]> git.lizzy.rs Git - rust.git/blob - compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs
Push to result vector instead of allocating
[rust.git] / compiler / rustc_trait_selection / src / traits / select / candidate_assembly.rs
1 //! Candidate assembly.
2 //!
3 //! The selection process begins by examining all in-scope impls,
4 //! caller obligations, and so forth and assembling a list of
5 //! candidates. See the [rustc dev guide] for more details.
6 //!
7 //! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
8 use rustc_hir as hir;
9 use rustc_infer::traits::{Obligation, SelectionError, TraitObligation};
10 use rustc_middle::ty::print::with_no_trimmed_paths;
11 use rustc_middle::ty::{self, TypeFoldable};
12 use rustc_target::spec::abi::Abi;
13
14 use crate::traits::coherence::Conflict;
15 use crate::traits::{util, SelectionResult};
16 use crate::traits::{Overflow, Unimplemented};
17
18 use super::BuiltinImplConditions;
19 use super::IntercrateAmbiguityCause;
20 use super::OverflowError;
21 use super::SelectionCandidate::{self, *};
22 use super::{EvaluatedCandidate, SelectionCandidateSet, SelectionContext, TraitObligationStack};
23
24 impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
25     #[instrument(level = "debug", skip(self))]
26     pub(super) fn candidate_from_obligation<'o>(
27         &mut self,
28         stack: &TraitObligationStack<'o, 'tcx>,
29     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
30         // Watch out for overflow. This intentionally bypasses (and does
31         // not update) the cache.
32         self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
33
34         // Check the cache. Note that we freshen the trait-ref
35         // separately rather than using `stack.fresh_trait_ref` --
36         // this is because we want the unbound variables to be
37         // replaced with fresh types starting from index 0.
38         let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
39         debug!(?cache_fresh_trait_pred);
40         debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
41
42         if let Some(c) =
43             self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
44         {
45             debug!(candidate = ?c, "CACHE HIT");
46             return c;
47         }
48
49         // If no match, compute result and insert into cache.
50         //
51         // FIXME(nikomatsakis) -- this cache is not taking into
52         // account cycles that may have occurred in forming the
53         // candidate. I don't know of any specific problems that
54         // result but it seems awfully suspicious.
55         let (candidate, dep_node) =
56             self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
57
58         debug!(?candidate, "CACHE MISS");
59         self.insert_candidate_cache(
60             stack.obligation.param_env,
61             cache_fresh_trait_pred,
62             dep_node,
63             candidate.clone(),
64         );
65         candidate
66     }
67
68     fn candidate_from_obligation_no_cache<'o>(
69         &mut self,
70         stack: &TraitObligationStack<'o, 'tcx>,
71     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
72         if let Some(conflict) = self.is_knowable(stack) {
73             debug!("coherence stage: not knowable");
74             if self.intercrate_ambiguity_causes.is_some() {
75                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
76                 // Heuristics: show the diagnostics when there are no candidates in crate.
77                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
78                     let mut no_candidates_apply = true;
79
80                     for c in candidate_set.vec.iter() {
81                         if self.evaluate_candidate(stack, &c)?.may_apply() {
82                             no_candidates_apply = false;
83                             break;
84                         }
85                     }
86
87                     if !candidate_set.ambiguous && no_candidates_apply {
88                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
89                         let self_ty = trait_ref.self_ty();
90                         let (trait_desc, self_desc) = with_no_trimmed_paths(|| {
91                             let trait_desc = trait_ref.print_only_trait_path().to_string();
92                             let self_desc = if self_ty.has_concrete_skeleton() {
93                                 Some(self_ty.to_string())
94                             } else {
95                                 None
96                             };
97                             (trait_desc, self_desc)
98                         });
99                         let cause = if let Conflict::Upstream = conflict {
100                             IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
101                         } else {
102                             IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
103                         };
104                         debug!(?cause, "evaluate_stack: pushing cause");
105                         self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
106                     }
107                 }
108             }
109             return Ok(None);
110         }
111
112         let candidate_set = self.assemble_candidates(stack)?;
113
114         if candidate_set.ambiguous {
115             debug!("candidate set contains ambig");
116             return Ok(None);
117         }
118
119         let mut candidates = candidate_set.vec;
120
121         debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
122
123         // At this point, we know that each of the entries in the
124         // candidate set is *individually* applicable. Now we have to
125         // figure out if they contain mutual incompatibilities. This
126         // frequently arises if we have an unconstrained input type --
127         // for example, we are looking for `$0: Eq` where `$0` is some
128         // unconstrained type variable. In that case, we'll get a
129         // candidate which assumes $0 == int, one that assumes `$0 ==
130         // usize`, etc. This spells an ambiguity.
