]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/select/mod.rs
Rollup merge of #87528 - :stack_overflow_obsd, r=joshtriplett
[rust.git] / compiler / rustc_trait_selection / src / traits / select / mod.rs
1 //! Candidate selection. See the [rustc dev guide] for more information on how this works.
2 //!
3 //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5 use self::EvaluationResult::*;
6 use self::SelectionCandidate::*;
7
8 use super::coherence::{self, Conflict};
9 use super::const_evaluatable;
10 use super::project;
11 use super::project::normalize_with_depth_to;
12 use super::project::ProjectionTyObligation;
13 use super::util;
14 use super::util::{closure_trait_ref_and_return_type, predicate_for_trait_def};
15 use super::wf;
16 use super::DerivedObligationCause;
17 use super::Normalized;
18 use super::Obligation;
19 use super::ObligationCauseCode;
20 use super::Selection;
21 use super::SelectionResult;
22 use super::TraitQueryMode;
23 use super::{ErrorReporting, Overflow, SelectionError, Unimplemented};
24 use super::{ObligationCause, PredicateObligation, TraitObligation};
25
26 use crate::infer::{InferCtxt, InferOk, TypeFreshener};
27 use crate::traits::error_reporting::InferCtxtExt;
28 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
29 use rustc_data_structures::stack::ensure_sufficient_stack;
30 use rustc_data_structures::sync::Lrc;
31 use rustc_errors::ErrorReported;
32 use rustc_hir as hir;
33 use rustc_hir::def_id::DefId;
34 use rustc_infer::infer::LateBoundRegionConversionTime;
35 use rustc_middle::dep_graph::{DepKind, DepNodeIndex};
36 use rustc_middle::mir::interpret::ErrorHandled;
37 use rustc_middle::thir::abstract_const::NotConstEvaluatable;
38 use rustc_middle::ty::fast_reject;
39 use rustc_middle::ty::print::with_no_trimmed_paths;
40 use rustc_middle::ty::relate::TypeRelation;
41 use rustc_middle::ty::subst::{GenericArgKind, Subst, SubstsRef};
42 use rustc_middle::ty::WithConstness;
43 use rustc_middle::ty::{self, PolyProjectionPredicate, ToPolyTraitRef, ToPredicate};
44 use rustc_middle::ty::{Ty, TyCtxt, TypeFoldable};
45 use rustc_span::symbol::sym;
46
47 use std::cell::{Cell, RefCell};
48 use std::cmp;
49 use std::fmt::{self, Display};
50 use std::iter;
51
52 pub use rustc_middle::traits::select::*;
53
54 mod candidate_assembly;
55 mod confirmation;
56
57 #[derive(Clone, Debug)]
58 pub enum IntercrateAmbiguityCause {
59     DownstreamCrate { trait_desc: String, self_desc: Option<String> },
60     UpstreamCrateUpdate { trait_desc: String, self_desc: Option<String> },
61     ReservationImpl { message: String },
62 }
63
64 impl IntercrateAmbiguityCause {
65     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
66     /// See #23980 for details.
67     pub fn add_intercrate_ambiguity_hint(&self, err: &mut rustc_errors::DiagnosticBuilder<'_>) {
68         err.note(&self.intercrate_ambiguity_hint());
69     }
70
71     pub fn intercrate_ambiguity_hint(&self) -> String {
72         match self {
73             IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc } => {
74                 let self_desc = if let Some(ty) = self_desc {
75                     format!(" for type `{}`", ty)
76                 } else {
77                     String::new()
78                 };
79                 format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
80             }
81             IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc } => {
82                 let self_desc = if let Some(ty) = self_desc {
83                     format!(" for type `{}`", ty)
84                 } else {
85                     String::new()
86                 };
87                 format!(
88                     "upstream crates may add a new impl of trait `{}`{} \
89                      in future versions",
90                     trait_desc, self_desc
91                 )
92             }
93             IntercrateAmbiguityCause::ReservationImpl { message } => message.clone(),
94         }
95     }
96 }
97
98 pub struct SelectionContext<'cx, 'tcx> {
99     infcx: &'cx InferCtxt<'cx, 'tcx>,
100
101     /// Freshener used specifically for entries on the obligation
102     /// stack. This ensures that all entries on the stack at one time
103     /// will have the same set of placeholder entries, which is
104     /// important for checking for trait bounds that recursively
105     /// require themselves.
106     freshener: TypeFreshener<'cx, 'tcx>,
107
108     /// If `true`, indicates that the evaluation should be conservative
109     /// and consider the possibility of types outside this crate.
110     /// This comes up primarily when resolving ambiguity. Imagine
111     /// there is some trait reference `$0: Bar` where `$0` is an
112     /// inference variable. If `intercrate` is true, then we can never
113     /// say for sure that this reference is not implemented, even if
114     /// there are *no impls at all for `Bar`*, because `$0` could be
115     /// bound to some type that in a downstream crate that implements
116     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
117     /// though, we set this to false, because we are only interested
118     /// in types that the user could actually have written --- in
119     /// other words, we consider `$0: Bar` to be unimplemented if
120     /// there is no type that the user could *actually name* that
121     /// would satisfy it. This avoids crippling inference, basically.
122     intercrate: bool,
123
124     intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
125
126     /// Controls whether or not to filter out negative impls when selecting.
127     /// This is used in librustdoc to distinguish between the lack of an impl
128     /// and a negative impl
129     allow_negative_impls: bool,
130
131     /// Are we in a const context that needs `~const` bounds to be const?
132     is_in_const_context: bool,
133
134     /// The mode that trait queries run in, which informs our error handling
135     /// policy. In essence, canonicalized queries need their errors propagated
136     /// rather than immediately reported because we do not have accurate spans.
137     query_mode: TraitQueryMode,
138 }
139
140 // A stack that walks back up the stack frame.
141 struct TraitObligationStack<'prev, 'tcx> {
142     obligation: &'prev TraitObligation<'tcx>,
143
144     /// The trait ref from `obligation` but "freshened" with the
145     /// selection-context's freshener. Used to check for recursion.
146     fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
147
148     /// Starts out equal to `depth` -- if, during evaluation, we
149     /// encounter a cycle, then we will set this flag to the minimum
150     /// depth of that cycle for all participants in the cycle. These
151     /// participants will then forego caching their results. This is
152     /// not the most efficient solution, but it addresses #60010. The
153     /// problem we are trying to prevent:
154     ///
155     /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
156     /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
157     /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
158     ///
159     /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
160     /// is `EvaluatedToOk`; this is because they were only considered
161     /// ok on the premise that if `A: AutoTrait` held, but we indeed
162     /// encountered a problem (later on) with `A: AutoTrait. So we
163     /// currently set a flag on the stack node for `B: AutoTrait` (as
164     /// well as the second instance of `A: AutoTrait`) to suppress
165     /// caching.
166     ///
167     /// This is a simple, targeted fix. A more-performant fix requires
168     /// deeper changes, but would permit more caching: we could
169     /// basically defer caching until we have fully evaluated the
170     /// tree, and then cache the entire tree at once. In any case, the
171     /// performance impact here shouldn't be so horrible: every time
172     /// this is hit, we do cache at least one trait, so we only
173     /// evaluate each member of a cycle up to N times, where N is the
174     /// length of the cycle. This means the performance impact is
175     /// bounded and we shouldn't have any terrible worst-cases.
176     reached_depth: Cell<usize>,
177
178     previous: TraitObligationStackList<'prev, 'tcx>,
179
180     /// The number of parent frames plus one (thus, the topmost frame has depth 1).
181     depth: usize,
182
183     /// The depth-first number of this node in the search graph -- a
184     /// pre-order index. Basically, a freshly incremented counter.
185     dfn: usize,
186 }
187
188 struct SelectionCandidateSet<'tcx> {
189     // A list of candidates that definitely apply to the current
190     // obligation (meaning: types unify).
191     vec: Vec<SelectionCandidate<'tcx>>,
192
193     // If `true`, then there were candidates that might or might
194     // not have applied, but we couldn't tell. This occurs when some
195     // of the input types are type variables, in which case there are
196     // various "builtin" rules that might or might not trigger.
197     ambiguous: bool,
198 }
199
200 #[derive(PartialEq, Eq, Debug, Clone)]
201 struct EvaluatedCandidate<'tcx> {
202     candidate: SelectionCandidate<'tcx>,
203     evaluation: EvaluationResult,
204 }
205
206 /// When does the builtin impl for `T: Trait` apply?
207 enum BuiltinImplConditions<'tcx> {
208     /// The impl is conditional on `T1, T2, ...: Trait`.
209     Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
210     /// There is no built-in impl. There may be some other
211     /// candidate (a where-clause or user-defined impl).
212     None,
213     /// It is unknown whether there is an impl.
214     Ambiguous,
215 }
216
217 impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
218     pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
219         SelectionContext {
220             infcx,
221             freshener: infcx.freshener_keep_static(),
222             intercrate: false,
223             intercrate_ambiguity_causes: None,
224             allow_negative_impls: false,
225             is_in_const_context: false,
226             query_mode: TraitQueryMode::Standard,
227         }
228     }
229
230     pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
231         SelectionContext {
232             infcx,
233             freshener: infcx.freshener_keep_static(),
234             intercrate: true,
235             intercrate_ambiguity_causes: None,
236             allow_negative_impls: false,
237             is_in_const_context: false,
238             query_mode: TraitQueryMode::Standard,
239         }
240     }
241
242     pub fn with_negative(
243         infcx: &'cx InferCtxt<'cx, 'tcx>,
244         allow_negative_impls: bool,
245     ) -> SelectionContext<'cx, 'tcx> {
246         debug!(?allow_negative_impls, "with_negative");
247         SelectionContext {
248             infcx,
249             freshener: infcx.freshener_keep_static(),
250             intercrate: false,
251             intercrate_ambiguity_causes: None,
252             allow_negative_impls,
253             is_in_const_context: false,
254             query_mode: TraitQueryMode::Standard,
255         }
256     }
257
258     pub fn with_query_mode(
259         infcx: &'cx InferCtxt<'cx, 'tcx>,
260         query_mode: TraitQueryMode,
261     ) -> SelectionContext<'cx, 'tcx> {
262         debug!(?query_mode, "with_query_mode");
263         SelectionContext {
264             infcx,
265             freshener: infcx.freshener_keep_static(),
266             intercrate: false,
267             intercrate_ambiguity_causes: None,
268             allow_negative_impls: false,
269             is_in_const_context: false,
270             query_mode,
271         }
272     }
273
274     pub fn with_constness(
275         infcx: &'cx InferCtxt<'cx, 'tcx>,
276         constness: hir::Constness,
277     ) -> SelectionContext<'cx, 'tcx> {
278         SelectionContext {
279             infcx,
280             freshener: infcx.freshener_keep_static(),
281             intercrate: false,
282             intercrate_ambiguity_causes: None,
283             allow_negative_impls: false,
284             is_in_const_context: matches!(constness, hir::Constness::Const),
285             query_mode: TraitQueryMode::Standard,
286         }
287     }
288
289     /// Enables tracking of intercrate ambiguity causes. These are
290     /// used in coherence to give improved diagnostics. We don't do
291     /// this until we detect a coherence error because it can lead to
292     /// false overflow results (#47139) and because it costs
293     /// computation time.
294     pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
295         assert!(self.intercrate);
296         assert!(self.intercrate_ambiguity_causes.is_none());
297         self.intercrate_ambiguity_causes = Some(vec![]);
298         debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
299     }
300
301     /// Gets the intercrate ambiguity causes collected since tracking
302     /// was enabled and disables tracking at the same time. If
303     /// tracking is not enabled, just returns an empty vector.
304     pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
305         assert!(self.intercrate);
306         self.intercrate_ambiguity_causes.take().unwrap_or_default()
307     }
308
309     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
310         self.infcx
311     }
312
313     pub fn tcx(&self) -> TyCtxt<'tcx> {
314         self.infcx.tcx
315     }
316
317     pub fn is_intercrate(&self) -> bool {
318         self.intercrate
319     }
320
321     /// Returns `true` if the trait predicate is considerd `const` to this selection context.
