates, and therefore
425     /// is run within an inference probe.
426     #[instrument(skip(self, stack), level = "debug")]
427     fn evaluate_predicates_recursively<'o, I>(
428         &mut self,
429         stack: TraitObligationStackList<'o, 'tcx>,
430         predicates: I,
431     ) -> Result<EvaluationResult, OverflowError>
432     where
433         I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
434     {
435         let mut result = EvaluatedToOk;
436         for obligation in predicates {
437             let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
438             if let EvaluatedToErr = eval {
439                 // fast-path - EvaluatedToErr is the top of the lattice,
440                 // so we don't need to look on the other predicates.
441                 return Ok(EvaluatedToErr);
442             } else {
443                 result = cmp::max(result, eval);
444             }
445         }
446         Ok(result)
447     }
448
449     #[instrument(
450         level = "debug",
451         skip(self, previous_stack),
452         fields(previous_stack = ?previous_stack.head())
453     )]
454     fn evaluate_predicate_recursively<'o>(
455         &mut self,
456         previous_stack: TraitObligationStackList<'o, 'tcx>,
457         obligation: PredicateObligation<'tcx>,
458     ) -> Result<EvaluationResult, OverflowError> {
459         // `previous_stack` stores a `TraitObligation`, while `obligation` is
460         // a `PredicateObligation`. These are distinct types, so we can't
461         // use any `Option` combinator method that would force them to be
462         // the same.
463         match previous_stack.head() {
464             Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
465             None => self.check_recursion_limit(&obligation, &obligation)?,
466         }
467
468         let result = ensure_sufficient_stack(|| {
469             let bound_predicate = obligation.predicate.kind();
470             match bound_predicate.skip_binder() {
471                 ty::PredicateKind::Trait(t) => {
472                     let t = bound_predicate.rebind(t);
473                     debug_assert!(!t.has_escaping_bound_vars());
474                     let obligation = obligation.with(t);
475                     self.evaluate_trait_predicate_recursively(previous_stack, obligation)
476                 }
477
478                 ty::PredicateKind::Subtype(p) => {
479                     let p = bound_predicate.rebind(p);
480                     // Does this code ever run?
481                     match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
482                         Some(Ok(InferOk { mut obligations, .. })) => {
483                             self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
484                             self.evaluate_predicates_recursively(
485                                 previous_stack,
486                                 obligations.into_iter(),
487                             )
488                         }
489                         Some(Err(_)) => Ok(EvaluatedToErr),
490                         None => Ok(EvaluatedToAmbig),
491                     }
492                 }
493
494                 ty::PredicateKind::Coerce(p) => {
495                     let p = bound_predicate.rebind(p);
496                     // Does this code ever run?
497                     match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
498                         Some(Ok(InferOk { mut obligations, .. })) => {
499                             self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
500                             self.evaluate_predicates_recursively(
501                                 previous_stack,
502                                 obligations.into_iter(),
503                             )
504                         }
505                         Some(Err(_)) => Ok(EvaluatedToErr),
506                         None => Ok(EvaluatedToAmbig),
507                     }
508                 }
509
510                 ty::PredicateKind::WellFormed(arg) => match wf::obligations(
511                     self.infcx,
512                     obligation.param_env,
513                     obligation.cause.body_id,
514                     obligation.recursion_depth + 1,
515                     arg,
516                     obligation.cause.span,
517                 ) {
518                     Some(mut obligations) => {
519                         self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
520                         self.evaluate_predicates_recursively(previous_stack, obligations)
521                     }
522                     None => Ok(EvaluatedToAmbig),
523                 },
524
525                 ty::PredicateKind::TypeOutlives(pred) => {
526                     // A global type with no late-bound regions can only
527                     // contain the "'static" lifetime (any other lifetime
528                     // would either be late-bound or local), so it is guaranteed
529                     // to outlive any other lifetime
530                     if pred.0.is_global() && !pred.0.has_late_bound_regions() {
531                         Ok(EvaluatedToOk)
532                     } else {
533                         Ok(EvaluatedToOkModuloRegions)
534                     }
535                 }
536
537                 ty::PredicateKind::RegionOutlives(..) => {
538                     // We do not consider region relationships when evaluating trait matches.
539                     Ok(EvaluatedToOkModuloRegions)
540                 }
541
542                 ty::PredicateKind::ObjectSafe(trait_def_id) => {
543                     if self.tcx().is_object_safe(trait_def_id) {
544                         Ok(EvaluatedToOk)
545                     } else {
546                         Ok(EvaluatedToErr)
547                     }
548                 }
549
550                 ty::PredicateKind::Projection(data) => {
551                     let data = bound_predicate.rebind(data);
552                     let project_obligation = obligation.with(data);
553                     match project::poly_project_and_unify_type(self, &project_obligation) {
554                         Ok(Ok(Some(mut subobligations))) => {
555                             'compute_res: {
556                                 // If we've previously marked this projection as 'complete', thne
557                                 // use the final cached result (either `EvaluatedToOk` or
558                                 // `EvaluatedToOkModuloRegions`), and skip re-evaluating the
559                                 // sub-obligations.
560                                 if let Some(key) =
561                                     ProjectionCacheKey::from_poly_projection_predicate(self, data)
562                                 {
563                                     if let Some(cached_res) = self
564                                         .infcx
565                                         .inner
566                                         .borrow_mut()
567                                         .projection_cache()
568                                         .is_complete(key)
569                                     {
570                                         break 'compute_res Ok(cached_res);
571                                     }
572                                 }
573
574                                 self.add_depth(
575                                     subobligations.iter_mut(),
576                                     obligation.recursion_depth,
577                                 );
578                                 let res = self.evaluate_predicates_recursively(
579                                     previous_stack,
580                                     subobligations,
581                                 );
582                                 if let Ok(res) = res {
583                                     if res == EvaluatedToOk || res == EvaluatedToOkModuloRegions {
584                                         if let Some(key) =
585                                             ProjectionCacheKey::from_poly_projection_predicate(
586                                                 self, data,
587                                             )
588                                         {
589                                             // If the result is something that we can cache, then mark this
590                                             // entry as 'complete'. This will allow us to skip evaluating the
591                                             // suboligations at all the next time we evaluate the projection
592                                             // predicate.
593                                             self.infcx
594                                                 .inner
595                                                 .borrow_mut()
596                                                 .projection_cache()
597                                                 .complete(key, res);
598                                         }
599                                     }
600                                 }
601                                 res
602                             }
603                         }
604                         Ok(Ok(None)) => Ok(EvaluatedToAmbig),
605                         Ok(Err(project::InProgress)) => Ok(EvaluatedToRecur),
606                         Err(_) => Ok(EvaluatedToErr),
607                     }
608                 }
609
610                 ty::PredicateKind::ClosureKind(_, closure_substs, kind) => {
611                     match self.infcx.closure_kind(closure_substs) {
612                         Some(closure_kind) => {
613                             if closure_kind.extends(kind) {
614                                 Ok(EvaluatedToOk)
615                             } else {
616                                 Ok(EvaluatedToErr)
617                             }
618                         }
619                         None => Ok(EvaluatedToAmbig),
620                     }
621                 }
622
623                 ty::PredicateKind::ConstEvaluatable(uv) => {
624                     match const_evaluatable::is_const_evaluatable(
625                         self.infcx,
626                         uv,
627                         obligation.param_env,
628                         obligation.cause.span,
629                     ) {
630                         Ok(()) => Ok(EvaluatedToOk),
631                         Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
632                         Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
633                         Err(_) => Ok(EvaluatedToErr),
634                     }
635                 }
636
637                 ty::PredicateKind::ConstEquate(c1, c2) => {
638                     debug!(?c1, ?c2, "evaluate_predicate_recursively: equating consts");
639
640                     if self.tcx().features().generic_const_exprs {
641                         // FIXME: we probably should only try to unify abstract constants
642                         // if the constants depend on generic parameters.
643                         //
644                         // Let's just see where this breaks :shrug:
645                         if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
646                             (c1.val(), c2.val())
647                         {
648                             if self.infcx.try_unify_abstract_consts(a.shrink(), b.shrink()) {
649                                 return Ok(EvaluatedToOk);
650                             }
651                         }
652                     }
653
654                     let evaluate = |c: ty::Const<'tcx>| {
655                         if let ty::ConstKind::Unevaluated(unevaluated) = c.val() {
656                             self.infcx
657                                 .const_eval_resolve(
658                                     obligation.param_env,
659                                     unevaluated,
660                                     Some(obligation.cause.span),
661                                 )
662                                 .map(|val| ty::Const::from_value(self.tcx(), val, c.ty()))
663                         } else {
664                             Ok(c)
665                         }
666                     };
667
668                     match (evaluate(c1), evaluate(c2)) {
669                         (Ok(c1), Ok(c2)) => {
670                             match self
671                                 .infcx()
672                                 .at(&obligation.cause, obligation.param_env)
673                                 .eq(c1, c2)
674                             {
675                                 Ok(_) => Ok(EvaluatedToOk),
676                                 Err(_) => Ok(EvaluatedToErr),
677                             }
678                         }
679                         (Err(ErrorHandled::Reported(ErrorReported)), _)
680                         | (_, Err(ErrorHandled::Reported(ErrorReported))) => Ok(EvaluatedToErr),
681                         (Err(ErrorHandled::Linted), _) | (_, Err(ErrorHandled::Linted)) => {
682                             span_bug!(
683                                 obligation.cause.span(self.tcx()),
684                                 "ConstEquate: const_eval_resolve returned an unexpected error"
685                             )
686                         }
687                         (Err(ErrorHandled::TooGeneric), _) | (_, Err(ErrorHandled::TooGeneric)) => {
688                             if c1.has_infer_types_or_consts() || c2.has_infer_types_or_consts() {
689                                 Ok(EvaluatedToAmbig)
690                             } else {
691                                 // Two different constants using generic parameters ~> error.
692                                 Ok(EvaluatedToErr)
693                             }
694                         }
695                     }
696                 }
697                 ty::PredicateKind::TypeWellFormedFromEnv(..) => {
698                     bug!("TypeWellFormedFromEnv is only used for chalk")
699                 }
700             }
701         });
702
703         debug!("finished: {:?} from {:?}", result, obligation);
704
705         result
706     }
707
708     #[instrument(skip(self, previous_stack), level = "debug")]
709     fn evaluate_trait_predicate_recursively<'o>(
710         &mut self,
711         previous_stack: TraitObligationStackList<'o, 'tcx>,
712         mut obligation: TraitObligation<'tcx>,
713     ) -> Result<EvaluationResult, OverflowError> {
714         if !self.intercrate
715             && obligation.is_global()
716             && obligation.param_env.caller_bounds().iter().all(|bound| bound.needs_subst())
717         {
718             // If a param env has no global bounds, global obligations do not
719             // depend on its particular value in order to work, so we can clear
720             // out the param env and get better caching.