131
132         // If there is more than one candidate, first winnow them down
133         // by considering extra conditions (nested obligations and so
134         // forth). We don't winnow if there is exactly one
135         // candidate. This is a relatively minor distinction but it
136         // can lead to better inference and error-reporting. An
137         // example would be if there was an impl:
138         //
139         //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
140         //
141         // and we were to see some code `foo.push_clone()` where `boo`
142         // is a `Vec<Bar>` and `Bar` does not implement `Clone`.  If
143         // we were to winnow, we'd wind up with zero candidates.
144         // Instead, we select the right impl now but report "`Bar` does
145         // not implement `Clone`".
146         if candidates.len() == 1 {
147             return self.filter_negative_and_reservation_impls(candidates.pop().unwrap());
148         }
149
150         // Winnow, but record the exact outcome of evaluation, which
151         // is needed for specialization. Propagate overflow if it occurs.
152         let mut candidates = candidates
153             .into_iter()
154             .map(|c| match self.evaluate_candidate(stack, &c) {
155                 Ok(eval) if eval.may_apply() => {
156                     Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
157                 }
158                 Ok(_) => Ok(None),
159                 Err(OverflowError) => Err(Overflow),
160             })
161             .flat_map(Result::transpose)
162             .collect::<Result<Vec<_>, _>>()?;
163
164         debug!(?stack, ?candidates, "winnowed to {} candidates", candidates.len());
165
166         let needs_infer = stack.obligation.predicate.has_infer_types_or_consts();
167
168         // If there are STILL multiple candidates, we can further
169         // reduce the list by dropping duplicates -- including
170         // resolving specializations.
171         if candidates.len() > 1 {
172             let mut i = 0;
173             while i < candidates.len() {
174                 let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
175                     self.candidate_should_be_dropped_in_favor_of(
176                         &candidates[i],
177                         &candidates[j],
178                         needs_infer,
179                     )
180                 });
181                 if is_dup {
182                     debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
183                     candidates.swap_remove(i);
184                 } else {
185                     debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
186                     i += 1;
187
188                     // If there are *STILL* multiple candidates, give up
189                     // and report ambiguity.
190                     if i > 1 {
191                         debug!("multiple matches, ambig");
192                         return Ok(None);
193                     }
194                 }
195             }
196         }
197
198         // If there are *NO* candidates, then there are no impls --
199         // that we know of, anyway. Note that in the case where there
200         // are unbound type variables within the obligation, it might
201         // be the case that you could still satisfy the obligation
202         // from another crate by instantiating the type variables with
203         // a type from another crate that does have an impl. This case
204         // is checked for in `evaluate_stack` (and hence users
205         // who might care about this case, like coherence, should use
206         // that function).
207         if candidates.is_empty() {
208             // If there's an error type, 'downgrade' our result from
209             // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
210             // emitting additional spurious errors, since we're guaranteed
211             // to have emitted at least one.
212             if stack.obligation.references_error() {
213                 debug!("no results for error type, treating as ambiguous");
214                 return Ok(None);
215             }
216             return Err(Unimplemented);
217         }
218
219         // Just one candidate left.
220         self.filter_negative_and_reservation_impls(candidates.pop().unwrap().candidate)
221     }
222
223     pub(super) fn assemble_candidates<'o>(
224         &mut self,
225         stack: &TraitObligationStack<'o, 'tcx>,
226     ) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
227         let TraitObligationStack { obligation, .. } = *stack;
228         let obligation = &Obligation {
229             param_env: obligation.param_env,
230             cause: obligation.cause.clone(),
231             recursion_depth: obligation.recursion_depth,
232             predicate: self.infcx().resolve_vars_if_possible(&obligation.predicate),
233         };
234
235         if obligation.predicate.skip_binder().self_ty().is_ty_var() {
236             // Self is a type variable (e.g., `_: AsRef<str>`).