322     pub fn is_trait_predicate_const(&self, pred: ty::TraitPredicate<'_>) -> bool {
323         match pred.constness {
324             ty::BoundConstness::ConstIfConst if self.is_in_const_context => true,
325             _ => false,
326         }
327     }
328
329     /// Returns `true` if the predicate is considered `const` to
330     /// this selection context.
331     pub fn is_predicate_const(&self, pred: ty::Predicate<'_>) -> bool {
332         match pred.kind().skip_binder() {
333             ty::PredicateKind::Trait(pred) => self.is_trait_predicate_const(pred),
334             _ => false,
335         }
336     }
337
338     ///////////////////////////////////////////////////////////////////////////
339     // Selection
340     //
341     // The selection phase tries to identify *how* an obligation will
342     // be resolved. For example, it will identify which impl or
343     // parameter bound is to be used. The process can be inconclusive
344     // if the self type in the obligation is not fully inferred. Selection
345     // can result in an error in one of two ways:
346     //
347     // 1. If no applicable impl or parameter bound can be found.
348     // 2. If the output type parameters in the obligation do not match
349     //    those specified by the impl/bound. For example, if the obligation
350     //    is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
351     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
352
353     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
354     /// type environment by performing unification.
355     #[instrument(level = "debug", skip(self))]
356     pub fn select(
357         &mut self,
358         obligation: &TraitObligation<'tcx>,
359     ) -> SelectionResult<'tcx, Selection<'tcx>> {
360         debug_assert!(!obligation.predicate.has_escaping_bound_vars());
361
362         let pec = &ProvisionalEvaluationCache::default();
363         let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
364
365         let candidate = match self.candidate_from_obligation(&stack) {
366             Err(SelectionError::Overflow) => {
367                 // In standard mode, overflow must have been caught and reported
368                 // earlier.
369                 assert!(self.query_mode == TraitQueryMode::Canonical);
370                 return Err(SelectionError::Overflow);
371             }
372             Err(e) => {
373                 return Err(e);
374             }
375             Ok(None) => {
376                 return Ok(None);
377             }
378             Ok(Some(candidate)) => candidate,
379         };
380
381         match self.confirm_candidate(obligation, candidate) {
382             Err(SelectionError::Overflow) => {
383                 assert!(self.query_mode == TraitQueryMode::Canonical);
384                 Err(SelectionError::Overflow)
385             }
386             Err(e) => Err(e),
387             Ok(candidate) => {
388                 debug!(?candidate);
389                 Ok(Some(candidate))
390             }
391         }
392     }
393
394     ///////////////////////////////////////////////////////////////////////////
395     // EVALUATION
396     //
397     // Tests whether an obligation can be selected or whether an impl
398     // can be applied to particular types. It skips the "confirmation"
399     // step and hence completely ignores output type parameters.
400     //
401     // The result is "true" if the obligation *may* hold and "false" if
402     // we can be sure it does not.
403
404     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
405     pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
406         debug!(?obligation, "predicate_may_hold_fatal");
407
408         // This fatal query is a stopgap that should only be used in standard mode,
409         // where we do not expect overflow to be propagated.
410         assert!(self.query_mode == TraitQueryMode::Standard);
411
412         self.evaluate_root_obligation(obligation)
413             .expect("Overflow should be caught earlier in standard query mode")
414             .may_apply()
415     }
416
417     /// Evaluates whether the obligation `obligation` can be satisfied
418     /// and returns an `EvaluationResult`. This is meant for the
419     /// *initial* call.
420     pub fn evaluate_root_obligation(
421         &mut self,
422         obligation: &PredicateObligation<'tcx>,
423     ) -> Result<EvaluationResult, OverflowError> {
424         self.evaluation_probe(|this| {
425             this.evaluate_predicate_recursively(
426                 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
427                 obligation.clone(),
428             )
429         })
430     }
431
432     fn evaluation_probe(
433         &mut self,
434         op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
435     ) -> Result<EvaluationResult, OverflowError> {
436         self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
437             let result = op(self)?;
438
439             match self.infcx.leak_check(true, snapshot) {
440                 Ok(()) => {}
441                 Err(_) => return Ok(EvaluatedToErr),
442             }
443
444             match self.infcx.region_constraints_added_in_snapshot(snapshot) {
445                 None => Ok(result),
446                 Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
447             }
448         })
449     }
450
451     /// Evaluates the predicates in `predicates` recursively. Note that
452     /// this applies projections in the predicates, and therefore
453     /// is run within an inference probe.
454     #[instrument(skip(self, stack), level = "debug")]
455     fn evaluate_predicates_recursively<'o, I>(
456         &mut self,
457         stack: TraitObligationStackList<'o, 'tcx>,
458         predicates: I,
459     ) -> Result<EvaluationResult, OverflowError>
460     where
461         I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
462     {
463         let mut result = EvaluatedToOk;
464         for obligation in predicates {
465             let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
466             if let EvaluatedToErr = eval {
467                 // fast-path - EvaluatedToErr is the top of the lattice,
468                 // so we don't need to look on the other predicates.
469                 return Ok(EvaluatedToErr);
470             } else {
471                 result = cmp::max(result, eval);
472             }
473         }
474         Ok(result)
475     }
476
477     #[instrument(
478         level = "debug",
479         skip(self, previous_stack),
480         fields(previous_stack = ?previous_stack.head())
481     )]
482     fn evaluate_predicate_recursively<'o>(
483         &mut self,
484         previous_stack: TraitObligationStackList<'o, 'tcx>,
485         obligation: PredicateObligation<'tcx>,
486     ) -> Result<EvaluationResult, OverflowError> {
487         // `previous_stack` stores a `TraitObligation`, while `obligation` is
488         // a `PredicateObligation`. These are distinct types, so we can't
489         // use any `Option` combinator method that would force them to be
490         // the same.
491         match previous_stack.head() {
492             Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
493             None => self.check_recursion_limit(&obligation, &obligation)?,
494         }
495
496         let result = ensure_sufficient_stack(|| {
497             let bound_predicate = obligation.predicate.kind();
498             match bound_predicate.skip_binder() {
499                 ty::PredicateKind::Trait(t) => {
500                     let t = bound_predicate.rebind(t);
501                     debug_assert!(!t.has_escaping_bound_vars());
502                     let obligation = obligation.with(t);
503                     self.evaluate_trait_predicate_recursively(previous_stack, obligation)
504                 }
505
506                 ty::PredicateKind::Subtype(p) => {
507                     let p = bound_predicate.rebind(p);
508                     // Does this code ever run?
509                     match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
510                         Some(Ok(InferOk { mut obligations, .. })) => {
511                             self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
512                             self.evaluate_predicates_recursively(
513                                 previous_stack,
514                                 obligations.into_iter(),
515                             )
516                         }
517                         Some(Err(_)) => Ok(EvaluatedToErr),
518                         None => Ok(EvaluatedToAmbig),
519                     }
520                 }
521
522                 ty::PredicateKind::Coerce(p) => {
523                     let p = bound_predicate.rebind(p);
524                     // Does this code ever run?
525                     match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
526                         Some(Ok(InferOk { mut obligations, .. })) => {
527                             self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
528                             self.evaluate_predicates_recursively(
529                                 previous_stack,
530                                 obligations.into_iter(),
531                             )
532                         }
533                         Some(Err(_)) => Ok(EvaluatedToErr),
534                         None => Ok(EvaluatedToAmbig),
535                     }
536                 }
537
538                 ty::PredicateKind::WellFormed(arg) => match wf::obligations(
539                     self.infcx,
540                     obligation.param_env,
541                     obligation.cause.body_id,
542                     obligation.recursion_depth + 1,
543                     arg,
544                     obligation.cause.span,
545                 ) {
546                     Some(mut obligations) => {
547                         self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
548                         self.evaluate_predicates_recursively(previous_stack, obligations)
549                     }
550                     None => Ok(EvaluatedToAmbig),
551                 },
552
553                 ty::PredicateKind::TypeOutlives(pred) => {
554                     if pred.0.is_known_global() {
555                         Ok(EvaluatedToOk)
556                     } else {
557                         Ok(EvaluatedToOkModuloRegions)
558                     }
559                 }
560
561                 ty::PredicateKind::RegionOutlives(..) => {
562                     // We do not consider region relationships when evaluating trait matches.
563                     Ok(EvaluatedToOkModuloRegions)
564                 }
565
566                 ty::PredicateKind::ObjectSafe(trait_def_id) => {
567                     if self.tcx().is_object_safe(trait_def_id) {
568                         Ok(EvaluatedToOk)
569                     } else {
570                         Ok(EvaluatedToErr)
571                     }
572                 }
573
574                 ty::PredicateKind::Projection(data) => {
575                     let data = bound_predicate.rebind(data);
576                     let project_obligation = obligation.with(data);
577                     match project::poly_project_and_unify_type(self, &project_obligation) {
578                         Ok(Ok(Some(mut subobligations))) => {
579                             self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
580                             self.evaluate_predicates_recursively(previous_stack, subobligations)
581                         }
582                         Ok(Ok(None)) => Ok(EvaluatedToAmbig),
583                         Ok(Err(project::InProgress)) => Ok(EvaluatedToRecur),
584                         Err(_) => Ok(EvaluatedToErr),
585                     }
586                 }
587
588                 ty::PredicateKind::ClosureKind(_, closure_substs, kind) => {
589                     match self.infcx.closure_kind(closure_substs) {
590                         Some(closure_kind) => {
591                             if closure_kind.extends(kind) {
592                                 Ok(EvaluatedToOk)
593                             } else {
594                                 Ok(EvaluatedToErr)
595                             }
596                         }
597                         None => Ok(EvaluatedToAmbig),
598                     }
599                 }
600
601                 ty::PredicateKind::ConstEvaluatable(uv) => {
602                     match const_evaluatable::is_const_evaluatable(
603                         self.infcx,
604                         uv,
605                         obligation.param_env,
606                         obligation.cause.span,
607                     ) {
608                         Ok(()) => Ok(EvaluatedToOk),
609                         Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
610                         Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
611                         Err(_) => Ok(EvaluatedToErr),
612                     }
613                 }
614
615                 ty::PredicateKind::ConstEquate(c1, c2) => {
616                     debug!(?c1, ?c2, "evaluate_predicate_recursively: equating consts");
617
618                     if self.tcx().features().generic_const_exprs {
619                         // FIXME: we probably should only try to unify abstract constants
620                         // if the constants depend on generic parameters.
621                         //
622                         // Let's just see where this breaks :shrug:
623                         if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
624                             (c1.val, c2.val)
625                         {
626                             if self.infcx.try_unify_abstract_consts(a.shrink(), b.shrink()) {
627                                 return Ok(EvaluatedToOk);
628                             }
629                         }
630                     }
631
632                     let evaluate = |c: &'tcx ty::Const<'tcx>| {
633                         if let ty::ConstKind::Unevaluated(unevaluated) = c.val {
634                             self.infcx
635                                 .const_eval_resolve(
636                                     obligation.param_env,
637                                     unevaluated,
638                                     Some(obligation.cause.span),
639                                 )
640                                 .map(|val| ty::Const::from_value(self.tcx(), val, c.ty))
641                         } else {
642                             Ok(c)
643                         }
644                     };
645
646                     match (evaluate(c1), evaluate(c2)) {
647                         (Ok(c1), Ok(c2)) => {
648                             match self
649                                 .infcx()
650                                 .at(&obligation.cause, obligation.param_env)
651                                 .eq(c1, c2)
652                             {
653                                 Ok(_) => Ok(EvaluatedToOk),
654                                 Err(_) => Ok(EvaluatedToErr),
655                             }
656                         }
657                         (Err(ErrorHandled::Reported(ErrorReported)), _)
658                         | (_, Err(ErrorHandled::Reported(ErrorReported))) => Ok(EvaluatedToErr),
659                         (Err(ErrorHandled::Linted), _) | (_, Err(ErrorHandled::Linted)) => {
660                             span_bug!(
661                                 obligation.cause.span(self.tcx()),
662                                 "ConstEquate: const_eval_resolve returned an unexpected error"
663                             )
664                         }
665                         (Err(ErrorHandled::TooGeneric), _) | (_, Err(ErrorHandled::TooGeneric)) => {
666                             if c1.has_infer_types_or_consts() || c2.has_infer_types_or_consts() {
667                                 Ok(EvaluatedToAmbig)
668                             } else {
669                                 // Two different constants using generic parameters ~> error.