721             debug!("in global");
722             obligation.param_env = obligation.param_env.without_caller_bounds();
723         }
724
725         let stack = self.push_stack(previous_stack, &obligation);
726         let mut fresh_trait_pred = stack.fresh_trait_pred;
727         let mut param_env = obligation.param_env;
728
729         fresh_trait_pred = fresh_trait_pred.map_bound(|mut pred| {
730             pred.remap_constness(self.tcx(), &mut param_env);
731             pred
732         });
733
734         debug!(?fresh_trait_pred);
735
736         if let Some(result) = self.check_evaluation_cache(param_env, fresh_trait_pred) {
737             debug!(?result, "CACHE HIT");
738             return Ok(result);
739         }
740
741         if let Some(result) = stack.cache().get_provisional(fresh_trait_pred) {
742             debug!(?result, "PROVISIONAL CACHE HIT");
743             stack.update_reached_depth(result.reached_depth);
744             return Ok(result.result);
745         }
746
747         // Check if this is a match for something already on the
748         // stack. If so, we don't want to insert the result into the
749         // main cache (it is cycle dependent) nor the provisional
750         // cache (which is meant for things that have completed but
751         // for a "backedge" -- this result *is* the backedge).
752         if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
753             return Ok(cycle_result);
754         }
755
756         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
757         let result = result?;
758
759         if !result.must_apply_modulo_regions() {
760             stack.cache().on_failure(stack.dfn);
761         }
762
763         let reached_depth = stack.reached_depth.get();
764         if reached_depth >= stack.depth {
765             debug!(?result, "CACHE MISS");
766             self.insert_evaluation_cache(param_env, fresh_trait_pred, dep_node, result);
767
768             stack.cache().on_completion(
769                 stack.dfn,
770                 |fresh_trait_pred, provisional_result, provisional_dep_node| {
771                     // Create a new `DepNode` that has dependencies on:
772                     // * The `DepNode` for the original evaluation that resulted in a provisional cache
773                     // entry being crated
774                     // * The `DepNode` for the *current* evaluation, which resulted in us completing
775                     // provisional caches entries and inserting them into the evaluation cache
776                     //
777                     // This ensures that when a query reads this entry from the evaluation cache,
778                     // it will end up (transitively) dependening on all of the incr-comp dependencies
779                     // created during the evaluation of this trait. For example, evaluating a trait
780                     // will usually require us to invoke `type_of(field_def_id)` to determine the
781                     // constituent types, and we want any queries reading from this evaluation
782                     // cache entry to end up with a transitive `type_of(field_def_id`)` dependency.
783                     //
784                     // By using `in_task`, we're also creating an edge from the *current* query
785                     // to the newly-created `combined_dep_node`. This is probably redundant,
786                     // but it's better to add too many dep graph edges than to add too few
787                     // dep graph edges.
788                     let ((), combined_dep_node) = self.in_task(|this| {
789                         this.tcx().dep_graph.read_index(provisional_dep_node);
790                         this.tcx().dep_graph.read_index(dep_node);
791                     });
792                     self.insert_evaluation_cache(
793                         param_env,
794                         fresh_trait_pred,
795                         combined_dep_node,
796                         provisional_result.max(result),
797                     );
798                 },
799             );
800         } else {
801             debug!(?result, "PROVISIONAL");
802             debug!(
803                 "caching provisionally because {:?} \
804                  is a cycle participant (at depth {}, reached depth {})",
805                 fresh_trait_pred, stack.depth, reached_depth,
806             );
807
808             stack.cache().insert_provisional(
809                 stack.dfn,
810                 reached_depth,
811                 fresh_trait_pred,
812                 result,
813                 dep_node,
814             );
815         }
816
817         Ok(result)
818     }
819
820     /// If there is any previous entry on the stack that precisely
821     /// matches this obligation, then we can assume that the
822     /// obligation is satisfied for now (still all other conditions
823     /// must be met of course). One obvious case this comes up is
824     /// marker traits like `Send`. Think of a linked list:
825     ///
826     ///    struct List<T> { data: T, next: Option<Box<List<T>>> }
827     ///
828     /// `Box<List<T>>` will be `Send` if `T` is `Send` and
829     /// `Option<Box<List<T>>>` is `Send`, and in turn
830     /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
831     /// `Send`.
832     ///
833     /// Note that we do this comparison using the `fresh_trait_ref`
834     /// fields. Because these have all been freshened using
835     /// `self.freshener`, we can be sure that (a) this will not
836     /// affect the inferencer state and (b) that if we see two
837     /// fresh regions with the same index, they refer to the same
838     /// unbound type variable.
839     fn check_evaluation_cycle(
840         &mut self,
841         stack: &TraitObligationStack<'_, 'tcx>,
842     ) -> Option<EvaluationResult> {
843         if let Some(cycle_depth) = stack
844             .iter()
845             .skip(1) // Skip top-most frame.
846             .find(|prev| {
847                 stack.obligation.param_env == prev.obligation.param_env
848                     && stack.fresh_trait_pred == prev.fresh_trait_pred
849             })
850             .map(|stack| stack.depth)
851         {
852             debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
853
854             // If we have a stack like `A B C D E A`, where the top of
855             // the stack is the final `A`, then this will iterate over
856             // `A, E, D, C, B` -- i.e., all the participants apart
857             // from the cycle head. We mark them as participating in a
858             // cycle. This suppresses caching for those nodes. See
859             // `in_cycle` field for more details.
860             stack.update_reached_depth(cycle_depth);
861
862             // Subtle: when checking for a coinductive cycle, we do
863             // not compare using the "freshened trait refs" (which
864             // have erased regions) but rather the fully explicit
865             // trait refs. This is important because it's only a cycle
866             // if the regions match exactly.
867             let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
868             let tcx = self.tcx();
869             let cycle = cycle.map(|stack| stack.obligation.predicate.to_predicate(tcx));
870             if self.coinductive_match(cycle) {
871                 debug!("evaluate_stack --> recursive, coinductive");
872                 Some(EvaluatedToOk)
873             } else {
874                 debug!("evaluate_stack --> recursive, inductive");
875                 Some(EvaluatedToRecur)
876             }
877         } else {
878             None
879         }
880     }
881
882     fn evaluate_stack<'o>(
883         &mut self,
884         stack: &TraitObligationStack<'o, 'tcx>,
885     ) -> Result<EvaluationResult, OverflowError> {
886         // In intercrate mode, whenever any of the generics are unbound,
887         // there can always be an impl. Even if there are no impls in
888         // this crate, perhaps the type would be unified with
889         // something from another crate that does provide an impl.
890         //
891         // In intra mode, we must still be conservative. The reason is
892         // that we want to avoid cycles. Imagine an impl like:
893         //
894         //     impl<T:Eq> Eq for Vec<T>
895         //
896         // and a trait reference like `$0 : Eq` where `$0` is an
897         // unbound variable. When we evaluate this trait-reference, we
898         // will unify `$0` with `Vec<$1>` (for some fresh variable
899         // `$1`), on the condition that `$1 : Eq`. We will then wind
900         // up with many candidates (since that are other `Eq` impls
901         // that apply) and try to winnow things down. This results in
902         // a recursive evaluation that `$1 : Eq` -- as you can
903         // imagine, this is just where we started. To avoid that, we
904         // check for unbound variables and return an ambiguous (hence possible)
905         // match if we've seen this trait before.
906         //
907         // This suffices to allow chains like `FnMut` implemented in
908         // terms of `Fn` etc, but we could probably make this more
909         // precise still.
910         let unbound_input_types =
911             stack.fresh_trait_pred.skip_binder().trait_ref.substs.types().any(|ty| ty.is_fresh());
912
913         if stack.obligation.polarity() != ty::ImplPolarity::Negative {
914             // This check was an imperfect workaround for a bug in the old
915             // intercrate mode; it should be removed when that goes away.
916             if unbound_input_types && self.intercrate {
917                 debug!("evaluate_stack --> unbound argument, intercrate -->  ambiguous",);
918                 // Heuristics: show the diagnostics when there are no candidates in crate.
919                 if self.intercrate_ambiguity_causes.is_some() {
920                     debug!("evaluate_stack: intercrate_ambiguity_causes is some");
921                     if let Ok(candidate_set) = self.assemble_candidates(stack) {
922                         if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
923                             let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
924                             let self_ty = trait_ref.self_ty();
925                             let cause = with_no_trimmed_paths(|| {
926                                 IntercrateAmbiguityCause::DownstreamCrate {
927                                     trait_desc: trait_ref.print_only_trait_path().to_string(),
928                                     self_desc: if self_ty.has_concrete_skeleton() {
929                                         Some(self_ty.to_string())
930                                     } else {
931                                         None
932                                     },
933                                 }
934                             });
935
936                             debug!(?cause, "evaluate_stack: pushing cause");
937                             self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
938                         }
939                     }
940                 }
941                 return Ok(EvaluatedToAmbig);
942             }
943         }
944
945         if unbound_input_types
946             && stack.iter().skip(1).any(|prev| {
947                 stack.obligation.param_env == prev.obligation.param_env
948                     && self.match_fresh_trait_refs(
949                         stack.fresh_trait_pred,
950                         prev.fresh_trait_pred,
951                         prev.obligation.param_env,
952                     )
953             })
954         {
955             debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
956             return Ok(EvaluatedToUnknown);
957         }
958
959         match self.candidate_from_obligation(stack) {
960             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
961             Err(SelectionError::Ambiguous(_)) => Ok(EvaluatedToAmbig),
962             Ok(None) => Ok(EvaluatedToAmbig),
963             Err(Overflow) => Err(OverflowError::Canonical),
964             Err(ErrorReporting) => Err(OverflowError::ErrorReporting),
965             Err(..) => Ok(EvaluatedToErr),
966         }
967     }
968
969     /// For defaulted traits, we use a co-inductive strategy to solve, so
970     /// that recursion is ok. This routine returns `true` if the top of the
971     /// stack (`cycle[0]`):
972     ///
973     /// - is a defaulted trait,
974     /// - it also appears in the backtrace at some position `X`,
975     /// - all the predicates at positions `X..` between `X` and the top are
976     ///   also defaulted traits.
977     pub fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
978     where
979         I: Iterator<Item = ty::Predicate<'tcx>>,
980     {
981         cycle.all(|predicate| self.coinductive_predicate(predicate))
982     }
983
984     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
985         let result = match predicate.kind().skip_binder() {
986             ty::PredicateKind::Trait(ref data) => self.tcx().trait_is_auto(data.def_id()),
987             _ => false,
988         };
989         debug!(?predicate, ?result, "coinductive_predicate");
990         result
991     }
992
993     /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
994     /// obligations are met. Returns whether `candidate` remains viable after this further
995     /// scrutiny.