237             //
238             // This is somewhat problematic, as the current scheme can't really
239             // handle it turning to be a projection. This does end up as truly
240             // ambiguous in most cases anyway.
241             //
242             // Take the fast path out - this also improves
243             // performance by preventing assemble_candidates_from_impls from
244             // matching every impl for this trait.
245             return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
246         }
247
248         let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
249
250         self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
251
252         // Other bounds. Consider both in-scope bounds from fn decl
253         // and applicable impls. There is a certain set of precedence rules here.
254         let def_id = obligation.predicate.def_id();
255         let lang_items = self.tcx().lang_items();
256
257         if lang_items.copy_trait() == Some(def_id) {
258             debug!(obligation_self_ty = ?obligation.predicate.skip_binder().self_ty());
259
260             // User-defined copy impls are permitted, but only for
261             // structs and enums.
262             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
263
264             // For other types, we'll use the builtin rules.
265             let copy_conditions = self.copy_clone_conditions(obligation);
266             self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
267         } else if lang_items.discriminant_kind_trait() == Some(def_id) {
268             // `DiscriminantKind` is automatically implemented for every type.
269             candidates.vec.push(DiscriminantKindCandidate);
270         } else if lang_items.sized_trait() == Some(def_id) {
271             // Sized is never implementable by end-users, it is
272             // always automatically computed.
273             let sized_conditions = self.sized_conditions(obligation);
274             self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
275         } else if lang_items.unsize_trait() == Some(def_id) {
276             self.assemble_candidates_for_unsizing(obligation, &mut candidates);
277         } else {
278             if lang_items.clone_trait() == Some(def_id) {
279                 // Same builtin conditions as `Copy`, i.e., every type which has builtin support
280                 // for `Copy` also has builtin support for `Clone`, and tuples/arrays of `Clone`
281                 // types have builtin support for `Clone`.
282                 let clone_conditions = self.copy_clone_conditions(obligation);
283                 self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
284             }
285
286             self.assemble_generator_candidates(obligation, &mut candidates)?;
287             self.assemble_closure_candidates(obligation, &mut candidates)?;
288             self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
289             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
290             self.assemble_candidates_from_object_ty(obligation, &mut candidates);
291         }
292
293         self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
294         self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
295         // Auto implementations have lower priority, so we only
296         // consider triggering a default if there is no other impl that can apply.
297         if candidates.vec.is_empty() {
298             self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
299         }
300         debug!("candidate list size: {}", candidates.vec.len());
301         Ok(candidates)
302     }
303
304     fn assemble_candidates_from_projected_tys(
305         &mut self,
306         obligation: &TraitObligation<'tcx>,
307         candidates: &mut SelectionCandidateSet<'tcx>,
308     ) {
309         debug!(?obligation, "assemble_candidates_from_projected_tys");
310
311         // Before we go into the whole placeholder thing, just
312         // quickly check if the self-type is a projection at all.
313         match obligation.predicate.skip_binder().trait_ref.self_ty().kind() {
314             ty::Projection(_) | ty::Opaque(..) => {}
315             ty::Infer(ty::TyVar(_)) => {
316                 span_bug!(
317                     obligation.cause.span,
318                     "Self=_ should have been handled by assemble_candidates"
319                 );
320             }
321             _ => return,
322         }
323
324         let result = self
325             .infcx
326             .probe(|_| self.match_projection_obligation_against_definition_bounds(obligation));
327
328         for predicate_index in result {
329             candidates.vec.push(ProjectionCandidate(predicate_index));
330         }
331     }
332
333     /// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
334     /// supplied to find out whether it is listed among them.
335     ///
336     /// Never affects the inference environment.