670                                 Ok(EvaluatedToErr)
671                             }
672                         }
673                     }
674                 }
675                 ty::PredicateKind::TypeWellFormedFromEnv(..) => {
676                     bug!("TypeWellFormedFromEnv is only used for chalk")
677                 }
678             }
679         });
680
681         debug!("finished: {:?} from {:?}", result, obligation);
682
683         result
684     }
685
686     #[instrument(skip(self, previous_stack), level = "debug")]
687     fn evaluate_trait_predicate_recursively<'o>(
688         &mut self,
689         previous_stack: TraitObligationStackList<'o, 'tcx>,
690         mut obligation: TraitObligation<'tcx>,
691     ) -> Result<EvaluationResult, OverflowError> {
692         if !self.intercrate
693             && obligation.is_global(self.tcx())
694             && obligation
695                 .param_env
696                 .caller_bounds()
697                 .iter()
698                 .all(|bound| bound.definitely_needs_subst(self.tcx()))
699         {
700             // If a param env has no global bounds, global obligations do not
701             // depend on its particular value in order to work, so we can clear
702             // out the param env and get better caching.
703             debug!("in global");
704             obligation.param_env = obligation.param_env.without_caller_bounds();
705         }
706
707         let stack = self.push_stack(previous_stack, &obligation);
708         let fresh_trait_ref = stack.fresh_trait_ref;
709
710         debug!(?fresh_trait_ref);
711
712         if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
713             debug!(?result, "CACHE HIT");
714             return Ok(result);
715         }
716
717         if let Some(result) = stack.cache().get_provisional(fresh_trait_ref) {
718             debug!(?result, "PROVISIONAL CACHE HIT");
719             stack.update_reached_depth(result.reached_depth);
720             return Ok(result.result);
721         }
722
723         // Check if this is a match for something already on the
724         // stack. If so, we don't want to insert the result into the
725         // main cache (it is cycle dependent) nor the provisional
726         // cache (which is meant for things that have completed but
727         // for a "backedge" -- this result *is* the backedge).
728         if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
729             return Ok(cycle_result);
730         }
731
732         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
733         let result = result?;
734
735         if !result.must_apply_modulo_regions() {
736             stack.cache().on_failure(stack.dfn);
737         }
738
739         let reached_depth = stack.reached_depth.get();
740         if reached_depth >= stack.depth {
741             debug!(?result, "CACHE MISS");
742             self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
743
744             stack.cache().on_completion(stack.dfn, |fresh_trait_ref, provisional_result| {
745                 self.insert_evaluation_cache(
746                     obligation.param_env,
747                     fresh_trait_ref,
748                     dep_node,
749                     provisional_result.max(result),
750                 );
751             });
752         } else {
753             debug!(?result, "PROVISIONAL");
754             debug!(
755                 "caching provisionally because {:?} \
756                  is a cycle participant (at depth {}, reached depth {})",
757                 fresh_trait_ref, stack.depth, reached_depth,
758             );
759
760             stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_ref, result);
761         }
762
763         Ok(result)
764     }
765
766     /// If there is any previous entry on the stack that precisely
767     /// matches this obligation, then we can assume that the
768     /// obligation is satisfied for now (still all other conditions
769     /// must be met of course). One obvious case this comes up is
770     /// marker traits like `Send`. Think of a linked list:
771     ///
772     ///    struct List<T> { data: T, next: Option<Box<List<T>>> }
773     ///
774     /// `Box<List<T>>` will be `Send` if `T` is `Send` and
775     /// `Option<Box<List<T>>>` is `Send`, and in turn
776     /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
777     /// `Send`.
778     ///
779     /// Note that we do this comparison using the `fresh_trait_ref`
780     /// fields. Because these have all been freshened using
781     /// `self.freshener`, we can be sure that (a) this will not
782     /// affect the inferencer state and (b) that if we see two
783     /// fresh regions with the same index, they refer to the same
784     /// unbound type variable.
785     fn check_evaluation_cycle(
786         &mut self,
787         stack: &TraitObligationStack<'_, 'tcx>,
788     ) -> Option<EvaluationResult> {
789         if let Some(cycle_depth) = stack
790             .iter()
791             .skip(1) // Skip top-most frame.
792             .find(|prev| {
793                 stack.obligation.param_env == prev.obligation.param_env
794                     && stack.fresh_trait_ref == prev.fresh_trait_ref
795             })
796             .map(|stack| stack.depth)
797         {
798             debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
799
800             // If we have a stack like `A B C D E A`, where the top of
801             // the stack is the final `A`, then this will iterate over
802             // `A, E, D, C, B` -- i.e., all the participants apart
803             // from the cycle head. We mark them as participating in a
804             // cycle. This suppresses caching for those nodes. See
805             // `in_cycle` field for more details.
806             stack.update_reached_depth(cycle_depth);
807
808             // Subtle: when checking for a coinductive cycle, we do
809             // not compare using the "freshened trait refs" (which
810             // have erased regions) but rather the fully explicit
811             // trait refs. This is important because it's only a cycle
812             // if the regions match exactly.
813             let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
814             let tcx = self.tcx();
815             let cycle = cycle.map(|stack| stack.obligation.predicate.to_predicate(tcx));
816             if self.coinductive_match(cycle) {
817                 debug!("evaluate_stack --> recursive, coinductive");
818                 Some(EvaluatedToOk)
819             } else {
820                 debug!("evaluate_stack --> recursive, inductive");
821                 Some(EvaluatedToRecur)
822             }
823         } else {
824             None
825         }
826     }
827
828     fn evaluate_stack<'o>(
829         &mut self,
830         stack: &TraitObligationStack<'o, 'tcx>,
831     ) -> Result<EvaluationResult, OverflowError> {
832         // In intercrate mode, whenever any of the generics are unbound,
833         // there can always be an impl. Even if there are no impls in
834         // this crate, perhaps the type would be unified with
835         // something from another crate that does provide an impl.
836         //
837         // In intra mode, we must still be conservative. The reason is
838         // that we want to avoid cycles. Imagine an impl like:
839         //
840         //     impl<T:Eq> Eq for Vec<T>
841         //
842         // and a trait reference like `$0 : Eq` where `$0` is an
843         // unbound variable. When we evaluate this trait-reference, we
844         // will unify `$0` with `Vec<$1>` (for some fresh variable
845         // `$1`), on the condition that `$1 : Eq`. We will then wind
846         // up with many candidates (since that are other `Eq` impls
847         // that apply) and try to winnow things down. This results in
848         // a recursive evaluation that `$1 : Eq` -- as you can
849         // imagine, this is just where we started. To avoid that, we
850         // check for unbound variables and return an ambiguous (hence possible)
851         // match if we've seen this trait before.
852         //
853         // This suffices to allow chains like `FnMut` implemented in
854         // terms of `Fn` etc, but we could probably make this more
855         // precise still.
856         let unbound_input_types =
857             stack.fresh_trait_ref.value.skip_binder().substs.types().any(|ty| ty.is_fresh());
858         // This check was an imperfect workaround for a bug in the old
859         // intercrate mode; it should be removed when that goes away.
860         if unbound_input_types && self.intercrate {
861             debug!("evaluate_stack --> unbound argument, intercrate -->  ambiguous",);
862             // Heuristics: show the diagnostics when there are no candidates in crate.
863             if self.intercrate_ambiguity_causes.is_some() {
864                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
865                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
866                     if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
867                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
868                         let self_ty = trait_ref.self_ty();
869                         let cause =
870                             with_no_trimmed_paths(|| IntercrateAmbiguityCause::DownstreamCrate {
871                                 trait_desc: trait_ref.print_only_trait_path().to_string(),
872                                 self_desc: if self_ty.has_concrete_skeleton() {
873                                     Some(self_ty.to_string())
874                                 } else {
875                                     None
876                                 },
877                             });
878
879                         debug!(?cause, "evaluate_stack: pushing cause");
880                         self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
881                     }
882                 }
883             }
884             return Ok(EvaluatedToAmbig);
885         }
886         if unbound_input_types
887             && stack.iter().skip(1).any(|prev| {
888                 stack.obligation.param_env == prev.obligation.param_env
889                     && self.match_fresh_trait_refs(
890                         stack.fresh_trait_ref,
891                         prev.fresh_trait_ref,
892                         prev.obligation.param_env,
893                     )
894             })
895         {
896             debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
897             return Ok(EvaluatedToUnknown);
898         }
899
900         match self.candidate_from_obligation(stack) {
901             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
902             Ok(None) => Ok(EvaluatedToAmbig),
903             Err(Overflow) => Err(OverflowError::Cannonical),
904             Err(ErrorReporting) => Err(OverflowError::ErrorReporting),
905             Err(..) => Ok(EvaluatedToErr),
906         }
907     }
908
909     /// For defaulted traits, we use a co-inductive strategy to solve, so
910     /// that recursion is ok. This routine returns `true` if the top of the
911     /// stack (`cycle[0]`):
912     ///
913     /// - is a defaulted trait,
914     /// - it also appears in the backtrace at some position `X`,
915     /// - all the predicates at positions `X..` between `X` and the top are
916     ///   also defaulted traits.
917     pub fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
918     where
919         I: Iterator<Item = ty::Predicate<'tcx>>,
920     {
921         cycle.all(|predicate| self.coinductive_predicate(predicate))
922     }
923
924     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
925         let result = match predicate.kind().skip_binder() {
926             ty::PredicateKind::Trait(ref data) => self.tcx().trait_is_auto(data.def_id()),
927             _ => false,
928         };
929         debug!(?predicate, ?result, "coinductive_predicate");
930         result
931     }
932
933     /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
934     /// obligations are met. Returns whether `candidate` remains viable after this further
935     /// scrutiny.
936     #[instrument(
937         level = "debug",
938         skip(self, stack),
939         fields(depth = stack.obligation.recursion_depth)
940     )]
941     fn evaluate_candidate<'o>(
942         &mut self,
943         stack: &TraitObligationStack<'o, 'tcx>,
944         candidate: &SelectionCandidate<'tcx>,
945     ) -> Result<EvaluationResult, OverflowError> {
946         let mut result = self.evaluation_probe(|this| {
947             let candidate = (*candidate).clone();
948             match this.confirm_candidate(stack.obligation, candidate) {
949                 Ok(selection) => {
950                     debug!(?selection);
951                     this.evaluate_predicates_recursively(
952                         stack.list(),
953                         selection.nested_obligations().into_iter(),
954                     )
955                 }
956                 Err(..) => Ok(EvaluatedToErr),
957             }
958         })?;
959
960         // If we erased any lifetimes, then we want to use
961         // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
962         // as your final result. The result will be cached using
963         // the freshened trait predicate as a key, so we need
964         // our result to be correct by *any* choice of original lifetimes,
965         // not just the lifetime choice for this particular (non-erased)
966         // predicate.
967         // See issue #80691
968         if stack.fresh_trait_ref.has_erased_regions() {
969             result = result.max(EvaluatedToOkModuloRegions);
970         }
971
972         debug!(?result);
973         Ok(result)
974     }
975
976     fn check_evaluation_cache(
977         &self,
978         param_env: ty::ParamEnv<'tcx>,
979         trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
980     ) -> Option<EvaluationResult> {
981         // Neither the global nor local cache is aware of intercrate
982         // mode, so don't do any caching. In particular, we might
983         // re-use the same `InferCtxt` with both an intercrate
984         // and non-intercrate `SelectionContext`
985         if self.intercrate {
986             return None;
987         }
988
989         let tcx = self.tcx();
990         if self.can_use_global_caches(param_env) {
991             if let Some(res) = tcx.evaluation_cache.get(&param_env.and(trait_ref), tcx) {
992                 return Some(res);
993             }
994         }
995         self.infcx.evaluation_cache.get(&param_env.and(trait_ref), tcx)
996     }
997
998     fn insert_evaluation_cache(
999         &mut self,
1000         param_env: ty::ParamEnv<'tcx>,
1001         trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
1002         dep_node: DepNodeIndex,
1003         result: EvaluationResult,
1004     ) {
1005         // Avoid caching results that depend on more than just the trait-ref
1006         // - the stack can create recursion.