996     #[instrument(
997         level = "debug",
998         skip(self, stack),
999         fields(depth = stack.obligation.recursion_depth)
1000     )]
1001     fn evaluate_candidate<'o>(
1002         &mut self,
1003         stack: &TraitObligationStack<'o, 'tcx>,
1004         candidate: &SelectionCandidate<'tcx>,
1005     ) -> Result<EvaluationResult, OverflowError> {
1006         let mut result = self.evaluation_probe(|this| {
1007             let candidate = (*candidate).clone();
1008             match this.confirm_candidate(stack.obligation, candidate) {
1009                 Ok(selection) => {
1010                     debug!(?selection);
1011                     this.evaluate_predicates_recursively(
1012                         stack.list(),
1013                         selection.nested_obligations().into_iter(),
1014                     )
1015                 }
1016                 Err(..) => Ok(EvaluatedToErr),
1017             }
1018         })?;
1019
1020         // If we erased any lifetimes, then we want to use
1021         // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
1022         // as your final result. The result will be cached using
1023         // the freshened trait predicate as a key, so we need
1024         // our result to be correct by *any* choice of original lifetimes,
1025         // not just the lifetime choice for this particular (non-erased)
1026         // predicate.
1027         // See issue #80691
1028         if stack.fresh_trait_pred.has_erased_regions() {
1029             result = result.max(EvaluatedToOkModuloRegions);
1030         }
1031
1032         debug!(?result);
1033         Ok(result)
1034     }
1035
1036     fn check_evaluation_cache(
1037         &self,
1038         param_env: ty::ParamEnv<'tcx>,
1039         trait_pred: ty::PolyTraitPredicate<'tcx>,
1040     ) -> Option<EvaluationResult> {
1041         // Neither the global nor local cache is aware of intercrate
1042         // mode, so don't do any caching. In particular, we might
1043         // re-use the same `InferCtxt` with both an intercrate
1044         // and non-intercrate `SelectionContext`
1045         if self.intercrate {
1046             return None;
1047         }
1048
1049         let tcx = self.tcx();
1050         if self.can_use_global_caches(param_env) {
1051             if let Some(res) = tcx.evaluation_cache.get(&param_env.and(trait_pred), tcx) {
1052                 return Some(res);
1053             }
1054         }
1055         self.infcx.evaluation_cache.get(&param_env.and(trait_pred), tcx)
1056     }
1057
1058     fn insert_evaluation_cache(
1059         &mut self,
1060         param_env: ty::ParamEnv<'tcx>,
1061         trait_pred: ty::PolyTraitPredicate<'tcx>,
1062         dep_node: DepNodeIndex,
1063         result: EvaluationResult,
1064     ) {
1065         // Avoid caching results that depend on more than just the trait-ref
1066         // - the stack can create recursion.
1067         if result.is_stack_dependent() {
1068             return;
1069         }
1070
1071         // Neither the global nor local cache is aware of intercrate
1072         // mode, so don't do any caching. In particular, we might
1073         // re-use the same `InferCtxt` with both an intercrate
1074         // and non-intercrate `SelectionContext`
1075         if self.intercrate {
1076             return;
1077         }
1078
1079         if self.can_use_global_caches(param_env) {
1080             if !trait_pred.needs_infer() {
1081                 debug!(?trait_pred, ?result, "insert_evaluation_cache global");
1082                 // This may overwrite the cache with the same value
1083                 // FIXME: Due to #50507 this overwrites the different values
1084                 // This should be changed to use HashMapExt::insert_same
1085                 // when that is fixed
1086                 self.tcx().evaluation_cache.insert(param_env.and(trait_pred), dep_node, result);
1087                 return;
1088             }
1089         }
1090
1091         debug!(?trait_pred, ?result, "insert_evaluation_cache");
1092         self.infcx.evaluation_cache.insert(param_env.and(trait_pred), dep_node, result);
1093     }
1094
1095     /// For various reasons, it's possible for a subobligation
1096     /// to have a *lower* recursion_depth than the obligation used to create it.
1097     /// Projection sub-obligations may be returned from the projection cache,
1098     /// which results in obligations with an 'old' `recursion_depth`.
1099     /// Additionally, methods like `InferCtxt.subtype_predicate` produce
1100     /// subobligations without taking in a 'parent' depth, causing the
1101     /// generated subobligations to have a `recursion_depth` of `0`.
1102     ///
1103     /// To ensure that obligation_depth never decreases, we force all subobligations
1104     /// to have at least the depth of the original obligation.
1105     fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(
1106         &self,
1107         it: I,
1108         min_depth: usize,
1109     ) {
1110         it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
1111     }
1112
1113     fn check_recursion_depth<T: Display + TypeFoldable<'tcx>>(
1114         &self,
1115         depth: usize,
1116         error_obligation: &Obligation<'tcx, T>,
1117     ) -> Result<(), OverflowError> {
1118         if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
1119             match self.query_mode {
1120                 TraitQueryMode::Standard => {
1121                     if self.infcx.is_tainted_by_errors() {
1122                         return Err(OverflowError::ErrorReporting);
1123                     }
1124                     self.infcx.report_overflow_error(error_obligation, true);
1125                 }
1126                 TraitQueryMode::Canonical => {
1127                     return Err(OverflowError::Canonical);
1128                 }
1129             }
1130         }
1131         Ok(())
1132     }
1133
1134     /// Checks that the recursion limit has not been exceeded.
1135     ///
1136     /// The weird return type of this function allows it to be used with the `try` (`?`)
1137     /// operator within certain functions.
1138     #[inline(always)]
1139     fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
1140         &self,
1141         obligation: &Obligation<'tcx, T>,
1142         error_obligation: &Obligation<'tcx, V>,
1143     ) -> Result<(), OverflowError> {
1144         self.check_recursion_depth(obligation.recursion_depth, error_obligation)
1145     }
1146
1147     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1148     where
1149         OP: FnOnce(&mut Self) -> R,
1150     {
1151         let (result, dep_node) =
1152             self.tcx().dep_graph.with_anon_task(self.tcx(), DepKind::TraitSelect, || op(self));
1153         self.tcx().dep_graph.read_index(dep_node);
1154         (result, dep_node)
1155     }
1156
1157     /// filter_impls filters constant trait obligations and candidates that have a positive impl
1158     /// for a negative goal and a negative impl for a positive goal
1159     #[instrument(level = "debug", skip(self))]
1160     fn filter_impls(
1161         &mut self,
1162         candidates: Vec<SelectionCandidate<'tcx>>,
1163         obligation: &TraitObligation<'tcx>,
1164     ) -> Vec<SelectionCandidate<'tcx>> {
1165         let tcx = self.tcx();
1166         let mut result = Vec::with_capacity(candidates.len());
1167
1168         for candidate in candidates {
1169             // Respect const trait obligations
1170             if obligation.is_const() {
1171                 match candidate {
1172                     // const impl
1173                     ImplCandidate(def_id)
1174                         if tcx.impl_constness(def_id) == hir::Constness::Const => {}
1175                     // const param
1176                     ParamCandidate(trait_pred) if trait_pred.is_const_if_const() => {}
1177                     // auto trait impl
1178                     AutoImplCandidate(..) => {}
1179                     // generator, this will raise error in other places
1180                     // or ignore error with const_async_blocks feature
1181                     GeneratorCandidate => {}
1182                     // FnDef where the function is const
1183                     FnPointerCandidate { is_const: true } => {}
1184                     ConstDropCandidate(_) => {}
1185                     _ => {
1186                         // reject all other types of candidates
1187                         continue;
1188                     }
1189                 }
1190             }
1191
1192             if let ImplCandidate(def_id) = candidate {
1193                 if ty::ImplPolarity::Reservation == tcx.impl_polarity(def_id)
1194                     || obligation.polarity() == tcx.impl_polarity(def_id)
1195                     || self.allow_negative_impls
1196                 {
1197                     result.push(candidate);
1198                 }
1199             } else {
1200                 result.push(candidate);
1201             }
1202         }
1203
1204         result
1205     }
1206
1207     /// filter_reservation_impls filter reservation impl for any goal as ambiguous
1208     #[instrument(level = "debug", skip(self))]
1209     fn filter_reservation_impls(
1210         &mut self,
1211         candidate: SelectionCandidate<'tcx>,
1212         obligation: &TraitObligation<'tcx>,
1213     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1214         let tcx = self.tcx();
1215         // Treat reservation impls as ambiguity.
1216         if let ImplCandidate(def_id) = candidate {
1217             if let ty::ImplPolarity::Reservation = tcx.impl_polarity(def_id) {
1218                 if let Some(intercrate_ambiguity_clauses) = &mut self.intercrate_ambiguity_causes {
1219                     let attrs = tcx.get_attrs(def_id);
1220                     let attr = tcx.sess.find_by_name(&attrs, sym::rustc_reservation_impl);
1221                     let value = attr.and_then(|a| a.value_str());
1222                     if let Some(value) = value {
1223                         debug!(
1224                             "filter_reservation_impls: \
1225                                  reservation impl ambiguity on {:?}",
1226                             def_id
1227                         );
1228                         intercrate_ambiguity_clauses.push(
1229                             IntercrateAmbiguityCause::ReservationImpl {
1230                                 message: value.to_string(),
1231                             },
1232                         );
1233                     }
1234                 }
1235                 return Ok(None);
1236             }
1237         }
1238         Ok(Some(candidate))
1239     }
1240
1241     fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
1242         debug!("is_knowable(intercrate={:?})", self.intercrate);
1243
1244         if !self.intercrate || stack.obligation.polarity() == ty::ImplPolarity::Negative {
1245             return None;
1246         }
1247
1248         let obligation = &stack.obligation;
1249         let predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
1250
1251         // Okay to skip binder because of the nature of the
1252         // trait-ref-is-knowable check, which does not care about
1253         // bound regions.
1254         let trait_ref = predicate.skip_binder().trait_ref;
1255
1256         coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
1257     }
1258
1259     /// Returns `true` if the global caches can be used.
1260     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1261         // If there are any inference variables in the `ParamEnv`, then we
1262         // always use a cache local to this particular scope. Otherwise, we
1263         // switch to a global cache.
1264         if param_env.needs_infer() {
1265             return false;
1266         }
1267
1268         // Avoid using the master cache during coherence and just rely
1269         // on the local cache. This effectively disables caching
1270         // during coherence. It is really just a simplification to
1271         // avoid us having to fear that coherence results "pollute"
1272         // the master cache. Since coherence executes pretty quickly,
1273         // it's not worth going to more trouble to increase the
1274         // hit-rate, I don't think.
1275         if self.intercrate {
1276             return false;
1277         }
1278
1279         // Otherwise, we can use the global cache.
1280         true
1281     }
1282
1283     fn check_candidate_cache(
1284         &mut self,
1285         mut param_env: ty::ParamEnv<'tcx>,
1286         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1287     ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1288         // Neither the global nor local cache is aware of intercrate
1289         // mode, so don't do any caching. In particular, we might
1290         // re-use the same `InferCtxt` with both an intercrate
1291         // and non-intercrate `SelectionContext`
1292         if self.intercrate {
1293             return None;
1294         }
1295         let tcx = self.tcx();
1296         let mut pred = cache_fresh_trait_pred.skip_binder();
1297         pred.remap_constness(tcx, &mut param_env);
1298
1299         if self.can_use_global_caches(param_env) {
1300             if let Some(res) = tcx.selection_cache.get(&param_env.and(pred), tcx) {
1301                 return Some(res);
1302             }
1303         }
1304         self.infcx.selection_cache.get(&param_env.and(pred), tcx)
1305     }
1306
1307     /// Determines whether can we safely cache the result
1308     /// of selecting an obligation. This is almost always `true`,
1309     /// except when dealing with certain `ParamCandidate`s.