337     fn assemble_candidates_from_caller_bounds<'o>(
338         &mut self,
339         stack: &TraitObligationStack<'o, 'tcx>,
340         candidates: &mut SelectionCandidateSet<'tcx>,
341     ) -> Result<(), SelectionError<'tcx>> {
342         debug!(?stack.obligation, "assemble_candidates_from_caller_bounds");
343
344         let all_bounds = stack
345             .obligation
346             .param_env
347             .caller_bounds()
348             .iter()
349             .filter_map(|o| o.to_opt_poly_trait_ref());
350
351         // Micro-optimization: filter out predicates relating to different traits.
352         let matching_bounds =
353             all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
354
355         // Keep only those bounds which may apply, and propagate overflow if it occurs.
356         for bound in matching_bounds {
357             let wc = self.evaluate_where_clause(stack, bound)?;
358             if wc.may_apply() {
359                 candidates.vec.push(ParamCandidate(bound));
360             }
361         }
362
363         Ok(())
364     }
365
366     fn assemble_generator_candidates(
367         &mut self,
368         obligation: &TraitObligation<'tcx>,
369         candidates: &mut SelectionCandidateSet<'tcx>,
370     ) -> Result<(), SelectionError<'tcx>> {
371         if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
372             return Ok(());
373         }
374
375         // Okay to skip binder because the substs on generator types never
376         // touch bound regions, they just capture the in-scope
377         // type/region parameters.
378         let self_ty = obligation.self_ty().skip_binder();
379         match self_ty.kind() {
380             ty::Generator(..) => {
381                 debug!(?self_ty, ?obligation, "assemble_generator_candidates",);
382
383                 candidates.vec.push(GeneratorCandidate);
384             }
385             ty::Infer(ty::TyVar(_)) => {
386                 debug!("assemble_generator_candidates: ambiguous self-type");
387                 candidates.ambiguous = true;
388             }
389             _ => {}
390         }
391
392         Ok(())
393     }
394
395     /// Checks for the artificial impl that the compiler will create for an obligation like `X :
396     /// FnMut<..>` where `X` is a closure type.
397     ///
398     /// Note: the type parameters on a closure candidate are modeled as *output* type
399     /// parameters and hence do not affect whether this trait is a match or not. They will be
400     /// unified during the confirmation step.
401     fn assemble_closure_candidates(
402         &mut self,
403         obligation: &TraitObligation<'tcx>,
404         candidates: &mut SelectionCandidateSet<'tcx>,
405     ) -> Result<(), SelectionError<'tcx>> {
406         let kind = match self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()) {
407             Some(k) => k,
408             None => {
409                 return Ok(());
410             }
411         };
412
413         // Okay to skip binder because the substs on closure types never
414         // touch bound regions, they just capture the in-scope
415         // type/region parameters
416         match *obligation.self_ty().skip_binder().kind() {
417             ty::Closure(_, closure_substs) => {
418                 debug!(?kind, ?obligation, "assemble_unboxed_candidates");
419                 match self.infcx.closure_kind(closure_substs) {
420                     Some(closure_kind) => {
421                         debug!(?closure_kind, "assemble_unboxed_candidates");
422                         if closure_kind.extends(kind) {
423                             candidates.vec.push(ClosureCandidate);
424                         }
425                     }
426                     None => {
427                         debug!("assemble_unboxed_candidates: closure_kind not yet known");
428                         candidates.vec.push(ClosureCandidate);
429                     }
430                 }
431             }
432             ty::Infer(ty::TyVar(_)) => {
433                 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
434                 candidates.ambiguous = true;
435             }
436             _ => {}
437         }
438
439         Ok(())
440     }
441
442     /// Implements one of the `Fn()` family for a fn pointer.
443     fn assemble_fn_pointer_candidates(
444         &mut self,
445         obligation: &TraitObligation<'tcx>,
446         candidates: &mut SelectionCandidateSet<'tcx>,
447     ) -> Result<(), SelectionError<'tcx>> {
448         // We provide impl of all fn traits for fn pointers.
449         if self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()).is_none() {
450             return Ok(());
451         }
452
453         // Okay to skip binder because what we are inspecting doesn't involve bound regions.