1007         if result.is_stack_dependent() {
1008             return;
1009         }
1010
1011         // Neither the global nor local cache is aware of intercrate
1012         // mode, so don't do any caching. In particular, we might
1013         // re-use the same `InferCtxt` with both an intercrate
1014         // and non-intercrate `SelectionContext`
1015         if self.intercrate {
1016             return;
1017         }
1018
1019         if self.can_use_global_caches(param_env) {
1020             if !trait_ref.needs_infer() {
1021                 debug!(?trait_ref, ?result, "insert_evaluation_cache global");
1022                 // This may overwrite the cache with the same value
1023                 // FIXME: Due to #50507 this overwrites the different values
1024                 // This should be changed to use HashMapExt::insert_same
1025                 // when that is fixed
1026                 self.tcx().evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
1027                 return;
1028             }
1029         }
1030
1031         debug!(?trait_ref, ?result, "insert_evaluation_cache");
1032         self.infcx.evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
1033     }
1034
1035     /// For various reasons, it's possible for a subobligation
1036     /// to have a *lower* recursion_depth than the obligation used to create it.
1037     /// Projection sub-obligations may be returned from the projection cache,
1038     /// which results in obligations with an 'old' `recursion_depth`.
1039     /// Additionally, methods like `InferCtxt.subtype_predicate` produce
1040     /// subobligations without taking in a 'parent' depth, causing the
1041     /// generated subobligations to have a `recursion_depth` of `0`.
1042     ///
1043     /// To ensure that obligation_depth never decreases, we force all subobligations
1044     /// to have at least the depth of the original obligation.
1045     fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(
1046         &self,
1047         it: I,
1048         min_depth: usize,
1049     ) {
1050         it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
1051     }
1052
1053     fn check_recursion_depth<T: Display + TypeFoldable<'tcx>>(
1054         &self,
1055         depth: usize,
1056         error_obligation: &Obligation<'tcx, T>,
1057     ) -> Result<(), OverflowError> {
1058         if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
1059             match self.query_mode {
1060                 TraitQueryMode::Standard => {
1061                     if self.infcx.is_tainted_by_errors() {
1062                         return Err(OverflowError::ErrorReporting);
1063                     }
1064                     self.infcx.report_overflow_error(error_obligation, true);
1065                 }
1066                 TraitQueryMode::Canonical => {
1067                     return Err(OverflowError::Cannonical);
1068                 }
1069             }
1070         }
1071         Ok(())
1072     }
1073
1074     /// Checks that the recursion limit has not been exceeded.
1075     ///
1076     /// The weird return type of this function allows it to be used with the `try` (`?`)
1077     /// operator within certain functions.
1078     #[inline(always)]
1079     fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
1080         &self,
1081         obligation: &Obligation<'tcx, T>,
1082         error_obligation: &Obligation<'tcx, V>,
1083     ) -> Result<(), OverflowError> {
1084         self.check_recursion_depth(obligation.recursion_depth, error_obligation)
1085     }
1086
1087     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1088     where
1089         OP: FnOnce(&mut Self) -> R,
1090     {
1091         let (result, dep_node) =
1092             self.tcx().dep_graph.with_anon_task(self.tcx(), DepKind::TraitSelect, || op(self));
1093         self.tcx().dep_graph.read_index(dep_node);
1094         (result, dep_node)
1095     }
1096
1097     #[instrument(level = "debug", skip(self))]
1098     fn filter_impls(
1099         &mut self,
1100         candidate: SelectionCandidate<'tcx>,
1101         obligation: &TraitObligation<'tcx>,
1102     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1103         let tcx = self.tcx();
1104         // Respect const trait obligations
1105         if self.is_trait_predicate_const(obligation.predicate.skip_binder()) {
1106             match candidate {
1107                 // const impl
1108                 ImplCandidate(def_id) if tcx.impl_constness(def_id) == hir::Constness::Const => {}
1109                 // const param
1110                 ParamCandidate(ty::ConstnessAnd {
1111                     constness: ty::BoundConstness::ConstIfConst,
1112                     ..
1113                 }) => {}
1114                 // auto trait impl
1115                 AutoImplCandidate(..) => {}
1116                 // generator, this will raise error in other places
1117                 // or ignore error with const_async_blocks feature
1118                 GeneratorCandidate => {}
1119                 // FnDef where the function is const
1120                 FnPointerCandidate { is_const: true } => {}
1121                 ConstDropCandidate => {}
1122                 _ => {
1123                     // reject all other types of candidates
1124                     return Err(Unimplemented);
1125                 }
1126             }
1127         }
1128         // Treat negative impls as unimplemented, and reservation impls as ambiguity.
1129         if let ImplCandidate(def_id) = candidate {
1130             match tcx.impl_polarity(def_id) {
1131                 ty::ImplPolarity::Negative if !self.allow_negative_impls => {
1132                     return Err(Unimplemented);
1133                 }
1134                 ty::ImplPolarity::Reservation => {
1135                     if let Some(intercrate_ambiguity_clauses) =
1136                         &mut self.intercrate_ambiguity_causes
1137                     {
1138                         let attrs = tcx.get_attrs(def_id);
1139                         let attr = tcx.sess.find_by_name(&attrs, sym::rustc_reservation_impl);
1140                         let value = attr.and_then(|a| a.value_str());
1141                         if let Some(value) = value {
1142                             debug!(
1143                                 "filter_impls: \
1144                                  reservation impl ambiguity on {:?}",
1145                                 def_id
1146                             );
1147                             intercrate_ambiguity_clauses.push(
1148                                 IntercrateAmbiguityCause::ReservationImpl {
1149                                     message: value.to_string(),
1150                                 },
1151                             );
1152                         }
1153                     }
1154                     return Ok(None);
1155                 }
1156                 _ => {}
1157             };
1158         }
1159         Ok(Some(candidate))
1160     }
1161
1162     fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
1163         debug!("is_knowable(intercrate={:?})", self.intercrate);
1164
1165         if !self.intercrate {
1166             return None;
1167         }
1168
1169         let obligation = &stack.obligation;
1170         let predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
1171
1172         // Okay to skip binder because of the nature of the
1173         // trait-ref-is-knowable check, which does not care about
1174         // bound regions.
1175         let trait_ref = predicate.skip_binder().trait_ref;
1176
1177         coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
1178     }
1179
1180     /// Returns `true` if the global caches can be used.
1181     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1182         // If there are any inference variables in the `ParamEnv`, then we
1183         // always use a cache local to this particular scope. Otherwise, we
1184         // switch to a global cache.
1185         if param_env.needs_infer() {
1186             return false;
1187         }
1188
1189         // Avoid using the master cache during coherence and just rely
1190         // on the local cache. This effectively disables caching
1191         // during coherence. It is really just a simplification to
1192         // avoid us having to fear that coherence results "pollute"
1193         // the master cache. Since coherence executes pretty quickly,
1194         // it's not worth going to more trouble to increase the
1195         // hit-rate, I don't think.
1196         if self.intercrate {
1197             return false;
1198         }
1199
1200         // Otherwise, we can use the global cache.
1201         true
1202     }
1203
1204     fn check_candidate_cache(
1205         &mut self,
1206         param_env: ty::ParamEnv<'tcx>,
1207         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1208     ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1209         // Neither the global nor local cache is aware of intercrate
1210         // mode, so don't do any caching. In particular, we might
1211         // re-use the same `InferCtxt` with both an intercrate
1212         // and non-intercrate `SelectionContext`
1213         if self.intercrate {
1214             return None;
1215         }
1216         let tcx = self.tcx();
1217         let pred = &cache_fresh_trait_pred.skip_binder();
1218         let trait_ref = pred.trait_ref;
1219         if self.can_use_global_caches(param_env) {
1220             if let Some(res) = tcx
1221                 .selection_cache
1222                 .get(&param_env.and(trait_ref).with_constness(pred.constness), tcx)
1223             {
1224                 return Some(res);
1225             }
1226         }
1227         self.infcx
1228             .selection_cache
1229             .get(&param_env.and(trait_ref).with_constness(pred.constness), tcx)
1230     }
1231
1232     /// Determines whether can we safely cache the result
1233     /// of selecting an obligation. This is almost always `true`,
1234     /// except when dealing with certain `ParamCandidate`s.
1235     ///
1236     /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1237     /// since it was usually produced directly from a `DefId`. However,
1238     /// certain cases (currently only librustdoc's blanket impl finder),
1239     /// a `ParamEnv` may be explicitly constructed with inference types.
1240     /// When this is the case, we do *not* want to cache the resulting selection
1241     /// candidate. This is due to the fact that it might not always be possible
1242     /// to equate the obligation's trait ref and the candidate's trait ref,
1243     /// if more constraints end up getting added to an inference variable.
1244     ///
1245     /// Because of this, we always want to re-run the full selection
1246     /// process for our obligation the next time we see it, since
1247     /// we might end up picking a different `SelectionCandidate` (or none at all).
1248     fn can_cache_candidate(
1249         &self,
1250         result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1251     ) -> bool {
1252         // Neither the global nor local cache is aware of intercrate
1253         // mode, so don't do any caching. In particular, we might
1254         // re-use the same `InferCtxt` with both an intercrate
1255         // and non-intercrate `SelectionContext`
1256         if self.intercrate {
1257             return false;
1258         }
1259         match result {
1260             Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.needs_infer(),
1261             _ => true,
1262         }
1263     }
1264
1265     fn insert_candidate_cache(
1266         &mut self,
1267         param_env: ty::ParamEnv<'tcx>,
1268         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1269         dep_node: DepNodeIndex,
1270         candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1271     ) {
1272         let tcx = self.tcx();
1273         let pred = cache_fresh_trait_pred.skip_binder();
1274         let trait_ref = pred.trait_ref;
1275
1276         if !self.can_cache_candidate(&candidate) {
1277             debug!(?trait_ref, ?candidate, "insert_candidate_cache - candidate is not cacheable");
1278             return;
1279         }
1280
1281         if self.can_use_global_caches(param_env) {
1282             if let Err(Overflow) = candidate {
1283                 // Don't cache overflow globally; we only produce this in certain modes.
1284             } else if !trait_ref.needs_infer() {
1285                 if !candidate.needs_infer() {
1286                     debug!(?trait_ref, ?candidate, "insert_candidate_cache global");
1287                     // This may overwrite the cache with the same value.
1288                     tcx.selection_cache.insert(
1289                         param_env.and(trait_ref).with_constness(pred.constness),
1290                         dep_node,
1291                         candidate,
1292                     );
1293                     return;
1294                 }
1295             }
1296         }
1297
1298         debug!(?trait_ref, ?candidate, "insert_candidate_cache local");
1299         self.infcx.selection_cache.insert(
1300             param_env.and(trait_ref).with_constness(pred.constness),
1301             dep_node,
1302             candidate,
1303         );
1304     }
1305
1306     /// Matches a predicate against the bounds of its self type.
1307     ///
1308     /// Given an obligation like `<T as Foo>::Bar: Baz` where the self type is
1309     /// a projection, look at the bounds of `T::Bar`, see if we can find a
1310     /// `Baz` bound. We return indexes into the list returned by
1311     /// `tcx.item_bounds` for any applicable bounds.