1310     ///
1311     /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1312     /// since it was usually produced directly from a `DefId`. However,
1313     /// certain cases (currently only librustdoc's blanket impl finder),
1314     /// a `ParamEnv` may be explicitly constructed with inference types.
1315     /// When this is the case, we do *not* want to cache the resulting selection
1316     /// candidate. This is due to the fact that it might not always be possible
1317     /// to equate the obligation's trait ref and the candidate's trait ref,
1318     /// if more constraints end up getting added to an inference variable.
1319     ///
1320     /// Because of this, we always want to re-run the full selection
1321     /// process for our obligation the next time we see it, since
1322     /// we might end up picking a different `SelectionCandidate` (or none at all).
1323     fn can_cache_candidate(
1324         &self,
1325         result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1326     ) -> bool {
1327         // Neither the global nor local cache is aware of intercrate
1328         // mode, so don't do any caching. In particular, we might
1329         // re-use the same `InferCtxt` with both an intercrate
1330         // and non-intercrate `SelectionContext`
1331         if self.intercrate {
1332             return false;
1333         }
1334         match result {
1335             Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.needs_infer(),
1336             _ => true,
1337         }
1338     }
1339
1340     fn insert_candidate_cache(
1341         &mut self,
1342         mut param_env: ty::ParamEnv<'tcx>,
1343         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1344         dep_node: DepNodeIndex,
1345         candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1346     ) {
1347         let tcx = self.tcx();
1348         let mut pred = cache_fresh_trait_pred.skip_binder();
1349
1350         pred.remap_constness(tcx, &mut param_env);
1351
1352         if !self.can_cache_candidate(&candidate) {
1353             debug!(?pred, ?candidate, "insert_candidate_cache - candidate is not cacheable");
1354             return;
1355         }
1356
1357         if self.can_use_global_caches(param_env) {
1358             if let Err(Overflow) = candidate {
1359                 // Don't cache overflow globally; we only produce this in certain modes.
1360             } else if !pred.needs_infer() {
1361                 if !candidate.needs_infer() {
1362                     debug!(?pred, ?candidate, "insert_candidate_cache global");
1363                     // This may overwrite the cache with the same value.
1364                     tcx.selection_cache.insert(param_env.and(pred), dep_node, candidate);
1365                     return;
1366                 }
1367             }
1368         }
1369
1370         debug!(?pred, ?candidate, "insert_candidate_cache local");
1371         self.infcx.selection_cache.insert(param_env.and(pred), dep_node, candidate);
1372     }
1373
1374     /// Matches a predicate against the bounds of its self type.
1375     ///
1376     /// Given an obligation like `<T as Foo>::Bar: Baz` where the self type is
1377     /// a projection, look at the bounds of `T::Bar`, see if we can find a
1378     /// `Baz` bound. We return indexes into the list returned by
1379     /// `tcx.item_bounds` for any applicable bounds.
1380     fn match_projection_obligation_against_definition_bounds(
1381         &mut self,
1382         obligation: &TraitObligation<'tcx>,
1383     ) -> smallvec::SmallVec<[usize; 2]> {
1384         let poly_trait_predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
1385         let placeholder_trait_predicate =
1386             self.infcx().replace_bound_vars_with_placeholders(poly_trait_predicate);
1387         debug!(
1388             ?placeholder_trait_predicate,
1389             "match_projection_obligation_against_definition_bounds"
1390         );
1391
1392         let tcx = self.infcx.tcx;
1393         let (def_id, substs) = match *placeholder_trait_predicate.trait_ref.self_ty().kind() {
1394             ty::Projection(ref data) => (data.item_def_id, data.substs),
1395             ty::Opaque(def_id, substs) => (def_id, substs),
1396             _ => {
1397                 span_bug!(
1398                     obligation.cause.span,
1399                     "match_projection_obligation_against_definition_bounds() called \
1400                      but self-ty is not a projection: {:?}",
1401                     placeholder_trait_predicate.trait_ref.self_ty()
1402                 );
1403             }
1404         };
1405         let bounds = tcx.item_bounds(def_id).subst(tcx, substs);
1406
1407         // The bounds returned by `item_bounds` may contain duplicates after
1408         // normalization, so try to deduplicate when possible to avoid
1409         // unnecessary ambiguity.
1410         let mut distinct_normalized_bounds = FxHashSet::default();
1411
1412         let matching_bounds = bounds
1413             .iter()
1414             .enumerate()
1415             .filter_map(|(idx, bound)| {
1416                 let bound_predicate = bound.kind();
1417                 if let ty::PredicateKind::Trait(pred) = bound_predicate.skip_binder() {
1418                     let bound = bound_predicate.rebind(pred.trait_ref);
1419                     if self.infcx.probe(|_| {
1420                         match self.match_normalize_trait_ref(
1421                             obligation,
1422                             bound,
1423                             placeholder_trait_predicate.trait_ref,
1424                         ) {
1425                             Ok(None) => true,
1426                             Ok(Some(normalized_trait))
1427                                 if distinct_normalized_bounds.insert(normalized_trait) =>
1428                             {
1429                                 true
1430                             }
1431                             _ => false,
1432                         }
1433                     }) {
1434                         return Some(idx);
1435                     }
1436                 }
1437                 None
1438             })
1439             .collect();
1440
1441         debug!(?matching_bounds, "match_projection_obligation_against_definition_bounds");
1442         matching_bounds
1443     }
1444
1445     /// Equates the trait in `obligation` with trait bound. If the two traits
1446     /// can be equated and the normalized trait bound doesn't contain inference
1447     /// variables or placeholders, the normalized bound is returned.
1448     fn match_normalize_trait_ref(
1449         &mut self,
1450         obligation: &TraitObligation<'tcx>,
1451         trait_bound: ty::PolyTraitRef<'tcx>,
1452         placeholder_trait_ref: ty::TraitRef<'tcx>,
1453     ) -> Result<Option<ty::PolyTraitRef<'tcx>>, ()> {
1454         debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1455         if placeholder_trait_ref.def_id != trait_bound.def_id() {
1456             // Avoid unnecessary normalization
1457             return Err(());
1458         }
1459
1460         let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
1461             project::normalize_with_depth(
1462                 self,
1463                 obligation.param_env,
1464                 obligation.cause.clone(),
1465                 obligation.recursion_depth + 1,
1466                 trait_bound,
1467             )
1468         });
1469         self.infcx
1470             .at(&obligation.cause, obligation.param_env)
1471             .sup(ty::Binder::dummy(placeholder_trait_ref), trait_bound)
1472             .map(|InferOk { obligations: _, value: () }| {
1473                 // This method is called within a probe, so we can't have
1474                 // inference variables and placeholders escape.
1475                 if !trait_bound.needs_infer() && !trait_bound.has_placeholders() {
1476                     Some(trait_bound)
1477                 } else {
1478                     None
1479                 }
1480             })
1481             .map_err(|_| ())
1482     }
1483
1484     fn evaluate_where_clause<'o>(
1485         &mut self,
1486         stack: &TraitObligationStack<'o, 'tcx>,
1487         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1488     ) -> Result<EvaluationResult, OverflowError> {
1489         self.evaluation_probe(|this| {
1490             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1491                 Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1492                 Err(()) => Ok(EvaluatedToErr),
1493             }
1494         })
1495     }
1496
1497     /// Return `Yes` if the obligation's predicate type applies to the env_predicate, and
1498     /// `No` if it does not. Return `Ambiguous` in the case that the projection type is a GAT,
1499     /// and applying this env_predicate constrains any of the obligation's GAT substitutions.
1500     ///
1501     /// This behavior is a somewhat of a hack to prevent overconstraining inference variables
1502     /// in cases like #91762.
1503     pub(super) fn match_projection_projections(
1504         &mut self,
1505         obligation: &ProjectionTyObligation<'tcx>,
1506         env_predicate: PolyProjectionPredicate<'tcx>,
1507         potentially_unnormalized_candidates: bool,
1508     ) -> ProjectionMatchesProjection {
1509         let mut nested_obligations = Vec::new();
1510         let (infer_predicate, _) = self.infcx.replace_bound_vars_with_fresh_vars(
1511             obligation.cause.span,
1512             LateBoundRegionConversionTime::HigherRankedType,
1513             env_predicate,
1514         );
1515         let infer_projection = if potentially_unnormalized_candidates {
1516             ensure_sufficient_stack(|| {
1517                 project::normalize_with_depth_to(
1518                     self,
1519                     obligation.param_env,
1520                     obligation.cause.clone(),
1521                     obligation.recursion_depth + 1,
1522                     infer_predicate.projection_ty,
1523                     &mut nested_obligations,
1524                 )
1525             })
1526         } else {
1527             infer_predicate.projection_ty
1528         };
1529
1530         let is_match = self
1531             .infcx
1532             .at(&obligation.cause, obligation.param_env)
1533             .sup(obligation.predicate, infer_projection)
1534             .map_or(false, |InferOk { obligations, value: () }| {
1535                 self.evaluate_predicates_recursively(
1536                     TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1537                     nested_obligations.into_iter().chain(obligations),
1538                 )
1539                 .map_or(false, |res| res.may_apply())
1540             });
1541
1542         if is_match {
1543             let generics = self.tcx().generics_of(obligation.predicate.item_def_id);
1544             // FIXME(generic-associated-types): Addresses aggressive inference in #92917.
1545             // If this type is a GAT, and of the GAT substs resolve to something new,
1546             // that means that we must have newly inferred something about the GAT.
1547             // We should give up in that case.
1548             if !generics.params.is_empty()
1549                 && obligation.predicate.substs[generics.parent_count..]
1550                     .iter()
1551                     .any(|&p| p.has_infer_types_or_consts() && self.infcx.shallow_resolve(p) != p)
1552             {
1553                 ProjectionMatchesProjection::Ambiguous
1554             } else {
1555                 ProjectionMatchesProjection::Yes
1556             }
1557         } else {
1558             ProjectionMatchesProjection::No
1559         }
1560     }
1561
1562     ///////////////////////////////////////////////////////////////////////////
1563     // WINNOW
1564     //
1565     // Winnowing is the process of attempting to resolve ambiguity by
1566     // probing further. During the winnowing process, we unify all
1567     // type variables and then we also attempt to evaluate recursive
1568     // bounds to see if they are satisfied.
1569
1570     /// Returns `true` if `victim` should be dropped in favor of
1571     /// `other`. Generally speaking we will drop duplicate
1572     /// candidates and prefer where-clause candidates.
1573     ///
1574     /// See the comment for "SelectionCandidate" for more details.