454         let self_ty = obligation.self_ty().skip_binder();
455         match *self_ty.kind() {
456             ty::Infer(ty::TyVar(_)) => {
457                 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
458                 candidates.ambiguous = true; // Could wind up being a fn() type.
459             }
460             // Provide an impl, but only for suitable `fn` pointers.
461             ty::FnPtr(_) => {
462                 if let ty::FnSig {
463                     unsafety: hir::Unsafety::Normal,
464                     abi: Abi::Rust,
465                     c_variadic: false,
466                     ..
467                 } = self_ty.fn_sig(self.tcx()).skip_binder()
468                 {
469                     candidates.vec.push(FnPointerCandidate);
470                 }
471             }
472             // Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396).
473             ty::FnDef(def_id, _) => {
474                 if let ty::FnSig {
475                     unsafety: hir::Unsafety::Normal,
476                     abi: Abi::Rust,
477                     c_variadic: false,
478                     ..
479                 } = self_ty.fn_sig(self.tcx()).skip_binder()
480                 {
481                     if self.tcx().codegen_fn_attrs(def_id).target_features.is_empty() {
482                         candidates.vec.push(FnPointerCandidate);
483                     }
484                 }
485             }
486             _ => {}
487         }
488
489         Ok(())
490     }
491
492     /// Searches for impls that might apply to `obligation`.
493     fn assemble_candidates_from_impls(
494         &mut self,
495         obligation: &TraitObligation<'tcx>,
496         candidates: &mut SelectionCandidateSet<'tcx>,
497     ) -> Result<(), SelectionError<'tcx>> {
498         debug!(?obligation, "assemble_candidates_from_impls");
499
500         // Essentially any user-written impl will match with an error type,
501         // so creating `ImplCandidates` isn't useful. However, we might
502         // end up finding a candidate elsewhere (e.g. a `BuiltinCandidate` for `Sized)
503         // This helps us avoid overflow: see issue #72839
504         // Since compilation is already guaranteed to fail, this is just
505         // to try to show the 'nicest' possible errors to the user.
506         if obligation.references_error() {
507             return Ok(());
508         }
509
510         self.tcx().for_each_relevant_impl(
511             obligation.predicate.def_id(),
512             obligation.predicate.skip_binder().trait_ref.self_ty(),
513             |impl_def_id| {
514                 self.infcx.probe(|_| {
515                     if let Ok(_substs) = self.match_impl(impl_def_id, obligation) {
516                         candidates.vec.push(ImplCandidate(impl_def_id));
517                     }
518                 });
519             },
520         );
521
522         Ok(())
523     }
524
525     fn assemble_candidates_from_auto_impls(
526         &mut self,
527         obligation: &TraitObligation<'tcx>,
528         candidates: &mut SelectionCandidateSet<'tcx>,
529     ) -> Result<(), SelectionError<'tcx>> {
530         // Okay to skip binder here because the tests we do below do not involve bound regions.
531         let self_ty = obligation.self_ty().skip_binder();
532         debug!(?self_ty, "assemble_candidates_from_auto_impls");
533
534         let def_id = obligation.predicate.def_id();
535
536         if self.tcx().trait_is_auto(def_id) {
537             match self_ty.kind() {
538                 ty::Dynamic(..) => {
539                     // For object types, we don't know what the closed
540                     // over types are. This means we conservatively
541                     // say nothing; a candidate may be added by
542                     // `assemble_candidates_from_object_ty`.
543                 }
544                 ty::Foreign(..) => {
545                     // Since the contents of foreign types is unknown,
546                     // we don't add any `..` impl. Default traits could
547                     // still be provided by a manual implementation for
548                     // this trait and type.
549                 }
550                 ty::Param(..) | ty::Projection(..) => {
551                     // In these cases, we don't know what the actual
552                     // type is.  Therefore, we cannot break it down
553                     // into its constituent types. So we don't
554                     // consider the `..` impl but instead just add no
555                     // candidates: this means that typeck will only
556                     // succeed if there is another reason to believe
557                     // that this obligation holds. That could be a
558                     // where-clause or, in the case of an object type,
559                     // it could be that the object type lists the
560                     // trait (e.g., `Foo+Send : Send`). See
561                     // `compile-fail/typeck-default-trait-impl-send-param.rs`
562                     // for an example of a test case that exercises
563                     // this path.