1312     fn match_projection_obligation_against_definition_bounds(
1313         &mut self,
1314         obligation: &TraitObligation<'tcx>,
1315     ) -> smallvec::SmallVec<[usize; 2]> {
1316         let poly_trait_predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
1317         let placeholder_trait_predicate =
1318             self.infcx().replace_bound_vars_with_placeholders(poly_trait_predicate);
1319         debug!(
1320             ?placeholder_trait_predicate,
1321             "match_projection_obligation_against_definition_bounds"
1322         );
1323
1324         let tcx = self.infcx.tcx;
1325         let (def_id, substs) = match *placeholder_trait_predicate.trait_ref.self_ty().kind() {
1326             ty::Projection(ref data) => (data.item_def_id, data.substs),
1327             ty::Opaque(def_id, substs) => (def_id, substs),
1328             _ => {
1329                 span_bug!(
1330                     obligation.cause.span,
1331                     "match_projection_obligation_against_definition_bounds() called \
1332                      but self-ty is not a projection: {:?}",
1333                     placeholder_trait_predicate.trait_ref.self_ty()
1334                 );
1335             }
1336         };
1337         let bounds = tcx.item_bounds(def_id).subst(tcx, substs);
1338
1339         // The bounds returned by `item_bounds` may contain duplicates after
1340         // normalization, so try to deduplicate when possible to avoid
1341         // unnecessary ambiguity.
1342         let mut distinct_normalized_bounds = FxHashSet::default();
1343
1344         let matching_bounds = bounds
1345             .iter()
1346             .enumerate()
1347             .filter_map(|(idx, bound)| {
1348                 let bound_predicate = bound.kind();
1349                 if let ty::PredicateKind::Trait(pred) = bound_predicate.skip_binder() {
1350                     let bound = bound_predicate.rebind(pred.trait_ref);
1351                     if self.infcx.probe(|_| {
1352                         match self.match_normalize_trait_ref(
1353                             obligation,
1354                             bound,
1355                             placeholder_trait_predicate.trait_ref,
1356                         ) {
1357                             Ok(None) => true,
1358                             Ok(Some(normalized_trait))
1359                                 if distinct_normalized_bounds.insert(normalized_trait) =>
1360                             {
1361                                 true
1362                             }
1363                             _ => false,
1364                         }
1365                     }) {
1366                         return Some(idx);
1367                     }
1368                 }
1369                 None
1370             })
1371             .collect();
1372
1373         debug!(?matching_bounds, "match_projection_obligation_against_definition_bounds");
1374         matching_bounds
1375     }
1376
1377     /// Equates the trait in `obligation` with trait bound. If the two traits
1378     /// can be equated and the normalized trait bound doesn't contain inference
1379     /// variables or placeholders, the normalized bound is returned.
1380     fn match_normalize_trait_ref(
1381         &mut self,
1382         obligation: &TraitObligation<'tcx>,
1383         trait_bound: ty::PolyTraitRef<'tcx>,
1384         placeholder_trait_ref: ty::TraitRef<'tcx>,
1385     ) -> Result<Option<ty::PolyTraitRef<'tcx>>, ()> {
1386         debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1387         if placeholder_trait_ref.def_id != trait_bound.def_id() {
1388             // Avoid unnecessary normalization
1389             return Err(());
1390         }
1391
1392         let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
1393             project::normalize_with_depth(
1394                 self,
1395                 obligation.param_env,
1396                 obligation.cause.clone(),
1397                 obligation.recursion_depth + 1,
1398                 trait_bound,
1399             )
1400         });
1401         self.infcx
1402             .at(&obligation.cause, obligation.param_env)
1403             .sup(ty::Binder::dummy(placeholder_trait_ref), trait_bound)
1404             .map(|InferOk { obligations: _, value: () }| {
1405                 // This method is called within a probe, so we can't have
1406                 // inference variables and placeholders escape.
1407                 if !trait_bound.needs_infer() && !trait_bound.has_placeholders() {
1408                     Some(trait_bound)
1409                 } else {
1410                     None
1411                 }
1412             })
1413             .map_err(|_| ())
1414     }
1415
1416     fn evaluate_where_clause<'o>(
1417         &mut self,
1418         stack: &TraitObligationStack<'o, 'tcx>,
1419         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1420     ) -> Result<EvaluationResult, OverflowError> {
1421         self.evaluation_probe(|this| {
1422             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1423                 Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1424                 Err(()) => Ok(EvaluatedToErr),
1425             }
1426         })
1427     }
1428
1429     pub(super) fn match_projection_projections(
1430         &mut self,
1431         obligation: &ProjectionTyObligation<'tcx>,
1432         env_predicate: PolyProjectionPredicate<'tcx>,
1433         potentially_unnormalized_candidates: bool,
1434     ) -> bool {
1435         let mut nested_obligations = Vec::new();
1436         let (infer_predicate, _) = self.infcx.replace_bound_vars_with_fresh_vars(
1437             obligation.cause.span,
1438             LateBoundRegionConversionTime::HigherRankedType,
1439             env_predicate,
1440         );
1441         let infer_projection = if potentially_unnormalized_candidates {
1442             ensure_sufficient_stack(|| {
1443                 project::normalize_with_depth_to(
1444                     self,
1445                     obligation.param_env,
1446                     obligation.cause.clone(),
1447                     obligation.recursion_depth + 1,
1448                     infer_predicate.projection_ty,
1449                     &mut nested_obligations,
1450                 )
1451             })
1452         } else {
1453             infer_predicate.projection_ty
1454         };
1455
1456         self.infcx
1457             .at(&obligation.cause, obligation.param_env)
1458             .sup(obligation.predicate, infer_projection)
1459             .map_or(false, |InferOk { obligations, value: () }| {
1460                 self.evaluate_predicates_recursively(
1461                     TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1462                     nested_obligations.into_iter().chain(obligations),
1463                 )
1464                 .map_or(false, |res| res.may_apply())
1465             })
1466     }
1467
1468     ///////////////////////////////////////////////////////////////////////////
1469     // WINNOW
1470     //
1471     // Winnowing is the process of attempting to resolve ambiguity by
1472     // probing further. During the winnowing process, we unify all
1473     // type variables and then we also attempt to evaluate recursive
1474     // bounds to see if they are satisfied.
1475
1476     /// Returns `true` if `victim` should be dropped in favor of
1477     /// `other`. Generally speaking we will drop duplicate
1478     /// candidates and prefer where-clause candidates.
1479     ///
1480     /// See the comment for "SelectionCandidate" for more details.
1481     fn candidate_should_be_dropped_in_favor_of(
1482         &mut self,
1483         victim: &EvaluatedCandidate<'tcx>,
1484         other: &EvaluatedCandidate<'tcx>,
1485         needs_infer: bool,
1486     ) -> bool {
1487         if victim.candidate == other.candidate {
1488             return true;
1489         }
1490
1491         // Check if a bound would previously have been removed when normalizing
1492         // the param_env so that it can be given the lowest priority. See
1493         // #50825 for the motivation for this.
1494         let is_global =
1495             |cand: &ty::PolyTraitRef<'_>| cand.is_known_global() && !cand.has_late_bound_regions();
1496
1497         // (*) Prefer `BuiltinCandidate { has_nested: false }`, `PointeeCandidate`,
1498         // and `DiscriminantKindCandidate` to anything else.
1499         //
1500         // This is a fix for #53123 and prevents winnowing from accidentally extending the
1501         // lifetime of a variable.
1502         match (&other.candidate, &victim.candidate) {
1503             (_, AutoImplCandidate(..)) | (AutoImplCandidate(..), _) => {
1504                 bug!(
1505                     "default implementations shouldn't be recorded \
1506                     when there are other valid candidates"
1507                 );
1508             }
1509
1510             // (*)
1511             (
1512                 BuiltinCandidate { has_nested: false }
1513                 | DiscriminantKindCandidate
1514                 | PointeeCandidate
1515                 | ConstDropCandidate,
1516                 _,
1517             ) => true,
1518             (
1519                 _,
1520                 BuiltinCandidate { has_nested: false }
1521                 | DiscriminantKindCandidate
1522                 | PointeeCandidate
1523                 | ConstDropCandidate,
1524             ) => false,
1525
1526             (ParamCandidate(other), ParamCandidate(victim)) => {
1527                 let same_except_bound_vars = other.value.skip_binder()
1528                     == victim.value.skip_binder()
1529                     && other.constness == victim.constness
1530                     && !other.value.skip_binder().has_escaping_bound_vars();
1531                 if same_except_bound_vars {
1532                     // See issue #84398. In short, we can generate multiple ParamCandidates which are
1533                     // the same except for unused bound vars. Just pick the one with the fewest bound vars
1534                     // or the current one if tied (they should both evaluate to the same answer). This is
1535                     // probably best characterized as a "hack", since we might prefer to just do our
1536                     // best to *not* create essentially duplicate candidates in the first place.
1537                     other.value.bound_vars().len() <= victim.value.bound_vars().len()
1538                 } else if other.value == victim.value
1539                     && victim.constness == ty::BoundConstness::NotConst
1540                 {
1541                     // Drop otherwise equivalent non-const candidates in favor of const candidates.
1542                     true
1543                 } else {
1544                     false
1545                 }
1546             }
1547
1548             // Drop otherwise equivalent non-const fn pointer candidates
1549             (FnPointerCandidate { .. }, FnPointerCandidate { is_const: false }) => true,
1550
1551             // Global bounds from the where clause should be ignored
1552             // here (see issue #50825). Otherwise, we have a where
1553             // clause so don't go around looking for impls.
1554             // Arbitrarily give param candidates priority
1555             // over projection and object candidates.
1556             (
1557                 ParamCandidate(ref cand),
1558                 ImplCandidate(..)
1559                 | ClosureCandidate
1560                 | GeneratorCandidate
1561                 | FnPointerCandidate { .. }
1562                 | BuiltinObjectCandidate
1563                 | BuiltinUnsizeCandidate
1564                 | TraitUpcastingUnsizeCandidate(_)
1565                 | BuiltinCandidate { .. }
1566                 | TraitAliasCandidate(..)
1567                 | ObjectCandidate(_)
1568                 | ProjectionCandidate(_),
1569             ) => !is_global(&cand.value),
1570             (ObjectCandidate(_) | ProjectionCandidate(_), ParamCandidate(ref cand)) => {
1571                 // Prefer these to a global where-clause bound
1572                 // (see issue #50825).
1573                 is_global(&cand.value)
1574             }
1575             (
1576                 ImplCandidate(_)
1577                 | ClosureCandidate
1578                 | GeneratorCandidate
1579                 | FnPointerCandidate { .. }
1580                 | BuiltinObjectCandidate
1581                 | BuiltinUnsizeCandidate
1582                 | TraitUpcastingUnsizeCandidate(_)
1583                 | BuiltinCandidate { has_nested: true }
1584                 | TraitAliasCandidate(..),
1585                 ParamCandidate(ref cand),
1586             ) => {
1587                 // Prefer these to a global where-clause bound
1588                 // (see issue #50825).
1589                 is_global(&cand.value) && other.evaluation.must_apply_modulo_regions()
1590             }
1591
1592             (ProjectionCandidate(i), ProjectionCandidate(j))
1593             | (ObjectCandidate(i), ObjectCandidate(j)) => {
1594                 // Arbitrarily pick the lower numbered candidate for backwards
1595                 // compatibility reasons. Don't let this affect inference.
1596                 i < j && !needs_infer
1597             }
1598             (ObjectCandidate(_), ProjectionCandidate(_))
1599             | (ProjectionCandidate(_), ObjectCandidate(_)) => {
1600                 bug!("Have both object and projection candidate")
1601             }
1602
1603             // Arbitrarily give projection and object candidates priority.
1604             (
1605                 ObjectCandidate(_) | ProjectionCandidate(_),
1606                 ImplCandidate(..)
1607                 | ClosureCandidate
1608                 | GeneratorCandidate
1609                 | FnPointerCandidate { .. }
1610                 | BuiltinObjectCandidate
1611                 | BuiltinUnsizeCandidate
1612                 | TraitUpcastingUnsizeCandidate(_)
1613                 | BuiltinCandidate { .. }
1614                 | TraitAliasCandidate(..),
1615             ) => true,
1616
1617             (
1618                 ImplCandidate(..)
1619                 | ClosureCandidate
1620                 | GeneratorCandidate
1621                 | FnPointerCandidate { .. }
1622                 | BuiltinObjectCandidate
1623                 | BuiltinUnsizeCandidate
1624                 | TraitUpcastingUnsizeCandidate(_)
1625                 | BuiltinCandidate { .. }
1626                 | TraitAliasCandidate(..),
1627                 ObjectCandidate(_) | ProjectionCandidate(_),
1628             ) => false,
1629
1630             (&ImplCandidate(other_def), &ImplCandidate(victim_def)) => {
1631                 // See if we can toss out `victim` based on specialization.