1575     fn candidate_should_be_dropped_in_favor_of(
1576         &mut self,
1577         sized_predicate: bool,
1578         victim: &EvaluatedCandidate<'tcx>,
1579         other: &EvaluatedCandidate<'tcx>,
1580         needs_infer: bool,
1581     ) -> bool {
1582         if victim.candidate == other.candidate {
1583             return true;
1584         }
1585
1586         // Check if a bound would previously have been removed when normalizing
1587         // the param_env so that it can be given the lowest priority. See
1588         // #50825 for the motivation for this.
1589         let is_global = |cand: &ty::PolyTraitPredicate<'tcx>| {
1590             cand.is_global() && !cand.has_late_bound_regions()
1591         };
1592
1593         // (*) Prefer `BuiltinCandidate { has_nested: false }`, `PointeeCandidate`,
1594         // `DiscriminantKindCandidate`, and `ConstDropCandidate` to anything else.
1595         //
1596         // This is a fix for #53123 and prevents winnowing from accidentally extending the
1597         // lifetime of a variable.
1598         match (&other.candidate, &victim.candidate) {
1599             (_, AutoImplCandidate(..)) | (AutoImplCandidate(..), _) => {
1600                 bug!(
1601                     "default implementations shouldn't be recorded \
1602                     when there are other valid candidates"
1603                 );
1604             }
1605
1606             // (*)
1607             (
1608                 BuiltinCandidate { has_nested: false }
1609                 | DiscriminantKindCandidate
1610                 | PointeeCandidate
1611                 | ConstDropCandidate(_),
1612                 _,
1613             ) => true,
1614             (
1615                 _,
1616                 BuiltinCandidate { has_nested: false }
1617                 | DiscriminantKindCandidate
1618                 | PointeeCandidate
1619                 | ConstDropCandidate(_),
1620             ) => false,
1621
1622             (ParamCandidate(other), ParamCandidate(victim)) => {
1623                 let same_except_bound_vars = other.skip_binder().trait_ref
1624                     == victim.skip_binder().trait_ref
1625                     && other.skip_binder().constness == victim.skip_binder().constness
1626                     && other.skip_binder().polarity == victim.skip_binder().polarity
1627                     && !other.skip_binder().trait_ref.has_escaping_bound_vars();
1628                 if same_except_bound_vars {
1629                     // See issue #84398. In short, we can generate multiple ParamCandidates which are
1630                     // the same except for unused bound vars. Just pick the one with the fewest bound vars
1631                     // or the current one if tied (they should both evaluate to the same answer). This is
1632                     // probably best characterized as a "hack", since we might prefer to just do our
1633                     // best to *not* create essentially duplicate candidates in the first place.
1634                     other.bound_vars().len() <= victim.bound_vars().len()
1635                 } else if other.skip_binder().trait_ref == victim.skip_binder().trait_ref
1636                     && victim.skip_binder().constness == ty::BoundConstness::NotConst
1637                     && other.skip_binder().polarity == victim.skip_binder().polarity
1638                 {
1639                     // Drop otherwise equivalent non-const candidates in favor of const candidates.
1640                     true
1641                 } else {
1642                     false
1643                 }
1644             }
1645
1646             // Drop otherwise equivalent non-const fn pointer candidates
1647             (FnPointerCandidate { .. }, FnPointerCandidate { is_const: false }) => true,
1648
1649             // If obligation is a sized predicate or the where-clause bound is
1650             // global, prefer the projection or object candidate. See issue
1651             // #50825 and #89352.
1652             (ObjectCandidate(_) | ProjectionCandidate(_), ParamCandidate(ref cand)) => {
1653                 sized_predicate || is_global(cand)
1654             }
1655             (ParamCandidate(ref cand), ObjectCandidate(_) | ProjectionCandidate(_)) => {
1656                 !(sized_predicate || is_global(cand))
1657             }
1658
1659             // Global bounds from the where clause should be ignored
1660             // here (see issue #50825). Otherwise, we have a where
1661             // clause so don't go around looking for impls.
1662             // Arbitrarily give param candidates priority
1663             // over projection and object candidates.
1664             (
1665                 ParamCandidate(ref cand),
1666                 ImplCandidate(..)
1667                 | ClosureCandidate
1668                 | GeneratorCandidate
1669                 | FnPointerCandidate { .. }
1670                 | BuiltinObjectCandidate
1671                 | BuiltinUnsizeCandidate
1672                 | TraitUpcastingUnsizeCandidate(_)
1673                 | BuiltinCandidate { .. }
1674                 | TraitAliasCandidate(..),
1675             ) => !is_global(cand),
1676             (
1677                 ImplCandidate(_)
1678                 | ClosureCandidate
1679                 | GeneratorCandidate
1680                 | FnPointerCandidate { .. }
1681                 | BuiltinObjectCandidate
1682                 | BuiltinUnsizeCandidate
1683                 | TraitUpcastingUnsizeCandidate(_)
1684                 | BuiltinCandidate { has_nested: true }
1685                 | TraitAliasCandidate(..),
1686                 ParamCandidate(ref cand),
1687             ) => {
1688                 // Prefer these to a global where-clause bound
1689                 // (see issue #50825).
1690                 is_global(cand) && other.evaluation.must_apply_modulo_regions()
1691             }
1692
1693             (ProjectionCandidate(i), ProjectionCandidate(j))
1694             | (ObjectCandidate(i), ObjectCandidate(j)) => {
1695                 // Arbitrarily pick the lower numbered candidate for backwards
1696                 // compatibility reasons. Don't let this affect inference.
1697                 i < j && !needs_infer
1698             }
1699             (ObjectCandidate(_), ProjectionCandidate(_))
1700             | (ProjectionCandidate(_), ObjectCandidate(_)) => {
1701                 bug!("Have both object and projection candidate")
1702             }
1703
1704             // Arbitrarily give projection and object candidates priority.
1705             (
1706                 ObjectCandidate(_) | ProjectionCandidate(_),
1707                 ImplCandidate(..)
1708                 | ClosureCandidate
1709                 | GeneratorCandidate
1710                 | FnPointerCandidate { .. }
1711                 | BuiltinObjectCandidate
1712                 | BuiltinUnsizeCandidate
1713                 | TraitUpcastingUnsizeCandidate(_)
1714                 | BuiltinCandidate { .. }
1715                 | TraitAliasCandidate(..),
1716             ) => true,
1717
1718             (
1719                 ImplCandidate(..)
1720                 | ClosureCandidate
1721                 | GeneratorCandidate
1722                 | FnPointerCandidate { .. }
1723                 | BuiltinObjectCandidate
1724                 | BuiltinUnsizeCandidate
1725                 | TraitUpcastingUnsizeCandidate(_)
1726                 | BuiltinCandidate { .. }
1727                 | TraitAliasCandidate(..),
1728                 ObjectCandidate(_) | ProjectionCandidate(_),
1729             ) => false,
1730
1731             (&ImplCandidate(other_def), &ImplCandidate(victim_def)) => {
1732                 // See if we can toss out `victim` based on specialization.
1733                 // This requires us to know *for sure* that the `other` impl applies
1734                 // i.e., `EvaluatedToOk`.
1735                 //
1736                 // FIXME(@lcnr): Using `modulo_regions` here seems kind of scary
1737                 // to me but is required for `std` to compile, so I didn't change it
1738                 // for now.
1739                 let tcx = self.tcx();
1740                 if other.evaluation.must_apply_modulo_regions() {
1741                     if tcx.specializes((other_def, victim_def)) {
1742                         return true;
1743                     }
1744                 }
1745
1746                 if other.evaluation.must_apply_considering_regions() {
1747                     match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
1748                         Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
1749                             // Subtle: If the predicate we are evaluating has inference
1750                             // variables, do *not* allow discarding candidates due to
1751                             // marker trait impls.
1752                             //
1753                             // Without this restriction, we could end up accidentally
1754                             // constrainting inference variables based on an arbitrarily
1755                             // chosen trait impl.
1756                             //
1757                             // Imagine we have the following code:
1758                             //
1759                             // ```rust
1760                             // #[marker] trait MyTrait {}
1761                             // impl MyTrait for u8 {}
1762                             // impl MyTrait for bool {}
1763                             // ```
1764                             //
1765                             // And we are evaluating the predicate `<_#0t as MyTrait>`.
1766                             //
1767                             // During selection, we will end up with one candidate for each
1768                             // impl of `MyTrait`. If we were to discard one impl in favor
1769                             // of the other, we would be left with one candidate, causing
1770                             // us to "successfully" select the predicate, unifying
1771                             // _#0t with (for example) `u8`.
1772                             //
1773                             // However, we have no reason to believe that this unification
1774                             // is correct - we've essentially just picked an arbitrary
1775                             // *possibility* for _#0t, and required that this be the *only*
1776                             // possibility.
1777                             //
1778                             // Eventually, we will either:
1779                             // 1) Unify all inference variables in the predicate through
1780                             // some other means (e.g. type-checking of a function). We will
1781                             // then be in a position to drop marker trait candidates
1782                             // without constraining inference variables (since there are
1783                             // none left to constrin)
1784                             // 2) Be left with some unconstrained inference variables. We
1785                             // will then correctly report an inference error, since the
1786                             // existence of multiple marker trait impls tells us nothing
1787                             // about which one should actually apply.
1788                             !needs_infer
1789                         }
1790                         Some(_) => true,
1791                         None => false,
1792                     }
1793                 } else {
1794                     false
1795                 }
1796             }
1797
1798             // Everything else is ambiguous
1799             (
1800                 ImplCandidate(_)
1801                 | ClosureCandidate
1802                 | GeneratorCandidate
1803                 | FnPointerCandidate { .. }
1804                 | BuiltinObjectCandidate
1805                 | BuiltinUnsizeCandidate
1806                 | TraitUpcastingUnsizeCandidate(_)
1807                 | BuiltinCandidate { has_nested: true }
1808                 | TraitAliasCandidate(..),
1809                 ImplCandidate(_)
1810                 | ClosureCandidate
1811                 | GeneratorCandidate
1812                 | FnPointerCandidate { .. }
1813                 | BuiltinObjectCandidate
1814                 | BuiltinUnsizeCandidate
1815                 | TraitUpcastingUnsizeCandidate(_)
1816                 | BuiltinCandidate { has_nested: true }
1817                 | TraitAliasCandidate(..),
1818             ) => false,
1819         }
1820     }
1821
1822     fn sized_conditions(
1823         &mut self,
1824         obligation: &TraitObligation<'tcx>,
1825     ) -> BuiltinImplConditions<'tcx> {
1826         use self::BuiltinImplConditions::{Ambiguous, None, Where};
1827
1828         // NOTE: binder moved to (*)
1829         let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1830
1831         match self_ty.kind() {
1832             ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1833             | ty::Uint(_)
1834             | ty::Int(_)
1835             | ty::Bool
1836             | ty::Float(_)
1837             | ty::FnDef(..)
1838             | ty::FnPtr(_)
1839             | ty::RawPtr(..)