564                 }
565                 ty::Infer(ty::TyVar(_)) => {
566                     // The auto impl might apply; we don't know.
567                     candidates.ambiguous = true;
568                 }
569                 ty::Generator(_, _, movability)
570                     if self.tcx().lang_items().unpin_trait() == Some(def_id) =>
571                 {
572                     match movability {
573                         hir::Movability::Static => {
574                             // Immovable generators are never `Unpin`, so
575                             // suppress the normal auto-impl candidate for it.
576                         }
577                         hir::Movability::Movable => {
578                             // Movable generators are always `Unpin`, so add an
579                             // unconditional builtin candidate.
580                             candidates.vec.push(BuiltinCandidate { has_nested: false });
581                         }
582                     }
583                 }
584
585                 _ => candidates.vec.push(AutoImplCandidate(def_id)),
586             }
587         }
588
589         Ok(())
590     }
591
592     /// Searches for impls that might apply to `obligation`.
593     fn assemble_candidates_from_object_ty(
594         &mut self,
595         obligation: &TraitObligation<'tcx>,
596         candidates: &mut SelectionCandidateSet<'tcx>,
597     ) {
598         debug!(
599             self_ty = ?obligation.self_ty().skip_binder(),
600             "assemble_candidates_from_object_ty",
601         );
602
603         self.infcx.probe(|_snapshot| {
604             // The code below doesn't care about regions, and the
605             // self-ty here doesn't escape this probe, so just erase
606             // any LBR.
607             let self_ty = self.tcx().erase_late_bound_regions(&obligation.self_ty());
608             let poly_trait_ref = match self_ty.kind() {
609                 ty::Dynamic(ref data, ..) => {
610                     if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
611                         debug!(
612                             "assemble_candidates_from_object_ty: matched builtin bound, \
613                              pushing candidate"
614                         );
615                         candidates.vec.push(BuiltinObjectCandidate);
616                         return;
617                     }
618
619                     if let Some(principal) = data.principal() {
620                         if !self.infcx.tcx.features().object_safe_for_dispatch {
621                             principal.with_self_ty(self.tcx(), self_ty)
622                         } else if self.tcx().is_object_safe(principal.def_id()) {
623                             principal.with_self_ty(self.tcx(), self_ty)
624                         } else {
625                             return;
626                         }
627                     } else {
628                         // Only auto trait bounds exist.
629                         return;
630                     }
631                 }
632                 ty::Infer(ty::TyVar(_)) => {
633                     debug!("assemble_candidates_from_object_ty: ambiguous");
634                     candidates.ambiguous = true; // could wind up being an object type
635                     return;
636                 }
637                 _ => return,
638             };
639
640             debug!(?poly_trait_ref, "assemble_candidates_from_object_ty");
641
642             let poly_trait_predicate = self.infcx().resolve_vars_if_possible(&obligation.predicate);
643             let placeholder_trait_predicate =
644                 self.infcx().replace_bound_vars_with_placeholders(&poly_trait_predicate);
645
646             // Count only those upcast versions that match the trait-ref
647             // we are looking for. Specifically, do not only check for the
648             // correct trait, but also the correct type parameters.
649             // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
650             // but `Foo` is declared as `trait Foo: Bar<u32>`.
651             let candidate_supertraits = util::supertraits(self.tcx(), poly_trait_ref)
652                 .enumerate()
653                 .filter(|&(_, upcast_trait_ref)| {
654                     self.infcx.probe(|_| {
655                         self.match_normalize_trait_ref(
656                             obligation,
657                             upcast_trait_ref,
658                             placeholder_trait_predicate.trait_ref,
659                         )
660                         .is_ok()
661                     })
662                 })
663                 .map(|(idx, _)| ObjectCandidate(idx));
664
665             candidates.vec.extend(candidate_supertraits);
666         })
667     }
668
669     /// Searches for unsizing that might apply to `obligation`.