1632                 // This requires us to know *for sure* that the `other` impl applies
1633                 // i.e., `EvaluatedToOk`.
1634                 //
1635                 // FIXME(@lcnr): Using `modulo_regions` here seems kind of scary
1636                 // to me but is required for `std` to compile, so I didn't change it
1637                 // for now.
1638                 let tcx = self.tcx();
1639                 if other.evaluation.must_apply_modulo_regions() {
1640                     if tcx.specializes((other_def, victim_def)) {
1641                         return true;
1642                     }
1643                 }
1644
1645                 if other.evaluation.must_apply_considering_regions() {
1646                     match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
1647                         Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
1648                             // Subtle: If the predicate we are evaluating has inference
1649                             // variables, do *not* allow discarding candidates due to
1650                             // marker trait impls.
1651                             //
1652                             // Without this restriction, we could end up accidentally
1653                             // constrainting inference variables based on an arbitrarily
1654                             // chosen trait impl.
1655                             //
1656                             // Imagine we have the following code:
1657                             //
1658                             // ```rust
1659                             // #[marker] trait MyTrait {}
1660                             // impl MyTrait for u8 {}
1661                             // impl MyTrait for bool {}
1662                             // ```
1663                             //
1664                             // And we are evaluating the predicate `<_#0t as MyTrait>`.
1665                             //
1666                             // During selection, we will end up with one candidate for each
1667                             // impl of `MyTrait`. If we were to discard one impl in favor
1668                             // of the other, we would be left with one candidate, causing
1669                             // us to "successfully" select the predicate, unifying
1670                             // _#0t with (for example) `u8`.
1671                             //
1672                             // However, we have no reason to believe that this unification
1673                             // is correct - we've essentially just picked an arbitrary
1674                             // *possibility* for _#0t, and required that this be the *only*
1675                             // possibility.
1676                             //
1677                             // Eventually, we will either:
1678                             // 1) Unify all inference variables in the predicate through
1679                             // some other means (e.g. type-checking of a function). We will
1680                             // then be in a position to drop marker trait candidates
1681                             // without constraining inference variables (since there are
1682                             // none left to constrin)
1683                             // 2) Be left with some unconstrained inference variables. We
1684                             // will then correctly report an inference error, since the
1685                             // existence of multiple marker trait impls tells us nothing
1686                             // about which one should actually apply.
1687                             !needs_infer
1688                         }
1689                         Some(_) => true,
1690                         None => false,
1691                     }
1692                 } else {
1693                     false
1694                 }
1695             }
1696
1697             // Everything else is ambiguous
1698             (
1699                 ImplCandidate(_)
1700                 | ClosureCandidate
1701                 | GeneratorCandidate
1702                 | FnPointerCandidate { .. }
1703                 | BuiltinObjectCandidate
1704                 | BuiltinUnsizeCandidate
1705                 | TraitUpcastingUnsizeCandidate(_)
1706                 | BuiltinCandidate { has_nested: true }
1707                 | TraitAliasCandidate(..),
1708                 ImplCandidate(_)
1709                 | ClosureCandidate
1710                 | GeneratorCandidate
1711                 | FnPointerCandidate { .. }
1712                 | BuiltinObjectCandidate
1713                 | BuiltinUnsizeCandidate
1714                 | TraitUpcastingUnsizeCandidate(_)
1715                 | BuiltinCandidate { has_nested: true }
1716                 | TraitAliasCandidate(..),
1717             ) => false,
1718         }
1719     }
1720
1721     fn sized_conditions(
1722         &mut self,
1723         obligation: &TraitObligation<'tcx>,
1724     ) -> BuiltinImplConditions<'tcx> {
1725         use self::BuiltinImplConditions::{Ambiguous, None, Where};
1726
1727         // NOTE: binder moved to (*)
1728         let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1729
1730         match self_ty.kind() {
1731             ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1732             | ty::Uint(_)
1733             | ty::Int(_)
1734             | ty::Bool
1735             | ty::Float(_)
1736             | ty::FnDef(..)
1737             | ty::FnPtr(_)
1738             | ty::RawPtr(..)
1739             | ty::Char
1740             | ty::Ref(..)
1741             | ty::Generator(..)
1742             | ty::GeneratorWitness(..)
1743             | ty::Array(..)
1744             | ty::Closure(..)
1745             | ty::Never
1746             | ty::Error(_) => {
1747                 // safe for everything
1748                 Where(ty::Binder::dummy(Vec::new()))
1749             }
1750
1751             ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
1752
1753             ty::Tuple(tys) => Where(
1754                 obligation
1755                     .predicate
1756                     .rebind(tys.last().into_iter().map(|k| k.expect_ty()).collect()),
1757             ),
1758
1759             ty::Adt(def, substs) => {
1760                 let sized_crit = def.sized_constraint(self.tcx());
1761                 // (*) binder moved here
1762                 Where(
1763                     obligation.predicate.rebind({
1764                         sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect()
1765                     }),
1766                 )
1767             }
1768
1769             ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
1770             ty::Infer(ty::TyVar(_)) => Ambiguous,
1771
1772             ty::Placeholder(..)
1773             | ty::Bound(..)
1774             | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1775                 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1776             }
1777         }
1778     }
1779
1780     fn copy_clone_conditions(
1781         &mut self,
1782         obligation: &TraitObligation<'tcx>,
1783     ) -> BuiltinImplConditions<'tcx> {
1784         // NOTE: binder moved to (*)
1785         let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1786
1787         use self::BuiltinImplConditions::{Ambiguous, None, Where};
1788
1789         match *self_ty.kind() {
1790             ty::Infer(ty::IntVar(_))
1791             | ty::Infer(ty::FloatVar(_))
1792             | ty::FnDef(..)
1793             | ty::FnPtr(_)
1794             | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
1795
1796             ty::Uint(_)
1797             | ty::Int(_)
1798             | ty::Bool
1799             | ty::Float(_)
1800             | ty::Char
1801             | ty::RawPtr(..)
1802             | ty::Never
1803             | ty::Ref(_, _, hir::Mutability::Not) => {
1804                 // Implementations provided in libcore
1805                 None
1806             }
1807
1808             ty::Dynamic(..)
1809             | ty::Str
1810             | ty::Slice(..)
1811             | ty::Generator(..)
1812             | ty::GeneratorWitness(..)
1813             | ty::Foreign(..)
1814             | ty::Ref(_, _, hir::Mutability::Mut) => None,
1815
1816             ty::Array(element_ty, _) => {
1817                 // (*) binder moved here
1818                 Where(obligation.predicate.rebind(vec![element_ty]))
1819             }
1820
1821             ty::Tuple(tys) => {
1822                 // (*) binder moved here
1823                 Where(obligation.predicate.rebind(tys.iter().map(|k| k.expect_ty()).collect()))
1824             }
1825
1826             ty::Closure(_, substs) => {
1827                 // (*) binder moved here
1828                 let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
1829                 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
1830                     // Not yet resolved.
1831                     Ambiguous
1832                 } else {
1833                     Where(obligation.predicate.rebind(substs.as_closure().upvar_tys().collect()))
1834                 }
1835             }
1836
1837             ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
1838                 // Fallback to whatever user-defined impls exist in this case.
1839                 None
1840             }
1841
1842             ty::Infer(ty::TyVar(_)) => {
1843                 // Unbound type variable. Might or might not have
1844                 // applicable impls and so forth, depending on what
1845                 // those type variables wind up being bound to.
1846                 Ambiguous
1847             }
1848
1849             ty::Placeholder(..)
1850             | ty::Bound(..)
1851             | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1852                 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1853             }
1854         }
1855     }
1856
1857     /// For default impls, we need to break apart a type into its
1858     /// "constituent types" -- meaning, the types that it contains.
1859     ///
1860     /// Here are some (simple) examples:
1861     ///
1862     /// ```
1863     /// (i32, u32) -> [i32, u32]
1864     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
1865     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
1866     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
1867     /// ```
1868     fn constituent_types_for_ty(
1869         &self,
1870         t: ty::Binder<'tcx, Ty<'tcx>>,
1871     ) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
1872         match *t.skip_binder().kind() {
1873             ty::Uint(_)
1874             | ty::Int(_)
1875             | ty::Bool
1876             | ty::Float(_)
1877             | ty::FnDef(..)
1878             | ty::FnPtr(_)
1879             | ty::Str
1880             | ty::Error(_)
1881             | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1882             | ty::Never
1883             | ty::Char => ty::Binder::dummy(Vec::new()),
1884
1885             ty::Placeholder(..)
1886             | ty::Dynamic(..)
1887             | ty::Param(..)
1888             | ty::Foreign(..)
1889             | ty::Projection(..)
1890             | ty::Bound(..)
1891             | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1892                 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
1893             }
1894
1895             ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
1896                 t.rebind(vec![element_ty])
1897             }
1898
1899             ty::Array(element_ty, _) | ty::Slice(element_ty) => t.rebind(vec![element_ty]),
1900
1901             ty::Tuple(ref tys) => {
1902                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
1903                 t.rebind(tys.iter().map(|k| k.expect_ty()).collect())
1904             }
1905
1906             ty::Closure(_, ref substs) => {
1907                 let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
1908                 t.rebind(vec![ty])
1909             }
1910
1911             ty::Generator(_, ref substs, _) => {
1912                 let ty = self.infcx.shallow_resolve(substs.as_generator().tupled_upvars_ty());
1913                 let witness = substs.as_generator().witness();
1914                 t.rebind(vec![ty].into_iter().chain(iter::once(witness)).collect())
1915             }
1916
1917             ty::GeneratorWitness(types) => {
1918                 debug_assert!(!types.has_escaping_bound_vars());
1919                 types.map_bound(|types| types.to_vec())
1920             }
1921
1922             // For `PhantomData<T>`, we pass `T`.
1923             ty::Adt(def, substs) if def.is_phantom_data() => t.rebind(substs.types().collect()),
1924
1925             ty::Adt(def, substs) => {
1926                 t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect())
1927             }
1928
1929             ty::Opaque(def_id, substs) => {
1930                 // We can resolve the `impl Trait` to its concrete type,
1931                 // which enforces a DAG between the functions requiring
1932                 // the auto trait bounds in question.
1933                 t.rebind(vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)])
1934             }
1935         }
1936     }
1937
1938     fn collect_predicates_for_types(
1939         &mut self,
1940         param_env: ty::ParamEnv<'tcx>,
1941         cause: ObligationCause<'tcx>,
1942         recursion_depth: usize,
1943         trait_def_id: DefId,
1944         types: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
1945     ) -> Vec<PredicateObligation<'tcx>> {
1946         // Because the types were potentially derived from
1947         // higher-ranked obligations they may reference late-bound
1948         // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
1949         // yield a type like `for<'a> &'a i32`. In general, we
1950         // maintain the invariant that we never manipulate bound
1951         // regions, so we have to process these bound regions somehow.
1952         //
1953         // The strategy is to:
1954         //
1955         // 1. Instantiate those regions to placeholder regions (e.g.,
1956         //    `for<'a> &'a i32` becomes `&0 i32`.
1957         // 2. Produce something like `&'0 i32 : Copy`
1958         // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
1959
1960         types
1961             .as_ref()
1962             .skip_binder() // binder moved -\
1963             .iter()
1964             .flat_map(|ty| {
1965                 let ty: ty::Binder<'tcx, Ty<'tcx>> = types.rebind(ty); // <----/
1966
1967                 self.infcx.commit_unconditionally(|_| {
1968                     let placeholder_ty = self.infcx.replace_bound_vars_with_placeholders(ty);
1969                     let Normalized { value: normalized_ty, mut obligations } =
1970                         ensure_sufficient_stack(|| {
1971                             project::normalize_with_depth(
1972                                 self,
1973                                 param_env,
1974                                 cause.clone(),
1975                                 recursion_depth,
1976                                 placeholder_ty,
1977                             )
1978                         });
1979                     let placeholder_obligation = predicate_for_trait_def(
1980                         self.tcx(),
1981                         param_env,
1982                         cause.clone(),
1983                         trait_def_id,
1984                         recursion_depth,
1985                         normalized_ty,
1986                         &[],
1987                     );
1988                     obligations.push(placeholder_obligation);
1989                     obligations
1990                 })
1991             })
1992             .collect()
1993     }
1994
1995     ///////////////////////////////////////////////////////////////////////////
1996     // Matching
1997     //
1998     // Matching is a common path used for both evaluation and
1999     // confirmation.  It basically unifies types that appear in impls
2000     // and traits. This does affect the surrounding environment;
2001     // therefore, when used during evaluation, match routines must be
2002     // run inside of a `probe()` so that their side-effects are
2003     // contained.