1840             | ty::Char
1841             | ty::Ref(..)
1842             | ty::Generator(..)
1843             | ty::GeneratorWitness(..)
1844             | ty::Array(..)
1845             | ty::Closure(..)
1846             | ty::Never
1847             | ty::Error(_) => {
1848                 // safe for everything
1849                 Where(ty::Binder::dummy(Vec::new()))
1850             }
1851
1852             ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
1853
1854             ty::Tuple(tys) => Where(
1855                 obligation
1856                     .predicate
1857                     .rebind(tys.last().into_iter().map(|k| k.expect_ty()).collect()),
1858             ),
1859
1860             ty::Adt(def, substs) => {
1861                 let sized_crit = def.sized_constraint(self.tcx());
1862                 // (*) binder moved here
1863                 Where(
1864                     obligation.predicate.rebind({
1865                         sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect()
1866                     }),
1867                 )
1868             }
1869
1870             ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
1871             ty::Infer(ty::TyVar(_)) => Ambiguous,
1872
1873             ty::Placeholder(..)
1874             | ty::Bound(..)
1875             | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1876                 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1877             }
1878         }
1879     }
1880
1881     fn copy_clone_conditions(
1882         &mut self,
1883         obligation: &TraitObligation<'tcx>,
1884     ) -> BuiltinImplConditions<'tcx> {
1885         // NOTE: binder moved to (*)
1886         let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1887
1888         use self::BuiltinImplConditions::{Ambiguous, None, Where};
1889
1890         match *self_ty.kind() {
1891             ty::Infer(ty::IntVar(_))
1892             | ty::Infer(ty::FloatVar(_))
1893             | ty::FnDef(..)
1894             | ty::FnPtr(_)
1895             | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
1896
1897             ty::Uint(_)
1898             | ty::Int(_)
1899             | ty::Bool
1900             | ty::Float(_)
1901             | ty::Char
1902             | ty::RawPtr(..)
1903             | ty::Never
1904             | ty::Ref(_, _, hir::Mutability::Not)
1905             | ty::Array(..) => {
1906                 // Implementations provided in libcore
1907                 None
1908             }
1909
1910             ty::Dynamic(..)
1911             | ty::Str
1912             | ty::Slice(..)
1913             | ty::Generator(..)
1914             | ty::GeneratorWitness(..)
1915             | ty::Foreign(..)
1916             | ty::Ref(_, _, hir::Mutability::Mut) => None,
1917
1918             ty::Tuple(tys) => {
1919                 // (*) binder moved here
1920                 Where(obligation.predicate.rebind(tys.iter().map(|k| k.expect_ty()).collect()))
1921             }
1922
1923             ty::Closure(_, substs) => {
1924                 // (*) binder moved here
1925                 let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
1926                 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
1927                     // Not yet resolved.
1928                     Ambiguous
1929                 } else {
1930                     Where(obligation.predicate.rebind(substs.as_closure().upvar_tys().collect()))
1931                 }
1932             }
1933
1934             ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
1935                 // Fallback to whatever user-defined impls exist in this case.
1936                 None
1937             }
1938
1939             ty::Infer(ty::TyVar(_)) => {
1940                 // Unbound type variable. Might or might not have
1941                 // applicable impls and so forth, depending on what
1942                 // those type variables wind up being bound to.
1943                 Ambiguous
1944             }
1945
1946             ty::Placeholder(..)
1947             | ty::Bound(..)
1948             | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1949                 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1950             }
1951         }
1952     }
1953
1954     /// For default impls, we need to break apart a type into its
1955     /// "constituent types" -- meaning, the types that it contains.
1956     ///
1957     /// Here are some (simple) examples:
1958     ///
1959     /// ```
1960     /// (i32, u32) -> [i32, u32]
1961     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
1962     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
1963     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
1964     /// ```
1965     fn constituent_types_for_ty(
1966         &self,
1967         t: ty::Binder<'tcx, Ty<'tcx>>,
1968     ) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
1969         match *t.skip_binder().kind() {
1970             ty::Uint(_)
1971             | ty::Int(_)
1972             | ty::Bool
1973             | ty::Float(_)
1974             | ty::FnDef(..)
1975             | ty::FnPtr(_)
1976             | ty::Str
1977             | ty::Error(_)
1978             | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1979             | ty::Never
1980             | ty::Char => ty::Binder::dummy(Vec::new()),
1981
1982             ty::Placeholder(..)
1983             | ty::Dynamic(..)
1984             | ty::Param(..)
1985             | ty::Foreign(..)
1986             | ty::Projection(..)
1987             | ty::Bound(..)
1988             | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1989                 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
1990             }
1991
1992             ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
1993                 t.rebind(vec![element_ty])
1994             }
1995
1996             ty::Array(element_ty, _) | ty::Slice(element_ty) => t.rebind(vec![element_ty]),
1997
1998             ty::Tuple(ref tys) => {
1999                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2000                 t.rebind(tys.iter().map(|k| k.expect_ty()).collect())
2001             }
2002
2003             ty::Closure(_, ref substs) => {
2004                 let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
2005                 t.rebind(vec![ty])
2006             }
2007
2008             ty::Generator(_, ref substs, _) => {
2009                 let ty = self.infcx.shallow_resolve(substs.as_generator().tupled_upvars_ty());
2010                 let witness = substs.as_generator().witness();
2011                 t.rebind([ty].into_iter().chain(iter::once(witness)).collect())
2012             }
2013
2014             ty::GeneratorWitness(types) => {
2015                 debug_assert!(!types.has_escaping_bound_vars());
2016                 types.map_bound(|types| types.to_vec())
2017             }
2018
2019             // For `PhantomData<T>`, we pass `T`.
2020             ty::Adt(def, substs) if def.is_phantom_data() => t.rebind(substs.types().collect()),
2021
2022             ty::Adt(def, substs) => {
2023                 t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect())
2024             }
2025
2026             ty::Opaque(def_id, substs) => {
2027                 // We can resolve the `impl Trait` to its concrete type,
2028                 // which enforces a DAG between the functions requiring
2029                 // the auto trait bounds in question.
2030                 t.rebind(vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)])
2031             }
2032         }
2033     }
2034
2035     fn collect_predicates_for_types(
2036         &mut self,
2037         param_env: ty::ParamEnv<'tcx>,
2038         cause: ObligationCause<'tcx>,
2039         recursion_depth: usize,
2040         trait_def_id: DefId,
2041         types: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
2042     ) -> Vec<PredicateObligation<'tcx>> {
2043         // Because the types were potentially derived from
2044         // higher-ranked obligations they may reference late-bound
2045         // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
2046         // yield a type like `for<'a> &'a i32`. In general, we
2047         // maintain the invariant that we never manipulate bound
2048         // regions, so we have to process these bound regions somehow.
2049         //
2050         // The strategy is to:
2051         //
2052         // 1. Instantiate those regions to placeholder regions (e.g.,
2053         //    `for<'a> &'a i32` becomes `&0 i32`.
2054         // 2. Produce something like `&'0 i32 : Copy`
2055         // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
2056
2057         types
2058             .as_ref()
2059             .skip_binder() // binder moved -\
2060             .iter()
2061             .flat_map(|ty| {
2062                 let ty: ty::Binder<'tcx, Ty<'tcx>> = types.rebind(*ty); // <----/
2063
2064                 self.infcx.commit_unconditionally(|_| {
2065                     let placeholder_ty = self.infcx.replace_bound_vars_with_placeholders(ty);
2066                     let Normalized { value: normalized_ty, mut obligations } =
2067                         ensure_sufficient_stack(|| {
2068                             project::normalize_with_depth(
2069                                 self,
2070                                 param_env,
2071                                 cause.clone(),
2072                                 recursion_depth,
2073                                 placeholder_ty,
2074                             )
2075                         });
2076                     let placeholder_obligation = predicate_for_trait_def(
2077                         self.tcx(),
2078                         param_env,
2079                         cause.clone(),
2080                         trait_def_id,
2081                         recursion_depth,
2082                         normalized_ty,
2083                         &[],
2084                     );
2085                     obligations.push(placeholder_obligation);
2086                     obligations
2087                 })
2088             })
2089             .collect()
2090     }
2091
2092     ///////////////////////////////////////////////////////////////////////////
2093     // Matching
2094     //
2095     // Matching is a common path used for both evaluation and
2096     // confirmation.  It basically unifies types that appear in impls
2097     // and traits. This does affect the surrounding environment;
2098     // therefore, when used during evaluation, match routines must be
2099     // run inside of a `probe()` so that their side-effects are
2100     // contained.
2101
2102     fn rematch_impl(
2103         &mut self,
2104         impl_def_id: DefId,
2105         obligation: &TraitObligation<'tcx>,
2106     ) -> Normalized<'tcx, SubstsRef<'tcx>> {
2107         match self.match_impl(impl_def_id, obligation) {
2108             Ok(substs) => substs,
2109             Err(()) => {
2110                 bug!(
2111                     "Impl {:?} was matchable against {:?} but now is not",
2112                     impl_def_id,
2113                     obligation
2114                 );
2115             }
2116         }
2117     }
2118
2119     #[tracing::instrument(level = "debug", skip(self))]
2120     fn match_impl(
2121         &mut self,
2122         impl_def_id: DefId,
2123         obligation: &TraitObligation<'tcx>,
2124     ) -> Result<Normalized<'tcx, SubstsRef<'tcx>>, ()> {
2125         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
2126
2127         // Before we create the substitutions and everything, first
2128         // consider a "quick reject". This avoids creating more types
2129         // and so forth that we need to.
2130         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
2131             return Err(());
2132         }
2133
2134         let placeholder_obligation =
2135             self.infcx().replace_bound_vars_with_placeholders(obligation.predicate);
2136         let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
2137
2138         let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span, impl_def_id);
2139
2140         let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
2141
2142         debug!(?impl_trait_ref);
2143
2144         let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
2145             ensure_sufficient_stack(|| {
2146                 project::normalize_with_depth(
2147                     self,
2148                     obligation.param_env,
2149                     obligation.cause.clone(),
2150                     obligation.recursion_depth + 1,
2151                     impl_trait_ref,
2152                 )
2153             });
2154
2155         debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
2156
2157         let cause = ObligationCause::new(
2158             obligation.cause.span,
2159             obligation.cause.body_id,
2160             ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
2161         );
2162
2163         let InferOk { obligations, .. } = self
2164             .infcx
2165             .at(&cause, obligation.param_env)
2166             .eq(placeholder_obligation_trait_ref, impl_trait_ref)
2167             .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
2168         nested_obligations.extend(obligations);
2169
2170         if !self.intercrate
2171             && self.tcx().impl_polarity(impl_def_id) == ty::ImplPolarity::Reservation
2172         {
2173             debug!("match_impl: reservation impls only apply in intercrate mode");
2174             return Err(());
2175         }
2176
2177         debug!(?impl_substs, ?nested_obligations, "match_impl: success");
2178         Ok(Normalized { value: impl_substs, obligations: nested_obligations })
2179     }
2180
2181     fn fast_reject_trait_refs(
2182         &mut self,
2183         obligation: &TraitObligation<'_>,
2184         impl_trait_ref: &ty::TraitRef<'_>,
2185     ) -> bool {
2186         // We can avoid creating type variables and doing the full
2187         // substitution if we find that any of the input types, when
2188         // simplified, do not match.