670     fn assemble_candidates_for_unsizing(
671         &mut self,
672         obligation: &TraitObligation<'tcx>,
673         candidates: &mut SelectionCandidateSet<'tcx>,
674     ) {
675         // We currently never consider higher-ranked obligations e.g.
676         // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
677         // because they are a priori invalid, and we could potentially add support
678         // for them later, it's just that there isn't really a strong need for it.
679         // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
680         // impl, and those are generally applied to concrete types.
681         //
682         // That said, one might try to write a fn with a where clause like
683         //     for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
684         // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
685         // Still, you'd be more likely to write that where clause as
686         //     T: Trait
687         // so it seems ok if we (conservatively) fail to accept that `Unsize`
688         // obligation above. Should be possible to extend this in the future.
689         let source = match obligation.self_ty().no_bound_vars() {
690             Some(t) => t,
691             None => {
692                 // Don't add any candidates if there are bound regions.
693                 return;
694             }
695         };
696         let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
697
698         debug!(?source, ?target, "assemble_candidates_for_unsizing");
699
700         let may_apply = match (source.kind(), target.kind()) {
701             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
702             (&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
703                 // Upcasts permit two things:
704                 //
705                 // 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
706                 // 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
707                 //
708                 // Note that neither of these changes requires any
709                 // change at runtime. Eventually this will be
710                 // generalized.
711                 //
712                 // We always upcast when we can because of reason
713                 // #2 (region bounds).
714                 data_a.principal_def_id() == data_b.principal_def_id()
715                     && data_b
716                         .auto_traits()
717                         // All of a's auto traits need to be in b's auto traits.
718                         .all(|b| data_a.auto_traits().any(|a| a == b))
719             }
720
721             // `T` -> `Trait`
722             (_, &ty::Dynamic(..)) => true,
723
724             // Ambiguous handling is below `T` -> `Trait`, because inference
725             // variables can still implement `Unsize<Trait>` and nested
726             // obligations will have the final say (likely deferred).
727             (&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
728                 debug!("assemble_candidates_for_unsizing: ambiguous");
729                 candidates.ambiguous = true;
730                 false
731             }
732
733             // `[T; n]` -> `[T]`
734             (&ty::Array(..), &ty::Slice(_)) => true,
735
736             // `Struct<T>` -> `Struct<U>`
737             (&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
738                 def_id_a == def_id_b
739             }
740
741             // `(.., T)` -> `(.., U)`
742             (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
743
744             _ => false,
745         };
746
747         if may_apply {
748             candidates.vec.push(BuiltinUnsizeCandidate);
749         }
750     }
751
752     fn assemble_candidates_for_trait_alias(
753         &mut self,
754         obligation: &TraitObligation<'tcx>,
755         candidates: &mut SelectionCandidateSet<'tcx>,
756     ) -> Result<(), SelectionError<'tcx>> {
757         // Okay to skip binder here because the tests we do below do not involve bound regions.
758         let self_ty = obligation.self_ty().skip_binder();
759         debug!(?self_ty, "assemble_candidates_for_trait_alias");
760
761         let def_id = obligation.predicate.def_id();
762
763         if self.tcx().is_trait_alias(def_id) {
764             candidates.vec.push(TraitAliasCandidate(def_id));
765         }
766
767         Ok(())
768     }
769
770     /// Assembles the trait which are built-in to the language itself:
771     /// `Copy`, `Clone` and `Sized`.
772     fn assemble_builtin_bound_candidates(
773         &mut self,
774         conditions: BuiltinImplConditions<'tcx>,
775         candidates: &mut SelectionCandidateSet<'tcx>,
776     ) -> Result<(), SelectionError<'tcx>> {
777         match conditions {
778             BuiltinImplConditions::Where(nested) => {
779                 debug!(?nested, "builtin_bound");
780                 candidates
781                     .vec
782                     .push(BuiltinCandidate { has_nested: !nested.skip_binder().is_empty() });
783             }
784             BuiltinImplConditions::None => {}
785             BuiltinImplConditions::Ambiguous => {
786                 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
787                 candidates.ambiguous = true;
788             }
789         }
790
791         Ok(())
792     }
793 }