2004
2005     fn rematch_impl(
2006         &mut self,
2007         impl_def_id: DefId,
2008         obligation: &TraitObligation<'tcx>,
2009     ) -> Normalized<'tcx, SubstsRef<'tcx>> {
2010         match self.match_impl(impl_def_id, obligation) {
2011             Ok(substs) => substs,
2012             Err(()) => {
2013                 bug!(
2014                     "Impl {:?} was matchable against {:?} but now is not",
2015                     impl_def_id,
2016                     obligation
2017                 );
2018             }
2019         }
2020     }
2021
2022     #[tracing::instrument(level = "debug", skip(self))]
2023     fn match_impl(
2024         &mut self,
2025         impl_def_id: DefId,
2026         obligation: &TraitObligation<'tcx>,
2027     ) -> Result<Normalized<'tcx, SubstsRef<'tcx>>, ()> {
2028         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
2029
2030         // Before we create the substitutions and everything, first
2031         // consider a "quick reject". This avoids creating more types
2032         // and so forth that we need to.
2033         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
2034             return Err(());
2035         }
2036
2037         let placeholder_obligation =
2038             self.infcx().replace_bound_vars_with_placeholders(obligation.predicate);
2039         let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
2040
2041         let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span, impl_def_id);
2042
2043         let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
2044
2045         debug!(?impl_trait_ref);
2046
2047         let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
2048             ensure_sufficient_stack(|| {
2049                 project::normalize_with_depth(
2050                     self,
2051                     obligation.param_env,
2052                     obligation.cause.clone(),
2053                     obligation.recursion_depth + 1,
2054                     impl_trait_ref,
2055                 )
2056             });
2057
2058         debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
2059
2060         let cause = ObligationCause::new(
2061             obligation.cause.span,
2062             obligation.cause.body_id,
2063             ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
2064         );
2065
2066         let InferOk { obligations, .. } = self
2067             .infcx
2068             .at(&cause, obligation.param_env)
2069             .eq(placeholder_obligation_trait_ref, impl_trait_ref)
2070             .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
2071         nested_obligations.extend(obligations);
2072
2073         if !self.intercrate
2074             && self.tcx().impl_polarity(impl_def_id) == ty::ImplPolarity::Reservation
2075         {
2076             debug!("match_impl: reservation impls only apply in intercrate mode");
2077             return Err(());
2078         }
2079
2080         debug!(?impl_substs, ?nested_obligations, "match_impl: success");
2081         Ok(Normalized { value: impl_substs, obligations: nested_obligations })
2082     }
2083
2084     fn fast_reject_trait_refs(
2085         &mut self,
2086         obligation: &TraitObligation<'_>,
2087         impl_trait_ref: &ty::TraitRef<'_>,
2088     ) -> bool {
2089         // We can avoid creating type variables and doing the full
2090         // substitution if we find that any of the input types, when
2091         // simplified, do not match.
2092
2093         iter::zip(obligation.predicate.skip_binder().trait_ref.substs, impl_trait_ref.substs).any(
2094             |(obligation_arg, impl_arg)| {
2095                 match (obligation_arg.unpack(), impl_arg.unpack()) {
2096                     (GenericArgKind::Type(obligation_ty), GenericArgKind::Type(impl_ty)) => {
2097                         let simplified_obligation_ty =
2098                             fast_reject::simplify_type(self.tcx(), obligation_ty, true);
2099                         let simplified_impl_ty =
2100                             fast_reject::simplify_type(self.tcx(), impl_ty, false);
2101
2102                         simplified_obligation_ty.is_some()
2103                             && simplified_impl_ty.is_some()
2104                             && simplified_obligation_ty != simplified_impl_ty
2105                     }
2106                     (GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => {
2107                         // Lifetimes can never cause a rejection.
2108                         false
2109                     }
2110                     (GenericArgKind::Const(_), GenericArgKind::Const(_)) => {
2111                         // Conservatively ignore consts (i.e. assume they might
2112                         // unify later) until we have `fast_reject` support for
2113                         // them (if we'll ever need it, even).
2114                         false
2115                     }
2116                     _ => unreachable!(),
2117                 }
2118             },
2119         )
2120     }
2121
2122     /// Normalize `where_clause_trait_ref` and try to match it against
2123     /// `obligation`. If successful, return any predicates that
2124     /// result from the normalization.
2125     fn match_where_clause_trait_ref(
2126         &mut self,
2127         obligation: &TraitObligation<'tcx>,
2128         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
2129     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
2130         self.match_poly_trait_ref(obligation, where_clause_trait_ref)
2131     }
2132
2133     /// Returns `Ok` if `poly_trait_ref` being true implies that the
2134     /// obligation is satisfied.
2135     #[instrument(skip(self), level = "debug")]
2136     fn match_poly_trait_ref(
2137         &mut self,
2138         obligation: &TraitObligation<'tcx>,
2139         poly_trait_ref: ty::PolyTraitRef<'tcx>,
2140     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
2141         self.infcx
2142             .at(&obligation.cause, obligation.param_env)
2143             .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
2144             .map(|InferOk { obligations, .. }| obligations)
2145             .map_err(|_| ())
2146     }
2147
2148     ///////////////////////////////////////////////////////////////////////////
2149     // Miscellany
2150
2151     fn match_fresh_trait_refs(
2152         &self,
2153         previous: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2154         current: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2155         param_env: ty::ParamEnv<'tcx>,
2156     ) -> bool {
2157         let mut matcher = ty::_match::Match::new(self.tcx(), param_env);
2158         matcher.relate(previous, current).is_ok()
2159     }
2160
2161     fn push_stack<'o>(
2162         &mut self,
2163         previous_stack: TraitObligationStackList<'o, 'tcx>,
2164         obligation: &'o TraitObligation<'tcx>,
2165     ) -> TraitObligationStack<'o, 'tcx> {
2166         let fresh_trait_ref = obligation
2167             .predicate
2168             .to_poly_trait_ref()
2169             .fold_with(&mut self.freshener)
2170             .with_constness(obligation.predicate.skip_binder().constness);
2171
2172         let dfn = previous_stack.cache.next_dfn();
2173         let depth = previous_stack.depth() + 1;
2174         TraitObligationStack {
2175             obligation,
2176             fresh_trait_ref,
2177             reached_depth: Cell::new(depth),
2178             previous: previous_stack,
2179             dfn,
2180             depth,
2181         }
2182     }
2183
2184     #[instrument(skip(self), level = "debug")]
2185     fn closure_trait_ref_unnormalized(
2186         &mut self,
2187         obligation: &TraitObligation<'tcx>,
2188         substs: SubstsRef<'tcx>,
2189     ) -> ty::PolyTraitRef<'tcx> {
2190         let closure_sig = substs.as_closure().sig();
2191
2192         debug!(?closure_sig);
2193
2194         // (1) Feels icky to skip the binder here, but OTOH we know
2195         // that the self-type is an unboxed closure type and hence is
2196         // in fact unparameterized (or at least does not reference any
2197         // regions bound in the obligation). Still probably some
2198         // refactoring could make this nicer.
2199         closure_trait_ref_and_return_type(
2200             self.tcx(),
2201             obligation.predicate.def_id(),
2202             obligation.predicate.skip_binder().self_ty(), // (1)
2203             closure_sig,
2204             util::TupleArgumentsFlag::No,
2205         )
2206         .map_bound(|(trait_ref, _)| trait_ref)
2207     }
2208
2209     fn generator_trait_ref_unnormalized(
2210         &mut self,
2211         obligation: &TraitObligation<'tcx>,
2212         substs: SubstsRef<'tcx>,
2213     ) -> ty::PolyTraitRef<'tcx> {
2214         let gen_sig = substs.as_generator().poly_sig();
2215
2216         // (1) Feels icky to skip the binder here, but OTOH we know
2217         // that the self-type is an generator type and hence is
2218         // in fact unparameterized (or at least does not reference any
2219         // regions bound in the obligation). Still probably some
2220         // refactoring could make this nicer.
2221
2222         super::util::generator_trait_ref_and_outputs(
2223             self.tcx(),
2224             obligation.predicate.def_id(),
2225             obligation.predicate.skip_binder().self_ty(), // (1)
2226             gen_sig,
2227         )
2228         .map_bound(|(trait_ref, ..)| trait_ref)
2229     }
2230
2231     /// Returns the obligations that are implied by instantiating an
2232     /// impl or trait. The obligations are substituted and fully
2233     /// normalized. This is used when confirming an impl or default
2234     /// impl.
2235     #[tracing::instrument(level = "debug", skip(self, cause, param_env))]
2236     fn impl_or_trait_obligations(
2237         &mut self,
2238         cause: ObligationCause<'tcx>,
2239         recursion_depth: usize,
2240         param_env: ty::ParamEnv<'tcx>,
2241         def_id: DefId,           // of impl or trait
2242         substs: SubstsRef<'tcx>, // for impl or trait
2243     ) -> Vec<PredicateObligation<'tcx>> {
2244         let tcx = self.tcx();
2245
2246         // To allow for one-pass evaluation of the nested obligation,
2247         // each predicate must be preceded by the obligations required
2248         // to normalize it.
2249         // for example, if we have:
2250         //    impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2251         // the impl will have the following predicates:
2252         //    <V as Iterator>::Item = U,
2253         //    U: Iterator, U: Sized,
2254         //    V: Iterator, V: Sized,
2255         //    <U as Iterator>::Item: Copy
2256         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
2257         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2258         // `$1: Copy`, so we must ensure the obligations are emitted in
2259         // that order.
2260         let predicates = tcx.predicates_of(def_id);
2261         debug!(?predicates);
2262         assert_eq!(predicates.parent, None);
2263         let mut obligations = Vec::with_capacity(predicates.predicates.len());
2264         for (predicate, _) in predicates.predicates {
2265             debug!(?predicate);
2266             let predicate = normalize_with_depth_to(
2267                 self,
2268                 param_env,
2269                 cause.clone(),
2270                 recursion_depth,
2271                 predicate.subst(tcx, substs),
2272                 &mut obligations,
2273             );
2274             obligations.push(Obligation {
2275                 cause: cause.clone(),
2276                 recursion_depth,
2277                 param_env,
2278                 predicate,
2279             });
2280         }
2281
2282         // We are performing deduplication here to avoid exponential blowups
2283         // (#38528) from happening, but the real cause of the duplication is
2284         // unknown. What we know is that the deduplication avoids exponential
2285         // amount of predicates being propagated when processing deeply nested
2286         // types.
2287         //
2288         // This code is hot enough that it's worth avoiding the allocation
2289         // required for the FxHashSet when possible. Special-casing lengths 0,
2290         // 1 and 2 covers roughly 75-80% of the cases.
2291         if obligations.len() <= 1 {
2292             // No possibility of duplicates.
2293         } else if obligations.len() == 2 {
2294             // Only two elements. Drop the second if they are equal.
2295             if obligations[0] == obligations[1] {
2296                 obligations.truncate(1);
2297             }
2298         } else {
2299             // Three or more elements. Use a general deduplication process.
2300             let mut seen = FxHashSet::default();
2301             obligations.retain(|i| seen.insert(i.clone()));
2302         }
2303
2304         obligations
2305     }
2306 }
2307
2308 trait TraitObligationExt<'tcx> {
2309     fn derived_cause(
2310         &self,
2311         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2312     ) -> ObligationCause<'tcx>;
2313 }
2314
2315 impl<'tcx> TraitObligationExt<'tcx> for TraitObligation<'tcx> {
2316     fn derived_cause(
2317         &self,
2318         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2319     ) -> ObligationCause<'tcx> {
2320         /*!