2189
2190         iter::zip(obligation.predicate.skip_binder().trait_ref.substs, impl_trait_ref.substs).any(
2191             |(obligation_arg, impl_arg)| {
2192                 match (obligation_arg.unpack(), impl_arg.unpack()) {
2193                     (GenericArgKind::Type(obligation_ty), GenericArgKind::Type(impl_ty)) => {
2194                         // Note, we simplify parameters for the obligation but not the
2195                         // impl so that we do not reject a blanket impl but do reject
2196                         // more concrete impls if we're searching for `T: Trait`.
2197                         let simplified_obligation_ty = fast_reject::simplify_type(
2198                             self.tcx(),
2199                             obligation_ty,
2200                             SimplifyParams::Yes,
2201                         );
2202                         let simplified_impl_ty =
2203                             fast_reject::simplify_type(self.tcx(), impl_ty, SimplifyParams::No);
2204
2205                         simplified_obligation_ty.is_some()
2206                             && simplified_impl_ty.is_some()
2207                             && simplified_obligation_ty != simplified_impl_ty
2208                     }
2209                     (GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => {
2210                         // Lifetimes can never cause a rejection.
2211                         false
2212                     }
2213                     (GenericArgKind::Const(_), GenericArgKind::Const(_)) => {
2214                         // Conservatively ignore consts (i.e. assume they might
2215                         // unify later) until we have `fast_reject` support for
2216                         // them (if we'll ever need it, even).
2217                         false
2218                     }
2219                     _ => unreachable!(),
2220                 }
2221             },
2222         )
2223     }
2224
2225     /// Normalize `where_clause_trait_ref` and try to match it against
2226     /// `obligation`. If successful, return any predicates that
2227     /// result from the normalization.
2228     fn match_where_clause_trait_ref(
2229         &mut self,
2230         obligation: &TraitObligation<'tcx>,
2231         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
2232     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
2233         self.match_poly_trait_ref(obligation, where_clause_trait_ref)
2234     }
2235
2236     /// Returns `Ok` if `poly_trait_ref` being true implies that the
2237     /// obligation is satisfied.
2238     #[instrument(skip(self), level = "debug")]
2239     fn match_poly_trait_ref(
2240         &mut self,
2241         obligation: &TraitObligation<'tcx>,
2242         poly_trait_ref: ty::PolyTraitRef<'tcx>,
2243     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
2244         self.infcx
2245             .at(&obligation.cause, obligation.param_env)
2246             .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
2247             .map(|InferOk { obligations, .. }| obligations)
2248             .map_err(|_| ())
2249     }
2250
2251     ///////////////////////////////////////////////////////////////////////////
2252     // Miscellany
2253
2254     fn match_fresh_trait_refs(
2255         &self,
2256         previous: ty::PolyTraitPredicate<'tcx>,
2257         current: ty::PolyTraitPredicate<'tcx>,
2258         param_env: ty::ParamEnv<'tcx>,
2259     ) -> bool {
2260         let mut matcher = ty::_match::Match::new(self.tcx(), param_env);
2261         matcher.relate(previous, current).is_ok()
2262     }
2263
2264     fn push_stack<'o>(
2265         &mut self,
2266         previous_stack: TraitObligationStackList<'o, 'tcx>,
2267         obligation: &'o TraitObligation<'tcx>,
2268     ) -> TraitObligationStack<'o, 'tcx> {
2269         let fresh_trait_pred = obligation.predicate.fold_with(&mut self.freshener);
2270
2271         let dfn = previous_stack.cache.next_dfn();
2272         let depth = previous_stack.depth() + 1;
2273         TraitObligationStack {
2274             obligation,
2275             fresh_trait_pred,
2276             reached_depth: Cell::new(depth),
2277             previous: previous_stack,
2278             dfn,
2279             depth,
2280         }
2281     }
2282
2283     #[instrument(skip(self), level = "debug")]
2284     fn closure_trait_ref_unnormalized(
2285         &mut self,
2286         obligation: &TraitObligation<'tcx>,
2287         substs: SubstsRef<'tcx>,
2288     ) -> ty::PolyTraitRef<'tcx> {
2289         let closure_sig = substs.as_closure().sig();
2290
2291         debug!(?closure_sig);
2292
2293         // (1) Feels icky to skip the binder here, but OTOH we know
2294         // that the self-type is an unboxed closure type and hence is
2295         // in fact unparameterized (or at least does not reference any
2296         // regions bound in the obligation). Still probably some
2297         // refactoring could make this nicer.
2298         closure_trait_ref_and_return_type(
2299             self.tcx(),
2300             obligation.predicate.def_id(),
2301             obligation.predicate.skip_binder().self_ty(), // (1)
2302             closure_sig,
2303             util::TupleArgumentsFlag::No,
2304         )
2305         .map_bound(|(trait_ref, _)| trait_ref)
2306     }
2307
2308     fn generator_trait_ref_unnormalized(
2309         &mut self,
2310         obligation: &TraitObligation<'tcx>,
2311         substs: SubstsRef<'tcx>,
2312     ) -> ty::PolyTraitRef<'tcx> {
2313         let gen_sig = substs.as_generator().poly_sig();
2314
2315         // (1) Feels icky to skip the binder here, but OTOH we know
2316         // that the self-type is an generator type and hence is
2317         // in fact unparameterized (or at least does not reference any
2318         // regions bound in the obligation). Still probably some
2319         // refactoring could make this nicer.
2320
2321         super::util::generator_trait_ref_and_outputs(
2322             self.tcx(),
2323             obligation.predicate.def_id(),
2324             obligation.predicate.skip_binder().self_ty(), // (1)
2325             gen_sig,
2326         )
2327         .map_bound(|(trait_ref, ..)| trait_ref)
2328     }
2329
2330     /// Returns the obligations that are implied by instantiating an
2331     /// impl or trait. The obligations are substituted and fully
2332     /// normalized. This is used when confirming an impl or default
2333     /// impl.
2334     #[tracing::instrument(level = "debug", skip(self, cause, param_env))]
2335     fn impl_or_trait_obligations(
2336         &mut self,
2337         cause: ObligationCause<'tcx>,
2338         recursion_depth: usize,
2339         param_env: ty::ParamEnv<'tcx>,
2340         def_id: DefId,           // of impl or trait
2341         substs: SubstsRef<'tcx>, // for impl or trait
2342     ) -> Vec<PredicateObligation<'tcx>> {
2343         let tcx = self.tcx();
2344
2345         // To allow for one-pass evaluation of the nested obligation,
2346         // each predicate must be preceded by the obligations required
2347         // to normalize it.
2348         // for example, if we have:
2349         //    impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2350         // the impl will have the following predicates:
2351         //    <V as Iterator>::Item = U,
2352         //    U: Iterator, U: Sized,
2353         //    V: Iterator, V: Sized,
2354         //    <U as Iterator>::Item: Copy
2355         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
2356         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2357         // `$1: Copy`, so we must ensure the obligations are emitted in
2358         // that order.
2359         let predicates = tcx.predicates_of(def_id);
2360         debug!(?predicates);
2361         assert_eq!(predicates.parent, None);
2362         let mut obligations = Vec::with_capacity(predicates.predicates.len());
2363         for (predicate, _) in predicates.predicates {
2364             debug!(?predicate);
2365             let predicate = normalize_with_depth_to(
2366                 self,
2367                 param_env,
2368                 cause.clone(),
2369                 recursion_depth,
2370                 predicate.subst(tcx, substs),
2371                 &mut obligations,
2372             );
2373             obligations.push(Obligation {
2374                 cause: cause.clone(),
2375                 recursion_depth,
2376                 param_env,
2377                 predicate,
2378             });
2379         }
2380
2381         // We are performing deduplication here to avoid exponential blowups
2382         // (#38528) from happening, but the real cause of the duplication is
2383         // unknown. What we know is that the deduplication avoids exponential
2384         // amount of predicates being propagated when processing deeply nested
2385         // types.
2386         //
2387         // This code is hot enough that it's worth avoiding the allocation
2388         // required for the FxHashSet when possible. Special-casing lengths 0,
2389         // 1 and 2 covers roughly 75-80% of the cases.
2390         if obligations.len() <= 1 {
2391             // No possibility of duplicates.
2392         } else if obligations.len() == 2 {
2393             // Only two elements. Drop the second if they are equal.
2394             if obligations[0] == obligations[1] {
2395                 obligations.truncate(1);
2396             }
2397         } else {
2398             // Three or more elements. Use a general deduplication process.
2399             let mut seen = FxHashSet::default();
2400             obligations.retain(|i| seen.insert(i.clone()));
2401         }
2402
2403         obligations
2404     }
2405 }
2406
2407 trait TraitObligationExt<'tcx> {
2408     fn derived_cause(
2409         &self,
2410         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2411     ) -> ObligationCause<'tcx>;
2412 }
2413
2414 impl<'tcx> TraitObligationExt<'tcx> for TraitObligation<'tcx> {
2415     fn derived_cause(
2416         &self,
2417         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2418     ) -> ObligationCause<'tcx> {
2419         /*!
2420          * Creates a cause for obligations that are derived from
2421          * `obligation` by a recursive search (e.g., for a builtin
2422          * bound, or eventually a `auto trait Foo`). If `obligation`
2423          * is itself a derived obligation, this is just a clone, but
2424          * otherwise we create a "derived obligation" cause so as to
2425          * keep track of the original root obligation for error
2426          * reporting.
2427          */
2428
2429         let obligation = self;
2430
2431         // NOTE(flaper87): As of now, it keeps track of the whole error
2432         // chain. Ideally, we should have a way to configure this either
2433         // by using -Z verbose or just a CLI argument.
2434         let derived_cause = DerivedObligationCause {
2435             parent_trait_pred: obligation.predicate,
2436             parent_code: obligation.cause.clone_code(),
2437         };
2438         let derived_code = variant(derived_cause);
2439         ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
2440     }
2441 }
2442
2443 impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2444     fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2445         TraitObligationStackList::with(self)
2446     }
2447
2448     fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2449         self.previous.cache
2450     }
2451
2452     fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2453         self.list()
2454     }
2455
2456     /// Indicates that attempting to evaluate this stack entry
2457     /// required accessing something from the stack at depth `reached_depth`.
2458     fn update_reached_depth(&self, reached_depth: usize) {
2459         assert!(
2460             self.depth >= reached_depth,
2461             "invoked `update_reached_depth` with something under this stack: \
2462              self.depth={} reached_depth={}",
2463             self.depth,
2464             reached_depth,
2465         );
2466         debug!(reached_depth, "update_reached_depth");
2467         let mut p = self;
2468         while reached_depth < p.depth {
2469             debug!(?p.fresh_trait_pred, "update_reached_depth: marking as cycle participant");
2470             p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2471             p = p.previous.head.unwrap();
2472         }
2473     }
2474 }
2475
2476 /// The "provisional evaluation cache" is used to store intermediate cache results
2477 /// when solving auto traits. Auto traits are unusual in that they can support
2478 /// cycles. So, for example, a "proof tree" like this would be ok:
2479 ///
2480 /// - `Foo<T>: Send` :-
2481 ///   - `Bar<T>: Send` :-
2482 ///     - `Foo<T>: Send` -- cycle, but ok
2483 ///   - `Baz<T>: Send`
2484 ///
2485 /// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2486 /// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2487 /// For non-auto traits, this cycle would be an error, but for auto traits (because
2488 /// they are coinductive) it is considered ok.
2489 ///
2490 /// However, there is a complication: at the point where we have
2491 /// "proven" `Bar<T>: Send`, we have in fact only proven it
2492 /// *provisionally*. In particular, we proved that `Bar<T>: Send`
2493 /// *under the assumption* that `Foo<T>: Send`. But what if we later
2494 /// find out this assumption is wrong?  Specifically, we could
2495 /// encounter some kind of error proving `Baz<T>: Send`. In that case,
2496 /// `Bar<T>: Send` didn't turn out to be true.
2497 ///
2498 /// In Issue #60010, we found a bug in rustc where it would cache
2499 /// these intermediate results. This was fixed in #60444 by disabling
2500 /// *all* caching for things involved in a cycle -- in our example,
2501 /// that would mean we don't cache that `Bar<T>: Send`.  But this led
2502 /// to large slowdowns.
2503 ///
2504 /// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2505 /// first requires proving `Bar<T>: Send` (which is true:
2506 ///
2507 /// - `Foo<T>: Send` :-
2508 ///   - `Bar<T>: Send` :-
2509 ///     - `Foo<T>: Send` -- cycle, but ok
2510 ///   - `Baz<T>: Send`
2511 ///     - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2512 ///     - `*const T: Send` -- but what if we later encounter an error?
2513 ///
2514 /// The *provisional evaluation cache* resolves this issue. It stores
2515 /// cache results that we've proven but which were involved in a cycle
2516 /// in some way. We track the minimal stack depth (i.e., the
2517 /// farthest from the top of the stack) that we are dependent on.
2518 /// The idea is that the cache results within are all valid -- so long as
2519 /// none of the nodes in between the current node and the node at that minimum
2520 /// depth result in an error (in which case the cached results are just thrown away).
2521 ///
2522 /// During evaluation, we consult this provisional cache and rely on
2523 /// it. Accessing a cached value is considered equivalent to accessing
2524 /// a result at `reached_depth`, so it marks the *current* solution as
2525 /// provisional as well. If an error is encountered, we toss out any
2526 /// provisional results added from the subtree that encountered the
2527 /// error.  When we pop the node at `reached_depth` from the stack, we
2528 /// can commit all the things that remain in the provisional cache.
2529 struct ProvisionalEvaluationCache<'tcx> {
2530     /// next "depth first number" to issue -- just a counter
2531     dfn: Cell<usize>,
2532
2533     /// Map from cache key to the provisionally evaluated thing.
2534     /// The cache entries contain the result but also the DFN in which they
2535     /// were added. The DFN is used to clear out values on failure.
2536     ///
2537     /// Imagine we have a stack like:
2538     ///
2539     /// - `A B C` and we add a cache for the result of C (DFN 2)
2540     /// - Then we have a stack `A B D` where `D` has DFN 3
2541     /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2542     /// - `E` generates various cache entries which have cyclic dependices on `B`
2543     ///   - `A B D E F` and so forth
2544     ///   - the DFN of `F` for example would be 5
2545     /// - then we determine that `E` is in error -- we will then clear
2546     ///   all cache values whose DFN is >= 4 -- in this case, that
2547     ///   means the cached value for `F`.
2548     map: RefCell<FxHashMap<ty::PolyTraitPredicate<'tcx>, ProvisionalEvaluation>>,
2549 }
2550
2551 /// A cache value for the provisional cache: contains the depth-first
2552 /// number (DFN) and result.
2553 #[derive(Copy, Clone, Debug)]
2554 struct ProvisionalEvaluation {
2555     from_dfn: usize,
2556     reached_depth: usize,
2557     result: EvaluationResult,
2558     /// The `DepNodeIndex` created for the `evaluate_stack` call for this provisional
2559     /// evaluation. When we create an entry in the evaluation cache using this provisional
2560     /// cache entry (see `on_completion`), we use this `dep_node` to ensure that future reads from
2561     /// the cache will have all of the necessary incr comp dependencies tracked.
2562     dep_node: DepNodeIndex,
2563 }
2564
2565 impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2566     fn default() -> Self {
2567         Self { dfn: Cell::new(0), map: Default::default() }
2568     }
2569 }
2570
2571 impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2572     /// Get the next DFN in sequence (basically a counter).
2573     fn next_dfn(&self) -> usize {
2574         let result = self.dfn.get();
2575         self.dfn.set(result + 1);
2576         result
2577     }
2578
2579     /// Check the provisional cache for any result for
2580     /// `fresh_trait_ref`. If there is a hit, then you must consider
2581     /// it an access to the stack slots at depth
2582     /// `reached_depth` (from the returned value).
2583     fn get_provisional(
2584         &self,
2585         fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
2586     ) -> Option<ProvisionalEvaluation> {
2587         debug!(
2588             ?fresh_trait_pred,
2589             "get_provisional = {:#?}",
2590             self.map.borrow().get(&fresh_trait_pred),
2591         );
2592         Some(*self.map.borrow().get(&fresh_trait_pred)?)
2593     }
2594
2595     /// Insert a provisional result into the cache. The result came
2596     /// from the node with the given DFN. It accessed a minimum depth
2597     /// of `reached_depth` to compute. It evaluated `fresh_trait_pred`
2598     /// and resulted in `result`.
2599     fn insert_provisional(
2600         &self,
2601         from_dfn: usize,
2602         reached_depth: usize,
2603         fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
2604         result: EvaluationResult,
2605         dep_node: DepNodeIndex,
2606     ) {
2607         debug!(?from_dfn, ?fresh_trait_pred, ?result, "insert_provisional");
2608
2609         let mut map = self.map.borrow_mut();
2610
2611         // Subtle: when we complete working on the DFN `from_dfn`, anything
2612         // that remains in the provisional cache must be dependent on some older
2613         // stack entry than `from_dfn`. We have to update their depth with our transitive
2614         // depth in that case or else it would be referring to some popped note.
2615         //
2616         // Example:
2617         // A (reached depth 0)
2618         //   ...
2619         //      B // depth 1 -- reached depth = 0
2620         //          C // depth 2 -- reached depth = 1 (should be 0)
2621         //              B
2622         //          A // depth 0
2623         //   D (reached depth 1)
2624         //      C (cache -- reached depth = 2)
2625         for (_k, v) in &mut *map {
2626             if v.from_dfn >= from_dfn {
2627                 v.reached_depth = reached_depth.min(v.reached_depth);
2628             }
2629         }
2630
2631         map.insert(
2632             fresh_trait_pred,
2633             ProvisionalEvaluation { from_dfn, reached_depth, result, dep_node },
2634         );
2635     }
2636
2637     /// Invoked when the node with dfn `dfn` does not get a successful
2638     /// result.  This will clear out any provisional cache entries
2639     /// that were added since `dfn` was created. This is because the
2640     /// provisional entries are things which must assume that the
2641     /// things on the stack at the time of their creation succeeded --
2642     /// since the failing node is presently at the top of the stack,
2643     /// these provisional entries must either depend on it or some
2644     /// ancestor of it.
2645     fn on_failure(&self, dfn: usize) {
2646         debug!(?dfn, "on_failure");
2647         self.map.borrow_mut().retain(|key, eval| {
2648             if !eval.from_dfn >= dfn {
2649                 debug!("on_failure: removing {:?}", key);
2650                 false
2651             } else {
2652                 true
2653             }
2654         });
2655     }
2656
2657     /// Invoked when the node at depth `depth` completed without
2658     /// depending on anything higher in the stack (if that completion
2659     /// was a failure, then `on_failure` should have been invoked
2660     /// already). The callback `op` will be invoked for each
2661     /// provisional entry that we can now confirm.
2662     ///
2663     /// Note that we may still have provisional cache items remaining
2664     /// in the cache when this is done. For example, if there is a
2665     /// cycle:
2666     ///
2667     /// * A depends on...
2668     ///     * B depends on A
2669     ///     * C depends on...
2670     ///         * D depends on C
2671     ///     * ...
2672     ///
2673     /// Then as we complete the C node we will have a provisional cache
2674     /// with results for A, B, C, and D. This method would clear out
2675     /// the C and D results, but leave A and B provisional.
2676     ///
2677     /// This is determined based on the DFN: we remove any provisional
2678     /// results created since `dfn` started (e.g., in our example, dfn
2679     /// would be 2, representing the C node, and hence we would
2680     /// remove the result for D, which has DFN 3, but not the results for
2681     /// A and B, which have DFNs 0 and 1 respectively).
2682     fn on_completion(
2683         &self,
2684         dfn: usize,
2685         mut op: impl FnMut(ty::PolyTraitPredicate<'tcx>, EvaluationResult, DepNodeIndex),
2686     ) {
2687         debug!(?dfn, "on_completion");
2688
2689         for (fresh_trait_pred, eval) in
2690             self.map.borrow_mut().drain_filter(|_k, eval| eval.from_dfn >= dfn)
2691         {
2692             debug!(?fresh_trait_pred, ?eval, "on_completion");
2693
2694             op(fresh_trait_pred, eval.result, eval.dep_node);
2695         }
2696     }
2697 }
2698
2699 #[derive(Copy, Clone)]
2700 struct TraitObligationStackList<'o, 'tcx> {
2701     cache: &'o ProvisionalEvaluationCache<'tcx>,
2702     head: Option<&'o TraitObligationStack<'o, 'tcx>>,
2703 }
2704
2705 impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
2706     fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2707         TraitObligationStackList { cache, head: None }
2708     }
2709
2710     fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2711         TraitObligationStackList { cache: r.cache(), head: Some(r) }
2712     }
2713
2714     fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2715         self.head
2716     }
2717
2718     fn depth(&self) -> usize {
2719         if let Some(head) = self.head { head.depth } else { 0 }
2720     }
2721 }
2722
2723 impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
2724     type Item = &'o TraitObligationStack<'o, 'tcx>;
2725
2726     fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2727         let o = self.head?;
2728         *self = o.previous;
2729         Some(o)
2730     }
2731 }
2732
2733 impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
2734     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2735         write!(f, "TraitObligationStack({:?})", self.obligation)
2736     }
2737 }
2738
2739 pub enum ProjectionMatchesProjection {
2740     Yes,
2741     Ambiguous,
2742     No,
2743 }