2321          * Creates a cause for obligations that are derived from
2322          * `obligation` by a recursive search (e.g., for a builtin
2323          * bound, or eventually a `auto trait Foo`). If `obligation`
2324          * is itself a derived obligation, this is just a clone, but
2325          * otherwise we create a "derived obligation" cause so as to
2326          * keep track of the original root obligation for error
2327          * reporting.
2328          */
2329
2330         let obligation = self;
2331
2332         // NOTE(flaper87): As of now, it keeps track of the whole error
2333         // chain. Ideally, we should have a way to configure this either
2334         // by using -Z verbose or just a CLI argument.
2335         let derived_cause = DerivedObligationCause {
2336             parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
2337             parent_code: Lrc::new(obligation.cause.code.clone()),
2338         };
2339         let derived_code = variant(derived_cause);
2340         ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
2341     }
2342 }
2343
2344 impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2345     fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2346         TraitObligationStackList::with(self)
2347     }
2348
2349     fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2350         self.previous.cache
2351     }
2352
2353     fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2354         self.list()
2355     }
2356
2357     /// Indicates that attempting to evaluate this stack entry
2358     /// required accessing something from the stack at depth `reached_depth`.
2359     fn update_reached_depth(&self, reached_depth: usize) {
2360         assert!(
2361             self.depth >= reached_depth,
2362             "invoked `update_reached_depth` with something under this stack: \
2363              self.depth={} reached_depth={}",
2364             self.depth,
2365             reached_depth,
2366         );
2367         debug!(reached_depth, "update_reached_depth");
2368         let mut p = self;
2369         while reached_depth < p.depth {
2370             debug!(?p.fresh_trait_ref, "update_reached_depth: marking as cycle participant");
2371             p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2372             p = p.previous.head.unwrap();
2373         }
2374     }
2375 }
2376
2377 /// The "provisional evaluation cache" is used to store intermediate cache results
2378 /// when solving auto traits. Auto traits are unusual in that they can support
2379 /// cycles. So, for example, a "proof tree" like this would be ok:
2380 ///
2381 /// - `Foo<T>: Send` :-
2382 ///   - `Bar<T>: Send` :-
2383 ///     - `Foo<T>: Send` -- cycle, but ok
2384 ///   - `Baz<T>: Send`
2385 ///
2386 /// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2387 /// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2388 /// For non-auto traits, this cycle would be an error, but for auto traits (because
2389 /// they are coinductive) it is considered ok.
2390 ///
2391 /// However, there is a complication: at the point where we have
2392 /// "proven" `Bar<T>: Send`, we have in fact only proven it
2393 /// *provisionally*. In particular, we proved that `Bar<T>: Send`
2394 /// *under the assumption* that `Foo<T>: Send`. But what if we later
2395 /// find out this assumption is wrong?  Specifically, we could
2396 /// encounter some kind of error proving `Baz<T>: Send`. In that case,
2397 /// `Bar<T>: Send` didn't turn out to be true.
2398 ///
2399 /// In Issue #60010, we found a bug in rustc where it would cache
2400 /// these intermediate results. This was fixed in #60444 by disabling
2401 /// *all* caching for things involved in a cycle -- in our example,
2402 /// that would mean we don't cache that `Bar<T>: Send`.  But this led
2403 /// to large slowdowns.
2404 ///
2405 /// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2406 /// first requires proving `Bar<T>: Send` (which is true:
2407 ///
2408 /// - `Foo<T>: Send` :-
2409 ///   - `Bar<T>: Send` :-
2410 ///     - `Foo<T>: Send` -- cycle, but ok
2411 ///   - `Baz<T>: Send`
2412 ///     - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2413 ///     - `*const T: Send` -- but what if we later encounter an error?
2414 ///
2415 /// The *provisional evaluation cache* resolves this issue. It stores
2416 /// cache results that we've proven but which were involved in a cycle
2417 /// in some way. We track the minimal stack depth (i.e., the
2418 /// farthest from the top of the stack) that we are dependent on.
2419 /// The idea is that the cache results within are all valid -- so long as
2420 /// none of the nodes in between the current node and the node at that minimum
2421 /// depth result in an error (in which case the cached results are just thrown away).
2422 ///
2423 /// During evaluation, we consult this provisional cache and rely on
2424 /// it. Accessing a cached value is considered equivalent to accessing
2425 /// a result at `reached_depth`, so it marks the *current* solution as
2426 /// provisional as well. If an error is encountered, we toss out any
2427 /// provisional results added from the subtree that encountered the
2428 /// error.  When we pop the node at `reached_depth` from the stack, we
2429 /// can commit all the things that remain in the provisional cache.
2430 struct ProvisionalEvaluationCache<'tcx> {
2431     /// next "depth first number" to issue -- just a counter
2432     dfn: Cell<usize>,
2433
2434     /// Map from cache key to the provisionally evaluated thing.
2435     /// The cache entries contain the result but also the DFN in which they
2436     /// were added. The DFN is used to clear out values on failure.
2437     ///
2438     /// Imagine we have a stack like:
2439     ///
2440     /// - `A B C` and we add a cache for the result of C (DFN 2)
2441     /// - Then we have a stack `A B D` where `D` has DFN 3
2442     /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2443     /// - `E` generates various cache entries which have cyclic dependices on `B`
2444     ///   - `A B D E F` and so forth
2445     ///   - the DFN of `F` for example would be 5
2446     /// - then we determine that `E` is in error -- we will then clear
2447     ///   all cache values whose DFN is >= 4 -- in this case, that
2448     ///   means the cached value for `F`.
2449     map: RefCell<FxHashMap<ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>, ProvisionalEvaluation>>,
2450 }
2451
2452 /// A cache value for the provisional cache: contains the depth-first
2453 /// number (DFN) and result.
2454 #[derive(Copy, Clone, Debug)]
2455 struct ProvisionalEvaluation {
2456     from_dfn: usize,
2457     reached_depth: usize,
2458     result: EvaluationResult,
2459 }
2460
2461 impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2462     fn default() -> Self {
2463         Self { dfn: Cell::new(0), map: Default::default() }
2464     }
2465 }
2466
2467 impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2468     /// Get the next DFN in sequence (basically a counter).
2469     fn next_dfn(&self) -> usize {
2470         let result = self.dfn.get();
2471         self.dfn.set(result + 1);
2472         result
2473     }
2474
2475     /// Check the provisional cache for any result for
2476     /// `fresh_trait_ref`. If there is a hit, then you must consider
2477     /// it an access to the stack slots at depth
2478     /// `reached_depth` (from the returned value).
2479     fn get_provisional(
2480         &self,
2481         fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2482     ) -> Option<ProvisionalEvaluation> {
2483         debug!(
2484             ?fresh_trait_ref,
2485             "get_provisional = {:#?}",
2486             self.map.borrow().get(&fresh_trait_ref),
2487         );
2488         Some(*self.map.borrow().get(&fresh_trait_ref)?)
2489     }
2490
2491     /// Insert a provisional result into the cache. The result came
2492     /// from the node with the given DFN. It accessed a minimum depth
2493     /// of `reached_depth` to compute. It evaluated `fresh_trait_ref`
2494     /// and resulted in `result`.
2495     fn insert_provisional(
2496         &self,
2497         from_dfn: usize,
2498         reached_depth: usize,
2499         fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2500         result: EvaluationResult,
2501     ) {
2502         debug!(?from_dfn, ?fresh_trait_ref, ?result, "insert_provisional");
2503
2504         let mut map = self.map.borrow_mut();
2505
2506         // Subtle: when we complete working on the DFN `from_dfn`, anything
2507         // that remains in the provisional cache must be dependent on some older
2508         // stack entry than `from_dfn`. We have to update their depth with our transitive
2509         // depth in that case or else it would be referring to some popped note.
2510         //
2511         // Example:
2512         // A (reached depth 0)
2513         //   ...
2514         //      B // depth 1 -- reached depth = 0
2515         //          C // depth 2 -- reached depth = 1 (should be 0)
2516         //              B
2517         //          A // depth 0
2518         //   D (reached depth 1)
2519         //      C (cache -- reached depth = 2)
2520         for (_k, v) in &mut *map {
2521             if v.from_dfn >= from_dfn {
2522                 v.reached_depth = reached_depth.min(v.reached_depth);
2523             }
2524         }
2525
2526         map.insert(fresh_trait_ref, ProvisionalEvaluation { from_dfn, reached_depth, result });
2527     }
2528
2529     /// Invoked when the node with dfn `dfn` does not get a successful
2530     /// result.  This will clear out any provisional cache entries
2531     /// that were added since `dfn` was created. This is because the
2532     /// provisional entries are things which must assume that the
2533     /// things on the stack at the time of their creation succeeded --
2534     /// since the failing node is presently at the top of the stack,
2535     /// these provisional entries must either depend on it or some
2536     /// ancestor of it.
2537     fn on_failure(&self, dfn: usize) {
2538         debug!(?dfn, "on_failure");
2539         self.map.borrow_mut().retain(|key, eval| {
2540             if !eval.from_dfn >= dfn {
2541                 debug!("on_failure: removing {:?}", key);
2542                 false
2543             } else {
2544                 true
2545             }
2546         });
2547     }
2548
2549     /// Invoked when the node at depth `depth` completed without
2550     /// depending on anything higher in the stack (if that completion
2551     /// was a failure, then `on_failure` should have been invoked
2552     /// already). The callback `op` will be invoked for each
2553     /// provisional entry that we can now confirm.
2554     ///
2555     /// Note that we may still have provisional cache items remaining
2556     /// in the cache when this is done. For example, if there is a
2557     /// cycle:
2558     ///
2559     /// * A depends on...
2560     ///     * B depends on A
2561     ///     * C depends on...
2562     ///         * D depends on C
2563     ///     * ...
2564     ///
2565     /// Then as we complete the C node we will have a provisional cache
2566     /// with results for A, B, C, and D. This method would clear out
2567     /// the C and D results, but leave A and B provisional.
2568     ///
2569     /// This is determined based on the DFN: we remove any provisional
2570     /// results created since `dfn` started (e.g., in our example, dfn
2571     /// would be 2, representing the C node, and hence we would
2572     /// remove the result for D, which has DFN 3, but not the results for
2573     /// A and B, which have DFNs 0 and 1 respectively).
2574     fn on_completion(
2575         &self,
2576         dfn: usize,
2577         mut op: impl FnMut(ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>, EvaluationResult),
2578     ) {
2579         debug!(?dfn, "on_completion");
2580
2581         for (fresh_trait_ref, eval) in
2582             self.map.borrow_mut().drain_filter(|_k, eval| eval.from_dfn >= dfn)
2583         {
2584             debug!(?fresh_trait_ref, ?eval, "on_completion");
2585
2586             op(fresh_trait_ref, eval.result);
2587         }
2588     }
2589 }
2590
2591 #[derive(Copy, Clone)]
2592 struct TraitObligationStackList<'o, 'tcx> {
2593     cache: &'o ProvisionalEvaluationCache<'tcx>,
2594     head: Option<&'o TraitObligationStack<'o, 'tcx>>,
2595 }
2596
2597 impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
2598     fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2599         TraitObligationStackList { cache, head: None }
2600     }
2601
2602     fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2603         TraitObligationStackList { cache: r.cache(), head: Some(r) }
2604     }
2605
2606     fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2607         self.head
2608     }
2609
2610     fn depth(&self) -> usize {
2611         if let Some(head) = self.head { head.depth } else { 0 }
2612     }
2613 }
2614
2615 impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
2616     type Item = &'o TraitObligationStack<'o, 'tcx>;
2617
2618     fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2619         let o = self.head?;
2620         *self = o.previous;
2621         Some(o)
2622     }
2623 }
2624
2625 impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
2626     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2627         write!(f, "TraitObligationStack({:?})", self.obligation)
2628     }
2629 }